
Supporting Information For: Quantum computation of stopping power for inertial
fusion target design

Nicholas C. Rubin,1, ∗ Dominic W. Berry,2, † Alina Kononov,3 Fionn D. Malone,1 Tanuj Khattar,1

Alec White,4 Joonho Lee,1, 5 Hartmut Neven,1 Ryan Babbush,1, ‡ and Andrew D. Baczewski3, §

1Google Quantum AI, Venice, CA, USA
2School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW, AUS

3Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Albuquerque, NM, USA
4Quantum Simulation Technologies Inc., Boston, MA, USA

5Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

CONTENTS

I. Initial state preparation 1

II. Choosing the projectile’s initial variance 3

III. Grid resolution for the projectile wave packet 4

IV. Accounting for a larger number of plane waves for the nucleus 6
A. Value of λ 7
B. Preparation cost 8

1. Preparation of ν state 8
2. Preparation of momentum control qubits 9
3. Preparation of state selecting term in Hamiltonian 9

C. Selection cost 12
D. Total costs 13

V. Complexity for product-formula simulations 14
A. An efficient implementation of the inverse square-root 14
B. Estimating number of Trotter steps 16

VI. Constant factor estimates for projectile kinetic energy measurement using the Knockout algorithm 19

VII. Bespoke 8th-order product formula 20

VIII. Precision requirements for stopping power 20

IX. Scaling of 1-norm 21

References 23

I. INITIAL STATE PREPARATION

The WDM regime is typified by an electronic temperature comparable to the electronic chemical potential [1, 2],
thus it is particularly important to capture the impact of temperature on the initial state. Ideally we would initialize
the system in a product state between the electrons and projectile, in which the electrons are in their exact thermal
equilibrium state and the projectile is in a state with a sharply defined velocity, ρ = exp(−βH0)/Tr [exp(−βH0)] ⊗
|ψproj(t = 0)⟩⟨ψproj(t = 0)|.

∗ Corresponding author: nickrubin@google.com
† Corresponding author: dominic.berry@mq.edu.au
‡ Corresponding author: babbush@google.com
§ Corresponding author: adbacze@sandia.gov

mailto:nickrubin@google.com
mailto:dominic.berry@mq.edu.au
mailto:babbush@google.com
mailto:adbacze@sandia.gov

2

Unfortunately preparing the thermal ensemble on the electronic subsystem is believed to be exponentially hard for
generic local Hamiltonians, even on a quantum computer. Here we assume that the initial thermal distribution of the
system is well described by a finite-temperature mean-field approach such as thermal Hartree–Fock or Mermin Kohn-
Sham DFT [3, 4], which is easy to prepare on a quantum computer [5]. Previous path integral Monte Carlo calculations
of the static properties of WDM [6–8] suggest that Mermin Kohn-Sham DFT is often an excellent approximation where
the domains of feasibility overlap, and it is by far the most popular ab-initio approach used in the field. The initial
state of the calculation is thus chosen to be a Slater determinant drawn from the solution of a Mermin Kohn-Sham
DFT calculation, noting that we do not expect that quantum resource estimates will be sensitive to the choice of
exchange-correlation functional. The use of a thermal Hartree–Fock reference state may also be appropriate, consistent
with its use as the conventional starting point for building wave function methods. The liquid-like ordering common
in WDM along with the long-range excitations occurring in stopping power simulations often necessitate supercells
large enough that a single-point reciprocal-space quadrature is justifiable (e.g., the Baldereschi mean-value point [9]
or Γ point). We assume our initial state to have been drawn from such a single-point calculation.

To prepare a sample from this ensemble we use the improved Slater determinant state preparation protocol described
in Ref. [5]. The initial orbitals

|ψi⟩ =
∑
p∈G

ci,p|p⟩ (1)

are used to generate the Slater determinant

|ψSD⟩ = |ψ1 ∧ . . . ∧ ψη⟩, (2)

where p indexes the wavenumbers in a plane-wave basis and ∧ is the antisymmetric tensor product. This state is
prepared with Õ(Nη) cost using the Givens rotation protocol, which is applied sequentially to a second-quantized
representation of the initial state. This cost is a negligible additive contribution to the time-evolution cost and not
accounted for in the resource estimates in Section ??.

However, |ψSD⟩ is only a single sample from the initial mean-field density matrix associated with the Mermin
Kohn-Sham solution. Each Mermin Kohn-Sham orbital |ψi⟩ has a temperature-dependent occupation according to
the Fermi-Dirac distribution, and thanks to the mean-field nature of the reference state, the probability associated
with a particular Slater determinant is proportional to the product of probabilities that the corresponding set of
single-particle orbitals is occupied (and its complement is unoccupied). We are careful to note that we are able to
circumvent the prohibitive growth in the number of partially occupied Mermin Kohn-Sham orbitals with temperature,
which limits the feasible system sizes and temperatures in many classical mean-field approaches to WDM. This is
because any given Slater determinant has support on only η orbitals, though we will still need a classical representation
of thermally occupied high-energy orbitals. The state preparation, time evolution, and measurement steps must be
repeated Ns times to sample a thermal distribution over initial electronic conditions, and a (potentially) different
Slater determinant will be prepared for each initial sample. This is accounted for in the total sampling requirements
and it contributes multiplicatively to the total resource estimates. Numerical tests indicate that sampling from the
attendant canonical and grand canonical ensembles have similar overheads, so we choose to develop our protocol for
the canonical ensemble to avoid the need for preparing states with different particle number. Beyond numerical tests,
we generally expect this to be a good choice for the WDM regime due to its low compressibility.

The projectile state |ψproj(t = 0)⟩ describes the quantum projectile nucleus starting at the same position as in
the classical Mermin Kohn-Sham state used to intialize the electronic subsystem, but moving with a velocity vproj.
Preparing the projectile register involves two steps: (1) replacing the corresponding point charge with a Gaussian
charge distribution with real-space standard deviation σr = σ−1

k and (2) translating the average momentum of that
charge distribution to the initial momentum of the projectile, kproj. In momentum space the resulting initial condition
on the projectile wave packet is

ψproj(k, t = 0) =

√
1

(2π)3/2σ3
k

eik·Rproj e−∥k−kproj∥2/4σ2
k . (3)

There is no temperature dependence in the initial nuclear wave packet because it is far from equilibrium in a state with
a relatively sharply peaked velocity (σk ≪ kproj). Subsequent non-BO dynamics of the coupled electron-projectile
system will cause this wave packet to slow down such that its mean velocity will decay linearly, on average, with the
average deceleration proportional to the stopping power. This initial Gaussian wave packet can be prepared using a
method in Ref. [10] that contributes an additive O(logNn) cost that is negligible relative to the cost of time evolution.

3

II. CHOOSING THE PROJECTILE’S INITIAL VARIANCE

The projectile wave packet will have support on a range of momenta and will disperse (i.e., stop at different rates) if
that range is too large. As long as the momentum gradient of the stopping power is relatively small over the dominant
momentum components of the wave packet, this dispersion will be negligible over the relevant time evolution and we
can treat the standard deviation as approximately fixed to facilitate resource estimation. Thus the value of σk, a free
parameter, should be set to facilitate efficient sampling in the nuclear momentum (computational) basis to realize the
fewest circuit repetitions and shortest run time.

While it might appear that we can make the sampling problem arbitrarily efficient by reducing σk, there is a trade-
off in replacing the nuclear point charge in the BO problem with an explicit wave packet in the non-BO problem.
Making the wave packet too narrow in momentum space will spread out the nuclear charge to an unphysical extent
in real space, such that the resulting response will no longer represent a physical nuclear projectile traversing the
medium. One way to understand this is in terms of the equivalent electrostatic potential of the projectile wave packet,

ζproj erf
(
∥r −Rproj∥/

√
2σr

)
∥r −Rproj∥

, (4)

where the error function approaches 1 for ∥r − Rproj∥ ≫ σr, and the potential appears to be equivalent to that of a
point charge. However, for relatively small values of ∥r−Rproj∥ the effective nuclear charge is reduced along with the
strength of the interaction between the projectile and both the electronic and nuclear degrees of freedom. One might
then be tempted to set σr to be consistent with the physical extent of the projectile nucleus (e.g., ∼ 10−5 a0 for a
proton or alpha particle, where a0 is the Bohr radius), but the corresponding σk would then be ∼ 105 a.u. and the
sampling efficiency would be vastly degraded.

To quantify the error associated with replacing the point-like BO projectile nucleus with an explicit non-BO degree
of freedom with a finite σk we can consider the difference between the BO electron-projectile force and the non-BO
electron-projectile force projected onto a fixed form for the wave packet,

∆Se = −
4π

Ω

η∑
i=1

∑
p,q∈G

(p−q)∈G0

ζproj(ikp−q · v̂proj)
∥kp−q∥2

|p⟩⟨q|i

eikq−p·Rproj −
∑
ν∈G

ν−(p−q)∈G

ψ∗
proj(kν − kp−q)ψproj(kν)

 . (5)

It is straightforward to see that this difference vanishes for a projectile wave packet of the form in Eq. (3) in the
σk → ∞ limit. While we are using non-BO dynamics to simulate the stopping process, we aim to design an initial
projectile state that remains a good approximation to a point nucleus throughout the subsequent dynamics. This
is because we are primarily using non-BO dynamics to avoid the overheads of simulation with an explicitly time-
dependent BO Hamiltonian and to allow the electrons to be excited by the nucleus, even while the projectile remains
essentially classical in response.

One can think about the difference in Eq. (5) as quantifying a particular bias in the simulation. Ideally, we would
be able to bound this difference to relate σk to the error that this introduces in the estimate of the stopping power.
However, numerical tests suggest that convenient analytical bounds are too loose to be useful and we instead turn to
classical TDDFT calculations for guidance. In many plane-wave TDDFT calculations the electrostatic potential of
the point-like projectile (σr → 0) is included in the total Hartree potential, which is itself represented in terms of a
plane-wave basis set and (not quite) dual real-space grid. Thus these calculations are themselves subject to a similar
source of error in so far as the real-space grid only approximately captures the point-like nature of the projectile,
even in the absence of pseudization. We expect that setting σr to be less than or equal to the real-space grid spacing
ensuring a particular degree of convergence in TDDFT forces (typically an order of magnitude or more below the
target precision in the stopping power estimate) will introduce a bias that is consistent with the degree of convergence.

