
Open Access This file is licensed under a Creative Commons Attribution 4.0 

International License, which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to 

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if 

changes were made. In the cases where the authors are anonymous, such as is the case for the reports of 

anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear 

attribution to the source work.  The images or other third party material in this file are included in the 

article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is 

not included in the article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright 

holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. 

Peer Review File

Ultra-High-Granularity Detector Simulation
with Intra-Event Aware Generative

Adversarial Network and Self-Supervised
Relational Reasoning



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The author introduced novel machine learning techniques to generate “contextualized high-

resolution detector responses.” that capture the intra-event correlations. Those techniques 

include the Relational Reasoning Module, intra-event aware loss, and Uniformity loss. The 

proposed model, namely IEA-GAN, is compared with the PE-GAN. 

One major issue compels me not to recommend the paper for publication in this journal. 

There is no physics motivation for modeling the intra-event level correlations. On the 

contrary, the author demonstrated that a model that cannot describe the intra-event level 

correlations could result in a good agreement in tracking parameter resolutions. Such 

models are IEA-GAN and PE-GAN. Even if the intra-event correlation was important for some 

physics analyses, the IEA-GAN could model the correlation, as shown in Figure 3. 

In addition, the author claims, “Furthermore, for the first time, our findings reveal that the 

FID [33] metric for detector simulation is a very versatile and accurate unbiased estimator in 

comparison to marginal distributions, and is correlated with both high and low-level 

metrics.” I failed to find any evidence in this paper to support that statement. On the 

contrary, a theoretical study in Ref[1] shows the FID is biased. 

[1] https://openreview.net/forum?id=r1lUOzWCW 

Reviewer #2 (Remarks to the Author):

In this manuscript, the authors present a Generative Adversarial Network (GAN)-based 

neural network they refer to as IEA-GAN which designed to generate contextualized 

simulated data applied to high-resolution detector responses. They include several novel 

elements in this generative model such as intra-event aware and uniformity loss elements 

and a relational reasoning module to appoximate events at detectors, applied to the specific 



case of the Belle-II experiement's high-granularity pixel vertex detector (PXD). 

GANs are notoriously unweildy for this type of application, especially when employed to 

generate realistic data involving highly granular instrumentation designed to detect and 

measure particles at colliders or other other scientific experiments with high resolution. The 

authors optimizations and additions to the traditional GAN setup are well-motivated to 

designed address these challenges as described in detail in the manuscript with sufficient 

detail to understand and possibly reproduce the setup and results. 

In regard to reproducibility of their results, the authors mention a forthcoming publically-

available open dataset which this reviewer views to be the minimum required for 

publication. The authors are strongly encouraged to also ensure the data samples upon 

which is manuscript is based will adhere to the Findable, Accessible, Interoperable and 

Reusable (FAIR) principles, for which the authors might take as guidance the process 

detailed in https://arxiv.org/abs/2108.02214. Additionally for reproducibility, the authors 

are encouraged to make available example code for their model implementation on a public 

repository such as Github. 

The work by the authors has the potential to be of great significance to the field of partical 

physics and related fields. The authors allude to this potential impact in the manuscript and 

this reviewer agrees with their assessment. For example, the experiments at CERN's Large 

Hadron Collider spend a large fraction of their computing resource on Geant4 simulation of 

collision events. If a robust solution to this challenge can be found and deployed, it will 

dramatically reduce the CPU required to do the LHC science by speeding up the event 

simulation by orders of magnitude, especially for interpreation of data during the HL-LHC 

era in which 10-20 times more collision data will be acquired as compared to previous LHC 

runs. 

Regarding the reduction in resources via IEA-GAN approach to simulation, the authors 

emphasize the storage savings more so than the CPU savings. For example, early in the 

manuscript (on page 3), they specifically call out a factor of 2 reduction in storage 

requirements for pre-produced backgrounds for the PXD in Belle II simulated data but make 



no mention of the CPU reductions there (they are shown later in Table 2). It is worth 

stressing that the potential benefit of ML-based fast simulation for the (HL-)LHC and other 

data-intensive science experiments is mostly in the CPU reduction, however the storage 

reduction associated with on-the-fly generation of backgrounds for overlay is an important 

benefit as well. It is suggested that that discussion on page 3 be adjusted to put the CPU and 

storage in benefits in proper context and at least equal footing. 

The description in the introduction section is soley focused on GANs. The paper would be 

strengthened with a more general introduction to fast generative models for science, 

particularly including a mention of variational autoencoders (VAEs) which have proven to be 

at least as effective for fast event generation as GANs. For example, see references 

https://arxiv.org/abs/2203.00520 and https://arxiv.org/abs/1901.00875. 

The authors claim that the IEA-GAN study described in the manuscript with the Belle-II PXD 

is the "highest spatial resolution detector simulation ever analyzed with deep generative 

models". I could not find a specific published counter-example to this rather bold statement, 

however there have been GAN-based generative model studies with, for example, the 

geometry of the proposed CMS High Granularity Calorimeter (HGCAL) detector upgrade for 

the HL-LHC. The authors are encouraged to do a thorough literature search to ensure this 

claim is correct. 

Q: Does the work support the conclusions and claims, or is additional evidence needed? 

There are several issues with the description, and possibly the methodology, used in paper 

in regard to the key results and their interpretation. 

The primary weakness in the paper is a lack of evidentiary support for the two primary 

claims in made in the paper (Section 2.2): (1) IEA-GAN "outperforms the other models 

considered by the authors by a wide margin" and (2) the authors findings "for the first time, 

reveal that the FID metric for detector simulation is a very versatile and accurate unbiased 

estimator in comparison with marginal distributions, and is correlated with both high and 

low level metrics." 



The authors use the FID metric to support their claim that IEA-GAN is superior to the other 

method considered but at the same time the authors claim their work supports FID as a 

metric of superiority. This is a circular argument. 

Additionally, to use the FID metric results shown in Table 1 as a convincing argument in 

support of the conclusion that IEA-GAN is suprior "by wide margin", there should be some 

validation of the FID metric itself presented in the manuscript. It is well known that the 

interpreation of ML model evaluation tools and metrics can depend on the specific 

application and not be fully general and domain agnostic. This is too important of an 

assumption to leave soley to a reference on the FID metric and therefore more details 

should be provided in the manuscript and/or additional studies to validate the FID metric as 

a means of assessing performance superiority of different generative models. 

The studies with the FID metric are what I believe the authors refer to as "low-level" 

metrics. 

For the "high-level physics" metric of comparing IEA-GAN tracking parameter resolutions 

against Geant, this is a neccesary but insufficient study to claim to validate the conclusions 

of the FID metric results and general quality of the IEA-GAN generative model. Tracking 

resolutions, and therefore comparisons between two event sets, depend critically on the 

details of the hits that are used to reconstruct the tracks. E.g. How similar are the number of 

hits and hit positions between two simulated sets on average and track-by-track? More 

information such as these are required to make an apple-to-apple comparison of track 

parameter resolutions and support the authors interpretation of their results as a validation 

of the agreement between IEA-GAN and Geant simulations. 

A few final comments on style of text in the manuscript. There are many places where 

capitalization is used on terms in a strange and inconsistant manner. For example, in the 

abstract it is written "Uniformity loss" but on page 7 it is written "uniformity loss". Also, 

there are ocassions where symbols common in machine learning (ML) and data science (DS) 

communities but not as much in other scientific domains are used without definition. The 

manuscript would be more accessible to a broader audience if the authors were more 



liberal with symbol definitions in their technical descriptions even it they are "obvious" 

within ML/DS communities. 

Reviewer #3 (Remarks to the Author):

Dear Authors, dear Editor, 

Report on the Manuscript "Ultra-High-Resolution Detector Simulation with Intra-Event 

Aware Generative Adversarial Network and Self-Supervised Relational Reasoning" by Hosein 

Hashemi, Nikolai Hartmann, Sahand Sharifzadeh, James Kahn and Thomas Kuhr for Nature 

Communications. 

The manuscript describes a new algorithm to simulate the detector response of the Belle II 

Pixel Vertex Detector (PXD) using a deep generative model. In detail, the authors introduce 

the "Intra-Event Generative Adversarial Network" (IEA-GAN), which uses several innovative 

components to generate events in more than 7.5M channels. To my knowledge, it is the first 

algorithm to tackle dimensionalities beyond 1e6, which is at least one (probably two) orders 

of magnitude above the biggest generative models for detector simulation in HEP. 

The results are impressive, significantly better than other approaches, and definitively 

deserve to be published. However, I don't think the current version can be published in 

Nature Communications. 

First, even though the presented algorithm shows a much better performance than any 

other considered deep generative algorithm, the problem of learning the underlying 

probability density as induced by GEANT4 is far from solved. Figure 2 still shows substantial 

differences between the generated distributions and the GEANT4 distribution, and it only 

shows a few different 1-dim projections of the 7.5M-dimensional space. I guess other 

observables also deviate, as well as the correlation between them. The fact that correlations 

are not learned properly is also shown in Figure 3 for a subset of observables. 

