Supplementary Material

Psychological Intervention Improves Quality of Life in Patients with Early-Stage Cancer: a Systematic Review and Meta-analysis of randomized clinical trials

 TABLE S1. SEARCH KEY

SECTION S1. STRUCTURE OF ANALYSIS

FIGURE S1. PRISMA FLOW CHART

TABLE S2. BASELINE CHARACTERISTICS OF THE INCLUDED STUDIES

SECTION S2. STATISTICAL ANALYSIS

S2.OVERALL PLOTS

Figure.S2.1.T12

Figure S2.2.T24

Figure S2.3.T48

S3. SUBGROUP ANALYSIS OF GLOBAL QOL: PROVIDER

Figure S3.1.T0

Figure S3.2.T12

Figure S3.3.T24

Figure S3.4.T48

S4.SUBGROUP ANALYSIS OF GLOBAL QOL: ENVIRONMENT

Figure S4.1.T0

Figure S4.2.T12

Figure S4.3.T24

Figure S4.4.T48

S5.SUBGROUP ANALYSIS OF GLOBAL QOL: TYPE

Figure S5.1.T0

Figure S5.2.T12

Figure S5.3.T24

Figure S5.4.T48

S6. SUBGROUP ANALYSIS OF GLOBAL QOL: CANCER STAGE

Figure S6.1.T0

Figure S6.2.T12

Figure S6.3.T24

Figure S6.4.T48

S7. SUBGROUP ANALYSIS OF GLOBAL QOL: CANCER TYPE

- Figure S7.1.T0
- Figure S7.2.T12
- Figure S7.3.T24

Figure S7.4.T48

S8.SUBGROUP ANALYSIS OF EMOTIONAL QOL: PROVIDER

Figure S8.1.T0

Figure S8.2.T12

Figure S8.3.T24

Figure S8.4.T48

S9.SUBGROUP ANALYSIS OF EMOTIONAL QOL: ENVIRONMENT

Figure S9.1.T0

Figure S9.2.T12

Figure S9.3.T24

Figure S9.4.T48

S10.SUBGROUP ANALYSIS OF EMOTIONAL QOL: TYPE

Figure S10.1.T0

Figure S10.2.T12

Figure S10.3.T24

Figure S10.4.T48

S11.SUBGROUP ANALYSIS OF EMOTIONAL QOL: CANCER STAGE

Figure S11.1.T0

Figure S11.2.T12

Figure S11.3.T24

Figure S11.4.T48

Figure S12.1.T0

Figure S12.2.T12

Figure S12.3.T24

Figure S12.4.T48

S13.SUBGROUP ANALYSIS OF SOCIAL QOL: PROVIDER

Figure S13.1.T0

Figure S13.2.T12

Figure S13.3.T24

Figure S13.4.T48

S14.SUBGROUP ANALYSIS OF SOCIAL QOL: ENVIRONMENT

Figure S14.1.T0

Figure S14.2.T12

Figure S14.3.T24

Figure S14.4.T48

S15.SUBGROUP ANALYSIS OF SOCIAL QOL: TYPE

Figure S15.1.T0

Figure S15.2.T12

Figure S15.3.T24

Figure S15.4.T48

S16.SUBGROUP ANALYSIS OF SOCIAL QOL: CANCER STAGE

Figure S16.1.T0

Figure S16.2.T12

Figure S16.3.T24

Figure S16.4.T48

S17.SUBGROUP ANALYSIS OF SOCIAL QOL: CANCER TYPE

Figure S17.1.T0

Figure S17.2.T12

Figure S17.3.T24

Figure S17.4.T48

S18. SUBGROUP ANALYSIS OF PHYSICAL QOL: PROVIDER

Figure S18.1.T0

Figure S18.2.T12

Figure S18.3.T24

Figure S18.4.T48

S19. SUBGROUP ANALYSIS OF PHYSICAL QOL: ENVIRONMENT

Figure S19.1.T0

Figure S19.2.T12

Figure S19.3.T24

Figure S19.4.T48

S20. SUBGROUP ANALYSIS OF PHYSICAL QOL: TYPE

Figure S20.1.T0

Figure S20.2.T12

Figure S20.3.T24

Figure S20.4.T48

S21. SUBGROUP ANALYSIS OF PHYSICAL QOL: CANCER STAGE

- Figure S21.1.T0
- Figure S21.2.T12

Figure S21.3.T24

Figure S21.4.T48

S22.SUBGROUP ANALYSIS OF PHYSICAL QOL: CANCER TYPE

Figure S22.1.T0

Figure S22.2.T12

Figure S22.3.T24

Figure S22.4.T48

S23. TABLE S.3. RISK OF BIAS ASSESSMENT

S24. PUBLICATION BIAS

Figure S24.1.Overall Survival

Figure S4.2. Recurrence-free Survival

S24.3.Global Qol

Figure S24.3.1.Provider Figure S24.3.2.Environment Figure S24.3.3.Type Figure S24.3.4.Duration of Intervention Figure S24.3.5.Cancer Stage Figure S24.3.6.Cancer Type

S24.4.Emotional Qol

Figure S4.4.1.Provider Figure S24.4.2.Environment Figure S24.4.3.Type Figure S24.4.4.Duration of Intervention Figure S24.4.5.Cancer Stage Figure S24.4.6.Cancer Type

S24.5.Social Qol

Figure S24.5.1.Provider Figure S24.5.2.Environment Figure S24.5.3.Type Figure S24.5.4. Duration of Intervention Figure S24.5.5.Cancer Stage Figure S24.5.6.Cancer Type

S24.6. Physical Qol

Figure S24.6.1. Provider Figure S24.6.2. Environment Figure S24.6.3.Type Figure S24.6.4. Duration of Intervention Figure S24.6.5. Cancer Stage Figure S24.6.6. Cancer Type

REFERENCES

Table S1. Search key

Search Key	Database
(psychotherapy OR psychotherap* OR "mindfulness" OR "cognitive therapy" OR "cognitive treatment" OR "cognitive intervention" OR CBT OR "behavior therapy" OR "behavioral therapy" OR "behaviour therapy" OR "behavioural therapy" OR "behavior	Medline
treatment" OR "behavioral treatment" OR "behaviour treatment" OR "behavioural treatment" OR "behavior intervention" OR "behavioral intervention" OR "behaviour intervention" OR "behavioural intervention" OR "psychological intervention" OR "psychosocial intervention" OR "psychological	Embase
support" or "psychosocial support" OR counselling OR counseling) AND (neoplasm OR cancer) AND (random OR randomised OR randomization OR randomly OR randomness)	Central

Table S.1. The Search Key. The search key used to identify all eligible studies

Section S1. Structure of analysis

At first we were interested in whether psychological interventions have an effect on overall and recurrence free survival. Next we continued our analysis to see if cancer patients' QoL can be improved by psychological interventions. We chose to analyze four quality of life domains that we considered the most relevant for psychological interventions: global, physical, emotional, and social.

Subgroup analysis with subcategories.

A. Firstly, we were interested to see if the provider of the interventions made a difference, so we made a provider subgroup and categorized the data from the articles into three subcategories: 1. psychologist, 2. healthcare professional and 3. nurse.. (The healthcare professional could be any personnel who did not belong to the earlier two subcategories. e.g. research assistant, medical doctor, doctoral student, therapists, or if they were mentioned as a team so we could not be specific.)

B. We were also interested to see if the channel or the environment of the interventions are important factors. So, we made three subcategories for that: 1. face-to-face (taking place in a clinical environment), 2. Telephone (taking place in patients' home), or via 3. Online (taking place in patients' home) as described in the included articles.

C. As next step we assessed whether the type of the intervention had any effect on the quality of life so we made again three subcategories: 1. individual, 2. group or 3. guided self-help. (With the guided self help we are referring to the fact that these materials were specifically made in the studies for these patients to improve their quality of life.)

D. Cancer stage: 1. early (I, II), 2. advanced (III, IV), 3. survivors as they were categorized in the original studies, regardless of cancer type.

E. Cancer type: four subcategories were made for this subgroup: 1. breasts, 2. gynecological, 3. gastrointestinal and 4. prostate. For further categories we did not have enough data.

Additionally we were interested to know whether the duration of the intervention was an important factor to improve QoL. Due to the heterogeneity of the durations, frequencies and occasions we could only make subgroups based on how many minutes per patient were used in the articles.

Lastly we wanted to see the time effect of these interventions based on the predicted followup times.

Figure S1. PRISMA flow chart

Figure 1. PRISMA flow diagram of the screening and selection process. The search was updated during the revision process.

Table S2. Baseline characteristics of the included studies

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
						Articles in	cluded in the meta-an	alysis					
Huri M, et al., 2015 ¹	Turkey	prostate	34 (0)	19 (0)	15 (0)	cognitive behavior therapy based occupational therapy	twice a week, 12 weeks ,60 session	Psy	FF	G	QoL	EORTC-QLQ-C30 and PR25	12
Giesler, BR, et al., 2005 ²	USA	prostate	99 (0)	48 (0)	51 (0)	cancer intervention identified and tracked QoL, tailored support and education based on problems	once a month for 24 weeks	Ν	FF	Ι	QoL	PCQoL, SF-36	16,28,48

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Wang, J, et al., 2019 ³	China	liver	136 (22)	68 (16)	68 (n/a)	comprehensive education and care program	12 month, weekly different types of intervention	Ν	M (FF, T)	M (P, G)	QoL	EORTC-QLQ-C30	48
Trask, PC, et al. 2003 ⁴	USA	melanoma	48 (71)	25 (68)	23 (74)	cognitive- behavioral intervention for distress	3 subsequent 50-minute weekly sessions, over a period of 4 weeks.	НсР	FF	Ι	QoL	SF-36	8, 24
						patients received self-help						GQOL	12
						workbooks. investigators						EORTC QLQ-C30	12
						including medical oncologists,						GQOL	24
Takano, T, et al., 2021 ⁵	Japan	mixed	69 (n/a)	31(83)	38 (78)	psychiatrists, and clinical psychologists made the workbook originally for this study	24 weeks	SH	SH	SH	QoL	EORTC QLQ-C30	24

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
						program focused on symptom management,							n/a
McCaughan, E, et al., 2018 ⁶	UK	prostate	17 (0)	13 (0)	4 (0)	sexual dysfunction, uncertainty management, positive thinking and couple communication	5 session 2 hours group and 2 session for phone	HcP	M (FF, T)	M (G, P)	QoL	FACT-G	4
Walker, J, et al. 2014 ⁷	UK	lung	142 (65)	68 (65)	74 (65)	depression care	every four weeks for 32 weeks	N	FF	Ι	QoL	EORTC-QLQ-C30	15
							60 minutes, twice per						12
Zhang, LMM, et al.,	China	gastric	160 (54)	80 (53)	80 (55)	reminiscence	month, for 12 consecutive months,	N	FF	G	OoL	EORTC-OLO-C30	24
2021 ⁸	China	Basale	100 (01)	00(00)	00(02)	therapy	patients were given a total of 24 reminiscence			C C	202	201110 (22(000	36
							therapy sessions						48
Walker, LG, et al.,1998 ⁹	UK	breast	88 (100)	44 (100)	44 (100)	relaxation combined with guided imagery	daily practice based on audio cassette and 40 women received 5 live training	SH	SH	SH	QoL	GQOL	15
Arving, C, et	Sweden	breast	85 (100)	47 (100)	38 (100)	individual psychosocial	four 3 hours session	Psy	FF	I	QoL	EORTC QLQ-C30	4
al., 2007 ¹⁰			× /	~ /		support					,		12

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
													24
													4
													12
													24
Liu, T, et al.,	China	thyroid	102 (n/a)	49 (34)	53 (38)	mindfulness-based	8 session, weekly	Psy	FF	G	QoL	EORTC-QLQ-C30	9
2019**						stress reduction							12
Lutgendorf, SK, et al., 2010 ¹²	USA	cervical	39 (100)	20 (100)	19 (100)	relaxation training	for 6 weeks, 4 times per week, 20-25 minutes each session	НсР	FF	G	QoL	FACT	4
Miaskowski, C, et al., 2007 ¹³	USA	mixed	28 (71)	16 (69)	12 (74)	psychoeducational intervention	one academic session	Ν	FF	G	QoL	SF-36	6
Lee, YH, et	Taiwan	mixed	51(89)	25 (92)	26 (85)	stress management	one time occasion 110	Нер	FF	T	Ool	FACT-G	12
al. 2018 ¹⁴	Taiwaii	lilixed	51(69)	25 (92)	20 (83)	suess management	minutes	ner	11	1	QUL	TACI-0	24
Hawkes, AL,	Australia	colorectal	410 (46)	205 (n/a)	205 (n/a)	health coaching	at least 6 of the 11	НсР	т	T	001	FACT-C	24
et al. 2014 ¹⁵	1 14561 4114	considerati	(07)	200 (104)	200 (114)		31,5 min		¥	*	40r		48
													12
Yoo, HJ, et al. 2004 ¹⁶	Korea	breast	60 (100)	30 (100)	30 (100)	guided imagery and muscle relaxation	6 session	Psy	FF	G	QoL	FACT-B	24

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
													12
Klinkhamm													24
er-Schalke, M et al.,	Germany	breast	200 (100)	100 (100)	100 (100)	psychotherapy	n/a	Psy	FF	Ι	QoL	EORTC QLQ-C30	36
201217													48
													4
Marchioro, G, et al.	Italy	breast	36 (100)	18 (100)	18 (100)	cognitive behavioral	during 9 month, weekly 50 minutes session for	Psy	FF	I	QoL	FLIC	12
1996 ¹⁸	5					psychotherapy and family counseling	patients, bimonthly family counseling	5					24
													36
Walczak, A, et al.,2017 ¹⁹	Australia	mixed	110 (33)	61 (34)	49 (31)	communication support program	one time 45 min session and one time 15 min phone call	Ν	M (FF, T)	Ι	QoL	FACT-G	4
Petersen, RW, et al.,2002 ²⁰	n/a	mixed	50 (100)	25 (100)	25 (100)	progressive muscle relaxation, guided imagery and counseling sessions	one day intervention	НсР	FF	I	QoL	GHQ-28	6
													12
Vanbutsele, G, et al.	n/a	mixed	186 (n/a)	92 (36)	94 (27)	early and systematic	not specified, until death	НсР	FF	I	QoL	EORTC QLQ-C30, MQOL Single Item	18
201821						ntegration of palliative care						Scale, MQOL	24
													n/a

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Schofield, P, et al., 2013 ²²	Australia	lung	108 (na)	55 (44)	53 (36)	tailored intervention	two consultation session	НсР	FF	I	QoL	EORTC QLQ-C30	8
Qin, X, et al., 2017 ²³	China	gastric	100 (na)	50 (n/a)	50 (n/a)	active psychological intervention based on routine nursing	during hospitalization	N	FF	T	QoL	EORTC QLQ-C30	n/a
Zhou, L, et al., 2020 ²⁴	China	ovarian	73 (100)	37 (100)	36 (100)	at-home cognitive behavioral therapy	n/a	Ν	M (FF, SH)	1	QoL	EORTC QLQ-C30	12
Northouse,						standard care plus	4 months: consisted of 3 90-minute home visits and 2x30-minute T			Ι			16
LL, et al., 2007 ²⁵	USA	prostate	135 (0)	112 (0)	123 (0)	a family-based intervention	sessions spaced 2 weeks apart and delivered between baseline and 4 months.	Ν	M (FF, T)	I	QoL	FACT-G, SF-12	48
						cognitive- behavioral stress							24
Penedo, FJ, et al., 2020 ²⁶	USA	prostate	192 (0)	95 (0)	97 (0)	cognitive- behavioral stress- and self management skills and relaxation	10 weeks 90 min/ session	Psy	0	G	QoL	FACT-G	48
Penedo, FJ, et al., 2007 ²⁷	USA	prostate	71 (0)	41 (0)	30 (0)	cognitive- behavioral stress management - cognitive- behavioral stress- and self management skills and relaxation + half a day seminar	10x 2 hours/ sessions, once a week	Psy	FF	G	QoL	FACT-G	12

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Rodríguez Vega, B, et al., 2010 ²⁸	Spain	mixed	72 (81)	39 (87)	33 (73)	native therapy	12x 45 min weekly sessions	Psy	FF	Ι	QoL	EORTC QLQ-C30	12
Peoples, AR, et al., 2016 ²⁹	USA	mixed	48 (88)	24 (88)	24 (75)	cognitive behavior therapy	7 weeks, seven individual weekly CBT-I sessions, with sessions 1, 2, and 4 (30–60 min) conducted in person and sessions 3, 5, 6, and 7 (15–30 min) conducted over the phone	Psy	M (FF , T)	Ι	QoL	FACT-G	7
Parker, PA, et al., 2009 ³⁰	USA	prostate	75 (0)	39 (0)	36 (0)	supportive attention	2 sessions + 2 booster sessions, 60-90 min each before surgery	Psy	FF	Ι	QoL	PCI, SF-36	6 24 48
						cognitive	2 sessions + 2 booster						6
Parker, PA, et al., 2009 ³⁰	USA	prostate	75 (0)	39 (0)	36 (0)	behavioral stress management	sessions, 60-90 min each before surgery	Psy	FF	Ι	QoL	PCI, SF-36	24 48
van de Wal, M, et al., 2017 ³¹	Australia	mixed	88 (53)	48 (53)	43 (53)	cognitive behavior therapy for high fear of recurrence	12 weeks, five individual 1-hour FF sessions (sessions 1-3, 5, and 8) combined with three 15-minute e- consultations (chat application, no video) with access to a Web site (sessions 4, 6, and 7)	Psy	M (O, FF)	I	QoL	EORTC QLQ-C30	12

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Serfaty M, et al., 2018 ³²	US	mixed	42 (74)	20 (70)	22 (77)	acceptance and commitment therapy	8 sessions for 3 months, 1 hour/ session	Psy	FF	I	QoL	FACT-G, EQ-5D- VAS, 5Q-5D-5L	12
Sandsund, C, et al., 2017 ³³	UK	gynaecologic al	142 (100)	72 (100)	70 (100)	consultation with professional familiar with behavioral change , collaborative care plan	3 months, number of sessions not specified	НсР	M (FF, T)	I	QoL	EORTC QLQ-C30, SF-36	24 12 24
Wu, DY, et al., 2016 ³⁴	China	thyroid	60 (75)	30 (73)	30 (77)	psychological and behavioral intervention -	l year, sessions not specified	N	M (P, O)	M (I, G)	Qol	EORTC QLQ-C30	48
Rodin, G, et al., 2019 ³⁵	USA	leukemia	42 (38)	22 (36)	20 (40)	psychotherapeutic intervention	8–12 psychotherapeutic sessions, approx. 30–60 min each, delivered over 8 weeks, the first 8 sessions occur once or twice weekly during hospitalization (typically 1 month), adjusted in terms of frequency and duration depending on the patient's ability to participate. The remaining 4 sessions occur weekly or bi- weekly after discharge, in coordination with outpatient clinic visits.	НсР	FF	Ι	QoL	FACIT-Sp	4 8 12

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Zhou, J, et al., 2020 ³⁶	China	leukemia	118 (58)	59 (59)	59 (56)	,disease-related health education, catheterization management, psychological counseling	not specified - during the hospitalization period	N	FF	Ι	QoL	SF-36	n/a
Thomas, ML, et al., 2012 ³⁷	USA	mixed	152 (13)	64 (16)	88 (10)	coaching - education (video for managing cancer pain, overcoming attitudinal barriers pamphlet) + motivational interviewing - exploring beliefs about pain, use of analgesics, nonpharmacologic pain management strategies, communication about pain management	4 x 30 minutes telephone call	Ν	Т	Ι	QoL	FACT-G, SF-36	12
Rodríguez, C.F. et al., 2014 ³⁸	Spain	lung	90 (17)	40 (26)	50 (10)	behavior activation	4 x 60 min sessions	Psy	FF	I	QoL	EORTC QLQ-C30	n/a 12
Fann, JR, et al., 2009 ³⁹	USA	mixed	215 (60)	112 (63)	103 (58)	depression management	6 to 8 sessions for up to 12 months. the first treatment session lasts one hour, with subsequent sessions lasting 30 minutes	НсР	FF	I	QoL	1-10 scale	12 24 48 72

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
													96
Ohlson- Nevo, EO, et al, 2015 ⁴⁰	Sweden	mixed	80 (37)	44(42)	36 (32)	education and psychological	once a week for seven weeks, each time 60 minutes of lecture followed by 60 minutes of discussion	Ν	FF	G	QoL	SF-36	4 24 48
Antoni, MH, et al., 2006 ⁴¹	USA	breast	199 (100)	92 (100)	107 (100)	cognitive behavior therapy	once a week, for 2 hours, for 10 weeks	Psy	FF	G	QoL	POSM	24 48
Ashing, KT, et al., 2019 ⁴²	USA	breast	40 (100)	20 (100)	20 (100)	cognitive- behavioral	30-40 minutes sessions with a booster session 1 month after complication of phone sessions	НсР	Т	I		FACT-G	16
											QoL		8
Esplen MJ, et al., 2018 ⁴³	Canada	breast	194 (100)	131 (100)	63 (100)	cognitive behavior therapy	once a week for 90 min	Psy	FF	G		FACT-BC, FACT- G	24
													48
Burns DS, et	USA	mixed	8 (100)	4 (100)	4 (100)	bonny method of	once a week for ten weeks, for one to two	Psv	FF	I	OoL	OoL-CV	10
al., 200144						GIM	hours				X		16
Dos Santos, M, et al., 2020 ⁴⁵	France	mixed	167 (96)	48 (n/a)	51 (n/a)	computer-assisted cognitive rehabilitation	9 standardized sessions (45-60 minutes) over 3 months	Psy	FF	Ι	QoL	FACT-G	12
Gaston- Johansson, F, et al., 2011 ⁴⁶	USA	breast	73 (100)	38 (100)	35 (100)	comprehensive coping strategy program	1.5 hour session with additional 5 follow ups for 20 minutes each time	НсР	FF	I	QoL	QOLI-CV	48

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Garssen B, et al., 2012 ⁴⁷	Netherlands	breast	70 (100)	34 (100)	36 (100)	stress management training	4 sessions of 45-60 minutes each	Psy	FF	Ι	QoL	EORTC QLQ-C30	2 5 4 13
Hall S ,et al., 2011 ⁴⁸	UK	mixed	45 (51)	22 (59)	23 (43)	dignity therapy: a brief palliative care Psychotherapy	not sure (maybe 30-60 minutes) of 1 session	Psy	FF	Ι	QoL	EQ-5D, QoL	1
Nápoles AM, et al. 2015 ⁴⁹	USA	breast	151 (100)	76 (100)	75 (100)	cognitive– behavioral stress management program integrating evidence-based and community best practices	eight weekly, 90 minute sessions	Peer	FF	I	QoL	FACT-B	12
Gao Q, et al. 2020 ⁵⁰	China	gastric	80 (22)	40 (18)	40 (28)	health education intervention program	N/A	N	FF	I	QoL	EORTC QLQ- STO22	4
Dieng M, et al. 2020 ⁵¹	Australia	skin	151 (45)	70 (29)	81 (59)	psychological intervention designed to reduce fear of cancer recurrence	3 sessions within a 4- week period	M (SH, Psy)	M (SH, T)	M (I, SH)	QoL	AQoL-8D	26 48
Karlsen RV et al., 2021 ⁵²	Denmark	prostate	35 (0)	16 (0)	19 (0)	n/a	up to six one hours couple counseling sessions	НсР	FF	I	QoL	SF-36 PCS, SF-36 MCS	32 48
	Netherlands	glioma	89 (58)	45 (58)	44 (59)	self help course		НсР	0	I	QoL		6