We estimate the size of this bias from TDDFT calculations implemented using an extension of the Vienna ab initio
simulation package (VASP) [11–13] described and applied in Refs. [14–17]. Proton stopping power calculations for
a deuterium plasma at a density of 10 g/cm3 and temperature of 1 eV were analyzed for plane-wave cutoffs ranging
from 500 eV to 5000 eV and a velocity of 1 a.u. A cutoff of 1000 eV suffices to converge the estimated stopping power
to within 7× 10−3 a.u. of the 5000 eV calculation, and the former cutoff corresponds to a real-space grid spacing of
1.75 × 10−1 a0. Thus we expect that σk ≈ 5.7 a.u. suffices to achieve a comparable bias in the force. A plane-wave
cutoff of 4000 eV corresponds to σk ≈ 11.4 a.u. and reduces this estimated bias by almost two orders of magnitude,
and thus we expect σk = 5− 10 a.u. to be a good rule of thumb for low-Z projectiles/targets and densities between 1
and 10 g/cm3, relevant to WDM conditions that occur in ICF targets on their way to ignition. We note that we expect
these estimates to be somewhat pessimistic because the supporting TDDFT calculations with different cutoffs each
start from a different initial electronic state and contain additional convergence errors from different discretizations
of the electronic system.

4

III. GRID RESOLUTION FOR THE PROJECTILE WAVE PACKET

1 2 3 4 5
Velocity [au]

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

to
pp

in
g

P
ow

er
 [a

u]
DFT Data
Ns = 50
Ns = 100
Ns = 1000

1 2 3 4 5
initial veloctiy [au]

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

S
to

pp
in

g
P

ow
er

 e
rr

or
 [a

u]

Ns = 50
Ns = 100
Ns = 1000

Figure 1. (Left) Comparison between the TDDFT stopping power and the stopping power computed through random sampling
of the expected value of a Gaussian wave packet’s kinetic energy. The shaded area represents an error of 0.01 a.u. demonstrating
that the main features of the stopping curve can be resolved with a higher error threshold. (Right) Error in stopping power as
a function of the projectile’s initial velocity and number of samples (Ns) used to estimate the Gaussian wave packet’s kinetic
energy. Horizontal lines represent an accuracy in the stopping power of 0.1 eV/Å (≈ 0.002 a.u.) and 0.5 eV/Å (≈ 0.01 a.u.).

Given a value for σk, we next need to determine the number of plane waves required to resolve the kinetic energy
of the projectile to within a specified accuracy. The larger the value of σk, the more plane waves will be required. We
can numerically estimate the number of plane waves by computing the kinetic energy of the wave packet as a function
of the kinetic energy cutoff. Taking our initial wave packet as

|ψproj⟩ =
1√
N

∑
p∈G̃

e
−∥kp∥2

4σ2
k |p⟩proj, (6)

where the normalization factor is N =
∑

p∈G̃ e
− ∥kp∥2

2σ2
k , then the kinetic energy of the projectile is given by

⟨Tproj⟩ =
1

N
∑
p∈G̃

∥kp − kproj∥2

2Mproj
e
−∥kp∥2

2σ2
k . (7)

Another concern with representing a continuous Gaussian wave packet on a grid is the discretization error which
should vanish as Ω → ∞. We can monitor both of these convergence issues by computing the error in the kinetic
energy

ϵT =
1

N
∑
p∈G̃

∥kp∥2

2Mproj
e
−∥kp∥2

2σ2
k − 1

N∞

∫
dk3

∥k∥2

2Mproj
e
− ∥k∥2

2σ2
k , (8)

where the ∥kproj∥2 and kp·kproj terms contributing to the ∥k − kproj∥2 /(2Mproj) factors cancel and vanish, respectively,

and N∞ = (2π)3/2σ3
k. The integral expression comprising the second term is proportional to the second moment of

the normal distribution and evaluates to 3σ2
k/(2Mproj).

For the box sizes considered here (Ω1/3 ≈ 15 a0) and σk > 1 a.u. as required by Section II, we find that the number
of plane waves required to achieve a low ϵT can substantially exceed the number that suffices for convergence in
classical TDDFT simulations. Fig. 2 shows that obtaining a kinetic energy error below 10−3 Ha with σk = 10 a.u. for
a proton projectile requires a plane-wave cutoff of approximately 105 eV, 100 times greater than the TDDFT cutoff
described in Section II. This cutoff corresponds to N ≈ 1.7× 107 plane waves and would require nn = 9 bits to store
each component of the projectile’s momenta. In Table I we list the resources required for different choices of σk.

5

102 103 104 105 106

Ecut [eV]

10−10

10−8

10−6

10−4

10−2

100

P
ro

je
ct

ile
K

in
et

ic
E

ne
rg

y
E

rr
or

[H
a]

σk = 10

σk = 6

σk = 4

σk = 1

Figure 2. Kinetic energy convergence for a proton projectile with respect to the plane-wave cutoff for different values of the
Gaussian wave packet standard deviation σk in a.u. Circles indicate errors evaluated according to Eq. (8). Triangles indicate
errors calculated by replacing the sum in Eq. (8) with a truncated integral, demonstrating that the discretization error for the
values of σk chosen in this work is very small.

σk [a.u.] Ecut [eV] Nn nn ϵT [Ha]

1 3.8× 101 6.4× 101 3 5.6× 10−4

4 9.8× 103 2.6× 105 7 1.1× 10−4

6 3.9× 104 2.1× 106 8 4.2× 10−6

10 1.6× 105 1.7× 107 9 1.8× 10−7

Table I. Number of plane waves Nn and qubits nn needed to converge the kinetic energy of the projectile wave packet (in 3D)
to ϵT < 10−3 Ha for different values of the standard deviation σk and cutoff energy Ecut. Here we assumed a simulation volume
of Ω1/3 = 15 a0.

6

IV. ACCOUNTING FOR A LARGER NUMBER OF PLANE WAVES FOR THE NUCLEUS

We allow a different (larger) set of momenta for the projectile than for the electron. The complete Hamiltonian is
therefore slightly modified from that in [18] to

H = Telec + Tproj + Uelec + Uproj + Velec + Velec−proj (9)

Telec =

η∑
i=1

∑
p∈G

∥kp∥2

2
|p⟩⟨p|i (10)

Tproj =
∑
p∈G̃

∥kp − kproj∥2

2Mproj
|p⟩⟨p|proj (11)

Uelec = −
4π

Ω

L∑
ℓ=1

η∑
i=1

∑
p,q∈G
p ̸=q

(
ζℓ
eikq−p·Rℓ

∥kq−p∥2

)
|p⟩⟨q|i (12)

Uproj =
4π

Ω

L∑
ℓ=1

∑
p,q∈G̃
p ̸=q

(
ζℓζproj

eikq−p·Rℓ

∥kp−q∥2

)
|p⟩⟨q|proj (13)

Velec =
2π

Ω

η∑
i̸=j

∑
p,q∈G

∑
ν∈G0

(p+ν)∈G
(p−ν)∈G

1

∥kν∥2
|p+ ν⟩⟨p|i|q − ν⟩⟨q|j (14)

Velec−proj = −
4π

Ω

η∑
i=1

∑
p∈G

q∈G̃

∑
ν∈G0

(p+ν)∈G

(q−ν)∈G̃

ζproj

∥kν∥2
|p+ ν⟩⟨p|i|q − ν⟩⟨q|proj (15)

where the subscript proj is used to indicate quantities for the projectile nucleus treated quantum mechanically and ℓ
indexes the nuclei treated within the BO approximation. The set G̃ is now the momenta for the projectile, Uproj is
used for the potential energy between the single projectile treated quantum mechanically and the other nuclei, and
Velec−proj is used for the potential energy between the projectile and the electrons.

There will need to be a different preparation of a 1/∥ν∥ state for Uproj than for the other potential operators, because

it will need differences over the full range of projectile momentum. For Vproj we need to check that (q−ν) ∈ G̃, which
means that the projectile momentum has not been shifted outside the range of its allowed values. The sum over ν
here is still over G0, because that includes all allowable shifts of momenta for electrons. Furthermore, we still have the
condition that (p + ν) ∈ G for the electron momentum to not be shifted outside the allowable range. The projectile
kinetic energy Tproj differs from that for electrons in that it has division by Mproj for the mass of the projectile (with

units chosen such that the electron mass is 1), as well as the sum over G̃. The terms Uproj and Vproj have factors for
the charge of the projectile, ζproj.

To improve the efficiency, we consider the case where the projectile momentum is centred around some offset. Then
instead of ∥kp∥2, we would have ∥kp − kproj∥2. We need to add

∑
w∈{x,y,z}[(k

w
proj)

2 − 2kwp k
w
proj] where the superscript

w is indicating the Euler direction. Since (kxproj)
2 is a classically chosen number, it just gives an undetectable global

phase shift which can be ignored, and we just need −2kwp kwproj (the w-components of kp multiplied by a constant).
This means that we are effectively adding an extra term to the Hamiltonian

Tmean = −
∑

w∈{x,y,z}

∑
p∈G̃

kwp k
w
proj

Mproj
|p⟩⟨p|proj . (16)

We will now analyse the complexity for the block encoding of this Hamiltonian. We will not analyse the interaction
picture approach, which is likely to be more costly.