This does not diminish the great achievement of managing to train a 7.5M-dimensional deep 

generative model (again, these results should be published), but I'm not sure it qualifies a 



publication in the Nature portfolio, which, according to the homepage "should represent an 

advance in understanding likely to influence thinking in the field, [...]." In addition, "There 

should be a discernible reason why the work deserves the visibility of publication in a 

Nature Portfolio journal [...]" and I'm not sure this is the case here (but I'm happy to hear 

arguments for that). 

Second, the way the manuscript is currently structured makes it nearly impossible to read 

and understand. I personally don't understand why it is journal policy to have the Methods 

section at the end and not use IMRaD (as most other journals publishing HEP research). This 

way, the reader has to flip back and forth through many pages in order to understand what 

is going on in the results section. Given that this can probably not be changed, there is still a 

lot that can be improved. For example, the description of the dataset and the general 

problem (2nd paragraph of section 4.1) could all go to the introduction. Reading that 

section, it is still unclear to me if the algorithm is supposed to be used for the simulation of 

the entire event, or only the background (cf Fig. 5d). Further, it is never explained what 

"background" refers to in that context (and what signal, if at all, was used in the dataset). 

Third, there are many words used in the manuscript that (for me) mean the same things, but 

apparently are not the same things. For example why should there be more than one 

sample in one event? Isn't a sample from the generative model an event in the detector? 

Are "images" referring to events, too? Or only to single detector elements? Are these the 

same as samples? What are the "classes" that they authors refer to? Usual conditional deep 

generative models have different particle types, or incident angles, or incident energies as 

(class) condition, but none of these apply here. What are "tokens"? 

Forth, there are many minor details that are either missing or not well explained. For 

example: 

- Figure 1 (which is not the first figure being referred to) shows the architecture of the IEA-

GAN. In many places, it is said that it shows how event graphs are built (in section 4.3.2) and 

how they are projected into a hypersphere. If at all, it shows that these steps are part of the 

algorithm, but not how these graphs look like, how they are constructed, or how such a 

spherical projection is achieved. 



- Equations, like the one for r_s, are not sufficiently explained. What's a Rank variable? What 

is the norm with subscript 0? What does the union with + mean? What is e in l_2C? 

- Did the authors check that the Gaussian assumption to obtain the FID score can be made 

and that the distributions are actually Gaussian? 

- Figure 3 left and center look very different. How do the authors conclude that the IEA-GAN 

captures the correlations? 

- Are the 5 physical parameters of Figure 4 the only 5 relevant physics parameters that are 

extracted from the event? How do correlations between them look like? How do 

distributions of other quantities look like? 

- The computational times in Table 2 show averages over 10000 generated events. Does 

that mean the GAN was run with a batchsize of 10000? Is GEANT4 (or the simulation chain 

as a whole) batched in Belle II? If not, only comparisons with batchsize 1 are meaningful. 

- Was the ablation study of Appendix A performed in a grid, with all parameters being varied 

at the same time? Or only one parameter at a time? 

- Appendix B, called "Extended Figures and Tables" only contains a single figure and no table 

and no explaining text. Is that intentional by the authors or was there anything cut in 

processing?



Response to Reviewers

Introduction

We appreciate the thoughtful and inspirational comments of the reviewers on our manuscript,
and we thank them for their time in providing this feedback. We have revised our
manuscript with care to address these comments. Below, we respond to each comment
in detail.

Response to Reviewer 1

Comment 1.1 There is no physics motivation for modeling the intra-event level corre-
lations. On the contrary, the author demonstrated that a model that
cannot describe the intra-event level correlations could result in a good
agreement in tracking parameter resolutions. Such models are IEA-GAN
and PE-GAN.

Response: We agree that a clear motivation was missing in the previous
version of the paper. As a result of the reviewer’s instructive comment,
we studied the Helix parameter resolutions for the simulated events in
more details. We compared these results with a shuffled version of the
events, where the data of each sensor was taken from a random event
such that the only difference is the absence of correlation.

Our examination involved comparing the unbiased resolution and per-
forming a 2-sample Kolmogorov–Smirnov test (KS test) on the Helix pa-
rameters between the shuffled and unshuffled Geant4 PXD background.
The results, particularly for high momentum tracks, shown in Table 2
and Figure 5, provide evidence that the loss of intra-event sensor-by-
sensor correlation can affect the resolution of the d0, ϕ0 and ω helix
parameters. For the z0 and tanλ parameters, while there was no signifi-
cant difference in resolution, the KS test yielded low p-values, indicating
a high discrepancy between the shapes of the two distributions. Thus,
accordingly we updated the manuscript with further discussions in lines
360 − 405, under section 2.2.

Comment 1.2 On the contrary, the author demonstrated that a model that cannot
describe the intra-event level correlations could result in a good agree-
ment in tracking parameter resolutions. Such models are IEA-GAN and
PE-GAN.

Response: Indeed, our initial assertion that PE-GAN, which does not
capture intra-event level correlations at all, could still result in a good
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agreement in tracking parameter resolutions, was not a complete state-
ment and is partly true. Your feedback has encouraged us to delve
deeper into this matter, prompting a more nuanced examination of the
differences.

We conducted a detailed comparison of IEA-GAN and PE-GAN with
Geant4 simulated data for the resolutions of all five helix parameters
for high momentum tracks (PT > 0.4 GeV), as detailed in table 3 and
depicted in figure 6 of the paper. We found that in the low momen-
tum region, the resolution performance of the models are comparable.
However, for high momentum tracks, our analysis revealed that the even
the weakly captured intra-event correlation by IEA-GAN plays a role in
tracking, which aligns with our earlier findings from the shuffling test
analysis.

Upon this detailed analysis, we revise our earlier statement that PE-
GAN is in good agreement in tracking parameter resolutions. This claim
holds partially true only in the low momentum region. For high momen-
tum tracks (PT > 0.4 GeV), our meticulous comparison revealed that the
unbiased variance of the resolution of these parameters, produced by the
IEA-GAN model, approximates more closely to the Geant4 reference,
outperforming the PE-GAN model in each instance. The manuscript
has been updated to reflect these findings, specifically in lines 405− 420
and showed the results in table 3 and figure 6.

Comment 1.3 Even if the intra-event correlation was important for some physics anal-
yses, the IEA-GAN could not model the correlation, as shown in Figure
3.

Response: We concur that the IEA-GAN model has not perfectly cap-
tured the correlation. However, we argue that the correlation it has
learned, albeit weak, holds significant value. As the first work in fast de-
tector simulation that considered such inter-sensor/layer correlation, we
view this as a substantial advancement, despite the limitations indicated.

To establish the relevance of this learned correlation, we employed the
Mantel test, a statistical method specifically designed to assess the as-
sociation between two distance matrices while excluding the diagonal
part. When we applied the Mantel test to IEA-GAN, the outcome
demonstrated a veridical correlation of 0.18±0.02 with empirical p-value
0.0013. Given that the p-value is below the typical threshold of 0.05, this
permits us to reject the null hypothesis and to acknowledge a significant
evidence for correlation between the two sets of matrices. This suggests
that the sensor classes that are more correlated in the Geant4 samples
tend to also be correlated in the generated ones by IEA-GAN. Whereas
for PE-GAN the Mantel test results shows a veridical correlation 0f 0.002
with empirical p-value 0.96.

Moreover, we demonstrated that the reconstruction of the d0 impact
parameter is dependent on the intra-event correlation. IEA-GAN, de-
spite only capturing a weak correlation, showed a close agreement in
track reconstruction with the correlated Geant4. This finding further
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underscores the usefulness and benefits of the correlation captured by
IEA-GAN.

In summary, although there is room for further optimization and en-
hancement of the IEA-GAN’s performance in modeling intra-event cor-
relations, we believe this work represents a significant step towards this
goal. We updated the manuscript with more details of the above analyses
and methodology mainly in lines 318 − 337.

Comment 1.4 In addition, the author claims, Furthermore, for the first time, our find-
ings reveal that the FID metric for detector simulation is a very versatile
and accurate unbiased estimator in comparison to marginal distributions,
and is correlated with both high and low-level metrics. I failed to find
any evidence in this paper to support that statement. On the contrary,
a theoretical study in [1] shows the FID is biased.