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Boele FW, et al ., 2017 ⁵³							5 weeks online guided self help course with an online support from a coach					SF-36 PCS, SF-36 MCS	12
Braeken APB, et al. 2013 ⁵⁴	Netherlands	mixed	280 (n/a)	136 (n/a)	144 (n/a)	n/a	during treatment	НсР	FF	Ι	QoL	EORTC QLQ-C30	12
Cheung YL, et al. 2002 ⁵⁵	Hong kong	colorectal	59 (32)	29 (33)	30 (31)	progressive muscle relaxation training (PMRT)	PMRT practice at home for 2-3 times a week for 10 weeks. before starting a teaching sessions face to face, and audiocassette for a routine PMRT session	HcP	FF	I	QoL	WHO-QOL	5
Van Der Hout, AVD, et al. 2019 ⁵⁶	Netherlands	mixed	624 (51)	320 (49)	304 (52)	web-based eHealth application Oncokompas	n/a	SH	SH	SH	QoL	HRQOL	1 12 24
Ham, K, et al. 2019 ⁵⁷	South korea	mixed	42 (86)	21 (86)	21(86)	app-based cognitive behavioral therapy program	1 session per day for 10 weeks at home, excluding weekends, composed of 48 sessions which takes approximately 10–15 min to complete.	SH	0	Ι	QoL	SF-36	10
Ding, K, et al. 2020 ⁵⁸	China	breast	74 (100)	34 (100)	40 (100)	n/a	3 to 6 sessions of individual therapy, each lasting 30 minutes	НсР	FF	Ι	QoL	FACT-B, FACT- Cog	4

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Fillion, L, et al. 2008 ⁵⁹	Canada	breast	87 (100)	44 (100)	43 (100)	psychoeducation and physical activity	4 weekly group meetings of 2.5 hours (1,5 hours psychoeducative and 1 hour walking training) and 1x session(5-15 minutes)	N	M (FF, T)	G	QoL	SF-12	4
Gonzalez- Hernandez, E, et al. 2018 ⁶⁰	Spain	breast	56 (100)	28 (100)	28 (100)	cognitively-based compassion training exercises, and guided meditations.	8 weeks, weekly 2 hour session	Psy	FF	G	QoL	FACT-B	8
Breitbart, W, et al. 2018 ⁶¹	USA	mixed	168 (75)	94 (74)	74 (75)	individual meaning-centered psychotherapy	7	НсР	FF	Ι	QoL	MQOL	4 8 16
Breitbart, W, et al. 2018 ⁶¹	USA	mixed	160 (70)	86 (66)	74 (75)	supportive psychotherapy (SP)	7	НсР	FF	G	QoL	MQOL	4 8 16
van der Meulen, IC, et al., 2013 ⁶²	Germany	mixed	179 (30)	88 (30)	91 (30)	problem-focused and patient driven counseling	maximum of six counseling sessions of 45–60 min every 2 months over a period of 1 year, starting 6 weeks after the completion of cancer treatment	N	FF	I	QoL	EORTC QLQ-C30	48
Turner, J, et al., 2016 ⁶³	Australia	mixed	469 (70)	247 (74)	222 (66)	supportive sessions	four individual sessions, each up to a 30-min duration	НсР	M (FF, T)	Ι	QoL	EQ-5D-5L, SCNS- S34, FACT-G SCNS-S34	10

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
D ID (FACT-G	
Reese, JB, et al., 2021 ⁶⁴	USA	breast	144 (100)	73 (100)	71(100	multimedia intervention	n/a	Psy	FF	Ι	QOL	FACT-Q	8
Powell, CB, et al., 2008 ⁶⁵	USA	gynecological	64 (100)	21 (100)	43 (100)	counselling	one-time intervention	Psy	FF	Ι	QOL	FACIT	12
Nikbakhsh, N, et al., 2018 ⁶⁶	Iran	breast	40 (100)	20 (100)	20 (100)	supportive therapy	weekly for 8 weeks, each 45 min	Psy	FF	G	QoL	WHO-QOL-BREF	12
Fang, P, et al.,2020 ⁶⁷	China	gastric	120 (40)	60 (40)	60 (40)	supportive care and humanistic care	3x40 min during hospital stay	Ν	FF	Ι	QOL	n/a	4
Mihuta, ME, et al., 2018 ⁶⁸	Australia	mixed	65 (100)	32 (100)	33 (100)	cognitive behavioral therapy	4 session (1 per week)	НсР	О	G	QOL	FACT-Cog, EORTC-QLQ	4
McLachlan, SA, et al., 2001 ⁶⁹	Australia	mixed	450 (41)	296 (n/a)	154 (n/a)	consultation	average 15 minute session, only one session	Ν	FF	Ι	QOL	EORTC QLQ-C30	24
Edmonds et al.,1999 ⁷⁰	Canada	breast	66 (100)	30 (100)	36 (100)	psychoeducation	2 h per week/35 weeks	HcP	FF	G	QOL	FLIC	54
Li, J, et al., 2019 ⁷¹	China	colorectal	498 (n/a)	249 (n/a)	249 (n/a)	health education, psychological counseling	n/a	Ν	Т	Ι	QoL	QLQ-C30	12
Elyasi, F, et	Iran	breast	30 (100)	15 (100)	15 (100)	CBT or hypnosis	8x one-hour treatment	НсР	FF	T	OoL	EORTC – BR 23	24
al., 2021 ⁷²		519451			10 (100)	hypnosis only	sessions			-	43E	Lonre DicL	
Ferguson, RJ, et al., 2012 ⁷³	USA	breast	40 (100)	19 (100)	21 (100)	brief cognitive behavioral therapy	four biweekly individual office visits 30–50 minutes	НсР	FF	Ι	QoL	QOL-CS	8

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Willems, R, et al., 2016 ⁷⁴	Netherlands	mixed	409 (81)	188 (81)	221 (81)	psychosocial support trough a website	four components divided over two sessions	SH	SH	SH	QoL	EORTC QLQ-C30	24
Wu, Q, et al., 2021 ⁷⁵	China	breast	86 (100)	43 (100)	43 (100)	WeChat, psychological counseling	3 months	Ν	0	Ι	QoL	SF-36	12
Yun et al., 2017 ⁷⁶	South Korea	mixed	206 (80)	134 (82)	72 (75)	health education, leadership, and coaching education, leadership, and coaching	16 sessions of tele- coaching were conducted: 30 min per week for 12 sessions, 30 min per 2 weeks for 2 sessions, and 30 min per month for 2 sessions were offered for the intervention	НсР	Т	Ι	QoL	EORTC QLQ-C30	48
Zhao, X, et al., 2021 ⁷⁷	China	glioma	103 (n/a)	52 (n/a)	51 (n/a)	cognitive behavioral therapy	twice a week	Ν	FF	Ι	QoL	QLQ-C30	12
Zhao,X, et al. 2015 ⁷⁸	China	lung	124 (n/a)	62 (n/a)	62 (n/a)	supportive psychological intervention	n/a	Ν	FF	Ι	QoL	QLQ-C30	0,3
Rosen, KD, et al., 2018 ⁷⁹	USA	breast	112 (100)	57 (100)	55 (100)	mindfulness	training fully accessible	SH	SH	SH	QoL	FACT-B	5
Ruiz- Vozmediano, J, et al.,2020 ⁸⁰	Spain	breast	63 (100)	31 (100)	32 (100)	mindfulness	twice-weekly 90-minute session	Psy	FF	G	QoL	EORTC QLQ-C30	24
Von Ah, D, et al.,2012 ⁸¹	USA	breast	89 (100)	n/a (100)	n/a (100)	memory training to improve cognitive functions	10x1-hour training session, over 6-8 weeks	НсР	FF	G	QoL	QOL-CS, QOL- CV, SF-36	8

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
						speed of processing training to improve cognitive functions							
Lengacher, CA, et al., 2009 ⁸²	USA	breast	82 (100)	40 (100)	42 (100)	mindfulness-based stress reduction	weekly 2-hours session	Psy	FF	G	QoL	SF-36	6
Beatty, L. et al. 2015 ⁸³	Australia	mixed	60 (95)	30 (90)	30 (100)	self-guided Web- based cognitive behavior, cancer coping	once a week, six weeks	НсР	0	Ι	QoL	EORTC-QLQ-C30	6 13,03 26,07
Chu, X. et al, 2020 ⁸⁴	China	breast	84 (100)	42 (100)	42 (100)	mindfulness-based cognitive therapy (MBCT)	MBCT training for 8 weeks, 2 hours per week homework for each class, which takes 20 to 45 min to complete every day.	НсР	FF	Ι	QoL	FACT-G	8
Berglund, G. et al. 2007 ⁸⁵	Sweden	prostate	189 (0)	39 (0)	150 (0)	"Between Men" programme	seven weekly sessions (60 minutes)	НсР	FF	G	QoL	EORTC QLQ-C30	48
Dirksen, S. et al, 2007 ⁸⁶	USA	breast	72 (100)	34 (100)	38 (100)	cognitive behavioral therapy	Total Ten weeks; 2-week pre-treatment; a 6-week treatment four times per week; 2-week post-treatment- conducted through individual weekly phone sessions. The first class was approximately 2 hours in length, the remaining three classes were an hour or less, and the phone sessions lasted	Ν	Т	Ι	QoL	FACT-G, FACT-B SWB	10

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
							approximately 15 minutes.						
Dolbeault, S. et al. 2008 ⁸⁷	France	breast	168 (100)	81 (100)	87 (100)	psychoeducational intervention	once a week (2hrs) for eight weeks	Psy	FF	G	QoL	EORTC QLQ-C30	1
Aranda, S. et al 2006 ⁸⁸	Australia	breast	60 (100)	30 (100)	30 (100)	psychoeducational intervention	once a week, 1.5 hours (1 hour meeting and 30 min call)	Ν	M (FF, T)	Ι	QoL	EORTC QLQ-30	4
Baoyindelige er, L.Z. et al. 2020 ⁸⁹	China	esophageal	130 (n/a)	65 (34)	65 (30)	psychological nursing care intervention	n/a	Ν	FF	Ι	QoL	SF-36	2
Armes, J. et	UK	mixed	53 (60)	26 (64)	27 (56)	psychoeducational	3 occasions 1 hour	НсР	FF	I	QoL	EORTC QLQ- C30	n/a 4
al. 2007**						intervention							39
Compon F						Mindfulness-based cognitive therapy (MBCT)	eight weekly 2.5-hour group sessions + a 6-		FF	G			
et al, 2018 ⁹¹	Netherlands	mixed	155 (86)	77 (43)	78 (43)	(eMBCT) individual internet-based MBCT	hour silent day, and daily home practice assignments	Psy	0	Ι	QoL	SF-12	8
	Australia	prostate	331 (0)	165 (0)	166 (0)	consultations		Ν	FF	G	QoL	EPIC-26	7

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Schofield, P, et al., 2016 ⁹²							beginning of treatment (week 1), mid-treatment (week 4), treatment completion (week 7) and 6-weeks post-treatment (week 13)						24
													4
Hauffman, A, et al.,	Sweden	mixed	245 (71)	124 (75)	121 (67)	psychoeducative	continuous access for the	M (HcP, SH)	SH	SH	QoL	EORTC QLQ-C30	16
2020 ⁹³						lectures	materiai						28
													40
Jelvehzadeh, F, et al.,	Iran	breast	48 (100)	24 (100)	24 (100)	n/a	8 sessions for 8 weeks, each session lasts for 120	HcP	FF	G	QoL	MQOL	8
202294							min						12
						aggritug							4
						behavioral therapy							12
Qiu, H, et	China	breast	294 (100)	98 (100)	196 (100)		nine sessions for 12 weeks	Psy	FF	Ι	QoL	FACT-B	24
ai., 2010						self care	weeks						4
						management							12
													24
Girgis, A, et	Water		256 (-1-)	* /-		supportive care interventions	baseline and at 3 and 6	II-D	M (FF, O)	Y	0-1	EODTC OL O COM	12
al., 2009 ⁹⁶	wates	mixea	550 (n/a)	n/a	n/a	general oncologist/practiti oner model	months	HCP	M (FF, O)	I	Qor	EUKIC QLQ-C30	24

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
						supportive care interventions			Т				12
						telephone caseworker			Т				24
Guan, S, et al., 2019 ⁹⁷	China	mixed	100 (100)	50 (100)	50 (100)	psychological intervention	5-year prognostic follow- up were recorded.	НсР	FF	I	QoL	EORTC-QLQ-C30	8
Guo, Z, et al., 2013 ⁹⁸	China	mixed	178 (58)	89 (58)	89 (58)	psychoeducation, cognitive- behavioral therapy, supportive- expressive therapy	two 60-min face to face interviews each week	НсР	FF	G	QoL S	EORTC QLQ-C30 n/a	2 n/a
Heiney, SP, et al., 2003 ⁹⁹	USA	breast	66 (100)	33 (100)	33 (100)	n/a	6 weekly sessions that were 90 minutes long, conference phone call	Psy	Т	G	QoL	EORTC QLQ- BR23	6
Henderson, VP, et al., 2013 ¹⁰⁰	USA	breast	111 (100)	53 (100)	58 (100)	mindfulness based stress reduction (MBSR)	 (1) an introductory meeting for one group; (2) 8 weekly 2.5- to 3.5- hour sessions in Gs of 25 to 30 women, with an additional 7.5-hour intensive retreat session given in the sixth week; and (3) 3 additional 2- hour sessions at monthly intervals following completion of the MBSR intervention 	НсР	FF	G	QoL	FACT-B	16

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Henderson, VP, et al., 2012 ¹⁰¹	USA	breast	111 (100)	53 (100)	58 (100)	Mindfulness based stress reduction (MBSR)	 an introductory meeting for an introductory meeting for one group; the 8-week standard MBSR intervention to a heterogeneous G of patients with a variety of medical/psychiatric disorders, seven weekly to 3.5-hour sessions and one 7.5 hour intensive silent retreat session in the 6th week; there monthly 2-hour sessions for BRIDGES- only participants following completion of the MBSR 	НсР	FF	G	QoL	FACT-B	16
Hoffman, CJ, et al., 2013 ¹⁰²	UK	breast	229 (100)	n/a (100)	n/a (100)	mindfulness-based stress reduction	9 weekly, 2 hours , except the 1st and last classes were 2.25 hours, plus one 6-hour day of mindfulness in week 6. Home practice was delivered by four 45- minute compact discs of formal mindfulness practices and a manual. Participants were asked to practice for 40 to 45 minutes for 6 or 7 d/wk	НсР	M (FF, SH)	M (G, SH)	QoL	FACT-B FACT PWB FACT SWB FACT EWB	8; 12

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Johansson, B, et al., 2008 ¹⁰³	Sweden	mixed	481 (58)	n/a (n/a)	n/a (n/a)	individual support	The median number of contacts was 3 (minimum–maximum: 1–24).	Psy	M (FF, T)	I	QoL	EORTC QLQ C-30	12 24 48
Kim, YH, et al., 2017 ¹⁰⁴	South Korea	breast	60 (100)	30 (100)	30 (100)	psychological intervention	6 weeks, as patients visited the clinic every 3 weeks for their chemotherapy, all the data were collected during these visits.	N	M (FF, T)	I	QoL	EORTC QLQ C-30	96 6 9
Klafke, N, et al., 2019 ¹⁰⁵	Germany	breast	231 (100)	112 (100)	113 (100)	supportive care intervention using complementary and integrative medicine	weekly, maximum time of the intervention was set to 24 weeks	N	FF	I	QoL	EORTC-QLQ-C30	12 24 48
Rahmani, S, et al. 2015 ¹⁰⁶	Iran	breast	24 (100)	12 (100)	12 (100)	mindfulness based stress reduction	once a week in a 2-hour session for 8 weeks	Psy	FF	G	QoL	EORTC QLQ-C30, EORTC QLQ- BR23	8
Reich, RR, et al. 2016 ¹⁰⁷	USA	breast	322 (100)	167 (100)	155 (100)	mindfulness based stress reduction	six-week, two-hour per week	Psy	FF	G	QoL	SF-36	6 12
Savard, J, et al., 2006 ¹⁰⁸	Canada	breast	37 (100)	21 (100)	16 (100)	cognitive therapy	weekly sessions of 60 to 90 min for 8 weeks plus 3 booster sessions every 3 weeks	Psy	FF	I	QoL	QLQ-C30	8

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Schellekens, MPJ, et al. 2016 ¹⁰⁹	Canada	breast	139 (100)	69 (100)	70 (100)	mindfulness-based cancer recovery	8 weekly group sessions of 90 min each plus a 6-h silent retreat between weeks 6 and 7 for a total of 18 contact hours	НсР	FF	G	QoL	FACT-B	8
van den Berg, SW, et al. 2015 ¹¹⁰	Netherlands	breast	150 (100)	70 (100)	80 (100)	cognitive behavioral therapy	sixteen fully automated weekly modules (16 weeks)	SH	SH	SH	QoL	EORTC QLQ-C30	4
Wang, TJ, et al., 2023 ¹¹¹	Taiwan	colorectal	142 (41)	70 (33)	72 (49)	self-management support program	two personal skills training sessions, and 12 follow-up telephone calls	SH	M (FF, T)	SH	QoL	FACT-G	8 16 24
Xia, S, et. al., 2023 ¹¹²	Ireland	colorectal	160 (n/a)	80 (41)	80 (34)	cognitive behavioral stress management	10 times, weekly 120 minutes	НсР	FF	G	QoL	EORTC QLQ-C30	4 12 24
Peng, L, et al., 2022 ¹¹³	China	breast	57 (100)	28 (100)	29 (100)	mindfulness-based stress reduction	6 week, weekly 1,5 h plus daily 30 mins	Psy	FF	G	QoL	EORTC QLQ-C30	0,1
Kissane, DW, et al., 2023 ¹¹⁴	Australia	mixed	107 (n/a)	55 (73)	52 (79)	meaning and purpose theraphy	six 60 mins session every two weeks	НсР	FF	Ι	QoL	MQOL-revised	12 24

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Zaman, ACGNM, et al., 2021 ¹¹⁵	Netherlands	mixed	88 (na)	42 (36)	46 (33)	tailored work- related intervention	3 times 30 minutes in the beggining, then at 6 month and at 9 month	НсР	M (FF, T)	I	QoL	SF-12	12
Kim, SH, et al., 2021 ¹¹⁶	South Korea	breast	94 (100)	47 (100)	47 (100)	partnership-based, needs tailored self- management support intervention	10 session, 15-20 minutes over 7 weeks	N	Т	I	QoL	SF-36	8
McCusker, J, et al.,	Canada	mixed	145 (n/a)	121 (75)	124 (82)	Can Direct- depression self-	15 calls for 15 mins	НсР	Т	I	QoL	SF-12	12
2021 ¹¹⁷						care intervention							24
Lee, JT, et	Taiwan	mixed	60 (100)	30 (100)	30 (100)	mindfulness-based	12 week, 2 hours weekly	Psy	FF	G	QoL	FACT-G	12
al., 2022						suess management							24
Lu, Z, et al.,	China	mixed	326 (n/a)	214 (30)	114 (32)	early supportive	n/a	Psy	FF	I	QoL	EORTC QLQ-C30	9
2021						care intervention					survival	n/a	n/a
Kirkegaard, AM, et al. 2023 ¹²⁰	Denmark	breast	198 (100)	96 (100)	102 (100)	cognitive existential therapy	2 times 6 hours session, plus eight session 2,5 hours each	Psy	FF	G	survival	n/a	n/a
Cengiz, HO, et al., 2023 ¹²¹	Turkey	breast	65 (100)	32 (100)	33 (100)	mindfulness-based therapy	8 weeks, weekly, 45-60 mins sessions	НсР	0	G	QoL	FACT-G, FACT- Sp	8

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Seliniotaki, T, et al., 2021 ¹²²	Greece	breast	53 (100)	27 (100)	26 (100)	stress management program	8 session weekly, 45 minutes each	Psy	FF	Ι	QoL	EORTC QLQ-C30	8
Articles included in the systematic review													
Anderson, K. et al, 2006 ¹²³	USA	mixed	57 (79)	44 (n/a)	13 (n/a)	n/a	practice at least 5 times a week (for each of 2 weeks) for approximately 20 minutes per session.	SH	SH	SH	QoL	FACT-G	2,5 8,5
Björneklett, HG, et al., 2012 ¹²⁴	Sweden	breast	383 (100)	n/a (100)	n/a (100)	psychosocial support intervention	4 months after the end of adjuvant treatment and ran for 7 days, followed by a 4-day follow-up 2 months after the initial visit	НсР	FF	G	QoL	EORTC QLQ-C30, EORTC QLQ- BR23	8 24 48
Børøsund, E. et al. 2020 ¹²⁵	Norway	mixed	172 (82)	n/a (n/a)	n/a (n/a)	n/a	10 modules on the app, practice content for at least 30 minutes per day	SH	SH	SH	QoL	HRQoL (RAND- 36)	12
Carbajal- López, E. B. et al. 2020 ¹²⁶	Mexico	stomach	27 (59)	13 (n/a)	14 (n/a)	internet-delivered cognitive behavioral stress management intervention and psychoeducation program	once a week for two hours	НсР	0	I	QoL	EORTC QLQ-30	5

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
						mindfulness based							8
Rahmani, S, et al. 2014 ¹²⁷	Iran	breast	36 (100)	n/a (100)	n/a (100)	stress reduction	once a week in a 2-hour	Psy	FF	G	QoL	EORTC QLQ-C30, EORTC QLQ-	16
						metacognition	metacognition therapy					BR23	8
						therapy							16
Carlson, L. et al, 2013 ¹²⁸	Canada	breast	165 (100)	111 (100)	54 (100)	mindfulness-based cancer recovery	8 weekly group sessions of 90 minutes each plus a 6-hour workshop between weeks 6 and 7 for a total of 18 contact hours	HcP	FF G	G	QoL	FACT-B	8
						supportive- expressive therapy	12 weekly sessions of 90 minutes each	Psy					
Ell, K, et al., 2008 ¹²⁹	USA	mixed	472 (100)	242 (100)	230 (100)	Alleviating Depression Among Patients With Cancer psychotherapy	weekly sessions ranging from 6 to 12 weeks	НсР	Т	Ι	QOL	FACT-G	48
				17 (100)	16 (100)								4
Lapid, MI, et al., 2007 ¹³⁰	USA	geriatric	geriatric 33 (100)			psychosocial intervention	in 4 weeks: 8 times 90 minutes session	Psy	FF	G	QoL	LAPAQ	8
													27
	China	nasopharynge	rynge 106 (n/a)	53 (n/a)		health education							n/a
Lu, J, et al., 2017 ¹³¹					53 (n/a)	and behavior therapy and psychological counseling	n/a	N	FF	Ι	QoL	EORTC QLQ-C30	24
		ai											48
													96

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Murphy, MJ, et al., 2019 ¹³²	Australia	mixed	114 (89)	53 (87)	61 (90)	cognitive behavioral therapy	8 lessons over 16 weeks	НсР	0	Ι	QoL	FACT-G	16
Pettiford, J, et al., 2017 ¹³³	USA	breast	103 (100)	47 (100)	56 (100)	bio-psychosocial intervention program	two occasion 4 hour class	HcP	FF	G	QoL	FACT-B	24 48 72 96
Poort, H, et al., 2020 ¹³⁴	Netherlands	mixed	134 (57)	n/a (n/a)	n/a (n/a)	cognitive behavioral therapy for fatigue	10 sessions, 1 hour each, over 12 weeks	Psy	FF	Ι	QoL	EORTC QLQ-C30	14
Ramirez, AG, et al., 2019 ¹³⁵	USA	mixed	288 (54)	n/a (53)	n/a (55)	community delivered intervention	3 months, sessions not specified	НсР	M (T, O)	Ι	QoL	FACT-G	12 36 60
Rottmann, N, et al., 2012 ¹³⁶	n/a	mixed	452 (n/a)	208 (70)	244 (59)	psychosocial rehabilitation course	6 day, weekly plus weekly 20 mins sessions	НсР	FF	G	QoL	EORTC QLQ-C30	4,24
Sharpe, M, et al., 2014 ¹³⁷	UK	n/a	500 (n/a)	253 (90)	247 (90)	depression care for people with cancer programme	max 10 session over 4 months	N	FF or T	I	QoL	EORTC-QLQ-C30	12 36 48

Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
Sohl, SJ, et al., 2017 ¹³⁸	USA	breast	139 (100)	69 (100)	70 (100)	expressive writing	four, 20-min session, two sessions per week spaced 48 h apart	SH	SH	SH	QoL	FACT-B	4
Van Amstel et al., 2019 ¹³⁹	Netherlands	breast	194 (100)	96 (100)	98 (100)	emotional support, education about cancer	every 3 months during the follow-up visits in the first year and every 6 months during the second year of follow-up	N	FF	M (I, T)	QoL	EORTC QLQ C-30	12 24 36 48 72 96
Yanez, B, et al., 2015 ¹⁴⁰	USA	prostate	74 (0)	37 (0)	37 (0)	manualized cognitive behavioral stress management, relaxation + stress management techniques	10 weeks , 90 min/sessions	НсР	0	G	QoL	FACT-G	24
Wenzel, L, et al., 2015 ¹⁴¹	USA	cervical	203 (100)	115 (100)	88 (100)	psychosocial counseling	included five weekly sessions and a 1-month booster.	НсР	Т	Ι	QoL	FACT-Cx, FACT- TOI, FACT Additional Concerns, FACT-G	36 16
Urech, C, et al., 2018 ¹⁴²	Switzerland	mixed	129 (85)	65 (82)	64 (88)	stress management	8 weeks	SH	SH	SH	QoL	FACT-G	8
Author	Country	Cancer type	Sample size (female% of total)	Sample size (female% of intervention)	Sample size (female% of control)	Intervention name	Intervention's duration	Intervention's provider	Intervention's environment	Intervention type	Outcome	Questionnaire	Time of the measurement in weeks
---	---------	----------------	--------------------------------------	---	--	---------------------------------------	--	----------------------------	-------------------------------	----------------------	---------	---------------	--
Burns DS, et	USA	mixed	80 (100)	40 (100)	40 (100)	bonny method of guided imagery	once a week for ten weeks, for one to two	Psy	FF	I	QoL	QoL-CA	10
al., 2001						and music	hours						16
Lerman, R, et al., 2012 ¹⁴³	UK	mixed	68 (100)	48 (100)	20 (100)	mindfulness-based stress reduction	once a week for 2 hours class and a single 4 hours weekend retreat held twice	Psy	FF	G	QoL	EORTC QLQ-C30	8

Table 1. Main characteristics of the included studies: Abbreviations: AQoL-8D, Assessment of Quality of Life; BSI-GSI, Brief Symptom Inventory-Global Severity Index; CBT, Cogntive Behavior Therapy CCV, Cuestionario de Calidad de Vida; EORTC QLQ-BR23, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Breast Cancer; EORTC-QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C-30; EORTC-QLQ-PR25, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Prostate Cancer; EORTC QLQ-STO22, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Prostate Cancer; EORTC QLQ-STO22, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Gastric Cancer; EPIC-26, Expanded Prostate Cancer Index Composite Short-Form; EQ-5D-VA, EuroQol-5D visual analogue scale; EuroQol 5D-5L, EuroQol-5D-5 level; FACIT-Sp, Functional Assessment of Cancer Therapy-Spiritual Well-Being Scale; FACIT, Functional Assessment of Cancer Therapy-FaCT-B (Functional Assessment of Cancer Therapy-Cervix; FACT EWB, Functional Assessment of Cancer Therapy-Functional Mell-being; FACT-G, Functional Assessment of Cancer Therapy-Functional Well-being; FACT SWB, Functional Assessment of Cancer Therapy-Social Well-Being; FACT-SWB, Functional Assessment of Cancer Therapy-Social Well-Being; FACT SWB, Functional Assessment of Cancer Therapy-Social Well-Being; FF, Face-to-face; FLIC; Functional Living Index Cancer; G, Group; GHQ-28, General Health Questionnaire; GQOL, Global Quality of Life Scale; HcP(Healthcare Professional; IIEF, International Index of Erectile Function; IPSS, International Prostate Symptom Score; I, Individual; LASA, Spitzer Uniscale and Linear Analogue Self-assessment; MBCT, Mindfulness Based Cognitive Therap; MBSR, Mindfulness Based Stress Reductio; M, Mixed; MQOL, McGill Quality of Life Questionnaire; N, Nurse; O, Online; PCI, Prostate Cancer Index; PCQoL, Prostate Can

Section S2. Statistical Analysis

SURVIVAL

We used hazard rate (HR) with 95% confidence interval (CI) for the effect size measure of survival. The hazard ratios with its CI were extracted from each study directly from the written text or using the published survival functions (Kaplan-Meier plots). *Additional data collection was performed, with the GetData Graph digitizer version 2.26.0.20.*

As we anticipated considerable between-study heterogeneity, a random-effects model was used to pool effect sizes.

Inverse variance weighting method was used to calculate the pooled HR using the point estimates for HR and the standard error calculated from the confidence interval (using standard normal approximation on logarithmic scale).

For the outcomes where the study number was at least 5, a Hartung-Knapp adjustment (Knapp and Hartung 2003; IntHout, Ioannidis, and Borm 2014) was used. Below 5 studies, we do not apply the adjustment.

To estimate the heterogeneity variance measure τ^2 the restricted maximum-likelihood estimator was applied with the Q profile method for confidence interval Veroniki et al. (2016). Additionally, between-study heterogeneity was described by the Higgins&Thompson's I² statistics (Higgins and Thompson 2002).

Forest plots were used to graphically summarize the results.

Where applicable we reported the prediction intervals (i.e. the expected range of effects of future studies) of results following the recommendations of IntHout et al. (2016).

Outlier and influence analyses were carried out following the recommendations of Harrer et al. (2021) and Viechtbauer and Cheung (2010). Publication bias was assessed with Egger's test (at significance level 10% as small study number) using the classical Egger's method to calculate the test statistic Sterne et al. (2011). Based on the Cochrane Handbook the following cut-off points are given:

"Thresholds for the interpretation of I2 can be misleading, since the importance of inconsistency depends on several factors. A rough guide to interpretation is as follows:

0% to 40%: might not be important; 30% to 60%: may represent moderate heterogeneity; 50% to 90%: may represent substantial heterogeneity; 75% to 100%: considerable heterogeneity."

All statistical analyses were made with R (R Core Team 2021, v4.1.2) using the *meta* (Schwarzer 2022, v5.2.0) and *dmetar* (Cuijpers, Furukawa, and Ebert 2022, v0.0.9000) packages.

QUALITY OF LIFE:

Due to the differences in the questionnaires, a standardized mean difference (SMD) with 95% confidence interval was used for the effect size measure between intervention and control group. We used Hedges' g as SMD(Hedges 1981).

To calculate SMD we made the following steps:

I. At first we extracted the mean.

- II. Then, we extracted or estimated the SD of change as written below:
- 1. If SD was given we extracted those values.
- 2. If the standard error (SE) is given, the SD was calculated by multiplying the SE by the square root of the sample size.
- 3. If the 95% confidence interval of mean was given, the SE was calculated using the

 $R_{est} = \{SD\{baseline\}^2 + SD_{followup}^2 - SD_{change}^2\} \{2 * SD_{baseline} \\ *SD_{followup}\} \}$

2 t n-1, where *Ul* is the upper limit and *Ll* is the lower limit of the confidence interval and *t* is the t-value of a corresponding Student t-distribution with *n-1* degrees of freedom and 5% (2,5% symmetrical) p-value. Then the SD was calculated as written before.

As we anticipated considerable between-study heterogeneity, a random-effects model was used to pool effect sizes.

As several studies reported the observed values at different times, we added an additional random-effect based on each study.

We used the following assumptions:

• A continuous-time autoregressive structure is assumed for time dependence. Baseline data also included in the T0 time point.

To estimate the correlation structure, we determined the correlation coefficient (R change) of baseline and follow up values based on the extracted or calculated SD of change if the SD for baseline and follow up results was also given, using the following formula:

Rest = SD2baseline/dd

-where *SD*s are the standard deviation of the corresponding situation (baseline, after follow up, change).

If there were at least 3 articles, then the mean of the calculated R values was used as a starting value for estimated correlation coefficient (Rest) in the correlation structure. (Otherwise we used the value 0.65 as in the outcomes with calculated R based on more articles resulting in this value.) In any case we run the final model with different R values to see its effect. Additionally the final model results were modified with cluster-robust test and

confidence interval estimation adjustment using the club sandwich method with small-sample and Satterthwaite approximation.

- To handle the assumed nonlinearity change in time, the squared value of time is also included in the linear model additionally on time as predictor. (Based on descriptive plots and to keep the model simpler and not more overfitted, no higher order component was used.)
- We included the following pre-identified interested predictor variables: *follow-up time value versus baseline value* (as a categorical variable) and one of the following: *provider type, environment type, intervention type, cancer stage, duration*). We did models with each predictor separately as it is easier to interpret and summarize the data, although confounding effects may occur and additionally there was limited information on *cancer stage* and *duration*.
- Possible interaction with time of interested variables was also checked using the information criterion (as AIC and BIC values). Our preliminary plan was to include the interaction in the final model if the interaction creates a better model based on the AIC and BIC values (if both AIC and BIC decreased by 2) and the parameter(s) of interaction is significant at level 5%. Based on these criterias we found no evidence to keep interactions in the model.

We report the calculated estimates with 95% CI. For categorical predictor variables an anova (Wald type) result is also given. We made predictions based on the model and we summarized it on forest plots with subgroups for easier interpretations. In this plot SMDs are also shown for individual studies and the overall effect we used the predicted value from the model without the grouping variable.

Inverse variance weighting method was used to calculate the pooled SMD.

To estimate the heterogeneity variance measure τ^2 , restricted maximum-likelihood estimator was applied Veroniki et al. (2016).

Publication bias and small study effect was assessed using funnel plots.

All statistical analyses were made with R (R Core Team 2022, v4.2.1) using the following packages: *metafor*(Viechtbauer 2022, v3.4.0) for model calculations, publication bias and influential assessment, *meta* (Schwarzer 2022, v5.5.0) for forest plots, *ggplot2* (Wickham et al. 2022, v3.3.6) for prediction plots.

S2.Overall plots

Figure.S2.1.T12

Figure S.2.1. Psychological interventions improve Quality of Life (QoL). Forest plot of pooled results representing that psychological interventions have a significant effect on improving global, emotional, social and physical quality of life compared to the control group estimated at 12 weeks (T12). SMD - Standardized mean difference, CI- confidence interval. Forest plots for individual study effects can be found in S4-S22.

Figure S2.2.T24

Figure S.2.2. **Psychological interventions improve Quality of Life (QoL).** Forest plot of pooled results representing that psychological interventions have a significant effect on improving global, emotional, social and physical quality of life compared to the control group estimated at 24 weeks (T24). SMD - Standardized mean difference, CI- confidence interval. Forest plots for individual study effects can be found in S4-S22.

Figure S2.3.T48

Figure S.2.3. **Psychological interventions improve Quality of Life (QoL).** Forest plot of pooled results representing that psychological interventions have a significant effect on improving physical quality of life compared to the control group estimated at 48 weeks. SMD - Standardized mean difference, CI- confidence interval. Forest plots for individual study effects can be found in S4-S22

S3. Subgroup analysis of Global QoL: Provider

Figure S3.1.T0

Figure S3.1. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the provider subgroups as predicted at week 0 (postintervention). SMD - Standardized mean difference, CI - confidence interval. Figure S3.2.T12

Figure S3.2. Subgroup analysis of the Global QoL Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the provider subgroups as predicted at week 12 (postintervention). SMD - Standardized mean difference. C1 - confidence interval

44

Figure S3.3.T24

Figure S3.3. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the provider subgroups as predicted at week 24 (postintervention). SMD - Standardized mean difference. C1 - confidence interval Figure S3.4.T48

Figure S3.4. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the provider subgroups as predicted at week 48 (postintervention). SMD - Standardized mean difference. C1 - confidence interval