7

A. Value of λ

First, we will define a new value corresponding to the sum of 1/∥ν∥2 over the wider range as

λprojν =
∑
ν∈G̃0

1

∥ν∥2
. (17)

Here G̃0 is the equivalent of G0, except for differences between elements of G̃ for the projectile momentum. The
contributions to λ from Uelec and Uproj are

λelecU =
ηλζ
πΩ1/3

λν ,

λprojU =
ζprojλζ
πΩ1/3

λprojν , (18)

respectively. For Uproj, we need ν summed over G̃0 for differences of projectile momentum. The contributions to λ
from V and Vproj are

λelecV =
η(η − 1)

2πΩ1/3
λν ,

λprojV =
ηζproj
πΩ1/3

λν , (19)

respectively.
The contribution to λ from the electron component of the kinetic energy is

λT =
6ηπ2

Ω2/3
22(np−1). (20)

As discussed in [18], the reason why there is the square of 2np−1 rather than 2np−1−1 is because there is a simplification
in the state preparation for the registers selecting the bits of the momentum. The component of λ for the projectile,
but ignoring the mean is

λprojT =
6π2

MprojΩ2/3
22(nn−1). (21)

The component of λ for the product of the offset and the mean will then be obtained from kmaxk
w
proj for component

w, where the factor of 2 from squaring and the factor of 1/2 for kinetic energy cancel. Because k = 2πp/Ω1/3, that
gives

2π
∑

w∈{x,y,z} |kwproj|
MprojΩ1/3

2nn−1. (22)

Here we have accounted for the state preparation giving an effective 2nn−1 rather than 2nn−1 − 1. This will also be
needed for implementing kwproj (because it will effectively correspond to all ones classically), so the cost will need to

be adjusted by a factor of 2nn−1/(2nn−1 − 1). That gives

λmean
T =

2π
∑

w∈{x,y,z} |kwproj|
MprojΩ1/3

22(nn−1)

2(nn−1) − 1
. (23)

Now consider the value of λ as given in Eq. (119) of [18], which is

λ = max [λT + λU + λV , [λU + λV /(1− 1/η)]/pν] . (24)

The reason for this equation is that, in the case where the inequality test i ̸= j fails, or the preparation of the 1/∥ν∥
state fails, one can simply apply the kinetic energy component of the Hamiltonian. In the case where that would
yield a larger contribution to T than the actual size, that would imply you need to perform an AND with a qubit
flagging T , and flag a result of 0 as ‘failure’ (removing that contribution to the block encoding). When considering
the effective λ values with failures of state preparation, it is divided by the probability of success, so we would have

8

[λU + λV /(1 − 1/η)]/pν . For further explanation see Ref. [18] or Appendix IVB3. In the case where it would not
yield a sufficient contribution to T , there would need to be application of T based on an OR with a qubit flagging T .
That would imply that λT + λU + λV is the correct value of λ to use.
In our case, the only contribution to the Hamiltonian where we would apply Telec (or Tproj or Tmean) if i = j is if

we were otherwise applying Velec, which corresponds to λelecV . Then for the preparation of the 1/∥ν∥ state, we have

a distinct preparation for Uproj (corresponding to λprojU) as for the other contributions to the potential energy. We
would therefore have 1/(1−1/η) for λelecV alone, and 1/pν for most potential terms, except 1/pprojν for Uproj. Therefore
the new expression for λ is

λ = max
[
λelecT + λprojT + λmean

T + λelecU + λprojU + λelecV + λprojV , [λelecU + λelecV /(1− 1/η) + λprojV]/pν + λprojU /pν,proj

]
.

(25)
This expression will be discussed in more detail below where we analyse the state preparation. In the case where
amplitude amplification is used for the 1/∥ν∥ state preparation, there will be a similar expression with pν and pν,proj
replaced with the corresponding probabilities with the amplitude amplification.

B. Preparation cost

We now need to have a separate superposition over ν prepared for Uproj than for all other potential terms, and
there will need to be a different preparation over the bits of T for the projectile and electron momenta. We will also
need to adjust the preparation of the registers for selecting between the different terms in the Hamiltonian.

1. Preparation of ν state

First note that the most difficult part of the preparation is that we need different superpositions over ν depending
on whether we have Uproj or any other part of the Hamiltonian. Referring to Eq. (77) of [18], the first step in the
preparation via nested boxes is to prepare a state of the form

1√
2np+2

np+1∑
µ=2

√
2µ |µ⟩ , (26)

where |µ⟩ is encoded in unary. In our case we will need the equivalent state except with np replaced with nn for
the case of Uproj. Because the state is prepared by a sequence of controlled Hadamards, one can control between
preparing the two states by making nn − np of the Hadamards also controlled by the qubit selecting Uproj. This just
increases the cost of the controlled Hadamards by 1 each for an extra cost of nn − np Toffolis.

The useful feature of this approach is that no further amendment to the preparation scheme is needed to make
it controlled. The rest of the state preparation for ν can proceed exactly as before, with the only extra Toffoli cost
being nn − np at the beginning for preparing the nested boxes state.

To explain the controlled preparation scheme in more detail, the unary encoding is of the form

1√
2np+2

np+1∑
µ=2

√
2µ |µ⟩ = 1√

2np+2

np+1∑
µ=2

√
2µ |0 · · · 0 1 · · · 1︸ ︷︷ ︸

µ

⟩ . (27)

The unary basis state corresponding to µ = np + 1 corresponds to |1 · · · 1⟩. The start of the state preparation is to
perform a Hadamard on the first qubit, then use that to control a Hadamard on the second qubit, and so forth. At
the end we would perform a controlled Hadamard on the second-last qubit. This would give an equal superposition
between µ = 2 and µ = 1, but because we do not allow µ < 2, the case µ = 1 would be flagged as a failure. The
final qubit depicted here can be omitted, because it would always be 1 in this encoding. There will be np qubits, and
np − 1 controlled Hadamards.
In our case here, we would want to either prepare this state or

1√
2nn+2

nn+1∑
µ=2

√
2µ |0 · · · 0 1 · · · 1︸ ︷︷ ︸

µ

⟩ , (28)

where np has been replaced with nn. Because these states need to be represented on the same qubits, we would have
nn − np leading zeros when preparing the first state. Therefore, for the first Hadamard on the first qubit, it would

9

need to be controlled on the qubit selecting between the two states. Then for the next qubit, provided nn − np > 1,
we would perform a doubly-controlled Hadamard. That is, the Hadamard on the second qubit would be controlled by
the first qubit and the qubit selecting between the two states. This will be true for all following qubits that need to
be zero for the np state. Making the Hadamard on the first of these qubits controlled, and the remaining Hadamards
doubly controlled, gives an extra Toffoli complexity of nn − np.

For the first qubit that is non-zero for the np state, we would need to perform a Hadmard for that state, or a
controlled Hadmard for the nn state. This selection does not require any further non-Clifford gates. One can simply
use the qubit selecting the np state as the control for a CNOT on the preceding qubit. That ensures it is 1 for the np
state. Then perform the controlled Hadamard as before. For the nn case this is just part of the sequence of controlled
Hadamards, but for np it is ensuring the Hadamard is performed on the qubit. Then just perform another CNOT
to erase the preceding qubit. Then the sequence of controlled Hadamards can proceed in the same way as when not
preparing this state in a controlled way. By this procedure one can control between preparing the state with np or
nn with an extra Toffoli cost of only nn − np.

2. Preparation of momentum control qubits

Next consider how to prepare superpositions over control qubits for the bits of the momentum. This preparation
will need to be controlled by a qubit selecting between the electron and projectile momentum. The preparation is
described in Eqs. (67) to (69) of [18], and again it proceeds by a sequence of Hadamard gates, except this time it
needs to be done twice for two states (giving r and s). We can make this controlled in exactly the same way as for
the preparation of ν. The only difference is that this time there are two states, so the extra Toffoli cost is 2(nn−np).
We will also need a preparation for a state selecting between the components of kproj for the product kwp k

w
proj. In

practice, the direction of kproj does not need to be taken to be very precise, and we can just consider a rounded
direction. We will therefore just use 8 bits for selecting between the components. The exact value chosen has very
little effect on the overall cost. The method is to use an 8-qubit equal superposition state (prepared with Hadamards).
There are then two inequality tests to prepare the qubits for selecting between x, y, z, which a total cost of 16 Toffolis.
These can be inverted with Cliffords for the inverse state preparation provided the temporary qubits are retained.

We will also need to use the qubit selecting the product of the mean momentum and offset to control a swap of
these qubits and those that are used for selecting x, y, z for the square of the momentum. That will cost another 4
Toffolis, including 2 for the controlled swap and another 2 for the inversion.

3. Preparation of state selecting term in Hamiltonian

In practice we are applying the kinetic component of the Hamiltonian in the case of failure of state preparation for
the potential terms. In particular, there are two scenarios, corresponding to whether the first or second expression in
Eq. (25) gives the maximum. When the first is larger, this implies that only applying the kinetic term in the case of
state preparation failure will not give sufficient weight on that term. You need to apply the kinetic term if there is
failure OR a qubit flagging the kinetic term is in the |1⟩ state. That can be computed with a Toffoli. In the case where
the second expression in Eq. (25) is larger, that means that applying the kinetic term in the case of preparation failure
would give too large a weight on the kinetic term. Then one needs to apply the kinetic term if there is failure AND
the qubit flagging the kinetic term is in the |1⟩ state. That logical AND is again something that can be computed
with a single Toffoli.

But, unlike in [18] there are three kinetic components to account for. This means that, in the case of failure of
the state preparation we also need a register to select between the three kinetic components. To achieve this, we will
prepare a state of the form

(
√
αUV |0⟩+

√
αT |1⟩)

(√
µelec
T |0⟩+

√
µproj
T |1⟩+

√
µmean
T |2⟩

)(√
µelec
U |0⟩+

√
µproj
U |1⟩+

√
µelec
V |2⟩+

√
µproj
V |3⟩

)
,

(29)
where the first qubit is used to select the kinetic component, the second register is to select between the different
kinetic energy components, and the third register is used to select between the potential energy components.

Now, in the case where the first expression in Eq. (25) gives the maximum, we would perform an OR between the
result of state preparation and the first qubit, and use the second register to select between the components of T . To
describe this state preparation in a simplified way, we will describe it as a rotated qubit flagging success. It will, of
course, be entangled with the prepared state, but we are ignoring that for the simplicity of the explanation here. The

10

state can then be written as

(
√
αUV |0⟩+

√
αT |1⟩)

(√
µelec
T |0⟩+

√
µproj
T |1⟩+

√
µmean
T |2⟩

)[(√
µelec
U |0⟩+

√
µproj
V |3⟩

)(√
pν |0⟩+

√
1− pν |1⟩

)
+

√
µproj
U |1⟩

(√
pν,proj |0⟩+

√
1− pν,proj |1⟩

)
+

√
µelec
V |2⟩

(√
(1− 1/η)pν |0⟩+

√
1− (1− 1/η)pν |1⟩

)]
. (30)

This corresponds to a probability of pν for success with U or Vproj, since we only need to prepare the 1/∥ν∥ state
with np qubits. Then there is pν,proj for Uproj since there is preparation with nn qubits for the projectile. Lastly, for
V there is (1 − 1/η)pν since we need preparation of the 1/∥ν∥ state and i ̸= j in preparing the equal superposition
state.