Response:We appreciate your insightful comment and agree with your
observation. We apologize for our previous overstatement and would like
to clarify our position. We now assert that the FID metric for detector
simulation is a versatile estimator in conjunction with the marginal dis-
tributions. As demonstrated to be useful and practical in the natural
image analysis domain, FID performs [3] well in terms of discriminability,
diversity, and robustness, despite only modeling the first two moments
of the distributions in the feature space. However, as you rightly pointed
out, it is indeed a biased estimator. Thus, motivated by your suggestion,
we have also incorporated the KID score [1] as an unbiased estimator.
We now report both FID and KID scores in our comparisons, as shown
in table 1, and have updated section 2.2 with the new information

Regarding the correlation of FID with image-level distributions, we con-
ducted a sensitivity analysis of FID to various types of image distortions
linked to the signatures recorded by the corresponding sensor. We in-
troduced controlled changes or ’jitters’ to the images and tracked their
impact on the FID score, as presented in the table B3 of the revised
manuscript. Therefore, we now suggest that FID and other metrics could
be interrelated, and one can use FID as a data-centric metric for the ini-
tial evaluation of the model in the data domain of detector simulation.
We updated the disclaimer in section 2.2 accordingly.

Response to Reviewer 2

Comment 2.1 In regard to reproducibility of their results, the authors mention a forth-
coming publicly available open dataset which this reviewer views to be
the minimum required for publication. The authors are strongly encour-
aged to also ensure the data samples upon which is manuscript is based
will adhere to the Findable, Accessible, Interoperable and Reusable (FAIR)
principles, for which the authors might take as guidance the process de-
tailed in 2108.02214. Additionally for reproducibility, the authors are
encouraged to make available example code for their model implemen-
tation on a public repository such as GitHub.
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Response: We appreciate the emphasis on adhering to the FAIR prin-
ciples and concur entirely. Since the data was associated with Belle II,
making the data publicly available at the time of submission was not
possible due to Belle II’s policy. But, only shortly after the submission
we got the permission to make the data open access. You may find the
publicly available data at Zenodo. Regarding the code, we had indeed
made it publicly available on Github at the time of the original submis-
sion. This is explicitly mentioned in the manuscript on line 755.

Comment 2.2 The work by the authors has the potential to be of great significance to
the field of particle physics and related fields. The authors allude to this
potential impact in the manuscript and this reviewer agrees with their
assessment. For example, the experiments at CERN’s Large Hadron
Collider spend a large fraction of their computing resource on Geant4
simulation of collision events. If a robust solution to this challenge can
be found and deployed, it will dramatically reduce the CPU required to
do the LHC science by speeding up the event simulation by orders of
magnitude, especially for interpretation of data during the HL-LHC era
in which 10-20 times more collision data will be acquired as compared
to previous LHC runs.

Regarding the reduction in resources via IEA-GAN approach to sim-
ulation, the authors emphasize the storage savings more so than the
CPU savings. For example, early in the manuscript (on page 3), they
specifically call out a factor of 2 reduction in storage requirements for
pre-produced backgrounds for the PXD in Belle II simulated data but
make no mention of the CPU reductions there (they are shown later in
Table 2). It is worth stressing that the potential benefit of ML-based
fast simulation for the (HL-)LHC and other data-intensive science exper-
iments is mostly in the CPU reduction, however the storage reduction
associated with on-the-fly generation of backgrounds for overlay is an
important benefit as well. It is suggested that that discussion on page
3 be adjusted to put the CPU and storage in benefits in proper context
and at least equal footing.

Response: Indeed, due to the dramatic CPU release of ×147 as shown
in Table 4, it is now possible to employ the IEA-GAN as an online sur-
rogate model for the ultra high-granularity PXD background simulation
on the fly at Belle II, a task that was unattainable before for such a high-
resolution detector simulation. Furthermore, IEA-GAN as a surrogate
model that can generate more that 7.5M information channels, would be
the first applicable candidate that can handle the ultra-high granularity
of HL-LHC era. We discuss this and updated the paper in several parts
in context, for instance in lines 129 − 136, 449 − 456 and 485 − 497.

Comment 2.3 The description in the introduction section is solely focused on GANs.
The paper would be strengthened with a more general introduction to
fast generative models for science, particularly including a mention of
Variational Autoencoders (VAEs) which have proven to be at least as
effective for fast event generation as GANs. For example, see references
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2203.00520 and 1901.00875.

Response: We acknowledge that VAEs and other generative models
have demonstrated effectiveness in Event generation, as evidenced by
the references you provided. The reason why we focused on GANs is
because they are the strongest candidates for mid- to high-resolution
detector simulation approaches with the ability to generate 30k and 65k
information channels as we referenced accordingly in the Introduction
section. Other approaches (including the ones for event generation) do
exist but they are far less able to generate such a ultra-high resolution
channel frequency. Nevertheless, for candidates of event generation we
updated the manuscript to mention the fundamental works in lines 51−
52.

Comment 2.4 The authors claim that the IEA-GAN study described in the manuscript
with the Belle-II PXD is the ”highest spatial resolution detector simula-
tion ever analyzed with deep generative models”. I could not find a spe-
cific published counter-example to this rather bold statement, however
there have been GAN-based generative model studies with, for example,
the geometry of the proposed CMS High Granularity Calorimeter (HG-
CAL) detector upgrade for the HL-LHC. The authors are encouraged to
do a thorough literature search to ensure this claim is correct.

Response: We really appreciate your suggestion. We had indeed con-
ducted a thorough literature review to substantiate our claim. As per our
research, even studies conducted on the proposed CMS High Granular-
ity Calorimeter (HGCAL) detector upgrade for the HL-LHC have dealt
with models that are below 70k channels for the mere simplified HGCAL
or ILD. Our work, in contrast, is pioneering in its focus on ultra-high
signature channels which is directly applicable not only to the Belle II
PXD detector, but also to future ultra-high granular sub-detectors at
HL-LHC. We have discussed these implications in the discussion and
introduction section of the manuscript.

Therefore, we stand by our statement that the IEA-GAN study described
in our manuscript represents the ”highest spatial resolution detector sim-
ulation ever analyzed with deep generative models.” We believe this work
marks a significant stride in the field and sets an entirely new benchmark
for future studies.

Comment 2.5 The primary weakness in the paper is a lack of evidentiary support for
the two primary claims in made in the paper (Section 2.2): (1) IEA-
GAN ”outperforms the other models considered by the authors by a
wide margin”

Response: We appreciate the opportunity to further substantiate our
claims.

In our paper, we have presented a comprehensive comparison of IEA-
GAN with other state-of-the-art models. This comparison clearly demon-
strates that IEA-GAN outperforms these models across several key met-
rics. These include the marginal distributions, namely, pixel inten-
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sity (charge) distributions, occupancy distributions, and mean occu-
pancy per sensor. These metrics are particularly crucial as they directly
impact downstream physics analyses.

Moreover, our study, now including the Mantel test analysis, shows that
IEA-GAN has successfully learned a weak correlation from the data,
a result that the other models have not achieved. Even this weakly
learned correlation by IEA-GAN shows a more significant KS test for z0,
ω, and tanλ resolutions and more precise d0 reconstruction even com-
pared to the uncorrelated Geant4 signatures. As we have demonstrated
in response to comment 1.2 and 1.3, intra-event correlation analysis is
of paramount importance from a physics analysis perspective. Further-
more, in response to the encouraging comments from reviewers, we have
conducted a more in-depth investigation. This further analysis has re-
vealed that in the downstream physics analysis of tracking, IEA-GAN
outperforms PE-GAN across all track parameter resolutions and KS tests
in the high momentum regime ((PT > 0.4 GeV)).

Therefore, we stand by our claim that IEA-GAN outperforms the other
models by a wide margin. This claim is not just based on a single metric
of FID or KID, but on a comprehensive set of metrics that are crucial for
the downstream physics analyses. We strived to provide ample evidence
for this claim in the IEA-GAN Evaluation and Discussion section.

Comment 2.6 The primary weakness in the paper is a lack of evidentiary support for
the two primary claims in made in the paper (Section 2.2): (2) the au-
thors findings ”for the first time, reveal that the FID metric for detector
simulation is a very versatile and accurate unbiased estimator in com-
parison with marginal distributions, and is correlated with both high
and low level metrics.”

Response: As we discussed in response to comment 1.4, we have con-
ducted a comprehensive analysis to support our claim about the versa-
tility of the FID metric for detector simulation. But, we correct our-
selves about the usefulness of FID metric in comparison to the other
metrics. Thus, we demonstrate its benefits as an estimator in conjunc-
tion with the marginal distributions. We also acknowledged its bias and
supplemented it with the KID score, an unbiased estimator. We further
showcased FID’s sensitivity to various types of image distortions directly
linked to the underlying response recorded by the corresponding sensor.
For a more detailed explanation, we kindly refer you to our response to
comment 1.4 and comment 2.7.

Comment 2.7 The authors use the FID metric to support their claim that IEA-GAN
is superior to the other method considered but at the same time the
authors claim their work supports FID as a metric of superiority. This is
a circular argument. Additionally, to use the FID metric results shown in
Table 1 as a convincing argument in support of the conclusion that IEA-
GAN is superior ”by wide margin”, there should be some validation of
the FID metric itself presented in the manuscript. It is well known that
the interpretation of ML model evaluation tools and metrics can depend
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on the specific application and not be fully general and domain agnostic.
This is too important of an assumption to leave solely to a reference
on the FID metric and therefore more details should be provided in
the manuscript and/or additional studies to validate the FID metric
as a means of assessing performance superiority of different generative
models.