S4.Subgroup analysis of Global QoL: Environment

Figure S4.1.T0

	Study	E Patient	xperimental N Mean SD	Patient	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
	LI X, et al. 2017 Garssen B et al. 2012	102	56.32 7.80 74.40 4.20	108	52.38 76.50	11.46	baseline baseline	0.00		-0.61	0.89: -0.34]
	Rodin, G. et al., 2019 Selimiotaki, T, et al., 2021	22 27	103.92 6.45 62.00 33.80	20 25	105.71 72.20	6 60 16 20	baseline baseline	0.00	*	-0.41 -0.38	1.03: 0.20j -0.92; 0.17j
	Zhao,X, stal. 2015 Serfaty M, et al., 2018 Easo IB, et al., 2009	62 20	7.85 2.52 56.40 15.50	62 22	8.75 61.40	2.38	baseline baseline	0.00	<u></u>	-0.36 -0.33	-0.72, -0.01] -0.94, 0.28]
	Elyasi, F, et al., 2021 L Chu, X, et al., 2020	16	3.30 1.90 65.20 16.77	15 42	3.80	1,50	baseline	0.00		-0.28	-0.56,-0.02] -1.00, 0.44] -0.65, 0.21]
	Liu, T, et al., 2019 Elyast, F, et al., 2021 8.	49 20	66.61 10.85 3.50 1.80	53 20	69.54 3.80	15.27	baseline baseline	0.00	홍	-0.22	-0.61; 0.17] -0.60; 0.44]
	Savard, J. et al. 2006 Nápoles AM, et al. 2015	21 76 29	42.51 3.19 66.45 16.92 3.50 0.50	16 75 25	43.11 68.83	3.91	baseline baseline	0.00	臺	-0.17	-0.82; 0.48] -0.47; 0.17] -0.59; 0.391
	Zhao, X, et al., 2021 Oiu, H. et al., 2018 II.	52 98	53.70 3.14 76.78 19.91	51 196	54.69 79.49	9.61	baseline	0.00	1938 - 19	-0.14	-0.52; 0.25] -0.37; 0.11]
	Von Ah, D. et al., 2012 I Hall S. et al., 2011 I	26 22	22.05 3.44 12.32 4.35	29 23	22.38 12.74	2.24	oaseline oaseline	0.00	**	-0.11	-0.64: 0.42] -0.68; 0.49]
	Reese, JB, et al., 2021 Qiu, H, et al., 20181	73 98	60.80 16.70 78.09 18.86	71	87.09 61.90 79.49	14.30	baseline baseline	0.00	풒	-0.07	-0.41, 0.25) -0.40, 0.25] -0.31, 0.18]
	Compen F, et al. 2020 L Chan, et al. 2005	77 80	0.75 0.21 58.29 50.71	79 75	0.76	0.17 40.95	baseline baseline	0.00	*	-0.05	-0.37, 0.26] -0.36, 0.27]
	Brettbart, W. et al. 2018 II Beech BR et al. 2015	18 86 167	-58.44 22.39 6.19 1.60 62.44 27.52	18 74 155	-57.72 6.24 52.74	1.60	baseline baseline	0.00	훒	-0.03	-0.69; 0.62) -0.34; 0.28] -0.23; 0.211
	XIa, S, et al., 2023 Gao Q, et al. 2020	80 40	61.40 15.50 -58.20 8.25	80 40	51.10 -68.44	15.70	baseline baseline	0.00	*	0.02	-0.29; 0.33] -0.41; 0.47]
	Breitbart, W. et al. 2018 I. Nikbakhsh, N. et al. 2018 Comessa F. et al. 2018	94 20	6.29 1.50 44.09 8.48	74 20 79	6.24 43.54	1.60	baseline baseline	0.00	-	0.03	-0.27; 0.34] -0.58; 0.66]
	Kissane, DW, et al., 2023 Esplen MJ, et al., 2018	55 131	25.80 8.30 70.50 18.50	52 63	25.30 68.90	8.90	baseline	0.00		0.06	-0.32; 0.44] -0.21; 0.40]
	Hernandez, EG, et al. 2018 Klinkhammer-Schalke, M et al., 2012	28	84.88 20.04 54.35 28.09	28	62.85 51.45	15.86 23.19	baseline	0.00	王	0.11 0.12	-0.41; 0.63] -0.16; 0.39]
	Von Ah, D, et al., 2012 II. Rahmani, S, et al. 2015	27	22.98 2.08 41.65 6.15	29 12	22.38	2.24	baseline	0.00	-	0.22	-0.30; 0.75]
	Yee, HJ, et al. 2004 Cheung YL, et al. 2002	30 29	93.41 15.90 4.95 1.74	30 30	87.88 4.36	14.90	baseline baseline	0.00	黄	0.34	-0.17 0.85] -0.16: 0.87]
	Gaston-Johansson, F, et al., 2011 van der Meulen, IC, et al., 2013 Jebenraiten, F, et al., 2022	38 88 24	22.60 4.30 67.30 2.30 4.71 1.07	35 91 24	20.60	2.30	baseline baseline	0.00	-	0.48	[0.01; 0.94] [0.18; 0.77] [0.13; 1.30]
	Lu, Z. et al., 201 Sentaty M, et al., 2018	203 20	61.70 4.00 63.80 19.80	103 22	56.30 72.20	6.00 16.60	baseline followup	0.00		1.13 -0.45	[0.88, 1.38] -1.07, 0.16]
	Savard, J. et al., 2006 Hall S. et al., 2011 I.	21	3.62 0.95 12.50 4.99	16 23	3.95	0.91	followup	8.00	콯	-0.34	-1.00; 0.31] -0.85, 0.32]
Char Mar 1990 Dia 1910	Von Ab, D. et al. 2005 Chan, et al. 2005	26 80	22 15 4.45 71.69 74.33	29 75	22.58	2.24	followup	8.00	1	-0.12	-0.85; 0.41] -0.39; 0.24]
Subset 10	Chan, et al. 2005 Reich, RR, et al. 2016	60 167	71.61 51.52 68.43 27.76	75	75.69	5326	followup followup	60 00 12 00	***	-0.08	0.39: 0.24]
	Esplan MJ, et al. 2018 Reese JB et al. 2021	131	73 40 15 70 61 80 18 29	53 71	74.30	17.70	followup	48.00	표	-0.05	-0.34, 0.21) -0.35; 0.25] -0.38, 0.283
minute in da 2010 i dia 10 i dia 10 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Reich, RR, et al. 2018 Chan, et al. 2005	167 80	65.76 26.18 73.13 34.88	155 75	66.24 73.75	24.76 47.11	followup followup	6.00 36.00	\$	-0.02	-0.24, 0.20] -0.33, 0.30]
Display 10 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Breitbart, W, et al. 2018 IL Rahmani, S. et al. 2015 Chara et al. 2005	86 12	6.47 1.20 12.00 61.11 87.10 48.79	74 12 75	6.49 12.00 88.55	1.60	followup followup	4.00	100	0.00	-0.32; 0.30] -0.80; 0.80] -0.30; 0.32]
Instructure	Chan, et al. 2005 Brettbart, W, et al. 2018 II.	80 86	77.85 49.54	75 74	76.04	45.54	followup	48.00 8.00	重	0.04	-0.28; 0.35] -0.27; 0.35]
Numericality Numericality Numericality Numericality Numericality Numericality Numericality Numericality Numericality Numericality Numericality Numericality	Beliniotaid, T, et al., 2021 Von Ah, D, et al., 2012 II	27	65.00 28.00 22.71 2.08	25 29	54.00 22.58	20,50	followup followup	8.00	書	0.04	-0.50; 0.58] -0.47; 0.58]
$ \begin{array}{c} u_{1}, u_{1}, u_{2}, v_{1}, v_{2}, v_{2}, v_{2}, v_{1}, v_{1}, v_{1}, v_{1}, v_{2}, v$	Kinkhammer-Schaike, Mietal., 2012 Lee, JT, et al., 2022	100	64.13 23.56 4.05 0.60	100	62.32 4.00	21.38	followup	48.00	14	80 0 80 0	-0.20 0.36]
Note 1 = 1000 Note 1 = 10000 Note 1 = 1000	Lee, JT, et al., 2022 Esplen MJ, et al., 2018	29 131	4.05 0.60	25 63	4.00	0.60 9.40	followup	24.00	Ŧ	0.08	-0.46, 0.62] -0.21, 0.40]
New Add North	Xia, S. et al., 2023 Esplen MJ, et al., 2018	80 131	67.70 15.20 72.60 16.60	80 63	-00.33 65.80 70.30	14.40	followup	4.00 24.00	144	0.12	-0.19; 0.43] -0.17; 0.44]
Name	Breitbart, W, et al. 2018 II. Powelt, CB, et al., 2008	86 21	6.65 1.60 80.40 26.30	74 43	6.44 77.10	1.50	followup fpllowup	16.00 12.00		0.13 0.14	0.18, 0.45] 0.38, 0.66]
Experiment Experim Experiment Experiment	Klinkhammer-Schalke, Midt al., 2012 Elvasi, F. et al., 20211 Nápoles AN et al. 2015	100	4.30 1.00 77.24 15.13	100	91.23 4.10 74.30	110	followup	24.00		0.17	-0.10; 0.45] -0.53; 0.90] -0.13; 0.511
0.1.1.7.41.0111 0.1.1.7.11 0.	Elyasi, F, et al., 2021 II. Schellekens, MPJ, et al. 2016	20 69	4.30 1.00 107.35 18.80	20 70	4 10 103.34	1.10	followup followup	24.00 8.00	-	0.19	-0.43 0.81] -0.14: 0.53]
Derivative (F) Derivat	Giu, H. et al., 2018 II. Giu, H. et al., 2018 II. Sariat: M. at al., 2019	98	89.52 33.45 94.70 35.69 67.70 23.80	195	83.21 87.72 87.20	31.55 34.70 16.60	followup followup	12.00 24.00 24.00	<u> </u>	0.20	-0.05; 0.44] -0.04; 0.44] -0.29; 0.921
Naccons (M, et al. 2015) P <td>Breitbart, W, et al. 2018 L Hall S , et al. 2011 L</td> <td>94 22</td> <td>6.87 1.70 13.17 4.75</td> <td>74 23</td> <td>6.48 12.00</td> <td>1.60</td> <td>followup followup</td> <td>4.00 1.00</td> <td>1</td> <td>0.23</td> <td>-0.07; 0.54] -0.36; 0.83]</td>	Breitbart, W, et al. 2018 L Hall S , et al. 2011 L	94 22	6.87 1.70 13.17 4.75	74 23	6.48 12.00	1.60	followup followup	4.00 1.00	1	0.23	-0.07; 0.54] -0.36; 0.83]
No. 6, 4, 2021 NO. 77, 10, 100 NO. 77, 100 NO. 77	Napoles AM, et al. 2015 Kissane, DW, et al., 2023 Sortat: M, et al., 2018	76 55 20	80.64 13.64 27.40 7.70 72.90 19.10	75 52	77.02 25.40 67.00	15.82	followup followup	24.00 24.00	EH-	0.25	-0.07 0.57] -0.12; 0.64]
Mill, 6, 1922. Mill, 7, 192 <	Xia, S. et al., 2023 Kissane, DW, et al., 2023	80 55	72.70 15.80 27.90 8.10	80 52	68.00 24.80	13:50	followup	12.00 12.00	1	0.32	[0.01: 0.63] [-0.02: 0.74]
bitkering (v, ord z, zore), vol z, zore), vol z, et z, zore, vol z, et z, zore, vol z,	XIa, S. et al., 2023 Klinkhammer-Schalke, M et al., 2012	100	78.00 14.30 63.41 22.11	80	72.90	13.40 23.19	followup followup	24.00 24.00		0.37	[0.05: 0.68] [0.09: 0.65]
Opt, H. et al., 2018.1 B6 P122 2809 P16 P163 31:55 Diskows A00 P1 P161 16:00 Memandasi ES, et al. 2018 P17 P17 18:15 P17	Breilbart, W, et al. 2018 I. Zhang, J. et al. 2021	84 61	7.06 1.50 9.67 3.71	74	6.44 8.21	1.50	followup	16.00		0.41	[0.10, 0.72] [0.07, 0.79]
Internation, et al. 2010 Bit of al. 2010 B	Qiu, Ĥ, et al. 2018 L Yeo, HJ, et al. 2004	98 30	91.32 29.00 97.01 18.24	196 30	78.03	31.55	followup	4.00	-	0.43	[0.19; 0.68] [-0.01; 1.02]
Data Construction F, rid 2, 2011 38 9.710 5.89 7.80 <td< td=""><td>Hernandez, EG, et al. 2018 Compen F, et al. 2020 II</td><td>94 28 90</td><td>71.73 15.45</td><td>28 78</td><td>6.49 62.80 0.75</td><td>17.63</td><td>followup followup</td><td>24.00</td><td></td><td>0.52</td><td>-0.00; 1.05] [0.25; 0.95]</td></td<>	Hernandez, EG, et al. 2018 Compen F, et al. 2020 II	94 28 90	71.73 15.45	28 78	6.49 62.80 0.75	17.63	followup followup	24.00		0.52	-0.00; 1.05] [0.25; 0.95]
Generate Rist al. 2012; 34 84.40 35 7.20 33.9 Norway 200 ++++++++++++++++++++++++++++++++++++	Gaston-Johansson, F, et al., 2011 Garssen B, et al., 2012	38 34	24.70 4.30 78.40 3.70	35 36	21.90 76.40	5.00	followup followup	48.00 5.00	*	0.50	[0.13, 1.07] [0.12, 1.06]
instruction	Garssen B. et al. 2012 Compen F, et al. 2020 L Compen F, et al. 2020 L	34 77	80.40 3.30 0.66 0.13 76.60 3.60	36 78	78.28	320	followup followup	2.00	**	0.67	[0.19; 1.15] [0.35; 1.00]
Opu, H, et Ja, 2011 BP 107.32 31.21 mm BP 21.21 mm 112.00 mm Image: Transmission of the transmission of trans	Qiu, H, et al., 2018 L Hernandez, EG, et al. 2018	98 28	113.18 35.69 74.38 11.48	196 28	87.72 84.40	34.70	followup	24.00 8.00		0.72	[0.48; 0.97] [0.20; 1.29]
Vice All 2024 20 100 (191 2024) 20 100 (191 2024) 200 (191 2024)	Qiu, H, et al., 2018 t Chu, X, et al. 2020 Chu, X, et al. 2020	98 42	107.32 31.23 85.41 16.08	196	83.21 71.90 71.60	31,55	followup followup	12.00	豊	0.76	[0.51; 1.02] [0.33; 1.22]
Garacene et al. 2012 34 8100 3.00 78.0 3.0 87.0 78.0 3.0 87.0 78.0 3.0 87.0 78.0 8.0 78.0 78.0 8.0 78.0	Yeo, HJ, et al. 2004 Gao Q, et al. 2020	30 40	102.00 19.94 -54.25 7.03	30 40	88.18 -60.17	14.02	followup followup	24.00 4.00	*	0.79	[0.26; 1.32] [0.36; 1.27]
Prodition Control Contro Control Control <	Garssen B, et al. 2012 Marchioro, G, et al. 1995 Bechloro, G, et al. 2019	34	81.00 3.40 -46.72 12.22	35 18	78.20	3.20	followup followup	4.00		0.84	[0.35] 1.33] [0.18; 1.55]
Li X et al. 2017 Li X et al. 2017 Li X et al. 2017 Li X et al. 2015 Li X et al.	Rodin, G. et al., 2019 van der Meulen, IC, et al., 2013	22	110.41 7.29 77.50 2.80	20 91	103.70	7.00	followup	8.00		0.92	[0.28, 1.56] [0.79, 1.42]
Harm Hard S, Hall 2015 36 96 9.00 100	Li, X. et al., 2017 Zhao, X. et al. 2016	102 62	76.58 9.06 10.65 2.02	108 62	64.28 8.22	12.49 2.07	followup followup	12.00 0.30	*	1.12	[0.83, 1.41] [0.80, 1.56]
Marcheron, G. et al. 1995 Activity and p. et al. 2022 Activity and p. et al. 2024 Activity and p. et	Liu, T, et al. 2019 Liu, T, et al. 2019	49	62.67 10.32 72.33 13.36	53 53	54.16 48.47 56.95	10.95	followup	9.00	*	1.23	[0.30, 2.05] [0.81, 1.86] [0.87, 1.73]
Abetrachen, F. et al., 2022 24 0.10 1.99 24 4.93 9.2 1.00 5.00 Denoming, V., et al., 2020 29 7.45 1.12 3.00 5.56 9.57 1.00 1.10 1.00 <td>Marchioro, G. et al. 1996 Jelvoluzadeh, F. et al. 2022</td> <td>18 24</td> <td>-44.72 9.18 6.05 1.00</td> <td>18 24</td> <td>-80.78 4.65</td> <td>13.28</td> <td>followup followup</td> <td>24.00 12.00</td> <td></td> <td>138</td> <td>0.64 211 0.87, 217]</td>	Marchioro, G. et al. 1996 Jelvoluzadeh, F. et al. 2022	18 24	-44.72 9.18 6.05 1.00	18 24	-80.78 4.65	13.28	followup followup	24.00 12.00		138	0.64 211 0.87, 217]
Dennamy 11: etal 2002 29 7.46 112 5.55 9.55 9.55 9.00 4.00 4.00 4.00 2.20 1.58 2.20 </td <td>Jelvehzadeh, F. et al. 2022 Marchioro, G. et al. 1995 Rodin, G. et al. 2019</td> <td>24 18 22</td> <td>6.16 1.09 -41.17 6.91 114.37 6.97</td> <td>24 18 20</td> <td>4.58</td> <td>0.92</td> <td>followup followup</td> <td>8.00 36.00 12.00</td> <td></td> <td>154</td> <td>[0.89; 2.19] [0.98; 2.54] [1.13; 2.60]</td>	Jelvehzadeh, F. et al. 2022 Marchioro, G. et al. 1995 Rodin, G. et al. 2019	24 18 22	6.16 1.09 -41.17 6.91 114.37 6.97	24 18 20	4.58	0.92	followup followup	8.00 36.00 12.00		154	[0.89; 2.19] [0.98; 2.54] [1.13; 2.60]
Date X, et al., 2021 52 66 e6 for 3.21 61 for 50 e7 3.22 Dialowan 12 60 e7 0.22 Dialowan 12 60 e7 0.22 <thdialowan< th=""></thdialowan<>	Cheung YL, et al. 2002 Fann, JR, et al., 2009	29 112	7.48 1.12 6.30 0.25	30 103	5.56 5.74	0.50	followup followup	10.00 24.00		2.20 2.23	[1.54: 2.85] [1.89: 2.57]
Nitika stratelini N et al. 2019. 0.0 1070 119.4 20 177.9 12.3 1000/20 1200 200 200 170 19.4 20 177.9 12.3 1000/20 10000 1000 <td>Zhao, X, et al., 2021 Fann, JR, et al., 2009</td> <td>52 112</td> <td>66.68 3.21 6.51 0.25 6.23 0.99</td> <td>51 103</td> <td>55.07 6.84 6.72</td> <td>6.32 0.29 0.28</td> <td>followup followup</td> <td>12.00</td> <td>불</td> <td>2.31</td> <td>[1.80, 2.81] [2.12, 2.83] [2.67, 2.96]</td>	Zhao, X, et al., 2021 Fann, JR, et al., 2009	52 112	66.68 3.21 6.51 0.25 6.23 0.99	51 103	55.07 6.84 6.72	6.32 0.29 0.28	followup followup	12.00	불	2.31	[1.80, 2.81] [2.12, 2.83] [2.67, 2.96]
Fann, R. et al., 2009 112 6.67 0.22 100 6.66 0.24 100/water 4.00 Instant, R. et al., 2000 112 6.57 0.22 103 5.38 0.24 100/water 72.00 103 103 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 6.33 102 103 6.40 140 0.05 102 6.35 102 102 6.41 103 6.40 140 0.05 102 6.35 102 6.35 102 0.00 -0.35 102 0.01 102 6.35 102 0.00 -0.35 102 0.02 102 0.00 -0.35 102 0.00 -0.35 102 0.02 102 0.02 102 0.02 102 102 0.00 -0.35 102	Nikbakhsh, N. et al. 2018 Cheung YL, et al. 2002	20 29	81.70 19.04 7.51 0.98	20 30	47.39 4.96	12.93	followup followup	12.00		- 2.91	[1.99; 3.82] [2.26; 3.78]
Instruction Deck	Fann, JR, et al., 2009 Fann, JR, et al., 2009	112	6.67 0.23 6.33 0.25	103 103	5.96 5.35	0.24	followup followup	48.00 72.00	. *	3.06	[2.66; 3.45] [3.52; 4.45]
Insegnation Hereier, SF, et al., 2003 35 6.00 170 35 6.40 1.40 Dost-eline Diverse, St. et al., 2003 -0.25 6.74 0.23 Diverse, St. et al., 2003 34 6.30 1.70 35 6.40 1.40 Dost-eline Diverse, St. et al., 2003 -0.25 6.74 0.23 Herrer, SF, et al., 2003 34 6.30 1.50 35 0.00 -0.25 6.74 0.23 1.14 6.00 0.25 6.74 0.23 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 6.00 0.25 1.14 0.00 -0.7 1.14 0.00 0.7 1.15 0.07 0.07 0.05 0.07 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07	Prediction interval	0-100		0.101						0.00	4.72, 1.91]
Thomas, H., et al., 2012 64 64.80 15.90 38 8.10.0 15.00 38.00 15.00 39.00 40.00 <td>Heiney, SP, et al., 2003 Dirksen, S, et al. 2007</td> <td>33 34</td> <td>6.00 1.70 83.30 11.90</td> <td>33 38</td> <td>6.40</td> <td>1.40</td> <td>baseline baseline</td> <td>0.00</td> <td>\$</td> <td>-0.25</td> <td>-0.74 0.23] -0.60 0.321</td>	Heiney, SP, et al., 2003 Dirksen, S, et al. 2007	33 34	6.00 1.70 83.30 11.90	33 38	6.40	1.40	baseline baseline	0.00	\$	-0.25	-0.74 0.23] -0.60 0.321
Henery, SP, et al. 2007 Handbard, SF, et al. 20	Thomas, ML, et al., 2012 Heiney, SP, et al., 2003	54 33	68.80 15.90 6.00 1.50	88 33	63.60 6.80	15.60	baseline followup	0.00 16.00	-	0.33	[0.00, 0.65] [-1.02, -0.04]
Maximum Line Line Line Line Line Line Line Line	Heiney, SP, et al., 2003 Dirksen, S, et al., 2007	33 34	8.20 1.30 91.60 15.09	33 38	6.30 87.70	1.60	followup	6.00 10.00	뷭	-0.07	0.56 0.41]
Office Openant, L, et al. 2022 26 64 05 16 4.0 29 71.25 17.05 Data Hint 000 011 64.0 63.0	Random effect Prediction interval	295	70.50 17.30	351	94,40	10,30	10110Wulp	12.00		0.36	-0.63, 1.45) -2.00; 2.51]
Panašon, Effect 2003 142 2023 142	Peng L. et al. 2022	28	69.05 16.49	29	71 20	17.05	basaline	0.00		-0.12	10.65.0.391
Langer, H. et al. 2019 Brank, L. et al. 2019	Panado, FJ, et al. 2007 Mihuta, ME, et al. 2018	41 32	-82.35 14.02 11.90 4.40	30 33	-80.57 11.50	1321 3.60	baseline baseline	0.00		0.13	0.50: 0.341 0.39: 0.59]
Pendeck, F, et al. 2007 11 972.21 12.82 0 798.01 14.65 followup 12.00 -04.51 16.01 0.61 10.01 -04.51 16.01 0.61 10.01 0.61 10.01 0.61 10.01 0.61 10.01 0.61 10.01 0.61 10.01 0.61 0.01<	Cengiz, HO, et al. 2023 Ham, K, et al. 2019 Beatty L. et al. 2015	32 21 30	63.06 19.74 47.69 18.42 58.92 1.94	33 21 30	55.22 38.22 59.27	18.26 15.47 3.02	baseline baseline follower	0.00	_ F	0.41	-0.08; 0.90] -0.07; 1.16] -1.32; -0.97
Peng, L, et al. 2022 28 72.2 22.11 29 71.28 15.25 followup 010 70 70 005 10.46, 0.57 10.50 followup 010 70 70 005 10.46, 0.57 10.50 followup 010 70 70 70 70 70 70 70 70 70 70 70 70 70	Penedo, FJ, et al., 2007 Peng, L, et al., 2022	41 28	-87.22 13.82 66.67 24.00	30 29	-79.63 59.25	14.56 22.17	followup followup	12.00 4.00	-	-0.63	-1.01, -0.05] -0.63, 0.41]
Conger Ho et al 2022 22 64.99 1772 33 1820 1826 billowup 8:00 1976 122 123 129 125 billowup 8:00 1976 122 123 129 125 10.95 211 1980 1103 1103 1103 1103 1103 1103 1103 11	Peng, L. et al. 2022 Ham, K. et al. 2019 Mihuta, ME, et al. 2018	28 21 32	72.32 22.11 54.69 19.80 14.10 2.60	29 21 33	71.28 45.02 12.30	15.28 16.05 3.69	followup followup	0.10 10.00 4.00		0.06	-0.46; 0.57] -0.09; 1.14] [.0.07; 1.05]
beam, L. Mar, 2015 30 74.04 3.78 30 55.27 3.81 followup 25.67	Conglt, HO, et al., 2023 Beatly, L. et al. 2015	32 30	66.98 17.72 68.50 3.84	33 30	53.03 62.85	18.65	followup	8.00 13.03	*	076	[0.25, 1.26] [0.95, 2.11]
Random effect 9121 9253 Predicuon interval 4 2 0 2 4 in factor dimension aroun	Beany, L. et al. 2015 Raudom effect Prediction interval	30 4.26	74.04 3.78	30 411	65.27	3.81	TOHOWUD	25.07	*	2:28 0.58	[0.00; 1.07] [0.00; 2.13]
A -2 0 2 4 Infactor Combit Largour In factor of Inference enough	Random effect Prediction interval	9121		9253					4	0.55	[0.22; 0.88] [-0.79; 1.89]
CONTRACTOR OF A DESCRIPTION OF A DESCRIP								f .4 In favor of	-2 D 2 control group in favor of int	4 ervention	group

Figure S4.1.Subgroup analysis of the Global QoL Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the environment subgroups as predicted at week 0 (postintervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S4.2.T12

Study	Patient	xperimental N Mean SD I	Patient	Control Mean SD	follow-up	Follow-up time	SMD of interested event	SMD 955	iα
face to face U. X. et al. 2017 Garssen B. et al. 2012	102 34	56.32 7.90 74.40 4.20	108 36	62.38 11.46 76.50 4.10	baseline baseline	0.00	-	-0.61 -0.89,	-0.34]
Rodin, G. et al., 2019 Seliniotaki, T. et al., 2021	22 27	103.92 6.46 62.00 33.80	20 26	106,71 6.80 72,20 16,20	baseline baseline	0.00	-	-0.41 -1.03 -0.38 -0.92	0.20] 0.17]
Serfaty M, et al., 2018 Farin, JR, et al., 2009	20 112	56.40 15.50 5.39 0.21	22 103	61.40 14.40 5.45 0.20) baseline baseline	0.00	-	-0.33 [-0.94; -0.29 [-0.56;	0.28]
Elyasi, F. et al., 2021 L Chu, X. et al. 2020 Liu, T. et al. 2019	15 42 49	3.30 1.90 65.20 16.77 66.61 10.85	15 42 53	3.80 1.60 68.91 16.63 69.54 15.23	baseline baseline baseline	0.00		-0.28 -1.00, -0.22 -0.65, -0.22 -0.61	0.44) 0.21) 0.17)
Elyasi, F. et al., 2021 II. Savard, J. et al., 2006	20 21	3.50 1.80 42.51 3.19	20 16	3.89 1.50 43.11 3.91	baseline baseline	0.00	-	-0.18 -0.80	0.44] 0.48]
Lee, JT, et al. 2022 Zhao, X, et al. 2021	29 52	3.50 0.60 53.70 3.14	25 51	3.60 0.80	baseline baseline	0.00		-0.14 -0.68, -0.14 -0.52;	0.39] 0.25]
City, H, et al., 2018 I. Von Ah, B, et al., 2012 I. Hall S, et al., 2011 I.	98 26 22	76.78 19.91 22.06 3.44 12.32 4.34	195 29 23	79.49 21.60 22.38 2.24 12.74 4.26	baseline baseline	0.00		-0.13 -0.37	0.11] 0.42] 0.491
Schellekens, MPJ, et al. 2018 Reese, JB, et al., 2021	69 73	95.43 21.60 60.80 16.70	70 71	97.09 23.54 61.90 14.30	baseline baseline	0.00		-0.07 -0.41 -0.07 -0.40	0.26] 0.26]
Compan F, et al 2020 I Chan, et al 2005	30 77 80	0.75 0.21 58.29 50.71	78	0.76 0.17	baseline baseline	0.00	-	-0.05 -0.37	0.26] 0.27]
Marchioro, C, et al. 1995 Breitbart, W, et al. 2018 I. Reich RR et al. 2015	18 85 167	58.44 22.39 5.19 1.60 62.44 27.52	18 74	-57.72 20.25 5.24 1.60 62.74 24.68	baseline baseline	0.00		-0.03 (-0.69) -0.03 (-0.34) -0.01 (-0.23)	0.623 0.283 0.211
Xia, B, et al., 2023 Gao Q, et al. 2020	80 40	61.40 16.50 -68.20 8.25	80 40	61.10 15.70 -68.44 8.82	baseline baseline	0.00	*	0.02 +0.29	0.33) 0.47]
Nikbakhsh, N. et al. 2018 Compen F, et al. 2020 II.	20 90	44.09 8.48 0.77 0.19	20 76	43.64 13.73 0.76 0.17	baseline baseline	0.00		0.03 -0.27 0.04 -0.58 0.06 -0.25;	0.34) 0.66) 0.36]
Kissene, DW. et al., 2023 Esplen MJ, et al., 2018 Hemandez, ED, et al. 2018	55 131 28	25.80 8.30 70.50 16.50 64.85 20.04	52 63 28	25.30 8.90 88.90 17.20 62.65 15.86	baseline baseline	0.00	王	0.06 [-0.32, 0.10 [-0.21, 0.11 [-0.41]	0.44] 0.40] 0.63]
Klinithammer-Schalke, Met al., 2012 Powell, CB, et al., 2008	100 21	54.35 26.09 78.30 17.70	100 43	51.45 23.19 75.60 17.90	baseline baseline	0.00	the second se	0 12 -0 16 0.15 -0.37	0.391 0.671
Rahmani, S. et al. 2016 Yoo, HJ, et al. 2004	12 30	41.66 6.16 93.41 16.90	12 30	39.58 7.22 87.88 14.96	baseline baseline	0.00	-	0.30 -0.51, 0.34 -0.17,	1.10]
Cheung YL, et al. 2002 Gaston-Johansson, F, et al., 2011 van der Neulen IC, et al., 2013	29 38 98	4.96 1.74 22.60 4.30 67.30 2.30	30 35 91	4.38 1.62 20.50 4.00 66.20 2.30	baseline baseline	0.00	-	0.36 [-0.16, 0.48 [0.01, 0.48 [0.18]	0.87] 0.94] 0.771
Jelvehradeh, F. et al. 2022 Lu, Z, et al. 201	24 203	4.71 1.07 61.70 4.00	24 103	3.94 1.06 56.30 6.00	baseline baseline	0.00	_ 1	0.71 [0.13]	1.30]
Savard J, et al. 2016 Hall S, et al. 2011	20 21 22	3.62 0.95 12.50 4.99	16 23	3.95 0.91	followup	8.00		-0.34 (-1.00) -0.26 (-0.85)	0 31] 0 32]
Chan, et al. 2005 Von Ah, D. et al., 2012 I. Chan, et al. 2005	80 25 80	60.31 41.32 22.15 4.45 71.69 74.33	75 29 75	66.46 47.98 22.58 2.24 77.23 63.91	followup followup	12.00 8.00 72.00		-0.14 [-0.45] -0.12 [-0.65] -0.08 [-0.39]	0.18) 0.41) 0.241
Chan, et al. 2005 Reich, RR, et al. 2015 Vinit RR, et al. 2015	80 167	71.61 51.52 68.43 27.75	75	75.69 53.26	followup followup	60 00 12 00	書	-0.08 -0.38:	0.24] 0.14]
Esplen MJ, et al., 2018 Reese, JB, et al., 2021	131 73	73.40 16.70 61.80 18.20	63 71	74.30 17.70	followup followup	48.00 8.00		-0.05 -0.35	0.26) 0.28]
Reich, RR, et al. 2016 Chan, et al. 2005 Breitbart, W. et al. 2018 II.	167 80 85	65.76 26.18 73.13 34.88 6.47 1.20	155 75 74	66.24 24.76 73.75 47.1 6.48 1.60	followup followup followup	6.00 36.00 4.00	24	-0.02 -0.24 -0.01 -0.33 -0.01 -0.32	0.201 0.301 0.301
Rahmani, S. et al. 2015 Chan. et al. 2005 Chan. et al. 2005	12 80	12.00 51.11 67.38 46.78 77.99 49.84	12 75	12.00 58.33 66.55 51.44 76.04 45.84	followup	16.00 24.00 48.00	-	0.00 [-0.80] 0.02 [-0.30] 0.04 [-0.28]	0.80) 0.33) 0.35)
Breitbart, W. et al. 2018 II. Seliniotaxi, T. et al., 2021	85 27	6.55 1.50 65.00 28.00	74 26	6.49 1.50 64.00 20.50	followup followup	8.00 8.00		0.04 [-0.27, 0.04 [-0.50]	0.35] 0.58]
Von Ah, D. et al., 2012 II. Oku, H. et al., 2018 II. Klinkhammer-Schake, M et al., 2012	27 98 109	22.71 2.08 80.28 26.77 64.13 23.58	20 196 100	22.58 2.24 78.03 31.55 62.32 21.38	fellowup fellowup	8.00 4.00 48.00	2	0.06 -0.47 0.07 -0.17 0.09 -0.20	0.56) 0.32] 0.36]
Lee, JT, et al. 2022 Lee, JT, et al. 2022	29 29	4.05 0.60 4.05 0.60	25 25	4.00 0.60 4.00 0.60	followup followup	12.00 24.00	*	0.08 -0.45	0.62] 0.62]
Marchioro, G, et al. 1996 Xia, S, et al. 2023	18 80	-54.17 16.90 67.70 18.20	18 80	-56.33 17.72 65.80 14.40	followup followup	4.00 4.00	문	0.12 -0.53, 0.12 -0.19	0.78] 0.43]
Esplen MJ, et al. 2018 Breitbart, W, et al. 2018 II. Preveit CE et al. 2008	131 96 21	72.60 18.60 8.65 1.60 90.40 26.30	63 74 43	70.30 18.00 8.44 1.50 77.10 21.20	followup followup	24.00 16.00 12.00	芜	0.13 -0.17, 0.13 -0.18, 0.14 -0.38	0.44] 0.45] 0.66)
Klinkhammer-Schalke, M et al., 2012 Elyasi, F. et al., 2021 1	100	65.21 22.09 4.30 1.00	100 15	61.23 23.55 4.10 1.10	followup	36.00 24.00		0 17 -0.10	0.45) 0.90]
Napoles AM, et al. 2015 Elyasi, F. et al., 2021 II. Schellekens, MPJ, et al. 2018	76 20 69	4.30 1.00 107.36 18.80	20 70	74.39 15.34 4.10 1.10 103.34 22.35	followup followup	12.00 24.00 8.00		0.19 [-0.13] 0.19 [-0.43] 0.19 [-0.14]	0.51) 0.81] 0.63]
Olu H. et al., 2018 II. Olu H. et al., 2018 II. Serfaty M. et al., 2018	98 98 20	89.52 33.45 94.70 35.69 67.70 23.89	195 195 22	83.21 31.55 87.72 34.75 63.20 16.65	followup	12.00 24.00 24.00	E.E.	0.20 [-0.05] 0.20 [-0.04] 0.22 [-0.39]	0.44] 0.44] 0.821
Broitbart, W, et al. 2018 I Hall S, et al. 2011 I	94 22	5.87 1.70 13.17 4.75	74 23	6.48 1.60 12.00 4.85	followup followup	4.00 1.00	1	0.23 -0.07 0.24 -0.35	0.54] 0.83[
Kissane, DW, et al., 2015 Sentaty M, et al., 2018	55 20	27.40 7.70 72.90 19.19	52 22	25.40 7.80 67.90 15.70	followup followup	24.00 24.00 18.00	and and a	0.26 [-0.12] 0.27 [-0.33]	0.64]
Xia, S. et al. 2023 Kissane, DW, et al. 2023 Xia, B. et al. 2023	80 55 80	72.70 15,80 27.90 8.10 78.00 14.39	80 52 80	68.00 13.50 24.80 8.90 72.90 13.40	followup followup	12.00 12.00 24.00	2	0.32 [0.01, 0.36 [-0.02; 0.37 [0.05]	0.63] 0.74] 0.685
Klinithammer-Schalke, Metal., 2012 UU, Z. et al., 201	100 203	63.41 22.11 64.40 5.00	100 103	55.07 23.19 52.30 6.00	followup followup	24.00 9.00	*	0.37 [0.09, 0.39 [0.15]	0.65) 0.63]
Zhang, J. et al. 2018 L Giu, H. et al. 2018 L	61 98	967 371 9132 2900	61 196	8.21 3.02 78.03 31.55	followup	12.00 4.00	2	0 43 [0 07: 0 43 [0 18]	0.79] 0.68]
Yoo, HJ, et al. 2004 Breitbart W, et al. 2018 I Hemandez EG, et al. 2018	30 94 28	97.01 18.24 7.33 1.70 71.73 15.45	30 74 28	88.13 16.18 6.49 1.50 62.90 17.63	followup followup	12.00 8.00 24.00	Ē	0.51 -0.01, 0.52 [0.21, 0.53 -0.00	1.02) 0.83] 1.06]
Compen F, et al. 2020 II. Gaston-Johansson, F, et al., 2011	90 38	0.85 0.17 24.70 4.30	78 35	0.75 0.19	followup	8.00 49.00	*	0.55 [0.25]	0.86] 1.07]
Garssen B, et al. 2012 Comperi F, et al. 2020 L	34 77	80.40 3.30 0.86 0.13	36 78	78.20 3.20 0.75 0.19	followup	2.00	<u>1</u>	0.67 [0.19, 0.67 [0.35;	1.16) 1.00)
Garssen B. et al., 2012 Qiu, H. et al., 2018 L Hemandez, EG. et al. 2018	34 98 28	75.50 3.60 113.18 35.69 74.38 11.48	36 196 28	72.90 3.80 97.72 34.70 64.40 14.73	followup followup followup	13.00 24.00 8.00		0.89 [0.21, 0.72 [0.48, 0.75 [0.20]	1,18] 0.97] 1.29]
Qiu, H, et al., 2018 I Chu, X et al. 2020 Chu, X et al. 2020	98 42	107.32 31.23 85.41 16.08	196 42	83.21 31.55 71.90 18.50	followup followup	12.00	툹	0.76 [0.51, 0.77 [0.33, 0.70 10.34	1.02
Yoo, HJ, et al. 2004 Gap O, et al. 2020	30 40	102.00 19.94 -04.26 7.03	30 40	88.18 14.02 -60.17 7.28	followup	24.00 4.00	*	0.79 [0.26] 0.82 [0.36]	1.32] 1.27]
Garssen B, et al. 2012 Marchioro, G, et al. 1995 Rodin, G, et al. 2019	34 18 22	81.00 3.40 -48.72 12.22 110.14 6.83	30 18 20	78.20 3.20 -60.78 14.85 103.57 7.71	followup followup	4.00 12.00 4.00		0.84 [0.35] 0.87 [0.18] 0.89 [0.25]	1.33(1.55) 1.53(
Rodin, G. et al., 2019 van der Neulen, IC. et al., 2013	22 88	110.41 7.29 77.50 2.80 76.58 9.06	20 91 108	103.70 7.00 74.50 2.60 64.28 12.40	followup followup	8.00 48.00 12.00		0.92 [0.28; 1.11 [0.79; 1.12 [0.83]	1.50(1.42) 1.41)
Zhao X, et al. 2015 Rahmani, S, et al. 2015	62 12	10.65 2.02 05.65 9.40	62 12	8.22 2.07 54.16 10.95	followup followup	0.30 8.00	1	1 18 [0.80; 1 18 [0.30;	1.56) 2.06]
Liu, T. et al., 2019 Liu, T. et al., 2019 Marchioro, G. st al. 1995	49 18	62.67 10.32 72.33 13.36 -44.72 9.18	53 18	49.47 10.88 56.95 10.03 -60.78 13.26	followup followup	12.00 24.00	- <u>-</u>	1.30 [0.87]	1.66] 1.73] 2.11]
Jelvehzadeh, F. et al. 2022 Jelvehzadeh, F. et al. 2022 Marchicro, G. et al. 1995	24 24 18	6.05 1.00 5.15 1.09 -41.17 6.91	24 24 18	4.65 0.80 4.58 0.92 -80.28 13.33	followup followup followup	12.00 8.00 36.00	-	152 [0.87, 1.54 [0.89; 176 [0.98]	2.17) 2.19) 2.54]
Rodin, G, et al., 2019 Cheung YL, et al. 2002 Servin IR, et al. 2005	22 29	114.37 6.97 7.46 1.12 6.30 0.35	20 30	100.61 7.60 5.56 0.50 5.74 0.25	fellowup fellowup	12.00 10.00 23.00		1.87 [113, 2.20 [1.54, 2.20 [1.54]	2.60] 2.85] 2.57]
Zhao, X. stal., 2021 Fann, JR. etal., 2009	52 112	66.68 3.21 6.51 0.25	51 103	55.07 6.32 5.84 0.29	followup followup	12.00 95.00	-#-	2.31 [180. 2.47 [2.12]	2.81] 2.83]
Nikbakhsh, N, et al., 2009 Nikbakhsh, N, et al., 2018 Cheung YL, et al. 2002	20 29	6.33 0.22 81.70 10.94 7.51 0.98	20 30	47.39 12.93 4.96 0.66	followup followup	12.00 12.00 5.00		2.53 [2.17, 2.91 [1.99, 3.02 [2.26]	2.89) 3.82) 3.78)
Fann, JR, et al., 2009 Fann, JR, et al., 2009 Bandom effect	112 112	6.67 0.23 6.33 0.26	103	5.95 0.24 5.35 0.24	followup followup	48.00 72.00	. *	3.06 [2.66; 3.98 [3.52;	3.45] 4.46]
Prediction interval								£-0.77;	1.02]
Heiney, SP, et al., 2003 Dirksen, S. et al., 2007	33 34	800 170 83.30 11.90	33 38	8.40 1.40 84.80 9.20	baseline baseline	0.00	*	-0.25 (-0.74	0.23) 0.32)
Thomas, ML, et al., 2012 Heiney, SP, et al., 2003 Heiney, SP, et al., 2003	64 33 33	68,90 15.90 6.00 1.50 6.20 1.30	88 33 33	63.60 15.60 6.80 1.50 8.30 1.60	followup	0.00 16.00 6.00	=	0.33 [0.00] -0.53 [-1.92] -0.07 [-0.55]	0.65] -0.04] 0.41]
Dirksen, S. et al. 2007 Thomas, ML, et al., 2012	34 64	91.50 15.00 70.50 17.30	38 68	87.70 14.70 64.40 15.30	followup	10.00		0.26 -0.20 0.36 0.04	0 721 0 695
Production Informal	295		351					6.41 [-0.78; [-2.59]	3.021
Peng, L. et al. 2022 Penedo, FJ, et al. 2007	28 41	69.05 18.49 -82.35 14.02	29 30	71.26 17.05	i baseline I baseline	0.00	*	-0 13 (-0.65)	0 39] 0 34]
Mihuta ME, et al. 2018 Cengiz, HO, et al. 2023 Ham K, et al. 2019	32 32	11.90 4.40 63.06 19.74 47.60 19.42	33 33	11.50 3.60 55.22 18.26 38.22 15.45	baseline baseline	0.00		0.10 -0.39	0.59) 0.90) 1.16)
Beatty, L. et al. 2016 Penedo, FJ, et al. 2007	30	56.22 3.89 -87.22 13.82	30	59.37 3.92 -79.63 14.56	followup	6.00	*	-0.80 -1.32, -0.53 -1.01	-0.27] -0.05]
Peng. L. et al. 2022 Peng. L. ét al. 2022 Ham, K. et al. 2019	28 28 21	72.32 22.11 54.69 19.80	29 29 21	08.25 22.17 71.26 15.26 45.02 16.05	followup followup	0.10	1	-0.11 (-0.63) 0.06 (-0.46) 0.53 (-0.99)	0.411 0.571 1.14]
Minuta, ME, et al., 2018 Cengiz, HO, et al., 2023 Beath, L. et al., 2016	32 32 30	14.10 2.60 66.98 17.72 68.50 1.64	33 33 30	12:30 3.60 53:03 18:85 62:85 3:64	followup followup	4.00 8.00 13.03	*	0.56 [0.07, 0.76 [0.25] 1.53 [0.95]	1.06] 1.26] 2.11]
Bealty, L. et al. 2015 Random effect	30 425	74.04 3.78	30 411	65.27 3.81	followup	26.07	÷	2.28 [1.62, 0.53 [0.02]	2.94]
Random effect	9121		9253				•	0.51 [0.33;	0.69]
Prediction Interval							-2 0 2	ר (-0.78; 4	1,80]
						In favor of	control group In favor of inte	ivention group	