To take account of the case where there is amplitude amplification performed for the state preparation for ν, there
will be separate boosted probabilities pamp

ν and pamp
ν,proj for the electron and projectile parts. This is because the state

preparation and amplitude amplification is performed entirely controlled by the register selecting between electron
and projectile components. (A different expression would be obtained if there were amplitude amplification involving
the selection between components as well.) We give the reasoning below using the expressions for the un-amplified
probabilities, but exactly the same reasoning applies with the amplified probabilities.

The overall squared amplitude for |0⟩ on the ancilla flag qubit is then

µUV := pν(µ
elec
U + (1− 1/η)µelec

V + µproj
V) + pν,projµ

proj
U . (31)

We would only apply a potential component of the Hamiltonian if we have |0⟩ on this qubit and |0⟩ on the first qubit,
which has a squared amplitude αUV . Therefore the squared amplitude for performing the kinetic component of the
Hamiltonian at all is 1 − αUV µUV . The squared amplitudes for applying the kinetic components will correspond to
this factor times the squared amplitudes in the second register. So, for example, the squared amplitude for Telec is
(1− αUV µUV)µ

elec
T .

In the overall block encoding, the block encoding for the Hamiltonian gives H/λ, which is how λ is defined. Here
we would have a squared amplitude for Telec, then block encode Telec with a factor of 1/λelecT . This means that the
factor of 1/λ in the overall block encoding needs to be the same as (1 − αUV µUV)µ

elec
T /λelecT . Solving for λelecT then

gives

λelecT = λ (1− αUV µUV)µ
elec
T . (32)

In exactly the same way, for the other kinetic components we obtain

λprojT = λ (1− αUV µUV)µ
proj
T , λmean

T = λ (1− αUV µUV)µ
mean
T . (33)

Then, for the potential components, we need to multiply the squared amplitude for that component in the third
register by the squared amplitudes for |0⟩ on the first register and flag qubit. For example, for Uelec we have

λelecU = λαUV pνµ
elec
U , (34)

where the factor of λ arises from exactly the same reasoning as for the kinetic components. Similarly, for the other
potential components we have

λprojU = λαUV pν,projµ
proj
U , λelecV = λαUV pν(1− 1/η)µelec

V , λprojV = λαUV pνµ
proj
V . (35)

Next, note that when we sum λelecT , λelecU , λelecV , λprojT , λprojU , λprojV , λmean
T , we just get λ. That is what is expected, because

there is no case here where no component of the Hamiltonian is implemented. This means that the individual λ values
should correspond to sums of weights in linear combinations of unitaries for the components of the Hamiltonian, with
their sum corresponding to the sum of weights for the complete Hamiltonian. This is also consistent with the first
expression in Eq. (25).

Let us prepare the registers using inequality tests using numbers of qubits nV T , nT , and nUV , for the respective
registers. There will then need to be six inequality tests for the preparation. First, the possible error in αT or αUV

will be λ/2nV T+1. The total contribution to the error in λelecT , λprojT , λmean
T will come from the sum of that in the

expressions for those three quantities. The contribution to the error should be no more than

λ

2nV T+1
µUV . (36)

11

We get this exact same expression if we sum the possible contributions to the error from λelecU , λprojU , λV , λ
proj
V . We

therefore find that the contribution to the error from this source (preparation of the first qubit) is no larger than

λ

2nV T
µUV ≤

λ

2nV T
. (37)

Next, consider the contribution to the error from the imprecision in the inequality tests for the second register.
The error in µelec

T , µproj
T , µmean

T can be 1/2nT+1 for two, and 1/2nT for the third, for a total of 2/2nT . This error is
multiplied by λ(1− αUV µUV), to give

2λ

2nT
(1− αUV µUV) . (38)

Then, the contributions to the error from the inequality tests for the third register are 1/2nUV +1 for two, and 1/2nUV

for two. The total contribution to the error will then be smaller than

λ

2nUV
αUV µUV . (39)

Now, if we take nUV = nT − 1, then the total of the error from the two sources (preparation of the second and third
registers) is upper bounded by

2λ

2nT
. (40)

If we take nV T = nT , then the total error from the three sources is upper bounded as

3λ

2nT
. (41)

The other case is that when the second expression in Eq. (25) gives the maximum. That corresponds to the failure
cases of the state preparation giving a weighting that is too large for T , so an AND is performed with the qubit
flagging T to reduce the weight to the correct value. In that case, the same three-register state is used, and the result
of the state preparation success flag state is the same. But, we apply kinetic components only if there is a failure
of the state preparation (which happens with squared amplitude 1 − µUV , and there is |1⟩ on the first qubit, with
squared amplitude αT . By exactly the same reasoning as before, we obtain the individual λ-values as the squared
amplitudes multiplied by λ. That gives the kinetic λ-values as

λelecT = λαT (1− µUV)µ
elec
T , λprojT = λαT (1− µUV)µ

proj
T , λmean

T = λαT (1− µUV)µ
mean
T . (42)

For the potential energy components, we apply them whenever there is success of the state preparation, regardless of
the state of the first qubit. This means that the λ-values are

λelecU = λ pνµ
elec
U , λprojU = λ pν,projµ

proj
U , λelecV = λ pν(1− 1/η)µelec

V , λprojV = λ pνµ
proj
V . (43)

It is then easy to check that

[λelecU + λelecV /(1− 1/η) + λprojV]/pν + λprojU /pν,proj = λ , (44)

so the second expression in Eq. (25) gives λ as expected. Note that this is the expression without amplitude ampli-
fication for ν. When amplitude amplification is used the probabilities pν and pν,proj are replaced with the amplified
probabilities pamp

ν and pamp
ν,proj.

The error in αT will only affect λelecT , λprojT , λmean
T , because the implementation of the potential energy components

is independent of the first qubit. Given that the error in αT is upper bounded as 1/2nV T+1, the contribution to the
error in the three kinetic terms is upper bounded as

λ

2nV T+1
(1− µUV) . (45)

Next consider the contribution to the error from the preparation of the second register. The total error in
µelec
T , µproj

T , µmean
T can be upper bounded as 2/2nT , to give an upper bound on the contribution to the error in

λelecT , λprojT , λmean
T as

2λ

2nT
αT (1− µUV) . (46)

12

The contributions to the error from the inequality tests for the third register will then be

λ

2nUV
[pν(µ

elec
U + (1− 1/η)µelec

V + µproj
V) + pν,projµ

proj
U] =

λ

2nUV
µUV . (47)

The only difference from the first case (using an AND) is that we have removed the factor of αUV . That is because
the potential energy component does not depend on the first qubit. Provided we take nUV = nV T +1, adding this to
the contribution to the error from αT gives

λ

2nUV
. (48)

If we take nUV = nT , then the total error from the three sources (preparation on the three registers) is again upper
bounded as

3λ

2nT
. (49)

When performing the inequality tests for the state preparation on each register, we naturally obtain a result encoded
in unary. This is we will have one alternative where none of the inequalities are satisfied, giving 000, another with
one satisfied to give 001, another with two satisfied giving 011, and so forth. The encoding of the registers in unary
is convenient because we have separate qubits flagging each of the component of the Hamiltonian (after converting to
one-hot unary).

In our implementation we will need a qubit selecting between electron and projectile components (so, for example,
between Velec and Vproj). It is trivial to prepare such qubits separately for the kinetic and potential registers without
Toffolis. But, we will also need to select between these qubits based on a qubit we prepare (discussed further below)
selecting between the kinetic and potential components. That can be performed via a single controlled swap, with
another controlled swap in the inverse preparation for a total of two Toffolis.

C. Selection cost

For the storage of the state, a larger number of qubits 3nn are used for the projectile, but the electron momenta
are stored in the same way as in [18]. The projectile state is stored in a given location, with the antisymmetrization
only for the electron registers. Then, when we are performing the controlled swap of the momentum register to an
ancilla, there will be two, one controlled by i and the other by j. For the second we only swap electron momenta
into the ancilla, so the procedure is identical to that in [18]. For the first, we also control on a qubit for selecting the
projectile momentum, and the ancilla will include extra qubits to allow for storage of the projectile momentum. The
controlled swaps can just be performed as before, except in the case that the qubit flagging the momentum component
is set we swap the nn qubits for the projectile momentum. We are performing operations on the ancilla register in
superposition (over the registers selecting the electron register or projectile register). The qubits in this ancilla will
all be zeroed, so when we swap in an electron momentum the extra qubits that would be used in the case of the
projectile momentum are all zero. This means it is possible to perform most operations on the momentum register in
common between projectile and electron momenta.

Next we consider the cost. In our implementation, we use i, j to index electron registers, with an extra qubit to
select between electron and projectile components. We will perform the controlled swaps of the projectile momentum
into only one of the temporary registers. This means the cost of the controlled swaps is 2(η−2) for the unary iteration
for the electron registers, then 2[(η+1)− 2] for iteration over the electron and projectile registers. That gives a total
of 4η − 6. Then cost of the controlled swaps themselves is

12ηnp + 6nn. (50)

This is just an extra cost of 6nn for the projectile momentum, for two controlled swaps on 3nn qubits. That gives a
cost

12ηnp + 6nn + 4η − 6. (51)

The other main change to the select operations is that the operations need to be on nn qubits rather than np. This
will impact the selection cost of the components of the Hamiltonian in different ways, detailed in the next subsection.
There also needs to be selection between the square of the momentum and the product of the momentum with the
momentum offset for the kinetic energy.