Response: We understand the concerns regarding the potential circu-
larity of using FID as both a tool for evaluating our IEA-GAN model
and a measure whose validity we seek to establish. We also acknowledge
the consideration on FID’s general applicability across various domains.

It may be worth noting that while no metric is perfect or universally
domain-agnostic, FID has proven to be one of the most effective and
widely used metrics in the field of generative models. Therefore, while
it is important to validate it in our specific application, its extensive
use and previous validations in a variety of contexts provide a strong
foundation for its reliability. In addition to this, it is important to notice
that we have adapted the FID model through transfer learning to our
data domain, which is independent of the final evaluation of IEA-GAN,
thereby ensuring that it is fit for use in our specific application.

To address the potential circular reasoning, we would like to emphasize
that the superior performance of IEA-GAN is not based solely on FID
scores but on a wider set of comparisons, such as the image-level figure
of merits and physics-level analysis. Furthermore, we provide evidence
supporting FID’s legitimacy in our context, backed by two key pillars:

• The Downstream Task: We concur with the reviewer’s point
that ML model evaluation tools and metrics are typically domain-
centric. In alignment with this understanding, we utilized an In-
ceptionV3 model, retraining it entirely on our dataset. The model
was trained for a multi-class classification task involving 40 differ-
ent sensors and achieved a classification accuracy of 99% on the test
set. This illustrates that the model, and consequently the FID, can
effectively discriminate between images from different sensors.

• Qualitative Analysis: In order to qualitatively analyze the FID
flow during training, we showcase the change of FID value with re-
spect to the occupancy and charge distribution at different stages
of the training as depicted in fig. 2. Additionally, we demonstrate
the sensitivity of FID to various types of PXD image distortions di-
rectly linked to the underlying physics recorded by the correspond-
ing sensor. We achieved this by introducing controlled changes or
’jitters’ to the images and tracking their impact on the FID score,
as presented in the table 1 (and depicted in table B3 of manuscript).

We hope that this comprehensive analysis adequately addresses the con-
cerns raised and establishes the FID metric as a reliable measure of the
performance of generative models in our specific application. We also up-
dated the manuscript with the relevant arguments in context in section
2.2 and 3.
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Image Jitterings FID

None 0
Random Masking (dead zones) 14.58

Random Noise 87.23
Random Rotation (30 degrees) 23.69
Random Rotation (10 degrees) 2.81
Random Translation (0.1, 0.1) 1.99

Random Shear (10, 10) 23.53
Random Zoom 9.06

High Intensity Charge Smearing 3.16
Low Intensity Charge Smearing 47.24

Table 1: FID Score after different Jittering methods applied to the PXD images.

Comment 2.8 For the ”high-level physics” metric of comparing IEA-GAN tracking pa-
rameter resolutions against Geant, this is a necessary but insufficient
study to claim to validate the conclusions of the FID metric results and
general quality of the IEA-GAN generative model. Tracking resolutions,
and therefore comparisons between two event sets, depend critically on
the details of the hits that are used to reconstruct the tracks. E.g. How
similar are the number of hits and hit positions between two simulated
sets on average and track-by-track? More information such as these
are required to make an apple-to-apple comparison of track parameter
resolutions and support the authors interpretation of their results as a
validation of the agreement between IEA-GAN and Geant simulations.

Response: In our study, we used the same event generation and track
reconstruction for the comparison, implying that the signal hits used in
both simulations are essentially identical. Thus, the true track infor-
mation are similar. The primary point of difference lies in the origin
of the background, simulated by Geant4 in one case and generated by
IEA-GAN in the other. This distinct differentiation allows any dispar-
ities identified in the tracking parameter resolutions to be attributed
largely to the different background generation origins, enabling a direct
evaluation of the quality and performance of the IEA-GAN model in
comparison to Geant4.

Our decision to compare the tracking helix parameter resolutions is not
only based on their intrinsic link to hit details but also due to their
pivotal role as the first point of direct connection between the quality
of background hits and the downstream physics analysis. The quality
of these generated track parameters, gauged by their resolution, indeed
plays a critical role in influencing all subsequent physics analyses. We
tried to make this more clear in the lines 348 − 360.

Comment 2.9 A few final comments on style of text in the manuscript. There are many
places where capitalization is used on terms in a strange and inconsistent
manner. For example, in the abstract it is written ”Uniformity loss” but
on page 7 it is written ”uniformity loss”. Also, there are occasions where
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symbols common in machine learning (ML) and data science (DS) com-
munities but not as much in other scientific domains are used without
definition. The manuscript would be more accessible to a broader au-
dience if the authors were more liberal with symbol definitions in their
technical descriptions even it they are ”obvious” within ML/DS commu-
nities.

Response: We made changes accordingly throughout the manuscript
to avoid notation inconsistency and to make the manuscript more ac-
cessible to a broader audience. To target the wide range of audience,
in the original submission, we also had introduced the necessary ML
background in the Methods section (4.1 and 4.2.1).

Response to Reviewer 3

Comment 3.1 First, even though the presented algorithm shows a much better perfor-
mance than any other considered deep generative algorithm, the problem
of learning the underlying probability density as induced by GEANT4
is far from solved. Figure 2 still shows substantial differences between
the generated distributions and the GEANT4 distribution, and it only
shows a few different 1-dim projections of the 7.5M-dimensional space.
I guess other observables also deviate, as well as the correlation between
them. The fact that correlations are not learned properly is also shown
in Figure 3 for a subset of observables. This does not diminish the
great achievement of managing to train a 7.5M-dimensional deep gen-
erative model (again, these results should be published), but I’m not
sure it qualifies a publication in the Nature portfolio, which, according
to the homepage ”should represent an advance in understanding likely
to influence thinking in the field, [...].” In addition, ”There should be a
discernible reason why the work deserves the visibility of publication in
a Nature Portfolio journal [...]” and I’m not sure this is the case here
(but I’m happy to hear arguments for that).

Response: We appreciate your recognition of the significant achieve-
ment in training a 7.5M-dimensional deep generative model and your
thoughtful critique regarding the remaining differences between the gen-
erated distributions and the GEANT4 distribution.

In response to your comment, we would like to address the following
points:

• Influence on the Field:

(a) Introduction of New AI Technologies: From the perspec-
tive of AI methodology, our work introduces novel technolo-
gies in the field of Deep Generative models and Self-Supervised
Learning. We also introduce a fresh perspective of detector sim-
ulation with the intra-event reasoning. The IEA-GAN model
does not merely “drag and drop” already existing models but
represents a novel advancement in the field of deep generative
models for Particle Physics.
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(b) First Model to Consider Inter-Layer Correlation: Our
work is the first to explicitly consider and study the sensor-by-
sensor (layer-by-layer) correlation. Current fast detector simu-
lation studies focus merely on intra-layer correlation, meaning
that they only consider the correlation of observables within
each layer, and not across different layers. However, our work
shows for the first time that inter-layer/sensor correlation is
also of paramount importance in the downstream physics anal-
ysis. Despite only capturing a weak correlation, our IEA-GAN
model represents a significant step in this direction, demon-
strating that even this level of correlation capture can yield
better physics analysis results.

(c) Preparation for the HL-LHC Era: The upcoming High-
Luminosity Large Hadron Collider (HL-LHC) era presents new
challenges in terms of geometry, precision, and CPU efficiency.
Current deep generative models, with their existing setup, will
not be able to handle these challenges due to the lack of scala-
bility and precision at ultra-high granularity. Our model, how-
ever, is the first and strongest candidate by far that can meet
these requirements. As a result, it paves the way and moti-
vates others with university-level computational power to think
about solving this problem.

• Performance Comparison: Our IEA-GAN model has demon-
strated a high performance in terms of PXD-centric FID and also
KID score. These data-centric metrics are widely accepted for eval-
uating the quality of generated samples in the field of generative
models, and our model’s superior performance in these metrics in-
dicates its ability to generate high-quality and diverse samples that
are closer to the target data. With respect to the marginal distribu-
tions, which represent the most significant and insightful histograms
derived from the PXD data, our model demonstrates a closer align-
ment with the GEANT4 distribution compared to other models.
It’s important to highlight that the simultaneous capture of mul-
tiple image-level properties over high-resolution images presents a
formidable challenge that is unraveled even in natural image do-
main. Indeed, this complexity is the primary reason why the none
of fast simulation studies have not ventured into the domain of
ultra-high granularity to date. While other models have not cap-
tured any correlation between sensors, IEA-GAN has been able to
capture a weak but meaningful correlation. We have shown in sec-
tion 2.2 that even this weak correlation can yield a much better
physics analysis performance, particularly in the high momentum
regime where the correlation plays a more important role. As a re-
sult of all of these performance boosts, our model has demonstrated
a superior performance in the precision of reconstructed tracks.