Figure S4.2. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the environment subgroups as predicted at week 12 (postintervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S4.3.T24

Shuda

Study	E Patient I	operimental Mean: <mark>S</mark> D	Patient	Control Mean	5D 1	oliow-up	Follow-up time	SMD of interester	levent Sk	D	95%-CI
ance to Take 14. A ctail, 2017 26ards en B, ctail, 2012 26ards, C, atail, 2019 26ards, C, atail, 2019 26ards, M, et al., 2015 36ards, M, et al., 2015 36ards, M, et al., 2019 2008, Stail, 2019 2008, Stail, 2019 2008, Stail, 2019 2008, Stail, 2019 2008 2009 200 200	102 34 227 22 20 112 15 49 20 21 25 20 21 25	56.32 7.80 74.40 4.20 70.392 6.45 82.00 33.80 7.85 2.52 55.40 15.50 5.38 0.21 3.30 1.90 65.20 16.77 86.81 10.85 3.50 1.80 42.51 3.19 66.45 16.92	108 36 20 26 22 103 15 4 20 20 16 75	62 38 76 50 106.71 72 20 8.75 61.40 5.45 3.80 68.91 69.54 3.80 43.11 68.83	11.46 4.30 6.80 16.20 2.38 14.40 1.50 16.63 15.27 1.50 3.91 15.33	baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.4.4.4.4.4.4.4.4.4.4.4	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	51 L 49 L 41 L 38 L 33 L 22 L 18 L 17 L 15 L	0.89 -0.34 0.96 -0.01 1.03 0.20 0.92 0.17 0.94 0.23 0.95 0.02 1.00 0.44 0.65 0.21 0.61 0.17 0.80 0.44 0.82 0.44 0.82 0.44
ce, JT, et al., 2022: hao, JK, et al., 2016 II Mu, H, et al., 2016 II Mu, H, otta, 2017 II 441 S, et al., 2017 II 441 S, et al., 2017 II More et al., 2018 II Jongen F, et al. 2020 II han, et al., 2020 II benda, TK, et al., 2019 II Bendar, W, et al., 2019 II Bendar, W, et al., 2019 II 64, S, et al., 2023 II 16, S, et al., 2023 III 16, S, et al., 2023 IIII 16, S, et al., 2023 IIII 16, S, et al., 2023 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2528232828782818	1:00 0:50 537.07 314 76.78 19.91 22.06 3.44 12.32 4.35 06.00 16.70 78.78 19.91 22.06 3.44 12.32 4.35 06.00 16.70 78.99 18.85 0.75 0.21 58.29 50.71 -58.44 22.39 6.19 16.00 92.44 27.52 81.40 16.60	25199 2022 7071 196 75 18 74 155 80	2,50 54 68 79 49 22,38 12,74 97 09 61,90 79,49 0,76 50,44 -57,72 6,24 62,74 61,10	0.80 9.61 21.60 2.24 4.26 2.3.54 14.30 0.17 40.95 20.25 1.60 24.68 15.70	baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline	000 000 000 000 000 000 000 000 000 00		9. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	14 [-14 [-14 [-14 [-14 [-14 [-14 [-14 [-	0.68 0.39 0.52 0.25 0.57 0.11 0.64 0.42 0.68 0.49 0.41 0.26 0.43 0.26 0.37 0.18 0.37 0.28 0.36 0.27 0.37 0.28 0.37 0.28 0.36 0.47 0.37 0.28 0.36 0.62 0.37 0.28 0.38 0.62 0.34 0.28 0.34 0.28 0.34 0.28
Sado L, et al. 2020 Sado L, et al. 2018 I albashan H, et al. 2018 I Stassme, UW et al. 2018 Stassme, UW et al. 2020 I Stassme, UW et al. 2020 Samma L, E. E. C. 2018 Grahamane Schulz, B. 40, 2017 Grahaman, S. et al. 2018 Grahaman, S. et al. 2019 Grahaman, S. et al. 2016 Grahaman, S. et al. 2016 Grahaman, S. et al. 2016 Grahaman, S. et al. 2016 Sackon Jahansson, F. et al. 2011 Sackon Jahansson, F. et al. 2011	40 4 20 8 5 13 28 10 21 27 12 30 29 38 88	-68.20 82.5 6.29 150 44.09 8.48 6.77 0.19 25.80 8.30 70.50 16.50 54.35 26.09 78.30 17.70 22.98 3.08 41.66 5.15 93.41 16.90 49.6 1.74 22.60 4.30 57.30 2.30	42 74 50 75 52 53 88 10 43 89 12 53 58 51	-60,44 6,24 43,64 0,76 25,30 68,90 62,85 51,45 75,60 22,38 39,58 87,88 4,26 20,50 66,20	8.82 1.60 13.73 0.17 8.90 17.20 15.85 23.19 17.90 17.90 17.90 17.90 17.90 14.96 1.62 1.62 1.62 1.60 2.30	paseline paseline paseline paseline paseline paseline paseline paseline paseline paseline paseline paseline paseline paseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	<u>autoriantes de la constante de</u>	10 10 10 10 10 10 10 10 10 10 10 10 10 1	13 1-13 1-13 1-13 1-13 1-13 1-13 1-13 1	0.41; 0.47] 0.27; 0.34] 0.58; 0.66] 0.25; 0.36] 0.32; 0.44] 0.21; 0.40] 0.41; 0.63] 0.16; 0.33] 0.16; 0.33] 0.37; 0.67] 0.30; 0.75] 0.51; 1.10] 0.17; 0.86] 0.17; 0.86] 0.18; 0.87] 0.01; 0.94] 0.18; 0.77]
elekeradon, F. et al., 2022, u., X, et al., 2019 Savard J., et al., 2016 Savard J., et al., 2016 Savard J., et al., 2006 tial S., et al., 20111. Than, et al. 2005 Savard, E.W., et al. 2016 Savard, E.W., et al. 2016 Savard, R.W.,	24 203 20 21 22 00 26 80 80 167 131 73 167	4,71 1,07 61,70 4,00 63,80 19,80 3,52 0,95 12,50 4,99 80,31 41,32 22,15 4,45 71,69 74,33 71,51 51,52 68,43 27,76 53,86 22,246 73,40 16,70 61,80 16,20 65,76 26,18	24 10 22 10 23 75 29 75 15 100 63 71 16 7	3.94 55.30 72.20 3.95 13.70 66.46 22.58 77.23 75.69 70.36 55.07 74.30 62.60 66.24 75.75	1.06 0.09 16.60 0.91 3.89 47.98 2.24 63.91 53.26 22.70 20.28 17.70 13.90 24.76 24.76	baseline baseline followup followup followup followup followup followup followup followup followup followup followup	0.00 0.00 12.00 8.00 12.00 8.00 12.00 80.00 12.00 12.00 12.00 48.00 6.00 6.00 6.00 8.00 8.00 8.00 8.00	n an	01 1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	13 [0.13; 1.30] 0.88; 1.38] 1.07; 0.16] 1.00; 0.31] 0.85; 0.32] 0.45; 0.18] 0.65; 0.32] 0.45; 0.18] 0.39; 0.24] 0.39; 0.24] 0.39; 0.24] 0.39; 0.24] 0.34; 0.21] 0.35; 0.25] 0.38; 0.28] 0.24; 0.20]
7481, e8 at. 2016 2471, e12, e12, e13, 2019 2471, e13, e13, 2019 2571, e13, e13, 2019 2571, e13, e13, 2019 2571, e13, e1	806 812 80 85 77 78 100 29 131 80	0.47 120 12.00 61.11 07.38 40.78 0.55 160 05.00 28.00 22.71 2.08 80.28 26.77 84.19 23.56 4.05 0.69 4.05 0.69 14.90 9.40 -54.17 16.20	2074 12 15 15 74 25 23 19 00 25 25 23 18 20	73,75 8,48 12,00 55,55 76,04 6,49 54,00 22,58 78,03 62,32 4,00 4,00 14,00 -56,33 55,80	1,60 58,33 51,44 45,54 1,50 20,50 2,24 31,55 21,38 0,60 0,60 9,40 17,72 14,40	followup followup followup followup followup followup followup followup followup followup followup followup followup followup followup followup followup	4 00 16.00 24 00 24 00 48 00 8 00 8 00 40 0 12 00 24 00 40 0 12 00 8 00 40 0 40 0 40 0 40 0 12 00 12 00 10 00	an the state of th	.0 .0- .00 .00 .00 .00 .00 .00 .00 .00	01 [- 001 [- 002 [- 004 [- 004 [- 004 [- 006 [- 008 [- 08] [- 08] [- 08] [- 08]	0.33, 0.30] 0.32, 0.30] 0.80, 0.80] 0.30, 0.33] 0.28, 0.35] 0.27, 0.35] 0.47, 0.56] 0.47, 0.56] 0.47, 0.56] 0.47, 0.36] 0.45, 0.62] 0.21, 0.40] 0.45, 0.73] 0.21, 0.43]
Explain MJ, et al. 2018 Investi, C. et al., 2008 Investi, C. et al., 2008 Investi, C. et al., 2020 Investi, F. et al., 2021 II Spons, F. et al., 2018 II Spons, F. et al., 2018 II Spons, F. et al., 2018 II Spons, Spons, 2018 II Spons, Spons, 2018 II Spons, 2	11 66 1 00 15 76 20 59 58 58 78 48 22 76 5	72.60 16.00 6.65 160 80.40 25.30 95.21 22.08 4.30 100 107.34 18.00 89.52 33.46 94.70 35.69 67.70 23.80 67.71 70 13.17 4.75 80.64 13.64 22.40 7.70	63 74 43 00 15 75 20 70 1916 52 74 23 75 20	70 30 6,44 77 10 61 23 4,10 74,39 4,10 103,34 83,21 83,21 83,20 6,48 12,00 77,02 55,20 6,48	18.00 1.50 21.20 23.55 1.10 15.34 1.10 22.35 31.55 31.55 34.70 16.60 1.60 4.85 15.60	followup followup followup followup followup followup followup followup followup followup followup followup followup	24.00 16.00 12.00 36.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00			13 1-17 19 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0.17, 0.44] 0.18, 0.45] 0.38, 0.66] 0.10, 0.45] 0.53, 0.90] 0.13, 0.51] 0.43, 0.81] 0.43, 0.81] 0.44, 0.53] 0.05, 0.44] 0.39, 0.82] 0.07, 0.54] 0.07, 0.57] 0.07, 0.57] 0.07, 0.57]
tessame. UW, et al. 2022 tessame. UW, et al. 2023 tas, 8, et al. 2021 tas, 8, et al. 2021 tas, 4, et al. 2021 tas, 4, et al. 2021 tas, 4, et al. 2021 tas, 2014 tas, 2014 t	8 2 8 5 8 00 3 4 5 8 9 4 18 9 8	2740 770 7290 19:00 7270 15:80 27.90 8:10 78:00 14:30 78:00 14:30 63:41 22:11 54:40 5:00 7:06 15:0 9:57 371 91:32 29:00 97:31 15:45 0.85 0:17 71:73 15:45	52 22 80 52 80 100 103 74 51 61 96 30 74 83 78 53	25.40 67.90 68.00 24.80 72.90 55.07 62.30 6.44 8.21 78.03 88.13 6.49 62.80 0.75 21.90	780 16,70 13,50 8,90 13,40 23,19 6,00 1,50 3,02 31,55 16,18 1,50 17,63 0,19 5,00	followup followup followup followup followup followup followup followup followup followup followup followup followup followup	24 00 18.00 12.00 12.00 24.00 24.00 9.00 16.00 12.00 4.00 12.00 8.00 24.00 8.00 24.00 8	5 市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市			0.12, 0.64 0.33, 0.09 0.01, 0.63 0.02, 0.74 0.05, 0.65 0.05, 0.65 0.15, 0.65 0.15, 0.65 0.07, 0.79 0.07, 0.79 0.07, 0.79 0.01, 1.02 0.01, 1.02 0.01, 1.06 0.01, 1.06 0.05, 0.86 0.05, 0.85 0.05, 0.86 0.05, 0.85 0.05, 0.86 0.05, 0.85 0.05, 0.85 0.05, 0.85 0.05, 0.85 0.05, 0.85 0.05, 0.05 0.05, 0.55 0.05, 0.05 0.05, 0.05, 0.05 0.05, 0.05 0.05, 0.05 0.05, 0.05 0.05, 0.05
Saresen D, et al., 2012 Saresen D, et al., 2012 Songen F, et al., 2020 L Songen F, et al., 2020 L Saresen D, et al., 2012 Jun, H, et al., 2018 L Jun, H, et al., 2018 L Jun, X, et al., 2008 L Jun, X, et al., 2004 Saresen D, et al., 2004 Saresen D, et al., 2019 Archito, G, et al., 1996 Sough, G, et al., 2019	1337338884488512	78.40 370 80.40 330 0.86 0.13 75.50 360 113.19 35.69 74.38 11.48 84.541 16.08 84.94 14.59 85.41 16.08 84.94 14.59 80.20 19.94 -54.26 7.03 81.00 34.0 -48.72 12.22 110.14 6.83	1 36 36 76 36 19 28 19 42 42 30 42 36 19 20	76.40 78.20 0.75 72.90 87.72 54.40 83.21 71.90 71.59 88.18 -60.17 78.20 -60.78 103.57	2.90 3.20 0.19 3.80 34.70 14.73 31.55 18.50 18.73 14.02 7.28 3.20 14.95 7.71	fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup fallowup	500 200 800 1300 2400 1200 1200 800 2400 400 400 400 400	- 朱井 医卡里布里利辛夫 医清雪			0.12, 1.06] 0.13, 1.15] 0.35, 1.00] 0.21, 1.18] 0.48, 0.97] 0.20, 1.29] 0.51, 1.02] 0.33, 1.22] 0.34, 1.23] 0.26, 1.32] 0.35, 1.33] 0.35, 1.33] 0.18, 1.55] 0.25, 1.53]
Noori, G. et al., 2019 and er Maulan, C. et al., 2013 and er Maulan, C. et al., 2017 Sammari, S. et al. 2015 Jul, T. et al., 2019 Marchicon, G. et al. 1986 NeckLander, F. et al., 2022 Marchicon, G. et al. 1986 Marchicon, G. et al., 2022 Marchicon, G. et al., 2020 Marchicon, G. et al., 2020 Marchicon, G. et al., 2020 Shour, N., et al., 2020 Michaelm, N., et al., 2009 Michaelm, N., et al., 2009	22 802 02 12 49 49 18 24 18 29 112 112 20 9 112 112 20 9 112 112 112	110.41 7.29 77 50 2.80 76.58 9.08 19.55 2.02 56.65 9.40 52.67 10.32 72.33 13.36 -44.72 9.18 6.06 1.09 6.16 1.09 6.16 1.09 -41.17 8.91 114.37 597 7.48 1.12 6.68 3.21 6.51 0.25 6.33 0.22 81.70 10.04 7.51 0.98 8.67 0.23 6.33 9.25	20 918 62 12 553 16 22 4 19 20 9103 51 103 51 20 20 20 20 20 20 20 20 20 20 20 20 20	103.70 74 50 84 29 8.22 54 15 56 95 56 95 56 95 4.56 90.29 100.61 5.56 5.74 5.67 5.72 4.739 4.96 5.35	700 250 12.49 10.95 10.95 10.92 13.26 0.90 0.92 13.33 7.50 0.50 0.25 6.32 0.25 6.32 0.25 0.5 0.5	Tollowup followup	8.00 48.00 12.00 9.00 9.00 12.00 24.00 12.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00			322 [[11] 12] 12] 14] 12] 12] 14] 12] 12	0.28, 1.56] 0.28, 1.66] 0.79, 1.42] 0.83, 1.66] 0.83, 1.66] 0.87, 1.73] 0.84, 2.17] 0.87, 2.17] 0.88, 2.14] 0.87, 2.17] 0.98, 2.24] 1.13, 2.00] 1.54, 2.85] 1.52, 2.83] 2.17, 2.84] 1.59, 2.84] 2.17, 2.84] 1.59, 2.84] 2.17, 2.84] 1.59, 2.84] 2.17, 2.84] 2.24, 2.74] 2.24, 2.84] 2.24, 2.24] 2.24,
example enterval elegitamis strange JP et al. 2003 Strange JP, et al. 2003 Strange JP, et al. 2007 Homans JL, et al. 2003 Homans JL, et al. 2003 Marsen S, et al. 2003 Norsen S, et al. 2007 Homans JL, et al. 2007 Tolichen Intérval	33833338 215	6.00 1.70 83.30 11.90 68.80 15.90 6.00 1.50 6.20 1.30 91.60 15.00 70.50 17.30	33 39 88 33 39 88 35 151	6,40 84,89 63,50 6,30 6,30 87,79 54,40	1.40 9.20 15.60 1.50 1.60 14.70 16.30	baseline baseline baseline followup followup followup followup	0.00 0.00 16.00 10.00 10.00 12.00	\asta [±] a44	-0. -0. -0. -0. -0. -0. -0. -0. -0. -0.	25 [- 14 [- 33 [- 53 [- 26 [- 26 [- 26 [-	0.86; 1.97 0.74; 0.23] 0.60; 0.32] 0.00; 0.65] 1.02; 0.04] 0.55; 0.41] 0.20; 0.72] 0.04; 0.69] 0.79; 1.28] 2.22; 2.77]
Holine et al., 2022 Hono L, et al., 2022 Hono L, E, et al., 2007 Mhuta, ME, et al., 2018 Bong, E (-), et al., 2019 Sam, K, et al., 2019 Minuta, ME, et al., 2019 Annua, ME, et al., 2019 Annua, ME, et al., 2019 Annua, ME, et al., 2019 Sam, K, et al., 2019 Annua, ME, et al., 2019 Annua, ME, et al., 2019 Sam, K, et al., 2019 Annua, ME, et al., 2019 Annua, Ann	28 41 32 21 30 41 32 21 32 31 32 30 30 425	68.05 16.49 -82.35 14.02 11.90 4.40 63.06 19.74 47.69 18.42 56.22 3.88 -87.22 13.82 56.67 24.00 72.32 22.11 56.69 19.60 14.10 2.60 66.69 17.72 88.50 3.64 74.04 3.78	23 30 51 33 21 38 38 20 38 20 38 38 39 411	71.28 -80.57 11.50 56.22 38.22 59.37 -70.83 69.25 71.26 45.92 12.30 53.09 53.09 53.09 53.09 55.27	17.05 13.21 3.60 19.47 14.55 22.17 15.26 16.05 3.60 3.60 3.64 3.81	Daseline Daseline Daseline Daseline Daseline Daseline Tollowup followup followup followup followup followup followup	0.00 0.00 0.00 0.00 0.00 0.00 12.00 4.00 0.15 0.15 4.00 4.00 4.00 13.03 26.07		-0, -0, 0, -0, -0, -0, -0, -0, -0, -0, -	13 [- 13 [- 13 [- 13 [- 13 [- 13 [- 14] [- 53 [- 5] [- 53 [- 5] [- 53 [- 5] [-	0.85, 0.29 0.60, 0.34 0.39, 0.59 0.09, 0.69 0.07, 1.10 1.52, -0.27 1.01, -0.05 0.08, 0.67 0.05, 0.641 0.46, 0.57 0.09, 1.14 0.07, 1.06 0.07, 1.06 0.05, 1.26 0.95, 2.11 1.62, 2.94 0.07, 1.27 0.25, 1.26 0.95, 2.11 1.62, 2.94 0.07, 1.27 0.05, 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.2
rrenictiee interval tandom effect Prediction interval	9121		9253				-4 In tavor of	-2 Control group	0.5 2 4 vor of intervent	55 [E	1.05; 2.19] 0.14; 0.96] 0.86; 1.96] jroup