13

To see how to modify the procedure to perform this selection, recall how the kinetic energy is computed as in
Eq. (65) of [18]. There the kinetic energy is written as

T =
2π2

Ω2/3

η∑
j=1

∑
p∈G

∑
w∈{x,y,z}

np−2∑
r=0

np−2∑
s=0

2r+spw,rpw,s |p⟩⟨p|j . (52)

Here the two bits pw,rpw,s correspond to products of bits in a component of p in order to obtain the square. The
method is very simply modified to obtain the product of the form kxpk

x
mean, simply by selecting w as x, and replacing

bit px,s with the corresponding bit for kxmean. The way we encode kxmean is that it is represented by all bits equal to
1, with its actual value (the multiplying factor times that integer) being governed by the state preparation.

In particular, we need to modify step 4 in the list of steps in the left column of page 17 of [18]. This step involves
performing a Toffoli controlled by the qubits storing pw,r and pw,s. Here we would make the NOT controlled on
pw,r ∧ (pw,s ∨ b), for b the flag for the Tmean component of the Hamiltonian.

There is also the selection of the component of the momentum depending on whether we want the square or product
with the mean. As explained above, there is a cost of 4 Toffolis. The register to select the x, y, z component can be
given in binary or unary, since we can convert between binary and unary with Cliffords for three. We can therefore
assume that the w registers for the square and product are given using 2 qubits each (for binary). The qubit selecting
Tmean can be used to control a swap between these two registers, with a cost of 2 Toffolis, then there are another 2
Toffolis to invert the swap for the inverse state preparation.

There is no extra non-Clifford cost for the minus sign in Tmean, because it is just a (Clifford) controlled phase gate.
We may also perform controlled phase gates to apply signs of the components of kmean with no extra Toffoli cost.
The condition that (p + ν) ∈ G versus (q − ν) ∈ G̃ needs no modification. The operation p + ν is for an electron
momentum, so (p+ν) /∈ G the extra nn−np qubits will not be all zero. Then those qubits are not swapped back into
the momentum register in the controlled swap, so nonzero qubits are remaining to flag a ‘fail’ and remove that part
in the block encoding. Similarly, if (q− ν) /∈ G̃ for the projectile momentum, then there will be an extra ancilla qubit
flagging ‘fail’ resulting from the subtraction. There will be no need to treat these registers differently apart from the
controlled swaps addressed above.

D. Total costs

To be consistent with Reference [18] we provide updated costs for each block encoding subroutine.

C1. The cost of the preparation of the registers selecting between the components of the Hamiltonian is changed to
6nT − 1, where nT is the number of qubits used in inequality tests. That is the cost for the six inequality tests
in the preparation of the three registers used, and accounting for one of those inequality tests using one fewer
qubit (see SI I). We are also assuming that the temporary ancillas are retained so these inequality tests may
be inverted without Toffolis. There will be another Toffoli for the AND or OR in the preparation of the qubit
flagging whether the kinetic or potential energy is applied. There are another two Toffolis for controlled swaps
for selecting the qubit that selects between electron and projectile components. That gives a total of 6nT + 2.

C2. The cost of preparing the superposition over η values of i, j is unchanged from that in Ref. [18]. There it is
given as 14nη + 8br − 36 (where nη = ⌈log(η)⌉) for preparing a superposition and flagging i ̸= j.

C3. The state preparation of the w, r, s registers for the kinetic energy operators will have cost 2(2nn + 9)+ 2(nn −
np) + 20. The first amendment over the 2(2np + 9) expression in Ref. [18] is to replace np with nn because
we need to account for the larger basis for the projectile. The second amendment is to include a 2(nn − np)
term to account for the extra control of the Hadamards between the electron and projectile parts. The third
amendment is to include the cost of the inequality test for preparing a second w register (20 Toffolis) and the
controlled swaps (4 Toffolis).

C4. The cost of swaps into the working registers is 12ηnp +6nn +4η− 6. Because we are now selecting between the
η electron registers and the projectile register for i but not j, we need another two Toffolis, which changes −8
to −6. The extra 6nn term is for the controlled swaps in the case when we are selecting the projectile register
for i. There is a factor of 6 rather than 12 because it is only for i, not i and j as for the electron registers.

C5. The select cost of the kinetic energy terms is increased from 5(np − 1) + 2 to 5(nn − 1) + 2 due to the need to
account for the larger number of qubits for the projectile. There is another Toffoli for the selection between the
square and the product of the momentum with the momentum offset for the projectile, for a total of 5nn − 2.

14

C6. For the cost of preparing the 1/∥ν∥ state, we first need to replace np with nn. The other amendment is that we
need to introduce a cost of nn − np + 1 for the extra controls on the Hadamards. There are nn − np − 1 double
controls, where the double control may be applied with a Toffoli that can be inverted with Clifford gates. There
is also an extra singly-controlled Hadamard, which needs another Toffoli for inversion. That gives the extra cost
(nn − np − 1) + 2 = nn − np + 1. That gives a total cost of 3n2n + 16nn − np − 6 + 4nM(nn − 1) for preparing
the 1/∥ν∥ state.

C7. The QROM cost or Rℓ is unchanged at λζ + Er(λζ).

C8. For the addition and subtraction cost of ν into momentum registers, only half of it is np replaced with nn,
because we are only allowing the projectile momentum in one temporary register. That gives a Toffoli cost
12(nn + np).

C9. For the phasing cost we simply replace np with nn to account for the projectile momentum, to give 6nnnR.

V. COMPLEXITY FOR PRODUCT-FORMULA SIMULATIONS

A. An efficient implementation of the inverse square-root

To give the costing for this procedure more precisely, we first need to compute the sum of squares of the difference
between each of electron’s xyz-components. This arithmetic has a cost of three squares. According to Lemma 8 of
Ref. [18], the complexity is 3n2 − n − 1 when each of the three numbers has n bits. The resulting number has no
more than 2n+2 bits. The Toffoli complexity of the QROM to output interpolation parameters is then 4n+2, using
a variable spacing QROM as in Ref. [19]. As an example, say we were performing the variable spacing QROM on 8
qubits. The integer ranges that would be used would be

0, 1, 2, 3, [4, 5], [6, 7], [8, 11], [12, 15], [16, 23], [24, 31], [32, 47], [48, 63], [64, 95], [96, 127], [128, 191], [192, 255], (53)

where e.g. [16, 23] is used to indicate the range of integers.
Then for the interpolation, we can describe it by the interpolation for the regions [1, 3/2] and [3/2, 2]. For example,

[16, 23] is 16 times a range within [1, 3/2], so we can use the parameters chosen for [1, 3/2] appropriately scaled for
this multiplying factor. For the region [1, 3/2] we can use the interpolation

1√
x
≈ a0 − a1(x− 1) + a2(x− 1)2 − a3(x− 1)3 , (54)

with

a0 = 0.99994132489119882162, (55)

a1 = 0.49609891915903542303, (56)

a2 = 0.33261112772430493331, (57)

a3 = 0.14876762006038398086. (58)

This is followed by a step of Newton-Raphson as

y 7→ 1

2
y(3 + δ − y2x), (59)

where δ = 5.1642030908180720584 × 10−9. These parameters were found by numerically minimising the maximum
relative error over the region. It was then found that the relative error is no more than about 2.5821×10−9 within this
interval. The constants aj are appropriately scaled for x in the range [2m, (3/2)2m] as a0 7→ a0/2

m/2, a1 7→ a1/2
3m/2,

a2 7→ a2/2
5m/2, a3 7→ a3/2

7m/2, with x− 1 replaced with x− 2m. (The constant δ is unchanged.)
For x in the range [3/2, 2], one can use

1√
x
≈ a0 − a1(x− 3/2) + a2(x− 3/2)2 − a3(x− 3/2)3 , (60)

15

with

a0 = 0.81648515205385221995, (61)

a1 = 0.27136515484240234115, (62)

a2 = 0.12756148214815175348, (63)

a3 = 0.044753028579153842218, (64)

δ = 3.6279794522852781448× 10−10. (65)

These parameters were similarly found by a numerical optimisation to reduce the error, and give relative error no
more than about 1.8140× 10−10 in this region.

Writing the polynomial in this way makes it appear as if many powers and multiplications are needed. The
computation can be significantly simplified by rewriting it as (for the case of the range [1, 3/2])

a0 − (x− 1){a1 − (x− 1)[a2 − a3(x− 1)]} = a0 − a1(x− 1) + a2(x− 1)2 − a3(x− 1)3. (66)

Thus, only three multiplications are needed to compute the polynomial, and the multiplications are the most costly
part. We have also written it with a polynomial of x − 1 rather than x. This requires one subtraction, but reduces
the number of bits needed to represent x− 1 (versus x) by 1, and reduces the number of bits for each of a0, a1, a2 by
1. This subtraction can be performed with Clifford gates because removing a leading 1 from x can be performed with
a CNOT gate. We have a similar form for the polynomial in the range [3/2, 2].

It is also found that the initial polynomial interpolation may be given to only 15 bits of precision, and the resulting
accuracy of the approximation after the step of Newton-Raphson is still about one part in 108. For a rough estimate of
the complexity of the arithmetic, we can assume it is performed with no more than 15 bits at this step. As discussed
in [19], the complexity of multiplying two real numbers is approximately the square of the number of bits. This is
because less significant bits can be omitted in the calculation. If we are using 15 bits for each multiplication in the
interpolation here, the complexity of the three multiplications is about 3 × 152 = 675. This is the dominant cost
in the arithmetic, and the subtractions have significantly lower cost. Three subtractions on 15 bits have Toffoli cost
about 45 (computing x− 1 or x− 3/2 is not included here because it can be performed with Clifford gates).
For the step of Newton-Raphson, we can estimate the complexity of the square of a 15-bit number as 152 Toffolis.

Then for the other two multiplications, if we aim for, for example, 24 bits of accuracy, then the complexity is 2× 242.
With another 24 Toffolis for the subtraction, the overall complexity is about 2136 (excluding the complexity of the
sum of squares and QROM). With the number of bits in each direction being n = 6, the sum of squares has complexity
101, and the QROM has complexity 26 Toffolis. Those are trivial complexities compared to the other arithmetic for
the inverse square root, and would bring the total to about 2263.