While we acknowledge that the problem of learning the underlying
probability density as induced by GEANT4 is partially solved, we
believe that our IEA-GAN model, with its superior performance in
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various metrics, represents a significant step forward in this direc-
tion and demonstrates its potential to contribute to the advance-
ment of the field.

• Reason for Visibility: Given that we are generating the fine-
grained 7.5M channels of detector information, reaching full pre-
cision over all metrics at once is an extremely difficult and high-
dimensional task. Even in the high-resolution natural image gener-
ation domain, models typically follow one or two metrics at most.
Our work, however, breaks the boundaries of ultra-high granularity
and required computation power, providing a pioneering solution
that could guide future research in this area. The visibility of our
work in a Nature Portfolio journal is justified by its potential to
reshape the thinking in the field and encourage the field to aim
higher. Furthermore, the potential applications of our work extend
beyond the specific problem we addressed in the manuscript. The
techniques and insights gained from our work could be applied to
other problems where category-level and hierarchical symmetries
exists in various domains, making our work relevant to a broad
audience.

We hope that these points provide a stronger case for the influence of
our work on the field and its deserving visibility in a Nature Portfolio
journal. We appreciate your valuable feedback and are open to further
discussion.

Comment 3.2 Second, the way the manuscript is currently structured makes it nearly
impossible to read and understand. I personally don’t understand why
it is journal policy to have the Methods section at the end and not use
IMRaD (as most other journals publishing HEP research). This way,
the reader has to flip back and forth through many pages in order to
understand what is going on in the results section. Given that this can
probably not be changed, there is still a lot that can be improved. For
example, the description of the dataset and the general problem (2nd
paragraph of section 4.1) could all go to the introduction. Reading that
section, it is still unclear to me if the algorithm is supposed to be used
for the simulation of the entire event, or only the background (cf Fig.
5d). Further, it is never explained what ”background” refers to in that
context (and what signal, if at all, was used in the dataset).

Response: We understand your concerns and agree that clear and con-
cise communication of our work is crucial for its understanding and im-
pact. Regarding the structure of the manuscript, we acknowledge that
the placement of the Methods section at the end is a journal policy and
might not align with the conventional IMRaD structure. However, we
strive to improve the readability and flow of the manuscript within this
framework.

• Dataset Description and Problem Statement: We agree with
your suggestion to move the description of the dataset and the
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general problem to the introduction. Thus, we moved it to the
introduction section as a subsection.

• Clarification on the Use of the Algorithm: We apologize for
any confusion caused by our manuscript. Our algorithm is intended
to be used for the simulation of just the background signatures. We
made this point clear in the revised manuscript in lines 155 − 170.

• Explanation of ”Background”: In the context of our work,
”background” refers to processes that are not part of the signal
of interest at Belle II, such as the two-photon effect. These back-
ground processes contribute to the majority of hits in our data. We
did not use any signal in our dataset for this study. We provided
a clear definition of ”background” and its role in our study in the
revised manuscript in lines 145 − 155.

We appreciate your constructive feedback and made the necessary revi-
sions to improve the clarity and readability of our manuscript. We are
open to further discussion and suggestions.

Comment 3.3 Third, there are many words used in the manuscript that (for me) mean
the same things, but apparently are not the same things. For example
why should there be more than one sample in one event? Isn’t a sam-
ple from the generative model an event in the detector? Are ”images”
referring to events, too? Or only to single detector elements? Are these
the same as samples? What are the ”classes” that they authors refer to?
Usual conditional deep generative models have different particle types,
or incident angles, or incident energies as (class) condition, but none of
these apply here. What are ”tokens”?

Response: For IEA-GAN, each sample is a sensor image of size 256 ×
768. Then, for each event, we will have 40 of these images. Thus, each
event represents a round of detector signature collection. At each itera-
tion, IEA-GAN takes an event with 40 sensor images where each image
has spatial dimensions of 250 × 768. Therefore, we are conditioning
each sensor with it’s sensor type [[1, 40]] as classes which can be thought
of a mixture of angle and radius conditioning. These conditions, en-
ter the model as learnable “tokens” as they are not absolute and are
context-based. Ergo, both IEA-GAN’s generator (by Rdof+class em-
bedding) and discriminator (images + class embedding) learns any dy-
namical inherited conditions in context from the data (through the Re-
lational Reasoning Module) in a Self-Supervised Manner. We updated
the manuscript with a proper elaboration in section 4.2.2. Moreover,
throughout section 4.2.3, we had detailed the inputs to IEA-GAN in the
original manuscript.

Comment 3.4 Figure 1 (which is not the first figure being referred to) shows the ar-
chitecture of the IEAGAN. In many places, it is said that it shows how
event graphs are built (in section 4.3.2) and how they are projected into
a hypersphere. If at all, it shows that these steps are part of the algo-
rithm, but not how these graphs look like, how they are constructed, or
how such a spherical projection is achieved.
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Response: We also agree that Figure 1 does not explicitly show event
graphs are built. We updated the manuscript to address the creation of
event graph in detail such as in 177-192, Figure 2b’s caption, and section
4.2.2. For the hypersphere compactification (projection) we elaborated
the method in 4.3.2 and study the Inverse stereographic projection as
well in the appendix. Nevertheless, we concisely also describe the event
graph’s creation for the discriminator in the following:

The discriminator takes the set of detector response images coming from
an event and learns an embedding of them. Then the image embeddings
become the input nodes for a fully connected event graph. Event graph
here is a weighted graph where the nodes are the detector image embed-
dings in an event and the edges are weighted by the degree of similarity
between the detector images in each event. This degree of similarity is
approximated by contextual reasoning using the Relational Reasoning
Module (RRM). RRM is a GAN-compatible, multi-head Graph Trans-
former Network that groups the image tokens in an event based on their
inherent contextual similarity. Then the model compactifies the image
embeddings by an L2 normalization into a unit hypersphere.

Comment 3.5 Equations, like the one for rs, are not sufficiently explained. What’s a
Rank variable? What is the norm with subscript 0? What does the
union with + mean? What is e in l2C?

Response Thank you for your feedback. We apologize for any confusion
caused by the lack of explanation for the equations. We provided a more
detailed explanation in the revised manuscript in lines 306 − 312 and
541 − 542.

We hope these explanations clarify the equation. We will ensure that all
equations in the revised manuscript are explained in detail to facilitate
understanding.

Comment 3.6 Did the authors check that the Gaussian assumption to obtain the FID
score can be made and that the distributions are actually Gaussian?

Response: We acknowledge that the distribution of the activations is
not perfectly Gaussian. It’s important to note that this assumption is
not strictly met in practice [2]. Thus, we have complemented the FID
score with the KID score to provide a more unbiased evaluation. KID
does not rely on the Gaussian assumption and provide additional insights
into the performance of the model.

Comment 3.7 Figure 3 left and center look very different. How do the authors conclude
that the IEAGAN captures the correlations?

Respose: We understand that the visual differences between the left
and center plots may raise questions about our conclusions.

As we have detailed in our response to a similar question from Reviewer
1 in comment 1.3, and updated the manuscript accordingly. As a sum-
mery, we have employed the statistical method known as the Mantel
test to assess the correlation between two distance/correlation matrices.
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This test is designed to evaluate the significance of the observed corre-
lation through permutation testing, providing a robust measure of the
relationship between the two sets of correlations. To avoid redundancy
and ensure that all reviewers have access to the same information, we
kindly refer you to our response to Reviewer 1’s Comment 1.3.

Comment 3.8 Are the 5 physical parameters of Figure 4 the only 5 relevant physics
parameters that are extracted from the event? How do correlations be-
tween them look like? How do distributions of other quantities look
like?

Response: Indeed, the five track parameters depicted in Figure 5 and
6 (in the updated manuscript) are the primary physics parameters that
are directly influenced by the background. The background, whether
simulated by Geant4 or generated by IEA-GAN, impacts the signal hits,
which in turn can lead to incorrect assignments to the track as a function
of the background. This is why our primary observable is the resolution,
which is the difference between the reconstructed track parameter and
the true one. This measure provides a direct and meaningful way to
assess the impact of the background on the accuracy of the track recon-
struction. We elaborated this in the manuscript in lines 337 − 360.

As shown in fig. 1, the correlations between the reconstructed track pa-
rameters are very low and their differences are negligible. Moreover, the
distributions of other quantities are not directly relevant to the specific
analysis presented in this study. Our focus is primarily on the impact
of the background on these five track parameters, as they are the most
directly affected by the background and are crucial for the subsequent
physics analysis.
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Figure 1: Correlation between Helix parameters

However, we acknowledge the importance of understanding the broader
impact of the background on other quantities and correlations, and we
believe this could be an interesting direction for future research.