Figure S4.3. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the environment subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

50

Figure S4.4.T48

Experimental

Control

Study	Expe Patient N 1	erimental Mean SD Pa	tient N	Control Mean SD	follow-up Fo	dow-up time	SMD of interested event	SMD	95%-CI
Li, X., et al., 2017 Garssen B, et al., 2012 Rodin, C, et al., 2019 Seiniotaxi, T, et al., 2021 Zhoo, et al., 2016 Sentar, M, et al., 2016 Faran, R, et al., 2026 Etrasi, F, et al., 2021 Liu, T, et al., 2021 Liu, T, et al., 2021 Etrasi, F, et al., 2021 Etrasi, F, et al., 2021 Liu, T, et al., 2021	102 34 222 1 227 1 62 20 1 112 15 42 4 49 7 20	56.32 7.80 74.40 4.20 103.92 8.45 62.06 33.80 7.65 2.52 56.40 15.50 5.39 0.21 3.30 1.90 65.20 16.77 66.61 10.95 3.50 1.80	108 38 20 26 62 22 103 15 42 53 20	62.38 11.46 76.50 4.30 106.71 5.80 72.20 16.20 8.75 2.38 61.40 14.40 5.45 0.20 3.80 1.59 68.91 16.83 69.54 15.27 3.80 1.55	baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	+8++ **	-0.61 -0.49 -0.41 -0.36 -0.35 -0.29	-0.89; -0.34] -0.86; -0.01] -1.03; 0.20] +0.92; 0.17] -0.72; -0.01] -0.54; 0.28] -0.56; -0.02] -1.00; 0.44] -0.86; 0.21] -0.86; 0.21] -0.86; 0.21] -0.81; 0.17] -0.80; 0.44
Lipsard, J. et al., 2006 Napoles AM, et al. 2015 Lee, J. et al., 2022 Zhao, X. et al., 2022 Zhao, X. et al., 2022 Gui, H. et al., 2021 Yon Ah, D. et al., 2014 Hall S, et al., 2011 Schellekons, MPJ, et al. 2016 Reese, H. et al., 2021	21 76 29 52 98 26 22 22 69	42.51 3.19 60.46 16.92 3.50 0.60 53.70 3.14 76.78 19.91 22.06 3.44 12.32 4.35 96.43 21.60 60.80 16.70	10 75 51 196 23 70 71	43.11 3.81 68.83 15.33 3.60 0.80 54.89 9.61 79.49 21.50 22.38 2.24 12.74 4.26 97.06 23.54 61.90 14.30	baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 ****	-0.17 -0.15 -0.14 -0.13 -0.13 -0.11 -0.10 -0.07 -0.07	0.82, 0.44 0.82, 0.43 0.47, 0.17 0.68, 0.39 0.52, 0.25 0.37, 0.11 0.64, 0.42 0.68, 0.49 0.41, 0.26 0.40
Out, H, et al., 2018 I. Compent F, et al. 2020 I. Chan, et al. 2005 Marchitoro, C, et al. 1996 Brothart, W, et al. 2018 II. Reich, RR, et al. 2015 Caso G, et al. 2023 Caso G, et al. 2023	98 77 80 18 86 157 80 40 94	78.09 18.85 0.75 0.21 58.29 50.71 58.44 22.39 6.19 1.60 62.44 27.52 61.40 16.60 58.20 8.25 6.29 1.50	196 78 75 18 74 155 80 40 74	79.49 21.60 0.76 9.17 60.44 40.96 57.72 20.25 6.24 1.69 62.74 24.68 61.10 15.70 58.44 8.82 6.24 1.69	baseline baseline baseline baseline baseline baseline baseline baseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	****	-0.07 -0.05 -0.05 -0.03 -0.03 -0.01 0.02 0.03 0.03	-0.31; 0.18] -0.37; 0.26] -0.36; 0.27] -0.89; 0.62] -0.34; 0.28] -0.23; 0.21] -0.29; 0.33] -0.241; 0.47] -0.27; 0.34]
Compose T, et al., 2016 Compose T, et al., 2020 II Kissana, DW, et al., 2023 Esplen MJ, et al., 2018 Hormandoz, EG, et al., 2018 Kilminammer-Chabiko, M et al., 2012 Powell, CB, et al., 2009 Von AP, D, et al., 2015 Yoo, HJ, et al., 2015	20 90 55 131 28 21 27 27 12 30	41.09 8.48 0.77 0.19 25.80 8.30 70.50 16.50 64.86 20.04 54.35 26.09 78.30 17.70 22.98 3.08 41.86 8.15 93.41 16.90	20 78 52 63 28 100 43 29 12 30	43.64 (3.73 0.76 0.17 25.30 8.90 68.90 17.20 62.85 15.86 51.45 23.19 75.60 17.90 22.38 2.24 39.56 7.22 87.88 14.95	baseline baseline baseline baseline baseline baseline baseline baseline baseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.04 0.05 0.06 0.10 0.12 0.12 0.15 0.22 0.30 0.34	-0.25, 0.36 -0.25, 0.36 -0.32, 0.44 -0.21, 0.40 -0.41, 0.63 -0.16, 0.39 -0.37, 0.67 -0.30, 0.75 -0.51, 1.10 -0.17, 0.85
Cheung YL, et al. 2002 Geston-Johnsson, F, et al., 2011 van der Meulen, IC, et al., 2013 Jeiwertzachen, F, et al., 2013 Jeiwertzachen, F, et al., 2012 Lu, Z, et al., 2013 Sandru, J, et al., 2006 Hall, S, et al., 2011 Chan, et al. 2005 You ab. D, et al. 2012	29 38 24 203 21 22 80 26	436 174 22.80 430 67.30 230 4.71 107 61.70 400 63.80 19.80 3.62 0.95 12.50 4.99 60.31 41.32 22.15 4.45	30 35 91 24 103 22 16 23 75 29	436 162 20.60 400 66.20 230 394 106 56.30 600 72.20 16.60 3.95 0.91 13.70 3.89 66.46 47.98 22.56 2.24	baseline baseline baseline baseline baseline followup followup followup followup	0.00 0.00 0.00 0.00 12.00 8.00 4.00 12.00 8.00	∳akatat anatatatatatatatatatatatatatatatata	0.35 0.48 0.71 1.13 -0.45 -0.34 -0.26 -0.14 -0.12	+0.16; 0.87] [0.01; 0.94] [0.18; 0.77] [0.13; 1.30] [0.86; 1.38] [-1.07; 0.16] [-1.00; 0.31] [-0.85; 0.32] [-0.45; 0.18] [-0.45; 0.41]
Chan, et al. 2005 Chan, et al. 2005 Reich, RR, et al. 2016 Kinwtammer-Schalke, Met al., 2012 Esplen MJ, et al., 2018 Reice, JJ, et al., 2018 Reich, RR, et al. 2016 Chan, et al. 2016 Berdbart, W, et al. 2016 Berdbart, W, et al. 2015	80 167 100 131 73 187 80 86 12	71.69 74.33 71.81 51.52 68.43 27.76 53.62 22.48 73.40 16.70 61.80 18.20 65.76 26.18 73.13 34.98 6.47 1.20 12.00 61.11	75 75 155 100 63 71 155 75 75 74 12	77.23 63.91 75.69 53.26 70.36 22.70 55.07 20.29 74.36 13.90 62.60 13.90 66.24 24.76 73.76 47.11 6.49 1.60 12.00 59.33	totowup totowup totowup totowup totowup totowup totowup totowup	72.00 60.00 12.00 48.00 8.00 6.00 36.00 4.00 15.00	学生的 小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小小	-0.08 -0.08 -0.07 -0.05 -0.05 -0.05 -0.02 -0.01 -0.01	-0.39; 0.24 -0.39; 0.24 -0.29; 0.14 -0.34; 0.21 -0.36; 0.25 -0.36; 0.29 -0.24; 0.20 -0.33; 0.30 -0.32; 0.30]
Chan, et al. 2005 Chan, et al. 2005 Brielbart, w, et al. 2018 II. Beirardaki, T, et al. 2021 Yon An, D, et al. 2012 I. Onr, H, et al. 2018 II. Ninkhammer-Schalke, M et al. 2012 Lee, JT, et al. 2022 Lee, JT, et al. 2022 Forder ML, et al. 2015	80 80 80 27 8 98 100 29 29 29 131	67.36 46.78 77.86 49.54 6.55 1.60 65.00 28.00 22.71 2.08 80.28 26.77 64.13 23.56 4.05 0.60 4.05 0.50	75 75 74 29 196 100 25 83	66.55 51.44 76.04 45.64 6.49 1.50 64.06 20.50 22.58 2.24 78.03 31.55 62.32 21.38 4.00 0.60 4.00 9.60 14.00 9.40	tolewup tolewup tolewup tolewup tolewup tolewup tolewup tolewup	24.00 45.00 8.00 8.00 4.00 48.00 12.00 24.00 8.00 48.00 12.00 8.00	****	0.02 0.04 0.04 0.04 0.06 0.07 0.08 0.09 0.08 0.09 0.03 0.10	0.20, 0.33 0.28, 0.35 0.27, 0.35 0.50, 0.58 0.47, 0.58 0.47, 0.32 0.20, 0.30 0.45, 0.62 0.45, 0.62 0.45, 0.62
Marchara, S. et al. 1996 Na, S. et al., 2023 Eaplen MJ, et al., 2018 Fraithart, W. et al., 2018 Paretat, W. et al., 2018 Paretal, CB, et al., 2009 Kinkharmer-Schalks, Mit al., 2012 Episal, F. et al., 2021 Episal, F. et al., 2021 Episal, F. et al., 2021 Episal, F. et al., 2021	18	5417 16.90 67.70 16.20 72.00 16.00 6.65 1.50 80.40 26.30 65.21 22.09 4.30 1.00 77.24 15.13 4.30 1.00 07.75 18.80	18 80 63 74 43 100 15 75 20 70	-56.33 17.72 65.80 14.40 70.30 18.00 5.44 1.50 77.10 21.20 61.23 23.55 4.10 1.10 74.39 15.34 4.10 1.10 70.34 22.25	tolewup tolewup tolewup tolewup tolewup tolewup tolewup tolewup	4 00 4 00 24 00 16 00 12 00 36 00 24 00 12 00 24 00 12 00 8 00		0.12 0.13 0.13 0.14 0.17 0.19 0.19 0.19 0.19	-0.53; 0.78] -0.19; 0.43] -0.17; 0.44] -0.38; 0.45] -0.38; 0.66] -0.16; 0.45] -0.53; 0.30] -0.13; 0.51] -0.42; 0.83]
Cou, H, et al., 2018 H. Gui, H, et al., 2018 H. Santaly M, et al., 2018 H. Brathast W, et al., 2018 H. Hall S, at al., 2011 H. Hall S, at al., 2011 H. Napoke AM, et al. 2015 Kissane, DW, et al., 2023 Santaly M, actal, 2018 Na, B, et al., 2023	98 98 20 94 22 76 55 20 55	89.52 33.45 94.70 35.60 67.70 23.80 6.87 1.70 13.17 4.75 80.54 13.54 27.40 7.70 72.90 19.10 72.70 15.80 8.10	196 196 22 74 23 75 22 80 52	83.21 31.05 67.72 34.70 63.20 16.60 6.48 1.50 12.00 4.85 77.02 15.62 25.40 7.80 67.90 16.70 68.00 13.50 24.80 8.00	tolewup tolewup tolewup tolewup tolewup tolewup tolewup tolewup	12 00 24 00 24 00 100 24 00 100 24 00 18 00 12 00		0.20 0.20 0.22 0.23 0.24 0.25 0.26 0.27 0.32 0.35	0.05; 0.44 0.04; 0.44 0.09; 0.82; 0.07; 0.54 0.35; 0.83; 0.07; 0.57] 0.12; 0.64 0.33; 0.88; 0.01; 0.63] 0.02; 0.74
Via, 5, el el., 2023 Kinentamme-Schatke, Met al., 2012 Lu, 2, et al., 201 Breithart, W, et al. 2016 I Zheng, J, et al., 2027 Out, H, et al., 2016 I Yoo, H, et al., 2016 I Yoo, H, et al., 2016 I Hernandez, EG, et al. 2018 I Hernandez, EG, et al. 2018 I	80 100 203 94 61 98 30 94 28 94 28	78.00 14.30 63.41 22.11 64.40 5.00 7.06 1.50 9.67 3.71 91.32 29.00 97.01 18.24 7.33 1.70 71.73 15.45 0.85 0.17	80 100 103 74 61 196 30 74 29 78	72.90 13.40 55.07 23.19 62.30 6.00 6.44 1.50 8.21 3.02 78.03 31.55 88.13 16.18 6.49 1.50 62.90 17.53 0.75 0.19	totowup totowup totowup totowup totowup totowup totowup totowup	24.00 24.00 8.00 12.00 4.00 12.00 8.00 24.00 8.00 8.00	a de la casa de la cas	0.37 0.37 0.39 0.41 0.43 0.43 0.61 0.52 0.53 0.55	0.05; 0.68] (0.09; 0.65] (0.15; 0.63] (0.16; 0.73] (0.17; 0.73] (0.19; 0.68] (0.07; 1.02] (0.27; 0.63] (0.02; 1.06] (0.25; 0.66]
Gaster-Johansson, F. et al., 2011 Garssen B, et al., 2012 Garssen B, et al., 2012 Compen, F. et al., 2012 Gassen B, et al., 2012 Gassen B, et al., 2012 Gas, H, et al., 2016 Gau, H, et al., 2016 Gau, K, et al., 2020	38 34 34 34 77 34 77 98 1 98 1 98 1 42	24,70 4,30 78,40 3,70 80,40 3,30 0,85 0,13 75,50 3,60 113,18,35,69 74,38 11,48 107,32,31,23 85,41 16,08 85,41 16,08	35 36 38 78 38 196 28 196 42	21.90 5.00 78.40 2.90 78.20 3.20 0.75 0.19 72.90 3.80 87.72 34.70 64.40 14.73 83.21 31.55 71.90 18.50	totowup totowup totowup totowup totowup totowup totowup totowup	600 500 200 8.00 13.00 24.00 8.00 12.00 12.00 12.00	14 1 4 1 4 1 4 1	0.60 0.60 0.67 0.67 0.69 0.72 0.75 0.76 0.76	(0.13, 107) (0.12, 109) (0.12, 109) (0.12, 115) (0.25, 100) (0.21, 118) (0.48, 0.97) (0.49, 0.97) (0.20, 129) (0.51, 102) (0.32, 122) (0.33, 122)
Chil, A Midi, 2020 Gao C, et al. 2020 Gao C, et al. 2020 Garssen B, et al., 2012 Marchivora, G, et al. 1998 Rodin, G, et al., 2019 Rodin, G, et al., 2019 And er, Routen, IC, at al., 2013 Li, X, et al., 2017 Zhao X, et al. 2019	42 20 140 34 18 22 1 28 22 1 22 1 22 1 25 25 25 25 25 25 25 25 25 25	102.00 19.94 5425. 7.03 81.00 3.40 48.72 12.22 110.14 6.83 110.41 7.29 77.50 2.80 76.58 9.06 10.65 2.02	42 30 40 26 18 20 20 91 108 62	88.18 14.02 -60.17 7.28 78.20 3.20 -60.79 14.25 103.57 7.71 103.70 7.69 74.50 2.69 64.28 12.49 8.22 2.07	totowup totowup totowup totowup totowup totowup totowup totowup totowup	8.00 24.00 4.00 12.00 4.00 8.00 48.00 12.00 12.00 13.0	1 	0.79 0.79 0.82 0.84 0.87 0.89 0.92 1.11 1.12 1.18	$\begin{array}{c} (0.36, 1.23)\\ (0.26, 1.32)\\ (0.36, 1.27)\\ (0.36, 1.33)\\ (0.18, 1.55)\\ (0.28, 1.53)\\ (0.28, 1.56)\\ (0.79, 1.42)\\ (0.83, 1.41)\\ (0.80, 1.56)\\ \end{array}$
Rahmani, S. el al. 2015 Lin, T. et al. 2019 Lin, T. et al. 2019 Marchioro, G. et al. 1996 Jakethushth, F. et al. 2022 Marchioro, G. et al. 1996 Rodur, G. et al. 2019 Cheung YL, et al. 2009 Cheung YL, et al. 2009	12 4 49 1 18 - 24 24 22 1 29 112	66.86 9.40 62.67 10.32 72.33 13.36 44.72 9.18 6.05 1.00 6.16 1.09 41.17 5.91 14.37 6.97 7.48 1.12 6.30 0.25	12 53 53 18 24 24 18 20 30 103	64,16 10,95 49,47 10,92 56,95 10,03 -60,78 13,26 4,65 0,80 4,58 0,92 -60,28 13,33 100,61 7,59 5,36 0,59 5,74 0,25	followup followup followup followup followup followup followup followup followup followup	8.00 9.00 12.00 24.00 12.00 8.00 36.00 12.00 10.00 24.00		1.18 1.23 1.30 1.38 1.52 1.54 1.76 1.87 2.20 2.23	[0.30; 200] [0.81; 1.65] [0.87; 1.73] [0.84; 2.11] [0.87; 2.17] [0.89; 2.19] [0.88; 2.54] [1.32; 2.60] [1.54; 2.80] [1.54; 2.80] [1.54; 2.80]
Zhao, X, et al., 2021 Fann, JR, et al., 2009 Fann, JR, et al., 2009 Akbahash, N, at al., 2018 Cheung YL, et al. 2009 Fann, JR, et al., 2009 Fann, JR, et al., 2009 Fann, JR, et al., 2009 Production interval	52 1 112 112 20 1 29 112 112 0400	6668 321 651 025 633 022 8170 1004 751 098 667 023 633 025	51 103 20 30 103 103 6491	55.07 6.32 6.84 0.29 5.72 0.25 47.39 12.93 4.96 0.55 6.95 0.24 5.35 0.24	tollowup tollowup tollowup tollowup tollowup tollowup tollowup	12.00 96.00 12.00 12.00 5.00 48.00 72.00	****	231 247 253 291 302 306 398 0.06	[1.80; 2.81] [2.12; 2.83] [2.17; 2.83] [1.99; 3.82] [2.26; 3.70] [2.06; 3.45] [3.52; 4.45] [0.33; 2.05] (1.02; 2.74]
Noteptiani Hering: OP 61 51, 2013 Dinsen, S. et al. 2007 Thomas, ML, et al. 2012 Herney, SP, et al. 2003 Dinsen, S, et al. 2003 Dinsen, S, et al. 2007 Thomas, ML, et al. 2012 Randoos stiffact Prediction interval	33 34 64 33 33 34 64 205	500 170 83.30 1190 66.80 15.90 6.00 150 6.20 1.30 91.60 15.00 70.50 17.30	33 38 88 33 33 38 88 351	5.40 1.40 84.80 9.20 63.50 15.50 6.80 1.50 6.30 1.60 87.70 14.70 64.40 16.30	teseline baseline baseline followup followup followup followup	0.00 0.00 0.00 16.00 6.00 10.00 12.00	*****	-0.25 -0.14 0.33 -0.53 -0.07 0.26 0.38 0.55	-0.74: 0.23 -0.60: 0.32 [0.00: 0.65 -1.02: -0.04] -0.55: 0.41 -0.20: 0.722 [0.04: 0.69] -0.03: 2.13 1.05; 2.04]
Pend, L. et al., 2022 Pend, B. L. et al., 2007 Minuta, M.E. et al., 2019 Cengu, H.D. et al., 2019 Pends, L. et al., 2019 Pends, L. et al., 2019 Pends, L. et al., 2020 Pends, L. et al., 2020 Pends, L. et al., 2020 Pends, L. et al., 2020 Pends, L. et al., 2021 Beddy, L. et al., 2019 Beddy, L. et al., 2019 Beddy, L. et al., 2015 Beddy, L. et al., 2015 Beddy, L. et al., 2015	28 41 32 9 21 4 21 4 21 4 28 2 28 2 28 2 21 9 28 2 21 9 22 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30	68.06 16.49 42.25 14.02 11.80 4.40 63.06 19.74 47.69 18.42 66.22 3.58 47.22 13.62 66.67 24.00 72.32 22.11 46.69 19.80 14.10 2.60 66.98 17.72 66.98 13.72 74.04 3.78	29 30 33 21 30 32 29 22 33 30 29 21 33 30 30 11	71.26 17.05 -30.57 13.21 11.50 3.60 55.22 18.26 38.22 15.47 68.27 3.82 -79.63 14.56 69.25 22.17 71.26 15.26 12.30 3.60 53.03 18.85 62.93 3.64 66.27 3.81	baseline baseline baseline baseline baseline baseline baseline baseup balowup balowup balowup balowup balowup balowup balowup balowup balowup balowup	0.00 0.00 0.00 0.00 0.00 8.00 12.00 4.00 0.10 10.00 4.00 4.00 4.00 4.00	+*********	-0.13 -0.13 0.10 0.41 0.66 -0.80 -0.53 -0.11 0.06 0.53 0.56 0.763 2.28 0.07	0.66; 0.39 0.66; 0.34 0.30; 0.56 0.07; 1.16 1.32; 0.27 1.03; 0.26 1.32; 0.27 1.03; 0.41 0.06; 1.14 0.07; 1.06 0.26; 1.28 0.25; 1.28 0.25; 2.24 0.34; 2.94 0.34; 2.94
Production Interval Random effect Prediction interval	9121		9253					0.85) 1 4	(4.98; 2.71) (4.34; 2.94) (4.02; 2.73)