There are a couple of additional considerations for the complexity not discussed in the simplified discussion above.
First, for small x the inverse square root is large, so in the multiplication of x by the approximation of 1/

√
x the

assumptions in the estimate of the complexity do not hold. In order to avoid needing to use additional bits of precision
in the multiplications to account for that, we can instead use bit shifts. First, we strip pairs of leading zeros from x.
Since x has 2n+ 2 bits, the complexity is n(n+ 1), which is 42 for n = 6.
In this example, one may remove 2, 4, 6, 8, 10, or 12 leading zeros. (There cannot be all zeros which would

correspond to two electrons at the same location.) These alternatives would require moving a number of bits which
is 14 minus the number of leading zeros. The Toffoli cost corresponds to the number of bits moved, which gives a
total of 12 + 10 + 8 + 6 + 4 + 2 = 42 Toffolis. At the end one would need to shift the approximation of the inverse
square root back again. This can be performed on the result of the QROM interpolation before multiplying in the
Newton-Raphson iteration. That would have a Toffoli complexity no more than 15n bits giving we are computing
the QROM interpolation to 15 bits. In the example with n = 6 it is 90 Toffolis. These two costs are relatively trivial
compared to the overall cost of the step, and would bring it to about 2395 Toffolis. In this cost we have taken the
specific example of n = 6. The n-dependent cost can be given as

2136 + (3n2 − n− 1) + (4n+ 2) + n(n+ 1) + 15n = 2137 + 4n2 + 19n . (67)

A further consideration is the need to uncompute the arithmetic. If we were to compute all the pairwise Coulomb
potentials, sum then phase by the sum, we would then need to uncompute the sum. The number of Toffolis makes it
infeasible to uncompute by retaining qubits. However, we can phase by each individual pairwise Coulomb potential and
uncompute the arithmetic with Clifford gates by retaining about 2000 qubits used in the calculation. This approach
would be reasonable given the algorithm is likely to need a large number of logical qubits already. A difficulty then
is that a the potential may need to be multiplied by a constant before phasing. If we were to compute the complete
Coulomb potential before phasing then that complexity would be trivial, but it will be significant if we need to do it
for each pairwise potential.

16

If we were to use just the standard Lie-Trotter product formula then the length of the time step could be chosen
such that no multiplication were needed. Higher-order product formulae would need time steps with irrational ratios,
so multiplications would be needed. However, that can be avoided if we instead compute the factor as part of the
QROM interpolation and Newton-Raphson. If we are aiming to compute b/

√
x, then we can simply multiply the

constants in the QROM interpolation by b, and replace 3 with 2+ b2 in the Newton-Raphson step. That will give the
desired factor with the same Toffoli complexity as before.

B. Estimating number of Trotter steps

According to Theorem 4 of Ref. [20], for a real-space grid Hamiltonian defined for orbital indices {j, k, l,m} and
spin indices {σ, τ} of the form

H =
∑
j,k,σ

τj,ka
†
j,σak,σ +

∑
l,m,σ,τ

νl,ma
†
l,σal,σa

†
m,τam,τ (68)

the spectral norm error in a fixed particle manifold for an order-k product formula Sk(t) can be estimated as∥∥Sk(t)− e−itH
∥∥
Wη

= O
(
(∥τ∥1 + ∥ν∥1,[η])

k−1 ∥τ∥1 ∥ν∥1,[η] η t
k+1

)
. (69)

Here, a†j,σ and aj,σ are creation and annihilation operators, and the norms are defined as

∥τ∥1 = max
j

∑
k

|τj,k| (70)

∥ν∥1,[η] = max
j

max
k1<...<kη

(
|vj,k1

|+ ...+ |vj,kη
|
)
. (71)

If the constant of proportionality is ξ, then breaking longer evolution time t into r intervals gives error

≈ ξ(∥τ∥1 + ∥ν∥1,[η])
k−1 ∥τ∥1 ∥ν∥1,[η] η t

k+1/rk . (72)

In order to provide a simulation to within error ϵ, the number of time steps is then

r ≈ t1+1/k(∥τ∥1 + ∥ν∥1,[η])
1−1/k(ξ ∥τ∥1 ∥ν∥1,[η] η/ϵ)

1/k. (73)

Our goal is to numerically determine the constant factor ξ for a high-order product formula. We first provide the
constant factors of the norms used in the error scaling Eq. (69) and describe their convergence to asymptotic values.
The scaling of the norms is

∥τ∥1 = O
(
N2/3

Ω2/3

)
(74)

∥ν∥1,[η] = O
(
η2/3N1/3

Ω1/3

)
. (75)

To estimate the constant factor for ∥τ∥1, note that ∥τ∥ corresponds to the kinetic energy of a single electron. That
fact easily follows from considering τ in the basis where it is diagonal, and noting that ∥τ∥ is invariant under basis
transforms. Therefore ∥τ∥1 can be lower bounded as

∥τ∥1 ≥ ∥τ∥ = max
p

∥kp∥2

2
= max

p

4π2∥p∥2

2Ω2/3
=

4π2

2Ω2/3
3[(N1/3 − 1)/2]2 ≈ 3π2N2/3

2Ω2/3
. (76)

This lower bound is an accurate approximation of ∥τ∥1 in the limit of large N ; see Appendix IX. The norm ∥ν∥1,[η]
comes from Eq. (K4) of [18] which uses the the potential operator

V =
N1/3

2Ω1/3

∑
i ̸=j

∑
p,q

1

∥p− q∥
|p⟩⟨p|i |q⟩⟨q|j . (77)

17

and corresponds to the potential energy for a single electron with the other electrons packed around it as closely as
possible. For p, q where there is a unit grid spacing, the volume is η ≈ (4/3)πR3, giving a radius of R ≈ [(3/4)η/π]1/3.
The potential energy is the integral of 1/r over a sphere from 0 to R. That gives∫ R

0

4πr2/r dr = 4π

∫ R

0

r dr = 2πR2 = 2π[(3/4)η/π]2/3. (78)

Thus, ∥ν∥1,[η] including constant factors is approximately

∥ν∥1,[η] ≈ π
1/3(3/4)2/3

η2/3N1/3

Ω1/3
. (79)

To explore how quickly the norms converge to their asymptotic values (Eq. (79) and Eq. (76)) we plot each norm as a
function of basis size and number of particles in Figure 3. We find that ∥τ∥1 converges relatively quickly with respect
to the grid spacing (N1/3/Ω1/3) but ∥ν∥1,[η] does not converge until approximately 50 particles.

10
1

N1/3/ 1/3

10
2

10
3

10
4

||
|| 1

Eq. 59 ((N1/3/ 1/3)2.1018)
Numerical-rspace ((N1/3/ 1/3)2.0498)
Numerical-kspace ((N1/3/ 1/3)2.0498)

10
1

10
2

10
1

10
2

||
|| 1

,[
]

1/3 = 1 , N1/3 = 6

Analytical (0.6667)
Numerical (0.6751)

(1.0000)

Figure 3. Comparison between the analytical asymptotic value of the the norms ∥τ∥1 and ∥ν∥1,[η]. For a given reciprocal lattice

sampling defined as kν = 2πν

Ω1/3 , ν ∈ G, G = {−N1/3−1
2

, N1/3−1
2

}, the real space grid is defined as rp = pΩ1/3

N1/3 , p ∈ G satisfying

shifted (centered) discrete Fourier transform |rp⟩ = 1√
N

∑
ν e

ikν ·rp |kν⟩ and thus kν · rp = 2π

N1/3 ν · p. The grey dashed line for

the ∥ν∥1,[η] norm plot describes the scaling of the rightmost four red (numerical) points. The red dashed line corresponds to a
fit to the rightmost five red (numerical points). Similarly in the ∥τ∥1 norm plot the N scalings are determined by fitting the
rightmost five points.

In order to determine the constant ξ in Eq. (72) we numerically determine the spectral norm of Eq. (69) for a
variety of product formulas for a variety of systems scaling in N and η. To avoid building an exponentially large
matrix, we adapt the power method to determine the spectral norm of ∆(t) = Sk(t) − e−itH as the square root of
the maximal eigenvalue of ∆(−t)∆(t). Numerically taking the square root would halve the precision, so we instead
use the power iteration to estimate the spectral norm of half an application of ∆(−t)∆(t). The full algorithm is
outlined in Algorithm 1 which is implemented in the Fermionic Quantum Emulator (FQE) [21]. Using the FQE we
can target a particular particle number sector, projected spin sz sector, and use fast time evolution routines based
on the structure of the Hamiltonian in Eq. (68). Our numerics involved 64 orbital (128 qubit) systems involving 2-4
particles.

In the Figure 4 we determined ξ by explicitly calculating the spectral norm of the difference between the exact
unitary and a bespoke 8th-order product formula described in Appendix VII. The ‘prefactor’ variable corresponds to
(∥τ∥1 + ∥ν∥1,[η])k−1 ∥τ∥1 ∥ν∥1,[η] η tk+1 for t = 0.65. For N = 64 η = 4 we estimate a ξ = 3.4 × 10−8 which is the

value of the rightmost point.

For the 8th-order product formula, each step requires 17 exponentials. Each exponential has a complexity on the
order of 2395η(η − 1)/2. Combining the constant factors, norm computation, and number of Toffolis required per
exponential allowed us to calculate the Toffoli and qubit complexities for time evolution via product formula. We
provide comparative costs to QSP in Section ??.

18

Algorithm 1: Power iteration algorithm to compute the spectral norm ∥∆(t)∥Wη
= Γ

Data: ϵ, ∆(t) = Sk(t)− e−itH

ψi=0 ← 1√
|H|

∑
j |j⟩;

δ ←∞;
Γ− ← 0;
Γ← 0;
while δ ≥ ϵ do

ψi+ 1
2
← ∆(t)ψi;

Γ← ∥ψi+ 1
2
∥;

ψi+1 ← ∆(−t)ψi+ 1
2
;

ψi+1 ← ψi+1/∥ψi+1∥;
δ ← |Γ− − Γ|;
Γ− ← Γ;

end

2 3 4

1.2

1.4

1.6

1.8

2.0

||S
p(

t)
e

itH
||

 /
pr

ef
ac

to
r

1e 2

p = 2, N = 64

2 3 4
2.0

2.5

3.0

3.5

4.0

4.5
1e 4

p = 4, N = 64

2 3 43

4

5

6

7

8

||S
p(

t)
e

itH
||

 /
pr

ef
ac

to
r

1e 6

p = 6, N = 64

2 3 4

0.4

0.6

0.8

1.0

1e 7

p* = 8, N = 64

Figure 4. N = 64, Ω = 5 grid based Hamiltonian convergence of the prefactor ξ with respect to particle number. ξ = 3.4×10−8

is used as an upper bound for the prefactor in all subsquent product formula resource estimates. p indicates the product
formula order (star on the lower right plot indicates a numerically determined product formula). The blue points (upper left)
are for the Strang product formula, red points (upper right) are for 4th-order Suzuki-Trotter, yellow (lower left) are for 6th-order
Suzuki-Trotter, and green (lower right) corresponds to a custom 8th-order formula described in Appendix VII.