Comment 3.9 The computational times in Table 2 show averages over 10000 generated
events. Does that mean the GAN was run with a batch size of 10000?
Is GEANT4 (or the simulation chain as a whole) batched in Belle II? If
not, only comparisons with batch size 1 are meaningful.
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Response: In our work, each event consists of responses from 40 sen-
sors. Therefore, when IEA-GAN generates an event at each iteration, it
produces 40 images, making the mini-batch size 40. When we report av-
erages over 10,000 events, it means that the model generates these events
one at a time, not in a batch of 10,000. In comparison to Geant4, we
also simulate one event at a time, each again with 40 sensor responses.
Therefore, when we compare the generation times, we are comparing the
time it takes to generate a single event, consisting of 40 sensor responses,
in both cases. We cleared this point in the Table 4’s caption.

Comment 3.10 Was the ablation study of Appendix A performed in a grid, with all
parameters being varied at the same time? Or only one parameter at a
time?

Response: It was performed one parameter at a time.

Comment 3.11 Appendix B, called ”Extended Figures and Tables” only contains a single
figure and no table and no explaining text. Is that intentional by the
authors or was there anything cut in processing?

Response: The decision to include only one figure in the ”Extended
Figures and Tables” appendix was indeed intentional and was guided
by the journal’s policy on the number of figures and tables allowed in
the main text. In the updated manuscript we have another table also
included in the appendix. However, if this may have cause any confusion,
and we are open to moving this figure and table to the main body of the
paper if it aligns with the editor’s guidelines.

Conclusion

In response to the thoughtful and constructive feedback from the reviewers, we have
made several key revisions to our manuscript. These include further empirical evidence
to substantiate our claims, detailed comparison metrics to demonstrate the superior per-
formance of IEA-GAN, and additional arguments to highlight the significance and broader
impact of our work in the field. We believe these revisions not only address the reviewers’
concerns but also enhance the overall quality and robustness of our study.

We hope that the updated manuscript now meets the high standards expected for
publication in Nature Communications and look forward to the possibility of sharing our
work with the wider scientific community.
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1 Appendix: Extended Figures
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Figure 2: Different FID values at different stages of training with respect to the Charge
and Occupancy distributions.
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors revised the manuscript significantly. The authors added more studies to 

support the physics motivation, which states that modeling the correlations between 

detector hits in simulating background hits is crucial for physics. To that end, the authors 

provide evidence in Figure 5 and Table 2. However, it would be better if Figure 5 compared 

the pull distribution of d0 for the three setups, as the current version hardly shows any 

differences. In addition, units are missing in Figure 5, 6, and Table 2. 

Even if the track parameter resolutions are different with or without the so-called 

correlation, it does not exclude the possibility that these changes may be due to imperfect 

track finding and track fitting algorithms. For a good tracking reconstruction algorithm, it 

should form a track with hits from the same particle and exclude hits from background 

processes. 

The metrics in Table 3 are not clearly defined. How are the “unbiased variance” and their 

errors defined and calculated? The Belle II physics workbook shows the d0 and z0 

parameters are slightly biased. How did the authors obtain an unbiased estimate of all five 

track parameters? 

Reviewer #2 (Remarks to the Author):

I have reviewed rebuttal to my (and other reviewers') comments as well as the revised 

manuscript. My primary concerns has been adequately addressed by this revision and thank 

the authors for their work on enhancing the clarity and readability. 

There is a small typo on line 164 which does not appear to be part of the revision. 



Reviewer #3 (Remarks to the Author):

Dear Authors, dear Editor, 

Report on the revised manuscript "Ultra-High-Resolution Detector Simulation with Intra-

Event Aware Generative Adversarial Network and Self-Supervised Relational Reasoning" by 

Hosein Hashemi, Nikolai Hartmann, Sahand Sharifzadeh, James Kahn and Thomas Kuhr for 

Nature Communications. 

The manuscript has been improved very much. Its structure is now more clear and many 

aspects are explained better than before. Additional studies, triggered by all reviewers have 

been performed and were included. These include for example the discussion of the down-

stream physics parameters and the (un)shuffled GEANT baseline. I see all of this as a great 

improvement of the manuscript, strengthening its case for publication even more. I do have 

some remaining comments, which I detail below. 

First, let me reply to a few points raised in the response: 

- regarding "First Model to Consider Inter-Layer Correlation:" This statement is not true. 

Many, if not all, other papers of DGMs for calorimeter simulation study observables that 

depend on more than one layer at the same time. This includes observables that are 

computed from the entire event as well as FID/KID-type scores of entire events and 

classifier-based model evaluations that are given entire events at a time. These publications 

all just never considered doing it layer by layer because the datasets were smaller. 

- regarding "Preparation for the HL-LHC Era". I agree that scaling up to O(1M) dimensions is 

important for the HG-CAL and the future of the HL-LHC, but whether the generation of 

background processes here generalizes to the simulation of signal processes (as typically 

done in an LHC setting), is far from clear to me. 

Nevertheless, I see the novelty in the architecture and the size of the dataset. Also, the 

other reviewers have not commented on the manuscript being unsuitable for Nature 



Comm, so I wont oppose publication. 

Second, I have a comments regarding the current manuscript: 

- What was the classification task on which Inception-V3 was trained on exactly? Just finding 

the sensor id (i.e. a number in [1,40])? Or also other information? I'm confused by the 

statement "discriminate sensors and their corresponding data manifold.", do you mean you 

identify which sensor the given sample belongs to by identifying how data is distributed in 

it? 

- line 261 states that you compare to BigGAN-deep and ContraGAN, but everything beyond 

tab. 1 and fig. 3 just looks at the PE-GAN. Judging by fig. 3 and the KID score in tab. 1, the 

ContraGAN should be at least as good as the PE-GAN. Why did you not compare to the other 

models? 

- In tab. 1, I was wondering what the baseline of testing GEANT vs GEANT is, i.e. how much 

away from 0 the scores would be due to the finite datasets. Is that number in tab. B1, first 

line? Would it be possible to add this number here, too (and maybe give it an errorbar), so 

the quality of the IEA-GAN can be seen more clearly? 

- In tab. 1, what does "averaged across six random seeds" refer to? Different samples from 

the same trained IAE-GAN? Samples from retraining the IEA-GAN? Scores from retraining 

Inception-V3? 

- lines 351ff: You write: "we utilize the same event generation and track reconstruction for 

the comparison, implying that the signal hits used in all simulations are essentially 

identical." Does this mean that the same software was used and the two datasets are 

statistically identical? Or does that mean you use the same signal events and just apply 

different background noise to it? For a better interpetation of the results (factoring out 

signal fluctuations), I would recommend the latter. In that case, do you also have 

information on the event-by-event performance? I mean figs. 5 and 6 show the deviation 



between reconstructed and truth. I'm interested to see the deviations between 

"reconstructed with bg 1" vs "reconstructed with bg 2". 

- lines 471ff: I disagree with the statement "might be learning biases or artifacts introduced 

by the training data". How would you be able to conclude that? Fig. 4 left shows how GEANT 

(=the training data) is distributed. How do you know how "truth" is distributed? Is there an 

actual dataset, that has not been descriebed so far, available? From what is presented in the 

manuscript, it can only be concluded that the IEA-GAN fails to learn the correlations of the 

training data, but still does a better job than the other DGMs. 

- Tab. 4: How is storage being computed? Shouldn't one event be the same for everything, 

given by how much space is needed to save 7.5M floats? Does it refer to how much RAM 

the generating software is using, normalized to the number of events it is generating? 

- line 712: Do you really train on 40k events only? That number seems way to small, 

comparing to the (much) larger and lower-dimensional datasets used for example in the 

BIB-AE papers (about 500k-1M samples, O(30000) dimensional) or the CaloChallenge (100k 

samples, O(100)-O(10000) dimensional). Having 40 images per event does not improve 

statistics, since you want to learn correlations between them. 

- line 712: Do you use the same 10k events for model selection and final evaluation? Proper 

machine learning practice would be to have training, testing, and evaluation sets that are 

independent from each other. Otherwise the reported scores are biased. 

- lines 716-721: Isn't sampling 40 different images out of 40 possible ones per event the 

same as saying you sample the entire event? If yes, please shorten it and say so. If not, 

please explain better what you mean. 

Third, I have a few comments regarding lanugage / typos / etc.: 

- the FID is properly introduced on p. 25, but first appears on p. 8. The KID is introduced at 



the end of p. 8, but first appears before. Please check that abbreviations are explained the 

first time they appear. 

- Fig. 3 legend says "GEANT", the rest of the text says "Geant". 

- lines 330 and 335 have a typo: "0f" instead of "of" 

- lines 373 and 381 have an article missing 

- in fig 5, what are the x-axis units? [mm]? 

- line 407, there is a unit missing 

- fig 6, (if you want to show how impressive the IEA-GAN is), the 1st and 4th line should have 

same x-axis scaling left and right. Otherwise the difference is hard to see. 