Figure S4.4.Subgroup analysis of the Global QoL Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the environment subgroups as predicted at week 48 (postintervention). SMD - Standardized mean difference, CI - confidence interval. S5.Subgroup analysis of Global QoL: Type

Figure S5.1.T0

Study	Experimental Patient N Mean SD	Patient N	Control Mean SD foll	low-up Follow-I	up time SMD of	interested event	SMD	95%-CI
individual Li, X, et al., 2017 Garssen B, et al., 2012	102 56.32 7.80 34 74.40 4.20	108 36	62.38 11.46 ba 76.50 4.30 ba	iseline 0.0 Iseline 0.0	00	ŧ	-0.61 -0.49	-0.89; -0.34] -0.96; -0.01]
Rodin, G, et al., 2019 Seliniotaki, T, et al., 2021 Zhao,X, et al. 2015	22 103.92 6.45 27 62.00 33.80 62 7.85 2.52	20 26 62	106.71 6.80 ba: 72.20 16.20 ba: 8.75 2.38 ba:	iseline 0.0 iseline 0.0 iseline 0.0	00 00 00		-0.41 -0.38 -0.36	-1.03; 0.20] -0.92; 0.17] -0.72; -0.01]
Serfaty M, et al., 2018 Fann, JR, et al., 2009 Elyasi, F, et al., 2021 I.	20 56.40 15.50 112 5.39 0.21 15 3.30 1.90	22 103 15	61.40 14.40 ba: 5.45 0.20 ba: 3.80 1.50 ba:	iseline 0.0 iseline 0.0 iseline 0.0	00 00 00		-0.33 -0.29 -0.28	-0.94; 0.28] -0.56; -0.02] -1.00; 0.44]
Walczak, A, et al.,2017 Chu, X. et al, 2020 Elyasi, F, et al., 2021 II.	61 71.84 16.33 42 65.20 16.77 20 3.50 1.80	49 42 20	75.99 15.72 ba: 68.91 16.63 ba: 3.80 1.50 ba:	iseline 0.0 iseline 0.0 iseline 0.0	00 00 00	Ŧ	-0.26 -0.22 -0.18	-0.63; 0.12] -0.65; 0.21] -0.80; 0.44]
Savard, J, et al., 2006 Nápoles AM, et al. 2015 Dirksen, S. et al. 2007	21 42.51 3.19 76 66.46 16.92 34 83.30 11.90	16 75 38	43.11 3.91 ba: 68.83 15.33 ba: 84.80 9.20 ba:	Iseline 0.0 Iseline 0.0 Iseline 0.0	00 00 00	1	-0.17 -0.15 -0.14	-0.82, 0.48] -0.47, 0.17] -0.60, 0.321
Zhao, X, et al., 2021 Qiu, H, et al., 2018 II. Sandeund C, et al., 2017	52 53.70 3.14 98 76.78 19.91 72 64.20 21.80	51 196 70	54.69 9.61 ba 79.49 21.60 ba 66.70 19.70 ba	iseline 0.0 Iseline 0.0	0		-0.14 -0.13	-0.52 0.25] -0.37: 0.11]
Hall S ,et al., 2011 I. Reese, JB, et al., 2012	22 12.32 4.35 73 60.80 16.70	23 71	12.74 4.26 ba 61.90 14.30 ba	iseline 0.0 Iseline 0.0	00	1	-0.10	-0.68, 0.49] -0.40, 0.26]
Chan, et al. 2005 Marchioro, G, et al. 1996	80 58.29 50.71 18 -58.44 22.39	75	60.44 40.96 ba -57.72 20.25 ba	iseline 0.0 Iseline 0.0	00		-0.05	-0.36; 0.27] -0.69; 0.62]
Breitbart, W, et al. 2018 II. Gao Q, et al. 2020 Breitbart, W, et al. 2018 I.	40 -68.20 8.25 94 6.29 1.50	40 74	-68.44 8.82 ba: 6.24 1.60 ba:	iseline 0.0 iseline 0.0 iseline 0.0	00	- -	-0.03 0.03 0.03	-0.34; 0.28] -0.41; 0.47] -0.27; 0.34]
Rissane, DW, et al., 2023 Girgis, A, et al., 2009 I. Girgis, A, et al., 2009 II.	55 25.80 8.30 110 73.20 19.60 120 74.00 18.20	52 117 117	25.30 8.90 bas 71.90 17.60 bas 71.90 17.60 bas	iseline 0.0 iseline 0.0 iseline 0.0	00 00		0.06	-0.32; 0.44] -0.19; 0.33] -0.14; 0.37]
Klinkhammer-Schalke, M et al., 2012 Powell, CB, et al., 2008 Thomas, ML, et al., 2012	2 100 54.35 26.09 21 78.30 17.70 64 68.80 15.90	100 43 88	51.45 23.19 ba: 75.60 17.90 ba: 63.60 15.60 ba:	iseline 0.0 iseline 0.0 iseline 0.0	0 00 00		0.12 0.15 0.33	-0.16; 0.39] -0.37; 0.67] [0.00; 0.65]
Cheung YL, et al. 2002 Peoples, AR, et al., 2016 Gaston-Johansson, F, et al., 2011	29 4.96 1.74 24 78.90 15.30 38 22.60 4.30	30 24 35	4.36 1.62 ba: 71.90 19.70 ba: 20.60 4.00 ba:	iseline 0.0 iseline 0.0 iseline 0.0	0 00 00		0.35 0.39 0.48	-0.16; 0.87] -0.18; 0.96] [0.01; 0.94]
van der Meulen, IC, et al., 2013 Northouse, LL, et al., 2015 Ham, K, et al., 2019	88 67.30 2.30 17 81.30 3.88 21 47.69 18.42	91 19 21	66.20 2.30 ba: 79.63 2.96 ba: 38.22 15.47 ba:	iseline 0.0 Iseline 0.0 Iseline 0.0	00 00 00	-	0.48 0.48 0.55	[0.18; 0.77] -0.19; 1.14] -0.07; 1.16]
Lu, Z, et al., 201 Beatty, L. et al. 2015 Serfaty M. et al., 2018	203 61.70 4.00 30 56.22 3.88 20 63.80 19.80	103 30 22	56.30 6.00 ba: 59.37 3.92 foll 72.20 16.60 foll	Iseline 0.0 Nowup 6.0 Nowup 12.	00 00 · ·	-	1.13 -0.80 -0.45	0.88; 1.38] -1.32; -0.27] -1.07; 0.16]
Savard, J, et al., 2006 Hall S, et al., 2011 I. Chan, et al. 2005	21 3.62 0.95 22 12.50 4.99 80 60.31 41.32	16 23 75	3.95 0.91 foll 13.70 3.89 foll 66.46 47.98 foll	llowup 8.0 llowup 4.0	00	· 특	-0.34 -0.26	-1.00; 0.31] -0.85; 0.32] -0.45; 0.18]
Sandsund, C, et al., 2017 Chan, et al. 2005 Chan, et al. 2005	72 67.50 22.60 80 71.69 74.33 80 71.61 51.52	70 75 75	69.40 21.10 foll 77.23 63.91 foll 75.69 53.26 foll	llowup 24. Ilowup 72.	00	1	-0.09 -0.08	-0.42; 0.24] -0.39; 0.24] -0.39; 0.24]
Klinkhammer-Schalke, M et al., 2012 Sandsund, C, et al., 2017 Rosco, IR et al., 2021	2 100 53.62 22.46 72 66.20 19.10 73 61.90 19.20	100 70 71	55.07 20.29 foll 67.30 22.00 foll 62.60 13.00 foll	llowup 12. Ilowup 12.	00		-0.07	-0.34; 0.21] -0.38; 0.28]
Chan, et al. 2005 Breitbart, W, et al. 2018 II.	80 73.13 34.88 86 6.47 1.20	75 74	73.75 47.11 foll 6.48 1.60 foll	llowup 36. Ilowup 4.0	00		-0.01	-0.32, 0.30] -0.32, 0.30]
Chan, et al. 2005 Northhouse, LL, et al., 2007	80 67.38 46.78 104 86.10 10.90	75	66.55 51.44 foll 85.80 10.70 foll	llowup 32. Ilowup 24. Ilowup 48.	00		0.02	-0.25, 0.27] -0.30; 0.33] -0.24; 0.29]
Girgis, A, et al., 2009 I. Chan, et al. 2005 Breitbart, W, et al. 2018 II.	110 79.20 19.20 80 77.86 49.64 86 6.55 1.60	117 75 74	76.04 45.64 foll 6.49 1.50 foll	llowup 24. Ilowup 48. Ilowup 8.0	00 00)0		0.03 0.04 0.04	-0.23; 0.29] -0.28; 0.35] -0.27; 0.35]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II. Girgis, A, et al., 2009 II.	27 65.00 28.00 98 80.28 26.77 120 79.90 17.40	26 196 117	64.00 20.50 foll 78.03 31.55 foll 78.60 16.70 foll	llowup 8.0 llowup 4.0 llowup 24.	0 00 00		0.04 0.07 0.08	-0.50; 0.58] -0.17; 0.32] -0.18; 0.33]
Klinkhammer-Schalke, M et al., 2012 Marchioro, G, et al. 1996 Girgis, A, et al., 2009 I.	100 64.13 23.56 18 -54.17 16.90 110 78.30 19.40	100 18 117	62.32 21.38 foll -56.33 17.72 foll 76.00 16.30 foll	Ilowup 48. Ilowup 4.0 Ilowup 12.	00 00 00		0.08	-0.20; 0.36] -0.53; 0.78] -0.13; 0.39]
Breitbart, W, et al. 2018 II. Powell, CB, et al., 2008 Northbouse 11, et al. 2007	86 6.65 1.60 21 80.40 26.30 112 87.20 10.60	74 43 123	6.44 1.50 foll 77.10 21.20 foll 85.50 10.30 foll	llowup 16. Ilowup 12. Ilowup 16	00		0.13	-0.18; 0.45] -0.38; 0.66] -0.09; 0.421
Klinkhammer-Schalke, M et al., 2012 Girgis, A, et al., 2009 II. Flyasi, F, et al., 2021 I.	100 65.21 22.09 120 79.00 16.40 15 4.30 1.00	100 117 15	61.23 23.55 foll 76.00 16.30 foll 4.10 1.10 foll	llowup 36. Ilowup 12. Ilowup 24	00		0.17	-0.10; 0.45] -0.07; 0.44] -0.53; 0.90]
Nápoles AM, et al. 2015 Elyasi, F, et al. 2021 II. Oly M, et al. 2018 II.	76 77.24 15.13 20 4.30 1.00 99 99 52 33 46	75 20	74.39 15.34 foll 4.10 1.10 foll 93.21 31.55 foll	llowup 12. Ilowup 24.	00		0.19	-0.13; 0.51] -0.43; 0.81]
Qiu, H, et al., 2018 II. Seriaty M, et al., 2018 II. Beriaty M, et al., 2018	98 94.70 35.69 20 67.70 23.80	196 22	87.72 34.70 foll 63.20 16.60 foll	llowup 24. Ilowup 24.	00		0.20	-0.04; 0.44] -0.39; 0.82]
Hall S et al. 2011 I. Nápoles AM, et al. 2015	94 6.87 1.70 22 13.17 4.75 76 80.64 13.64	23 75	0.48 1.60 foll 12.00 4.85 foll 77.02 15.62 foll	llowup 4.0 Ilowup 1.0 Ilowup 24.	00	-E	0.23	-0.07; 0.54] -0.35; 0.83] -0.07; 0.57]
Rissane, DW, et al., 2023 Dirksen, S. et al, 2007 Serfaty M, et al., 2018	34 91.60 15.00 20 72.90 19.10	38 22	25.40 7.80 foll 87.70 14.70 foll 67.90 16.70 foll	llowup 24. Ilowup 10. Ilowup 18.	00 00 00	통	0.26 0.26 0.27	-0.12; 0.64] -0.20; 0.72] -0.33; 0.88]
Kissane, DW, et al., 2023 Thomas, ML, et al., 2012 Klinkhammer-Schalke, M et al., 2012	55 27.90 8.10 64 70.50 17.30 100 63.41 22.11	52 88 100	24.80 8.90 foll 64.40 16.30 foll 55.07 23.19 foll	llowup 12. llowup 12. llowup 24.	00 00 00	ALMAN A	0.36 0.36 0.37	-0.02; 0.74] [0.04; 0.69] [0.09; 0.65]
Walczak, A, et al., 2017 Lu, Z, et al., 201 Breitbart, W. et al. 2018 I.	61 77.76 18.80 203 64.40 5.00 94 7.06 1.50	49 103 74	70.87 16.33 foll 62.30 6.00 foll 6.44 1.50 foll	llowup 4.0 llowup 9.0 llowup 16.	00 00 00	N. H. H.	0.39 0.39 0.41	[0.01; 0.77] [0.15; 0.63] [0.10; 0.72]
Zhang, J, et al., 2021 Qiu, H, et al., 2018 I. Breitbart, W. et al. 2018 I.	61 9.67 3.71 98 91.32 29.00 94 7.33 1.70	61 196 74	8.21 3.02 foll 78.03 31.55 foll 6.49 1.50 foll	Ilowup 12. Ilowup 4.0 Ilowup 8.0	00 00		0.43 0.43 0.52	[0.07; 0.79] [0.19; 0.68] [0.21: 0.83]
Ham, K, et al. 2019 Peoples, AR, et al., 2016 Gaston-Johansson F, et al. 2011	21 54.69 19.80 24 87.90 13.90 38 24.70 4.30	21 24 35	45.02 16.05 foll 79.70 15.70 foll 21.90 5.00 foll	llowup 10. Ilowup 7.0	00		0.53	-0.09; 1.14] -0.03; 1.12] -0.13; 1.07]
Garssen B, et al., 2012 Garssen B, et al., 2012 Carssen B, et al., 2012	34 78.40 3.70 34 80.40 3.30 34 75.50 3.60	36 36 26	76.40 2.90 foll 78.20 3.20 foll 72.90 3.20 foll	llowup 5.0 llowup 2.0	00	-	0.60	0.12, 1.08]
Peoples, AR, et al., 2016 Qiu, H, et al., 2018 I.	24 91.40 15.00 98 113.18 35.69	24 196	78.60 20.60 foll 87.72 34.70 foll	llowup 12. Ilowup 24.	00		0.70	[0.11; 1.28] [0.48; 0.97]
Chu, X. et al, 2020 Chu, X. et al, 2020 Chu, X. et al, 2020	42 85.41 16.08 42 84.94 14.59	42	71.59 18.73 foll	llowup 12. Ilowup 12. Ilowup 8.0	00	높	0.76	[0.33; 1.22] [0.34; 1.23]
Gao Q, et al. 2020 Garssen B, et al., 2012 Marchioro, G, et al. 1996	40 -54.26 7.03 34 81.00 3.40 18 -48.72 12.22	40 36 18	-60.17 7.28 foll 78.20 3.20 foll -60.78 14.85 foll	llowup 4.0 llowup 4.0 llowup 12.	0 00 00	*	0.82 0.84 0.87	[0.36; 1.27] [0.35; 1.33] [0.18; 1.55]
Rodin, G, et al., 2019 Rodin, G, et al., 2019 van der Meulen, IC, et al., 2013	22 110.14 6.83 22 110.41 7.29 88 77.50 2.80	20 20 91	103.57 7.71 foll 103.70 7.00 foll 74.50 2.60 foll	llowup 4.0 llowup 8.0 llowup 48.	00 00 00	-	0.89 0.92 1.11	[0.25; 1.53] [0.28; 1.56] [0.79; 1.42]
LI, X, et al., 2017 Zhao, X, et al. 2015 Marchioro, G, et al. 1996	102 76.58 9.06 62 10.65 2.02 18 -44.72 9.18	108 62 18	64.28 12.49 foll 8.22 2.07 foll -60.78 13.26 foll	Ilowup 12. Ilowup 0.3 Ilowup 24	00 30 00	-	1.12 1.18 1.38	[0.83; 1.41] [0.80; 1.56] [0.64: 2.11]
Beatty, L. et al. 2015 Marchioro, G. et al. 1996 Rodin G. et al. 2019	30 68.50 3.64 18 -41.17 6.91 22 114.37 6.97	30 18 20	62.85 3.64 foll -60.28 13.33 foll 100.61 7.50 foll	llowup 13. Ilowup 36.	03		1.53 1.76 1.87	[0.95; 2.11] [0.98; 2.54] [1.13; 2.60]
Cheung YL, et al. 2002 Fann, JR, et al. 2009 Roothy L, et al. 2009	29 7.48 1.12 112 6.30 0.25 20 74.04 3.79	30 103 20	5.56 0.50 foll 5.74 0.25 foll 65.27 2.84 foll	llowup 10. Ilowup 24.	00		2.20	[1.54; 2.85] [1.89; 2.57]
Zhao, X, et al., 2013 Fann, JR, et al., 2009	52 66.68 3.21 112 6.51 0.25	51 103	55.07 6.32 foll 5.84 0.29 foll	llowup 12. Ilowup 96.	00	-	2.31 2.47	[1.80; 2.84] [2.12; 2.83]
Fann, JR, et al. 2009 Cheung YL, et al. 2002 Fann, JR, et al., 2009	112 6.33 0.22 29 7.51 0.98 112 6.67 0.23	103 30 103	5.72 0.26 foll 4.96 0.66 foll 5.95 0.24 foll	llowup 12. Ilowup 5.0 Ilowup 48.	00		2.53 3.02 3.06	[2.17, 2.89] [2.26, 3.78] [2.66, 3.45]
Northouse, LL, et al., 2015 Fann, JR, et al., 2009 Random effect	17 88.51 3.03 112 6.33 0.25 7706	19 103 8192	76.94 3.44 foll 5.35 0.24 foll	llowup 2.0 Ilowup 72.	00 00	¢ "	3.48 3.98 0.68	[2.41; 4.55] [3.52; 4.45] [0.37; 0.99]
Prediction interval group							I	-0.59; 1.95]
Heiney, SP, et al., 2003 Liu, T, et al., 2019 Lee, JT, et al., 2022	33 6.00 1.70 49 66.61 10.85 29 3.50 0.60	33 53 25	6.40 1.40 ba: 69.54 15.27 ba: 3.60 0.80 ba:	iseline 0.0 iseline 0.0 iseline 0.0	0 0 00	Ŧ	-0.25 -0.22 -0.14	-0.74; 0.23] -0.61; 0.17] -0.68; 0.39]
Peng, L, et al., 2022 Penedo, FJ, et al., 2007 Von Ah, D, et al., 2012 I.	28 69.05 16.49 41 -82.35 14.02 26 22.06 3.44	29 30 29	71.26 17.05 ba: -80.57 13.21 ba: 22.38 2.24 ba:	iseline 0.0 Iseline 0.0 Iseline 0.0	0 0 00	1	-0.13 -0.13 -0.11	-0.65; 0.39] -0.60; 0.34] -0.64; 0.42]
Schellekens, MPJ, et al. 2016 Compen F, et al. 2020 I. Reich, RR, et al. 2016	69 95.43 21.60 77 0.75 0.21 167 62.44 27.52	70 78 155	97.09 23.54 bas 0.76 0.17 bas 62.74 24.68 bas	iseline 0.0 iseline 0.0 iseline 0.0	00 00		-0.07 -0.05 -0.01	-0.41; 0.26] -0.37; 0.26] -0.23; 0.21]
Xia, S, et al., 2023 Nikbakhsh, N, et al., 2018 Company E, et al. 2020 II	80 61.40 16.60 20 44.09 8.48 90 0.77 0.19	80 20 78	61.10 15.70 bas 43.64 13.73 bas 0.76 0.17 bas	iseline 0.0 Iseline 0.0	00	-	0.02	-0.29; 0.33] -0.58; 0.66] -0.25; 0.36]
Esplen MJ, et al., 2018 Mihuta, ME, et al., 2018	131 70.50 16.50 32 11.90 4.40	63 33	68.90 17.20 bas 11.50 3.60 bas	iseline 0.0 Iseline 0.0	00	Ŧ	0.10	-0.21, 0.40] -0.39, 0.59]
Von Ah, D, et al.,2012 II. Rahmani, S, et al. 2015	28 64.86 20.04 27 22.98 3.08 12 41.66 6.15	28 29 12	22.38 2.24 ba 39.58 7.22 ba	iseline 0.0 Iseline 0.0 Iseline 0.0	00		0.22	-0.41, 0.63 -0.30; 0.75] -0.51; 1.10]
Cengiz, HO, et al., 2004 Jelvehzadeh, F, et al., 2022	30 93.41 16.90 32 63.06 19.74 24 4.71 1.07	30 33 24	55.22 18.26 bas 3.94 1.06 bas	iseline 0.0 iseline 0.0 iseline 0.0	00 00	_ F	0.34	-0.17; 0.85] -0.08; 0.90] [0.13; 1.30]
Penedo, FJ, et al., 2007 Heiney, SP, et al., 2003 Von Ah, D, et al., 2012 I.	41 -87.22 13.82 33 6.00 1.50 26 22.15 4.45	30 33 29	-79.63 14.56 foll 6.80 1.50 foll 22.58 2.24 foll	llowup 12. Ilowup 16. Ilowup 8.0	00	특 -	-0.53 -0.53 -0.12	-1.01; -0.05] -1.02; -0.04] -0.65; 0.41]
Peng, L, et al., 2022 Reich, RR, et al. 2016 Heiney, SP, et al., 2003	28 66.67 24.00 167 68.43 27.76 33 6.20 1.30	29 155 33	69.25 22.17 foll 70.36 22.70 foll 6.30 1.60 foll	llowup 4.0 Ilowup 12. Ilowup 6.0	00 00 00	i i	-0.11 -0.08 -0.07	-0.63; 0.41] -0.29; 0.14] -0.55; 0.41]
Esplen MJ, et al., 2018 Reich, RR, et al. 2016 Rahmani, S, et al. 2015	131 73.40 16.70 167 65.76 26.18 12 12.00 61.11	63 155 12	74.30 17.70 foll 66.24 24.76 foll 12.00 58.33 foll	llowup 48. Ilowup 6.0 Ilowup 16.	00 00 00	-	-0.05 -0.02 0.00	-0.35; 0.25] -0.24; 0.20] -0.80; 0.80]
Peng, L, et al., 2022 Von Ah, D, et al., 2012 II. Lee, JT, et al., 2022	28 72.32 22.11 27 22.71 2.08 29 4.05 0.60	29 29 25	71.26 15.26 foll 22.58 2.24 foll 4.00 0.60 foll	llowup 0.1 Ilowup 8.0 Ilowup 12.	10 00 00		0.06	-0.46; 0.57] -0.47; 0.58] -0.45; 0.62]
Lee, JT, et al., 2022 Esplen MJ, et al., 2018 Xia, S, et al., 2023	29 4.05 0.60 131 14.90 9.40 80 67.70 16.20	25 63 80	4.00 0.60 foll 14.00 9.40 foll 65.80 14.40 foll	Ilowup 24. Ilowup 8.0	00	÷.	0.08	-0.45; 0.62] -0.21; 0.40] -0.19; 0.43]
Esplen MJ, et al., 2018 Schellekens, MPJ, et al. 2016 Via S. et al. 2022	131 72.60 16.60 69 107.36 18.80 90 72.70 15.90	63 70	70.30 18.00 foll 103.34 22.35 foll 68.00 13.50 foll	llowup 24. Ilowup 8.0	00		0.13	-0.17; 0.44] -0.14; 0.53]
Xia, S, et al., 2023 Yoo, HJ, et al. 2004	80 78.00 14.30 30 97.01 18.24	80 30	72.90 13.40 foll 88.13 16.18 foll	llowup 24. Ilowup 12.	00		0.37	0.05; 0.68]
Compen F, et al. 2020 II. Mihuta, ME, et al., 2018	20 71.73 15.45 90 0.85 0.17 32 14.10 2.60	20 78 33	0.75 0.19 foll 12.30 3.60 foll	llowup 8.0 Ilowup 8.0 Ilowup 4.0	00		0.55	[0.25; 0.86] [0.07; 1.06]
Compen F, et al. 20201. Hernandez, EG, et al. 2018 Cengiz, HO, et al., 2023	28 74.38 11.48 32 66.98 17.72	28 33	64.40 14.73 foll 53.03 18.65 foll	llowup 8.0 Ilowup 8.0 Ilowup 8.0	00 00	*	0.67 0.75 0.76	[0.35; 1.00] [0.20; 1.29] [0.25; 1.26]
Yoo, HJ, et al. 2004 Rahmani, S, et al. 2015 Liu, T, et al., 2019	30 102.00 19.94 12 66.66 9.40 49 62.67 10.32	30 12 53	88.18 14.02 foll 54.16 10.95 foll 49.47 10.92 foll	llowup 24. Ilowup 8.0 Ilowup 9.0	00 00 00		0.79 1.18 1.23	[0.26; 1.32] [0.30; 2.06] [0.81; 1.66]
Liu, T, et al., 2019 Jelvehzadeh, F, et al., 2022 Jelvehzadeh, F, et al., 2022	49 72.33 13.36 24 6.05 1.00 24 6.16 1.09	53 24 24	56.95 10.03 foll 4.65 0.80 foll 4.58 0.92 foll	llowup 12. Ilowup 12. Ilowup 8.0	00	-	1.30 1.52 1.54	[0.87; 1.73] [0.87; 2.17] [0.89; 2.19]
Nikbakhsh, N, et al., 2018 Random effect Prediction interval	20 81.70 10.04 2872	20 2539	47.39 12.93 foll	llowup 12.	00		2.91 0.61	[1.99; 3.82] [0.27; 0.95] -0.66; 1.89]
self-help van den Bern SW et al 2015 II	70 66 79 16 57	80	69.79 17 91 ho	iseline or	00	1	-0 17	-0.49: 0 151
Wang, TJ, et al 2023 van der Hout, AVD, et al. 2019 Walker I G, et al. 1992	70 102.30 18.40 320 85.30 14.90 48 3.25 0.70	72 304 48	104.40 17.10 ba 85.40 13.60 ba 3.25 0.64	iseline 0.0	00 00	東京	-0.12	-0.45; 0.21] -0.16; 0.15] -0.40; 0.40
Rosen, KD, et al., 2018 Wang, TJ, et al. 2023 Van der Hout AVD, et al. 2010	57 93.61 22.68 70 105.40 17.80 320 88.70 13.00	55 72	92.96 25.12 bas 103.50 20.00 foll 86.50 13.10	Iseline 0.0 Ilowup 8.0	00 00		0.03	-0.34; 0.40] -0.23; 0.43]
van der Hout, AVD, et al. 2019 van der Hout, AVD, et al. 2019 Wang TL et al. 2019	320 88.40 12.10 320 89.30 12.30 70 107.20 10	304 304 72	86.20 12.80 foll 87.00 12.70 foll 103.30 10.22 foll	llowup 1.0 llowup 24.	00		0.18	[0.02; 0.33] [0.03; 0.34]
Wang, TJ, et al 2023 Wang, TJ, et al 2023 Walker, LG, et al., 1998 Rosen, KD, et al., 2012	70 107.30 16.70 70 106.90 16.60 48 3.29 0.80	72 48	102.70 20.00 foll 2.90 0.78 foll 96.04 22.00 foll	llowup 16. Ilowup 24. Ilowup 15.	00		0.22	0.10; 0.56]
van den Berg, SW, et al., 2018 Van den Berg, SW, et al. 2015 II. Random effect Prediction internal	70 73.30 1.78 1910	80 1870	69.88 1.67 foll	llowup 5.0	00		0.53 1.97 0.59	[1.58; 2.36] [0.10; 1.08]
Random effect	12488	12601				\$	0.65	-0.90; 2.13]
Freuction interval					.4 .9	0 2 4		-0.01, 1.91]