19

VI. CONSTANT FACTOR ESTIMATES FOR PROJECTILE KINETIC ENERGY MEASUREMENT
USING THE KNOCKOUT ALGORITHM

For a fixed standard error ϵ, Monte Carlo sampling provides the optimal bound on the number of samples needed to
estimate the expected value of an observable. This standard sampling limit states the number of samples to estimate
the observable to ϵ precision goes as O(σ2/ϵ2) where σ2 is the variance of the observable. Recently, a quantum
algorithm was developed by Kothari and O’Donnell (KO) [22] that allows one to estimate the expected value of an
observable to ϵ precision with the number of samples going as O(σ/ϵ); a quadratic improvement over the standard
limit. The main protocol in this algorithm is the use of phase estimation on a unitary that is the composition of a
reflection around the prepared state–called the synthesizer–and a phasing operation that phases basis states according
the value the random variable takes on those basis states. This protocol allows one to solve a decision problem that
identifies if the expected value, encoded as the eigenvalue of the unitary, is to the left or right of a gapped range,
thereby knocking out part of the possible range (Theorem 1.3 in Ref. [22]). Using additional classical reductions
allows one to boost this decision problem to the mean estimation problem (Theorem 1.1 in Ref. [22]). In this section
we describe a rough estimate of the constant factors associated with performing the KO algorithm to estimate the
kinetic energy of the projectile. We do not detail all classical reductions necessary for the task but instead focus
on the primary decision problem to obtain an estimate of when ϵ is small enough such that the KO algorithm has
a computational advantage over Monte Carlo sampling. The unitary that needs to be phase estimated in the KO
algorithm is the composition of a reflection analogous to the Grover diffusion operator REFL and a phase oracle
ROTy

U = REFL · ROTy. (80)

Given a circuit that prepares the desired probability distribution

P |0⟩ =
∑
ℓ

√
p(ℓ)|ℓ⟩ (81)

the reflection is defined as

REFL = P (2|0⟩⟨0| − I)P † (82)

and the ROTy is

ROTy|ℓ⟩ = eiαℓ |ℓ⟩ (83)

where αℓ = −2arctan(yℓ) and yℓ is the value of the random variable for the event indexed by ℓ. In order to perform
phase estimation on the KO algorithm U we need controlled forms of REFL and ROTy along with controlled forms
of their inverses. For a non-abridged version of the algorithm and details surrounding allowed ancilla registers see
Section 3 of Ref. [22].

For the synthesizer (P) in REFL we use the time-evolution operator. Therefore, building the reflection operator
requires two calls to the state previously described state preparation circuit. For the ROTy operator we first encode
the kinetic energy of the projectile into an ancilla register through a series of multiplications and additions on the
ancilla and the projectile register. Second, we calculate the arctan on this register which is linear complexity in the
ancilla register size. Finally, controlled phase gates are used to accomplish the correct action defined by the ROTy

unitary. The remaining task to get order of magnitude estimates of the quantum resources required for the KO
algorithm is to derive a circuit for writing the random variable value to the ancilla register used to compute αℓ.

Recall that the kinetic energy operator on the projectile

T =
∑
p∈G̃

∥kp − kproj∥2

2Mproj
|p⟩⟨p| (84)

where ∥kp − kproj∥2 =
∑

w∈{x,y,z}
(
(kwp)

2 + (kwmean)
2 − 2kwp k

w
proj

)
where

∑
w∈{x,y,z}(k

w
proj)

2 is a constant term which

we will add with an addition circuit. We can rewrite the coefficients as

∥kp − kproj∥2

2Mproj
=

1

2Mproj

(
2π

Ω1/3

)2 (
pTp− 2pTpproj + pT

projpproj

)
(85)

where p = (px, py, pz). nmean is the number of bits needed to represent the central momentum of the projectile where
nmean > nproj. If we ignore the constant involving the mass and the volume element we are left with a series of integer
products and summations. The Toffoli cost of each of the three terms can be derived from protocols described in the
Appendix of Ref. [18] and are as follows:

20

1. The pTp term involves three nproj registers as thus has 3n
2
proj − nproj − 1 Toffoli complexity.

2. The pTpproj involves the sum-product of three integer pairs of sizes (nproj, nmean). The products each take

2nmeannproj − nmean and the three sums involved cost 3n2mean − nmean − 1.

3. The final addition requires pT
meanpproj stored in 2nmean− 1 bits to be added to the results from steps 1 and 2. if

we pad out the results from 1 and 2 up to 2nmean−1 = nf then we need 3n2f −nf −1 Toffolis for this operation.

4. We leave off the constant to be included in multiplying the variance for the mean-estimation algorithm. In the
last step we must subtract an estimate of µ0 = ⟨pTp−2pTpproj+pT

projpproj⟩ which we know from classical data.

This additional step can be included with the previous step by modifying the subtracted value of pT
projpproj to

pT
projpproj − µ0.

Thus the total Toffoli complexity of performing the integer encoding step is

Cencoding = 3n2proj − nproj − 1 + 3(2nmeannproj − nmean) + 3n2mean − nmean − 1 + 3n2f − nf − 1 (86)

These costs combined with the costs associated with two calls to the synthesizer, reflection, and computing the arctan
are combined to produce a total Toffoli complexity.

VII. BESPOKE 8th-ORDER PRODUCT FORMULA

The 8th-order formula we use was numerically determined by solving equations as described in Reference [23].
We solved for over 100,000 product formulae, and selected the one with the smallest constant factor via testing
with random Hamiltonians of matrix dimension 6 × 6. Further refinement was performed by minimising the Taylor
expansion up to 9th-order (so including the error term) and then solving for the 8th-order formula. The method for
performing the Taylor expansion is described in Reference [24]. The symmetric product formula has the form

Sprod = S2(w10t)S2(w9t)....S2(w2t)S2(w1t)S2(w0t)S2(w1t)S2(w2t)....S2(w9t)S2(w10t) (87)

with w0 = 1− 2
∑10

i=1 wi and S2(t) = e−itH0/2e−itH1e−itH0/2 for two non-commuting Hamiltonians H0 and H1. The
following formula was numerically determined

w = [5.935806040085031× 10−1,

−4.691601234700394× 10−1,

2.743566425898439× 10−1,

1.719387948465702× 10−1,

2.343987448254160× 10−1,

−4.861642448032533× 10−1,

4.961736738811380× 10−1,

−3.266021894843879× 10−1,

2.327167934936900× 10−1,

9.824955741471075× 10−2]

and is the bespoke 8th-order formula we use in this work.

VIII. PRECISION REQUIREMENTS FOR STOPPING POWER

In Fig. 5 we compare the precision in the kinetic energy of the projectile to the resultant precision in the stopping
power. We find that for a precision of 0.1 eV/Å in the stopping power we require a precision in the kinetic energy
of approximately 0.02 Ha at the highest velocity which corresponds to approximately 104 samples. If the precision is
lowered to 0.1 eV / Å this sampling overhead drops to around O(102).

21

10
1

10
0

10
1

T (Ha)

10
3

10
2

10
1

S
(H

a
/ B

oh
r)

vproj = 0.5
vproj = 1.5
vproj = 2.5
vproj = 3.5
vproj = 4.5

10
1

10
2

10
3

10
4

Ns

10
1

10
0

10
1

T
(H

a)

vproj = 0.5
vproj = 1.5
vproj = 2.5
vproj = 3.5
vproj = 4.5

Figure 5. (left) Dependence of precision in the stopping power ϵS estimate on the precision in the individual kinetic energy
data points ϵT for different values of the projectiles initial velocity (vproj). We extracted the stopping power using 10 equally
spaced points and chose σk = 4. Dashed lines represent a desired target precision of 0.1 and 0.05 eV/Å. (right) Mean precision
in the kinetic energy as a function of the number of samples Ns. Dashed lines correspond to the values of ϵT which yield the
desired ϵS in the right hand panel.

IX. SCALING OF 1-NORM

Here we derive the explicit form of the 1-norm of τ for plane waves in a cubic region, showing that the constant
factor in Eq. (76) for ∥τ∥ is also accurate for ∥τ∥1. An explicit formula for τ is given in Ref. [25]. From Eq. (C4) of
that work,

τpq =
1

2N

∑
ν

k2ν cos(kν · rq−p) . (88)

Using this expression, the 1-norm is given by

∥τ∥1 = max
p

∑
q

|τpq|

=
1

2N
max

p

∑
q

∣∣∣∣∣∑
ν

k2ν cos(kν · rq−p)

∣∣∣∣∣
=

1

2N

∑
q

∣∣∣∣∣∑
ν

k2ν cos(kν · rq)

∣∣∣∣∣ . (89)

In the third line we have used symmetry to find that the expression is independent of p, so the maximum is not
needed. Then, we can re-express the sum over ν as∑

ν

k2ν cos(kν · rq) =
∑
ν

k2ν exp(i kν · rq)

=
∑
ν

k2ν exp

(
2πi

Ω1/3
ν · rq

)
= −

(
∂2

∂r2x
+

∂2

∂r2y
+

∂2

∂r2z

)∑
ν

exp

(
2πi

Ω1/3
ν · rq

)
. (90)

This reasoning is similar to Eq. (F11) in Ref. [25]. In the first line we used the symmetry over ν to find that the
imaginary part of the exponential cancels. The second line is the conversion between ν and kν for plane waves. In
the third line we are using rx, ry, rz to denote the components of rq.