- line 640 has ".," 

- lines 493 and 660 misses a "." and the end of the sentence. 

- some text explaining what is happening in appendix B would be beneficial for the reader.



Response to Reviewers, round II

Introduction

We appreciate the thoughtful and inspirational comments of the reviewers on our manuscript,
and we thank them for their time in providing this feedback. We have revised our
manuscript with care to address these comments. Below, we respond to each comment
in detail.

Response to Reviewer 1

Comment 1.1 The authors revised the manuscript significantly. The authors added
more studies to support the physics motivation, which states that mod-
eling the correlations between detector hits in simulating background
hits is crucial for physics. To that end, the authors provide evidence in
Figure 5 and Table 2. However, it would be better if Figure 5 compared
the pull distribution of d0 for the three setups, as the current version
hardly shows any differences. In addition, units are missing in Figure 5,
6, and Table 2.

Response: We have revised Figure 5 in the manuscript to include the
pull distribution of d0 and z0 and have also ensured that corresponding
units are now added for Figures 5 and 6, as well as Tables 2 and 3.
Furthermore, in response to the insightful suggestions from the reviewer,
we have also updated Figure 6 to feature the pull distribution. We are
thankful for guiding these improvements.

Comment 1.2 Even if the track parameter resolutions are different with or without
the so-called correlation, it does not exclude the possibility that these
changes may be due to imperfect track finding and track fitting algo-
rithms. For a good tracking reconstruction algorithm, it should form a
track with hits from the same particle and exclude hits from background
processes.

Response: We acknowledge your concern regarding the potential in-
fluence of track-finding and fitting algorithms on our results. However,
it is essential to emphasize that the core objective of our study is not
to isolate or mitigate the effects of background noise but to accurately
simulate its impact on track reconstruction. The background affects the
tracking to make it assign wrong hits and make it imperfect. Thus,
the quality of any PXD background surrogate model, or the effect of
losing the intra-event correlation while keeping all the other aspects of
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the background hits intact, is evaluated based on how well it replicates
the Geant4 simulated background effects. If the IEA-GAN can mimic
Geant4’s performance in the presence of the background, it indicates the
model’s accuracy in simulating the effects of background processes. As
a result, we aim to ensure that IEA-GAN can generate background that
impacts the track reconstruction process like Geant4 background noise
would. Accordingly, we have updated the manuscript and provided fur-
ther clarification in lines 380-391.

Comment 1.3 The metrics in Table 3 are not clearly defined. How are the unbiased
variance and their errors defined and calculated? The Belle II physics
workbook shows the d0 and z0 parameters are slightly biased. How did
the authors obtain an unbiased estimate of all five track parameters?

Response: We appreciate the emphasis on clarity in our presentation
of metrics. Upon review, we acknowledge that the term “Unbiased vari-
ance” used in Table 3 was a misnomer. Our actual computation was of
the standard deviation, and the use of “variance” in this context was an
error. We have corrected this in the manuscript to accurately reflect our
methodology.

Regarding the term “unbiased” as it pertains to the estimation of im-
pact parameters: this was not meant to imply an unbiased nature of the
impact parameters themselves. Instead, it referred to the statistical ad-
justment made by employing the (n−1) denominator in the sample stan-
dard deviation formula. This adjustment is used to mitigate bias when
estimating a population’s standard deviation from a sample. However,
given our large sample size, the effect of this adjustment is marginal, and
its mention may inadvertently cause confusion. Consequently, we have
opted to remove this term from the tables for clarity.

In the revised manuscript, we have updated the descriptions of our met-
rics for more accurate representation. These updates can be found in
lines 397-407, and the caption of Figure 5, where we have detailed our
methodology and the calculations for the standard deviation and its
associated error. We believe these amendments will provide a clearer
understanding of our approach and the analytical methods employed in
our study.

Response to Reviewer 2

Comment 2.1 I have reviewed rebuttal to my (and other reviewers’) comments as well
as the revised manuscript. My primary concerns has been adequately
addressed by this revision and thank the authors for their work on en-
hancing the clarity and readability. There is a small typo on line 164
which does not appear to be part of the revision.

Response: Thank you very much for your thoughtful review and ac-
knowledgment of our work. We are pleased to hear that the revisions
have met your expectations. We appreciate you pointing out the typo.
We will ensure that such typos are corrected promptly.
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Response to Reviewer 3

Comment 3.1 Regarding ”First Model to Consider Inter-Layer Correlation:” This state-
ment is not true. Many, if not all, other papers of DGMs for calorimeter
simulation study observables that depend on more than one layer at the
same time. This includes observables that are computed from the entire
event as well as FID/KID-type scores of entire events and classifier-based
model evaluations that are given entire events at a time. These publica-
tions all just never considered doing it layer by layer because the datasets
were smaller.

Response: We appreciate the opportunity to clarify our position and
acknowledge the contributions of prior research in the field of deep gener-
ative models for calorimeter simulation [1]. You are correct in pointing
out that many existing models in calorimeter simulations do consider
observables that depend on more than one layer simultaneously. These
models typically focus on the simulation of particle showers from a single
particle origin and a small region with the shower, which indeed capture
aspects of inter-layer correlation within the scope of a localized area.
However, our approach extends this concept by considering the entire
“event” with multiple-particle origins that encompass the entire PXD
detector as a whole, where correlations among different sensors (var-
ious angles and layers) become important within its readout window.
Given the unique topology and geometry of PXD as a highly granular
tracking detector, this distinction is critical and allows for a more com-
prehensive simulation, capturing the complex interplay within an event
across the entire detector rather than just the localized particle shower.
Furthermore, while previous studies may have implicitly accounted for
layer-by-layer correlations within their framework, our study explicitly
evaluates and compares these correlations and their influence on down-
stream physics analysis. In light of this, we modify our statement in the
manuscript in lines 127-138 and 508-523 to more accurately reflect the
contributions of our work.

Comment 3.2 regarding ”Preparation for the HL-LHC Era”. I agree that scaling up
to O(1M) dimensions is important for the HG-CAL and the future of
the HL-LHC, but whether the generation of background processes here
generalizes to the simulation of signal processes (as typically done in an
LHC setting), is far from clear to me.

Response: Concerning the generalization of our study to signal signa-
ture simulations, we entirely acknowledge the complexity of this transi-
tion. Our current study addresses one aspect of the larger, more intricate
challenge of simulating the full HL-LHC detector data. We recognize
that simulating signal processes, while conceptually different due to the
known nature of the target particle or process, is no less challenging.
Nevertheless, our study does not assert that the methods we developed
for background simulation can be directly and effortlessly applied to sig-
nal process simulation in the HL-LHC context. The transition from sim-
ulating background processes to handling the full spectrum of HL-LHC
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data, including both signal and background, is non-trivial and necessi-
tates additional methodological adjustments and fine-tuning. We hope
this clarifies our position and the intended scope of our research. As a
result, we added a clarification note by the lines 563-567 in the original
manuscript.

Comment 3.3 What was the classification task on which Inception-V3 was trained on
exactly? Just finding the sensor id (i.e. a number in [1,40])? Or also
other information? I’m confused by the statement ”discriminate sensors
and their corresponding data manifold.”, do you mean you identify which
sensor the given sample belongs to by identifying how data is distributed
in it?

Response: The classification task for which the Inception-V3 was trained
involved identifying the specific sensor ID from a range of 1 to 40 where
each sensor ID represents a distinct class. The high level of accuracy
achieved by the model in both training and testing phases suggests that
the Inception-V3 has effectively learned to distinguish the unique data
characteristics – or “data manifold” – associated with each sensor. We
modified the manuscript by lines 258-262 accordingly to clarify this para-
graph and avoid confusion.

Comment 3.4 line 261 states that you compare to BigGAN-deep and ContraGAN, but
everything beyond tab. 1 and fig. 3 just looks at the PE-GAN. Judging
by fig. 3 and the KID score in tab. 1, the ContraGAN should be at
least as good as the PE-GAN. Why did you not compare to the other
models?

Response: In our evaluation, we initially compared IEA-GAN with
several models, including BigGAN-deep and ContraGAN, as shown in
Table 1 and Figure 3. Based on these results, PE-GAN emerged as either
superior or comparable to the other benchmark models in performance.
Therefore, for a less redundant, and more focused and efficient compar-
ison in the physics analysis, we chose to compare IEA-GAN with PE-
GAN, the second-best performing model. We have updated the paper
as a footnote in page 9 and lines 446-447, to clarify that our continued
comparison in the physics analysis specifically involves IEA-GAN and
PE-GAN based on their relative performance metrics.

Comment 3.5 In tab. 1, I was wondering what the baseline of testing GEANT vs
GEANT is, i.e. how much away from 0 the scores would be due to
the finite datasets. Is that number in tab. B1, first line? Would it be
possible to add this number here, too (and maybe give it an errorbar),
so the quality of the IEA-GAN can be seen more clearly?

