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1 Ablation Studies and Things We Tried But Did

Not Work

For the IEA-loss we tested several losses in order to achieve the best stability, shown in
Figure 1. Some of them have their own merits and downsides. We explored the Kullback-
Leibler (KL) divergence [1], the L1 loss, the Huber loss [2], and the L2 loss. KL divergence
was more stable in capturing differences between the real and fake self-similarities and
more robust in outliers.

We probed a range of coefficients for the IEA-loss and the Uniformity loss. For the KL
divergence as the IEA-loss, we tried the values {0.1, 1, 5, 10} and selected 1. For the L1
loss, as well as the IEA-loss, the best λIEA value is 10. For the Uniformity loss, we probed
the values {0.01, 0.1, 0.5, 0.75, 1, 5, 10} and selected 0.1. Moreover, IEA-GAN, without
the IEA-loss and Uniformity loss, suffers from the lack of agreement maximization penalty
for the generator and information maximization for the discriminator. Our study shows
that having either of these losses without the other causes training instability, divergence,
and lower fidelity, as shown in Table 1.
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Supplementary Figure 1: Comparison of the FID between different IEA-losses

Supplementary Table 1: FID comparison between IEA-GAN, IEA-GAN with RRM only,
IEA-GAN with Uniformity loss only, and IEA-GAN with both IEA-loss, averaged across
six random seeds.

IEA-GAN Only RRM RRM with Uniformity RRM with IEA-loss

FID 1.50± 0.16 2.74 ± 0.62 2.29 ± 0.14 3.42 ± 0.52

For the hypersphere dimension, we probed the values {512, 768, 1024, 2048} and
selected 1024. For dimensions smaller than 512, the discriminator fails to converge. We
also changed the position of the hypersphere projection layer and put it before and after
the Multi-head attention [3]. The best position for the hypersphere projection is after the
Multi-head attention and two layers of MLP. Moreover, for the hypersphere projection,
we also tried an inverse Stereographic Projection h : RN → SN/{p} with p as a north
pole on the n-sphere [4] instead of L2 compactification. This map is conformal; thus, it
locally preserves angles between the data points. The results were more stable, but the
average FID was better with L2 compactification, as shown in Table 2.

Supplementary Table 2: FID comparison between two different Hypersphere projections
for IEA-GAN’s discriminator, averaged across six random seeds.

L2 compactification Inverse Stereographic projection

FID 1.50± 0.16 2.01 ± 0.07

Inside the RRM, we tried a GeLU [5] non-linearity instead of ReLU, and the result was
in favor of the latter. We also put the layer normalization before and after the Multi-head
Attention. The pre-norm version seems to be much more stable and adaptable to GAN [6]
training intricacies. Another observation related to RRM is the weight normalization of
the linear layers. We observed that for the discriminator, spectrally normalized MLPs
show the best results. For the Generator, applying Spectral Normalization [7] to the
linear layers destabilizes the training. Our observation regarding the effect of RRM over
the generator’s label embedding shows that without it, the RRM in the discriminator
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also becomes unstable, and the training diverges very early.
For the random degrees of freedom (Rdof), first, we utilized the random vectors that

are fed to the generator and applied the RRM on top of it. However, the FID [8] did
not reach values below 20, and there was no correlation. Hence, we introduced separate
random sampling for event generation for which we probed dimensions {2, 4, 8, 16, 32}.
4 degrees of freedom was the most optimal choice. We observed that as the dimension
of Rdof increases, the intra-event correlation fades away between the generated images.
We also checked the Uniform distribution for event Rdof sampling, which did not lead to
any stable result. Several ways to fuse the Rdof to the class embeddings were tested such
as learnable neural network layer (matrix factorization), concatenating, summing, and
having an MLP with non-linear part, but eventually chose a learnable neural network
layer (matrix factorization) for the feature mixing layer.

We also looked at different combinations of learning rates for G and D. Using the
TTUR regime results in a severe mode collapse. Thus, we used the same learning rates
for both G and D. We swept through {1× 10−5, 2.5× 10−5, 5× 10−5, 7.5× 10−5, 1× 10−4}
and selected 5× 10−5. For the backbone model, the shallow version of BigGAN-deep [9],
BigGAN [9], led to mode-collapse; therefore, we chose BigGAN-deep.

2 Supplementary Figures and Supplementary Tables

The following fig. 2 is referenced in the Introduction, table 3, is mentioned in the Results,
and the Algorithm algorithm 1 is highlighted in Methods section of the main manuscript.
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Supplementary Figure 2: The number of PXD hits per layer and sensor (ladder). Each
sensor has different occupancies for sensors in the inner and outer layers. The global
asymmetry between them stems from the ϕ dependency of PXD images.
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Supplementary Table 3: FID Score on PXD images after different jittering methods
applied to them, providing interoperability to it’s value.

Image Jitterings FID

None 2.4 × 10−5

Random Masking (dead zones) 14.58
Random Noise 87.23
Random Rotation (30 degrees) 23.69
Random Rotation (10 degrees) 2.81
Random Translation (0.1, 0.1) 1.99
Random Shear (10, 10) 23.53
Random Zoom 9.06
High-Intensity Charge Smearing 3.16
Low-Intensity Charge Smearing 47.24

Algorithm 1 Intra-Event Aware GAN

Require: generator and discriminator parameters θG, θD, Intra-Event-aware coefficient
λIEA, Uniformity coefficient λuniform and hyperparameter s, Adam hyperparameters α,
β1, β2, event size M , number of discriminator iteration steps per generator iteration
ND

1: for number of training iterations do
2: for t = 1, ..., ND do
3: sample {zi}Mi=1 ∼ p(z),
4: {xi,yi}Mi=1 ∼ pevent(x,y), {ri}Mi=1 ∼ pRdof(z) ▷ Event Sampling.
5: for i = 1, ...,M do

6: ℓ
(i)
Dhinge

← ℓDhinge
(x(i); G(zi,yi, ri))

7: end for
8: LDhinge

← 1
M

∑M
i=1 ℓ

(i)
Dhinge

9: Luniform ← Luniform(x; s) ▷ The Uniformity Loss.

10: Lreal
2C ←

1
M

∑M
i=1 ℓ2C(xi,yi)

11: θD ← Adam(LDhinge
+ λ2CLreal

2C + λuniformLuniform, α, β1, β2)

12: end for
13: sample {zi}Mi=1 ∼ p(z),

14: sample {ri}Mi=1 ∼ pRdof(z) ▷ Event Sampling.
15: for i = 1, ...,M do

16: ℓ
(i)
Ghinge

← ℓGhinge
(G(zi,yi, ri))

17: end for
18: LGhinge

← 1
M

∑M
i=1 ℓ

(i)
Ghinge

19: LIEA ← 1
M

∑M
i=1 ℓIEA(G(zi,yi, ri),xi) ▷ The Intra-Event Aware Loss.

20: Lfake
2C ← 1

M

∑M
i=1 ℓ2C(G(zi,yi, ri),yi)

21: θG ← Adam(LGhinge
+ λ2CLfake

2C + λIEALIEA, α, β1, β2)

22: end for
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