Each component of ν is summed over the range between plus and minus (N1/3− 1)/2 to give, for rx, ry, rz nonzero∑
ν

exp

(
2πi

Ω1/3
ν · rq

)
=

sin(πrx(N/Ω)
1/3)

sin(πrx/Ω1/3)

sin(πry(N/Ω)
1/3)

sin(πry/Ω1/3)

sin(πrz(N/Ω)
1/3)

sin(πrz/Ω1/3)
. (91)

22

The components of r take values that are integer multiples of (Ω/N)1/3, which implies that the numerators are equal
to zero. This means that the numerators are equal to zero, except where rx, ry, rz are zero. We also need to take
account of nonzero values because we are taking derivatives. In the case where rx is nonzero but ry, rz = 0, we obtain

∑
ν

exp

(
2πi

Ω1/3
ν · rq

)
=

sin(πrx(N/Ω)
1/3)

sin(πrx/Ω1/3)
N2/3 , (92)

where the factor of N2/3 comes from two factors of N1/3 from the sums over νy and νz. Then taking the second
derivative with respect to rx gives

− ∂2

∂r2x

∑
ν

exp

(
2πi

Ω1/3
ν · rq

)
= (−1)qx 2π

2N1/3 cos(πqx/N
1/3)

Ω2/3 sin2(πqx/N1/3)
N2/3. (93)

The sum of the absolute value of this expression over nonzero qx then gives

∑
qx ̸=0

∣∣∣∣(−1)qx 2π2N1/3 cos(πqx/N
1/3)

Ω2/3 sin2(πqx/N1/3)
N2/3

∣∣∣∣ = (N1/3−1)/2∑
qx=1

4π2N cos(πqx/N
1/3)

Ω2/3 sin2(πqx/N1/3)
. (94)

The majority of the contribution to this sum is from small values of qx, so we can approximate the sum by

4π2N

Ω2/3

(N1/3−1)/2∑
qx=1

1

(πqx/N1/3)2
= N

4N2/3

Ω2/3

(N1/3−1)/2∑
qx=1

1

q2x

≈ N 4N2/3

Ω2/3

π2

6
. (95)

It can be shown that a higher-order approximation is

(N1/3−1)/2∑
qx=1

cos(πqx/N
1/3)

sin2(πqx/N1/3)
≈ N2/3

6
− N1/3

π
+

1

12
+

π

24N1/3
. (96)

In the case rx = ry = rz = 0,

∑
ν

k2νx
cos(kν · rq) =

(N1/3−1)/2∑
νx=−(N1/3−1)/2

(
2πνx
Ω1/3

)2

×N2/3

=
π2

3Ω2/3
(N2/3 − 1)N1/3 ×N2/3

≈ N π2N2/3

3Ω2/3
. (97)

In the first two lines we have shown ×N2/3 separately at the end to indicate the result of the sums over νy and νz.
Adding this expression to that for the sum over rx ̸= 0 gives

∑
qx

∣∣∣∣∣∑
ν

k2νx
cos(kν · rq)

∣∣∣∣∣ = N
π2N2/3

Ω2/3
. (98)

23

We therefore obtain

∥τ∥1 =
1

2N

∑
q

∣∣∣∣∣∑
ν

k2ν cos(kν · rq)

∣∣∣∣∣
=

1

2N

∑
q

∣∣∣∣∣∑
ν

(k2νx
+ k2νy

+ k2νz
) cos(kν · rq)

∣∣∣∣∣
=

1

2N

∣∣∣∣∣∑
ν

(k2νx
+ k2νy

+ k2νz
) cos(kν · rq)

∣∣∣∣∣
q=0

+
1

2N

∑
qx ̸=0

qy=qz=0

∣∣∣∣∣∑
ν

k2νx
cos(kν · rq)

∣∣∣∣∣
+

1

2N

∑
qy ̸=0

qx=qz=0

∣∣∣∣∣∑
ν

k2νy
cos(kν · rq)

∣∣∣∣∣+ 1

2N

∑
qz ̸=0

qx=qy=0

∣∣∣∣∣∑
ν

k2νz
cos(kν · rq)

∣∣∣∣∣
=

3

2N

∑
qx

qy=qz=0

∣∣∣∣∣∑
ν

k2νx
cos(kν · rq)

∣∣∣∣∣
≈ 3

2N
N
π2N2/3

Ω2/3

=
3π2N2/3

2Ω2/3
. (99)

We have used the symmetry between the x, y, z directions, and used the property that the sums only give nonzero
results if at least two of rx, ry, rz are zero.

[1] F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Frontiers and challenges in warm dense matter, Vol. 96
(Springer Science & Business, 2014).

[2] T. Dornheim, S. Groth, and M. Bonitz, The uniform electron gas at warm dense matter conditions, Physics Reports 744,
1 (2018).

[3] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140, A1133
(1965).

[4] N. D. Mermin, Thermal properties of the inhomogeneous electron gas, Physical Review 137, A1441 (1965).
[5] R. Babbush, W. J. Huggins, D. W. Berry, S. F. Ung, A. Zhao, D. R. Reichman, H. Neven, A. D. Baczewski, and

J. Lee, Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods, Nature
Communications 14, 4058 (2023).

[6] B. Militzer, Path integral Monte Carlo and density functional molecular dynamics simulations of hot, dense helium, Physical
Review B 79, 155105 (2009).

[7] K. P. Driver and B. Militzer, All-electron path integral Monte Carlo simulations of warm dense matter: Application to
water and carbon plasmas, Physical Review Letters 108, 115502 (2012).

[8] B. Militzer, F. González-Cataldo, S. Zhang, K. P. Driver, and F. Soubiran, First-principles equation of state database for
warm dense matter computation, Physical Review E 103, 013203 (2021).

[9] A. Baldereschi, Mean-value point in the Brillouin zone, Physical Review B 7, 5212 (1973).
[10] M. Bagherimehrab, Y. R. Sanders, D. W. Berry, G. K. Brennen, and B. C. Sanders, Nearly optimal quantum algorithm

for generating the ground state of a free quantum field theory, PRX Quantum 3, 020364 (2022).
[11] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis

set, Physical Review B 54, 11169 (1996).
[12] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a

plane-wave basis set, Comp. Mater. Sci. 6, 15 (1996).
[13] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B

59, 1758 (1999).
[14] A. D. Baczewski, L. Shulenburger, M. Desjarlais, S. Hansen, and R. Magyar, X-ray thomson scattering in warm dense

matter without the Chihara decomposition, Physical Review Letters 116, 115004 (2016).
[15] R. J. Magyar, L. Shulenburger, and A. D. Baczewski, Stopping of deuterium in warm dense deuterium from Ehrenfest

time-dependent density functional theory, Contrib. Plasm. Phys. 56, 459 (2016).
[16] T. W. Hentschel, A. Kononov, A. Olmstead, A. Cangi, A. D. Baczewski, and S. B. Hansen, Improving dynamic collision

frequencies: impacts on dynamic structure factors and stopping powers in warm dense matter, Physics of Plasmas 30,
062703 (2023).

https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.137.A1441
https://doi.org/10.1038/s41467-023-39024-0
https://doi.org/10.1038/s41467-023-39024-0
https://doi.org/10.1103/PhysRevB.79.155105
https://doi.org/10.1103/PhysRevB.79.155105
https://doi.org/10.1103/PhysRevLett.108.115502
https://doi.org/10.1103/PhysRevE.103.013203
https://doi.org/10.1103/PhysRevB.7.5212
https://doi.org/10.1103/PRXQuantum.3.020364
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.116.115004
https://doi.org/10.1002/ctpp.201500143
https://doi.org/10.1063/5.0143738
https://doi.org/10.1063/5.0143738

24

[17] A. Kononov, T. Hentschel, S. B. Hansen, and A. D. Baczewski, Trajectory sampling and finite-size effects in first-principles
stopping power calculations, arXiv:2307.03213 (2023).

[18] Y. Su, D. Berry, N. Wiebe, N. Rubin, and R. Babbush, Fault-tolerant quantum simulations of chemistry in first quantiza-
tion, PRX Quantum 4, 040332 (2021).

[19] Y. R. Sanders, D. W. Berry, P. C. S. Costa, L. W. Tessler, N. Wiebe, C. Gidney, H. Neven, and R. Babbush, Compilation
of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization, PRX Quantum 1, 020312 (2020).

[20] G. H. Low, Y. Su, Y. Tong, and M. C. Tran, Complexity of implementing Trotter steps, PRX Quantum 4, 020323 (2023).
[21] N. C. Rubin, K. Gunst, A. White, L. Freitag, K. Throssell, G. K.-L. Chan, R. Babbush, and T. Shiozaki, The fermionic

quantum emulator, Quantum 5, 568 (2021).
[22] R. Kothari and R. O’Donnell, Mean estimation when you have the source code; or, quantum Monte Carlo methods, in

Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (SIAM, 2023) pp. 1186–1215.
[23] H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A 150, 262 (1990).
[24] M. E. S. Morales, P. Costa, D. K. Burgarth, Y. R. Sanders, and D. W. Berry, Greatly improved higher-order product

formulae for quantum simulation, arXiv:2210.15817 (2022).
[25] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, Low-Depth Quantum Simulation of

Materials, Physical Review X 8, 011044 (2018).

https://arxiv.org/abs/2307.03213
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.040332
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.1.020312
https://doi.org/10.1103/PRXQuantum.4.020323
https://quantum-journal.org/papers/q-2021-10-27-568/
https://doi.org/10.1016/0375-9601(90)90092-3
https://arxiv.org/abs/2210.15817
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011044

	Supporting Information For: Quantum computation of stopping power for inertial fusion target design
	Contents
	Initial state preparation
	Choosing the projectile's initial variance
	Grid resolution for the projectile wave packet
	Accounting for a larger number of plane waves for the nucleus
	Value of
	Preparation cost
	Preparation of state
	Preparation of momentum control qubits
	Preparation of state selecting term in Hamiltonian

	Selection cost
	Total costs

	Complexity for product-formula simulations
	An efficient implementation of the inverse square-root
	Estimating number of Trotter steps

	Constant factor estimates for projectile kinetic energy measurement using the Knockout algorithm
	Bespoke 8th-order product formula
	Precision requirements for stopping power
	Scaling of 1-norm
	References