Response

Yes, indeed, the baseline you are referring to is represented by the
rounded number in the first line of Table B1. Following your sugges-
tion to improve the clarity and comprehensiveness of our comparison,
we also added the actual baseline value (over the Geant4 test data) to
Table 1 and B1. We also added a small clarification in line 285-286.
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Comment 3.6 In tab. 1, what does “averaged across six random seeds” refer to? Differ-
ent samples from the same trained IAE-GAN? Samples from retraining
the IEA-GAN? Scores from retraining Inception-V3?

Response: The statement “averaged across six random seeds” refers
to retraining all the generative models six times with different random
seeds. We further clarify this in the caption of Table 1.

Comment 3.7 lines 351ff: You write: ”we utilize the same event generation and track
reconstruction for the comparison, implying that the signal hits used in
all simulations are essentially identical.” Does this mean that the same
software was used and the two datasets are statistically identical? Or
does that mean you use the same signal events and just apply different
background noise to it? For a better interpretation of the results (fac-
toring out signal fluctuations), I would recommend the latter. In that
case, do you also have information on the event-by-event performance? I
mean figs. 5 and 6 show the deviation between reconstructed and truth.
I’m interested to see the deviations between ”reconstructed with bg 1”
vs ”reconstructed with bg 2”.

Response: Yes, It is indeed the latter. In our study, we employed the
same set of signal events across all simulations, with the variation be-
ing in the source of background noise applied. This approach explicitly
isolates the effect of different background noises on the reconstruction
process, ensuring that any observed differences in reconstruction accu-
racy are attributed to the background model and not variations in the
signal events themselves. We try to clarify this in the related paragraph
in lines 372-373.

A comparison of deviations between a single event reconstructed with
two different backgrounds is not easily available, given the basf2 soft-
ware’s data pipeline. Moreover, we believe that it does not reflect the
potential differences between different methods of generating background
well. In contrast to, for instance, backgrounds for calorimeter measure-
ments where a single background readout window will almost always have
an effect on the reconstructed quantities, for tracking, we will only see a
difference if the background events lead to wrong hits being attached to
the track. That happens not too often, especially since we only look at
the background for the PXD, which only accounts for the two innermost
layers. In order to see an effect, we need to compare a larger number of
events. Therefore, we chose to compare whole distributions of the track
parameter resolutions.

Comment 3.8 lines 471ff: I disagree with the statement ”might be learning biases or
artifacts introduced by the training data”. How would you be able to
conclude that? Fig. 4 left shows how GEANT (=the training data) is
distributed. How do you know how ”truth” is distributed? Is there an
actual dataset, that has not been described so far, available? From what
is presented in the manuscript, it can only be concluded that the IEA-
GAN fails to learn the correlations of the training data, but still does a
better job than the other DGMs.
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Response: We appreciate this opportunity to clarify our position and
delve deeper into our analysis. The observation that IEA-GAN might be
learning biases or artifacts is grounded in how these correlations manifest
in the context of the PXD detector’s layered structure and geometry. As
shown in Figure 1, the PXD detector has a Toroidal geometry consisting
of 16 (0 − 15) sensors in the first layer and 24 (16 − 39) sensors in the
second layer. In Figure 4 of our manuscript, we showed that IEA-GAN
exhibits a distinct understanding of the correlations between different
layers in the PXD detector – an overall positive correlation between sen-
sors 0-15 within layer 1 and between 16-39 within layer 2. This pattern
reflects a layer-wise understanding of the data, which, while meaning-
ful, diverges partially from the actual correlations present in the Geant4
data. This suggests that the difference in occupancy between inner and
outer layers could be a major feature learned by the model, which may
impede the learning of more subtle correlations. Nevertheless, we ac-
knowledge that “biases or artifacts” could be strong statements, so we
replace these with a more proper explanation within the manuscript in
lines 530-539.

Comment 3.9 Tab. 4: How is storage being computed? Shouldn’t one event be the
same for everything, given by how much space is needed to save 7.5M
floats? Does it refer to how much RAM the generating software is using,
normalized to the number of events it is generating?

Response: We have defined the term “storage” for IEA-GAN as refer-
ring specifically to the model’s weight. This clarification has been added
to the caption of Table 4 for better understanding and precision.

Comment 3.10 line 712: Do you really train on 40k events only? That number seems
way to small, comparing to the (much) larger and lower- dimensional
datasets used for example in the BIB-AE papers (about 500k-1M sam-
ples, O(30000) dimensional) or the CaloChallenge (100k samples, O(100)-
O(10000) dimensional). Having 40 images per event does not improve
statistics, since you want to learn correlations between them.

Response: Indeed, the training and validation were conducted on 40 000
events. This was primarily due to the technically challenging data ac-
cess and storage costs associated with such high-dimensional data in
the beginning of the project. The challenge of handling such large-scale
and high-dimensional data is, in fact, the fundamental motivation of our
study. However, we recognize the benefits of a larger dataset for train-
ing, and in our ongoing research, we are indeed expanding the volume
of data being analyzed.

Comment 3.11 line 712: Do you use the same 10k events for model selection and final
evaluation? Proper machine learning practice would be to have train-
ing, testing, and evaluation sets that are independent from each other.
Otherwise the reported scores are biased.

Response: In our study, the dataset of 40 000 events was partitioned
into separate subsets for training and model selection. Specifically, we
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allocated 35 000 events for training and 5000 events for model selec-
tion (validation dataset used for early stopping and hyperparameter tun-
ing). An additional and distinct set of 10 000 events served as the test set
for assessing the final model performance. We appreciate the reviewer’s
comment on this aspect. We have made this clear in the manuscript,
detailing the distribution of the datasets in lines 783-786.

Comment 3.12 lines 716-721: Isn’t sampling 40 different images out of 40 possible ones
per event the same as saying you sample the entire event? If yes, please
shorten it and say so. If not, please explain better what you mean.

Response: Thank you for pointing out the need for clarity in our de-
scription of the sampling process. You are correct in your understanding
that our method involves sampling 40 different images from 40 possible
ones per event, essentially sampling an entire event. To reflect this, we
have revised the manuscript with lines 789-792.

Comment 3.13 the FID is properly introduced on p. 25, but first appears on p. 8. The
KID is introduced at the end of p. 8, but first appears before. Please
check that abbreviations are explained the first time they appear. - Fig.
3 legend says ”GEANT”, the rest of the text says ”Geant”. - lines 330
and 335 have a typo: ”0f” instead of ”of” - lines 373 and 381 have an
article missing - in fig 5, what are the x-axis units? [mm]? - line 407,
there is a unit missing - fig 6, (if you want to show how impressive the
IEA-GAN is), the 1st and 4th line should have same x-axis scaling left
and right. Otherwise the difference is hard to see. - line 640 has ”.,” -
lines 493 and 660 misses a ”.” and the end of the sentence. - some text
explaining what is happening in appendix B would be beneficial for the
reader.

Response: We appreciate the detailed feedback provided by the re-
viewer. We have carefully addressed each of the mentioned points, in-
cluding clarification of abbreviations, corrections of typographical errors,
adjustments in figure legends and axes, and the addition of explanatory
text where needed in the revised manuscript.

Conclusion

In light of the thoughtful and constructive feedback from the reviewers, we have made
several revisions to our manuscript. Our revisions include updating the resolution plots
with pull distributions, enhancing the explanation for methodologies, and providing ad-
ditional clarifications to highlight the significance and impact of our work in the field. We
are thankful for the constructive comments that have guided these revisions, as they have
significantly contributed to refining the quality and depth of our research. We appreciate
the opportunity to augment our work through this collaborative review process.
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REVIEWERS' COMMENTS

Reviewer #3 (Remarks to the Author):

Dear Authors, dear Editor, 

Report on the second revised manuscript "Ultra-High-Resolution Detector Simulation with 

Intra-Event Aware Generative Adversarial Network and Self-Supervised Relational 

Reasoning" by Hosein Hashemi, Nikolai Hartmann, Sahand Sharifzadeh, James Kahn and 

Thomas Kuhr for Nature Communications. 

The manuscript has improved considerably and the authors have addressed (almost) all of 

the concerns that I and the other reviewers raised. I recommend it for publication once the 

final (minor) points below have been addressed and I don't need to see it again before. 

- I still think that training on only 35k events is very problematic for a 7.5M dimensional 

dataset. However, the obtained results speak for themselves and enlarging the dataset now 

is not possible. I suggest that the authors add a footnote in section 4.5, acknowledging that 

this is actually a too small dataset to properly probe a 7.5M dimensional manifold. 

- line 54 contains a typo: "Hashemi. et al." => "Hashemi et al." 

- Table 1: please check if the value for the KID on the test set is really at the level of 1e-7 

(1e-3 * 1e-4), or if the 1e-3 factor was not pulled out properly. 

- Table 1 caption: There is text repeated before and after the red text.
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