Figure S5.1. Subgroup analysis of the Global QoL Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the type subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

53

Figure S5.2.T12

Study	Experimental Patient N Mean SD	Patient N	Control Mean	SD fo	ollow-up F	ollow-up tim	e SMD of interested event	SMD	95%-CI
individual Li, X, et al., 2017 Garssen B, et al., 2012	102 56.32 7.80 34 74.40 4.20	108 36	62.38 76.50	11.46 b 4.30 b	baseline baseline	0.00		-0.61 -0.49	-0.89; -0.34] -0.96; -0.01]
Rodin, G, et al., 2019 Seliniotaki, T, et al., 2021 Zhao,X, et al. 2015	22 103.92 6.45 27 62.00 33.80 62 7.85 2.52	20 26 62	106.71 72.20 1 8.75	6.80 b 16.20 b 2.38 b	baseline baseline baseline	0.00 0.00 0.00		-0.41 -0.38 -0.36	-1.03; 0.20] -0.92; 0.17] -0.72; -0.01]
Serfaty M, et al., 2018 Fann, JR, et al., 2009 Elyasi, F, et al., 2021 I.	20 56.40 15.50 112 5.39 0.21 15 3.30 1.90	22 103 15	61.40 1 5.45 3.80	14.40 b 0.20 b 1.50 b	baseline baseline baseline	0.00 0.00 0.00		-0.33 -0.29 -0.28	-0.94; 0.28] -0.56; -0.02] -1.00; 0.44]
Walczak, A, et al.,2017 Chu, X. et al. 2020 Flyasi, F. et al. 2021	61 71.84 16.33 42 65.20 16.77 20 3.50 1.80	49 42 20	75.99 1 68.91 1 3.80	15.72 b 16.63 b 1.50 b	baseline baseline baseline	0.00		-0.26 -0.22	-0.63; 0.12] -0.65; 0.21] -0.80; 0.44]
Savard, J, et al., 2006 Nápoles AM, et al. 2015 Dirkeon S, et al. 2007	21 42.51 3.19 76 66.46 16.92 34 83.30 11.00	16 75	43.11 68.83 1 84.80	3.91 b 15.33 b	baseline baseline	0.00	1	-0.17	-0.82 0.48] -0.47; 0.17]
Zhao, X, et al., 2017 Qiu, H, et al., 2018 II.	52 53.70 3.14 98 76.78 19.91	51 196	54.69 79.49 2	9.61 b	paseline paseline	0.00		-0.14	-0.52; 0.25] -0.37; 0.11]
Hall S. et al., 2011 I. Reese, JB, et al., 2021	22 12.32 4.35 73 60.80 16.70	23 71	12.74 61.90 1	4.26 b 14.30 b	paseline paseline	0.00		-0.12 -0.10 -0.07	-0.45, 0.21] -0.68, 0.49] -0.40, 0.26]
Qiu, H, et al., 2018 I. Chan, et al. 2005 Marchioro, G, et al. 1996	98 78.09 18.86 80 58.29 50.71 18 -58.44 22.39	196 75 18	79.49 2 60.44 4 -57.72 2	21.60 b 40.96 b 20.25 b	baseline baseline baseline	0.00 0.00 0.00		-0.07 -0.05 -0.03	-0.31; 0.18] -0.36; 0.27] -0.69; 0.62]
Breitbart, W, et al. 2018 II. Gao Q, et al. 2020 Breitbart, W, et al. 2018 I.	86 6.19 1.60 40 -68.20 8.25 94 6.29 1.50	74 40 74	6.24 -68.44 6.24	1.60 b 8.82 b 1.60 b	baseline baseline baseline	0.00 0.00 0.00		-0.03 0.03 0.03	-0.34; 0.28] -0.41; 0.47] -0.27; 0.34]
Kissane, DW, et al., 2023 Girgis, A, et al., 2009 I. Girgis, A, et al., 2009 II.	55 25.80 8.30 110 73.20 19.60 120 74.00 18.20	52 117 117	25.30 71.90 1 71.90 1	8.90 b 17.60 b	baseline baseline baseline	0.00	÷.	0.06	-0.32; 0.44] -0.19; 0.33] -0.14; 0.37]
Klinkhammer-Schalke, M et al., 2012 Powell, CB, et al., 2008 Thomas MI, et al., 2012	100 54.35 26.09 21 78.30 17.70 64 69.90 15.90	100 43	51.45 2 75.60 1	23.19 b 17.90 b	baseline baseline	0.00	-	0.12	-0.16; 0.39] -0.37; 0.67]
Cheung YL, et al. 2002 Peoples, AR, et al., 2016 Costes, Johnson E, et al., 2011	29 4.96 1.74 24 78.90 15.30	30 24	4.36 71.90 1	1.62 b	baseline baseline	0.00		0.35	-0.16; 0.87] -0.18; 0.96]
van der Meulen, IC, et al., 2013 Northouse, LL, et al., 2015	88 67.30 2.30 17 81.30 3.88	91 19	66.20 79.63	2.30 b	paseline	0.00		0.48	[0.18; 0.77] [0.19; 1.14]
Ham, K, et al. 2019 Lu, Z, et al., 201 Beatty, L. et al. 2015	21 47.69 18.42 203 61.70 4.00 30 56.22 3.88	21 103 30	38.22 1 56.30 59.37	6.00 b 3.92 f	baseline baseline followup	0.00 0.00 6.00	-	0.55	-0.07; 1.16] [0.88; 1.38] -1.32; -0.27]
Serfaty M, et al., 2018 Savard, J, et al., 2006 Hall S ,et al., 2011 I.	20 63.80 19.80 21 3.62 0.95 22 12.50 4.99	22 16 23	72.20 1 3.95 13.70	16.60 f 0.91 f 3.89 f	ollowup ollowup ollowup	12.00 8.00 4.00		-0.45 -0.34 -0.26	-1.07; 0.16] -1.00; 0.31] -0.85; 0.32]
Chan, et al. 2005 Sandsund, C, et al., 2017 Chan, et al. 2005	80 60.31 41.32 72 67.50 22.60 80 71.69 74.33	75 70 75	66.46 4 69.40 2 77.23 6	47.98 fi 21.10 fi 53.91 fi	ollowup ollowup ollowup	12.00 24.00 72.00	1	-0.14 -0.09 -0.08	-0.45; 0.18] -0.42; 0.24] -0.39; 0.24]
Chan, et al. 2005 Klinkhammer-Schalke, M et al., 2012 Sandeund C. et al., 2017	80 71.61 51.52 100 53.62 22.46 72 66.20 19.10	75 100 70	75.69 5	53.26 f	ollowup followup	60.00 12.00		-0.08	-0.39; 0.24] -0.34; 0.21]
Reese, JB, et al., 2021 Chan, et al. 2005	73 61.80 18.20 80 73.13 34.88	71 75	62.60 1 73.75 4	13.90 f	ollowup	8.00 36.00		-0.05	-0.38, 0.28] -0.33, 0.30]
Northhouse, LL, et al., 2007 Chan, et al. 2005	80 0.47 1.20 107 87.00 10.80 80 67.38 46.78	121 75	66.55 5	10.60 f 51.44 f	ollowup ollowup	32.00 24.00		0.01	-0.32; 0.30] -0.25; 0.27] -0.30; 0.33]
Northhouse, LL, et al., 2007 Girgis, A, et al., 2009 I. Chan, et al. 2005	104 86.10 10.90 110 79.20 19.20 80 77.86 49.64	114 117 75	85.80 1 78.60 1 76.04 4	10.70 f 16.70 f 45.64 f	ollowup followup followup	48.00 24.00 48.00	-	0.03	-0.24; 0.29] -0.23; 0.29] -0.28; 0.35]
Breitbart, W, et al. 2018 II. Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II.	86 6.55 1.60 27 65.00 28.00 98 80.28 26.77	74 26 196	6.49 64.00 2 78.03 3	1.50 f 20.50 f 31.55 f	ollowup ollowup ollowup	8.00 8.00 4.00		0.04 0.04 0.07	-0.27; 0.35] -0.50; 0.58] -0.17; 0.32]
Girgls, A, et al., 2009 II. Klinkhammer-Schalke, M et al., 2012 Marchioro, G, et al. 1996	120 79.90 17.40 100 64.13 23.56 18 -54.17 16.90	117 100 18	78.60 1 62.32 2 -56.33 1	16.70 f 21.38 f 17.72 f	ollowup ollowup	24.00 48.00 4.00	-	0.08	-0.18; 0.33] -0.20; 0.36] -0.53; 0.78]
Girgis, A, et al., 2009 I. Breitbart, W, et al. 2018 II. Powell CR et al. 2018	110 78.30 19.40 86 6.65 1.60 21 90.40 26.20	117 74	76.00 1 6.44 77.10	16.30 f	ollowup	12.00 16.00		0.13	-0.13; 0.39] -0.18; 0.45]
Northhouse, LL, et al., 2007 Klinkhammer-Schalke, M et al., 2012	112 87.20 10.60 100 65.21 22.09	123 100	85.50 1 61.23 2	10.30 f 23.55 f	ollowup	16.00 36.00		0.16	-0.09; 0.42] -0.10; 0.45]
Girgis, A, et al., 2009 II. Elyasi, F, et al., 2021 I. Nápoles AM, et al. 2015	120 79.00 16.40 15 4.30 1.00 76 77.24 15.13	117 15 75	76.00 1 4.10 74.39 1	16.30 h 1.10 h 15.34 h	ollowup ollowup ollowup	12.00 24.00 12.00		0.18 0.19 0.19	-0.07; 0.44] -0.53; 0.90] -0.13; 0.51]
Elyasi, F, et al., 2021 II. Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	20 4.30 1.00 98 89.52 33.46 98 94.70 35.69	20 196 196	4.10 83.21 3 87.72 3	1.10 f 31.55 f 34.70 f	ollowup ollowup ollowup	24.00 12.00 24.00		0.19	-0.43; 0.81] -0.05; 0.44] -0.04; 0.44]
Serfaty M, et al., 2018 Breitbart, W, et al. 2018 I. Hall S, et al. 2011 I	20 67.70 23.80 94 6.87 1.70 22 13.17 4.75	22 74 23	63.20 1 6.48 12.00	16.60 f 1.60 f 4.85 f	followup followup	24.00 4.00 1.00		0.22	0.39; 0.82]
Nápoles AM, et al. 2015 Kissane, DW, et al. 2023 Distance D, et al. 2023	76 80.64 13.64 55 27.40 7.70	75	77.02 1	15.62 f	ollowup	24.00 24.00		0.25	-0.07; 0.57] -0.12; 0.64]
Serfaty M, et al., 2018 Kissane, DW, et al., 2023	20 72.90 19.10 55 27.90 8.10	22 52	67.90 1 24.80	16.70 f	ollowup	18.00		0.20	-0.22, 0.72] -0.33, 0.88] -0.02, 0.74]
Klinkhammer-Schalke, M et al., 2012 Walczak, A, et al., 2017	100 63.41 22.11 61 77.76 18.80	100 49	55.07 2 70.87 1	16.30 h 23.19 h 16.33 h	ollowup followup	24.00 4.00		0.35 0.37 0.39	[0.04; 0.69] [0.09; 0.65] [0.01; 0.77]
Lu, Z, et al., 201 Breitbart, W, et al. 2018 I. Zhang, J, et al., 2021	203 64.40 5.00 94 7.06 1.50 61 9.67 3.71	103 74 61	62.30 6.44 8.21	6.00 f 1.50 f 3.02 f	followup followup followup	9.00 16.00 12.00	*	0.39 0.41 0.43	[0.15; 0.63] [0.10; 0.72] [0.07; 0.79]
Qiu, H, et al., 2018 I. Breitbart, W, et al. 2018 I. Ham K, et al. 2019	98 91.32 29.00 94 7.33 1.70 21 54.69 19.80	196 74 21	78.03 3 6.49 45.02 1	31.55 f 1.50 f 16.05 f	ollowup ollowup	4.00 8.00		0.43	0.19; 0.68]
Peoples, AR, et al., 2016 Gaston-Johansson, F, et al., 2011	24 87.90 13.90 38 24.70 4.30	24 35	79.70 1 21.90	15.70 f	ollowup	7.00	-	0.54	-0.03; 1.12] [0.13; 1.07]
Garssen B, et al., 2012 Garssen B, et al., 2012 Garssen B, et al., 2012	34 78.40 3.70 34 80.40 3.30 34 75.50 3.60	36 36	76.40 78.20 72.90	3.20 f 3.80 f	ollowup followup followup	2.00 13.00		0.60	[0.12; 1.08] [0.19; 1.15] [0.21; 1.18]
Peoples, AR, et al., 2016 Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	24 91.40 15.00 98 113.18 35.69 98 107.32 31.23	24 196 196	78.60 2 87.72 3 83.21 3	20.60 f 34.70 f 31.55 f	ollowup followup followup	12.00 24.00 12.00		0.70 0.72 0.76	[0.11; 1.28] [0.48; 0.97] [0.51; 1.02]
Chu, X. et al, 2020 Chu, X. et al, 2020 Gao Q. et al, 2020	42 85.41 16.08 42 84.94 14.59 40 -54.26 7.03	42 42 40	71.90 1 71.59 1 -60.17	18.50 f 18.73 f 7.28 f	ollowup ollowup ollowup	12.00 8.00 4.00	-	0.77 0.79 0.82	[0.33; 1.22] [0.34; 1.23] [0.36; 1.27]
Garssen B, et al., 2012 Marchioro, G, et al. 1996 Rodin C, et al. 2010	34 81.00 3.40 18 -48.72 12.22 22 110 14 6.93	36 18	78.20 -60.78 1	3.20 f	ollowup	4.00	1	0.84	[0.35; 1.33] [0.18; 1.55] [0.26; 1.62]
Rodin, G, et al., 2019 van der Meulen, IC, et al., 2013	22 110.41 7.29 88 77.50 2.80	20 91	103.70 74.50	7.00 f	ollowup	8.00 48.00	1	0.92	0.28; 1.56] [0.79; 1.42]
Zhao,X, et al. 2017 Marchioro, G, et al. 1996	62 10.65 2.02 18 -44.72 9.18	62 18	8.22 -60.78	2.07 f	ollowup ollowup	0.30	-	1.12	[0.80; 1.56] [0.64; 2.11]
Marchioro, G, et al. 1996 Rodin, G, et al., 2019	30 68.50 3.64 18 -41.17 6.91 22 114.37 6.97	18 20	-60.28 1 100.61	3.64 f 13.33 f 7.50 f	ollowup followup followup	13.03 36.00 12.00	1	1.53 1.76 1.87	[0.95; 2.11] [0.98; 2.54] [1.13; 2.60]
Cheung YL, et al. 2002 Fann, JR, et al., 2009 Beatty, L. et al. 2015	29 7.48 1.12 112 6.30 0.25 30 74.04 3.78	30 103 30	5.56 5.74 65.27	0.50 f 0.25 f 3.81 f	ollowup ollowup ollowup	10.00 24.00 26.07		2.20 2.23 2.28	[1.54; 2.85] [1.89; 2.57] [1.62; 2.94]
Zhao, X, et al., 2021 Fann, JR, et al., 2009 Fann, JR, et al., 2009	52 66.68 3.21 112 6.51 0.25 112 6.33 0.22	51 103 103	55.07 5.84 5.72	6.32 f 0.29 f 0.26 f	ollowup	12.00 96.00 12.00	1	2.31 2.47 2.53	[1.80; 2.81] [2.12; 2.83] [2.17; 2.89]
Cheung YL, et al. 2002 Fann, JR, et al. 2009 Northourse LL, et al. 2015	29 7.51 0.98 112 6.67 0.23	30 103	4.96 5.95	0.66 1	ollowup	5.00 48.00	-	3.02	[2.26; 3.78] [2.66; 3.45]
Fann, JR, et al., 2009 Random effect	112 6.33 0.25 7706	103 8192	5.35	0.24 1	ollowup	72.00	•	3.98 0.51	[2.41, 4.55] [3.52; 4.45] [0.32; 0.70]
prediction interval									-0.73; 1.75]
Heiney, SP, et al., 2003 Liu, T, et al., 2019 Lee, JT, et al., 2022	33 6.00 1.70 49 66.61 10.85 29 3.50 0.60	33 53 25	6.40 69.54 1 3.60	1.40 b 15.27 b 0.80 b	baseline baseline baseline	0.00 0.00 0.00	幕	-0.25 -0.22 -0.14	-0.74; 0.23] -0.61; 0.17] -0.68; 0.39]
Peng, L, et al., 2022 Penedo, FJ, et al., 2007 Von Ah, D, et al., 2012 I.	28 69.05 16.49 41 -82.35 14.02 26 22.06 3.44	29 30 29	71.26 1 -80.57 1 22.38	17.05 b 13.21 b 2.24 b	baseline baseline baseline	0.00 0.00 0.00	重	-0.13 -0.13 -0.11	-0.65; 0.39] -0.60; 0.34] -0.64; 0.42]
Schellekens, MPJ, et al. 2016 Compen F, et al. 2020 I. Reich RR, et al. 2016	69 95.43 21.60 77 0.75 0.21 167 62.44 27.52	70 78 155	97.09 2 0.76 62.74 2	23.54 b 0.17 b 24.68 b	baseline baseline baseline	0.00	÷.	-0.07 -0.05 -0.01	-0.41; 0.26] -0.37; 0.26] -0.23; 0.21]
Xia, S, et al., 2023 Nikbakhsh, N, et al., 2018	80 61.40 16.60 20 44.09 8.48	80 20	61.10 1 43.64 1	15.70 b	baseline baseline	0.00	-	0.02	-0.29, 0.33] -0.58, 0.66]
Esplen MJ, et al., 2018 Mihuta, ME, et al., 2018	131 70.50 16.50 32 11.90 4.40	63 33	68.90 1 11.50	17.20 b 3.60 b	baseline baseline baseline	0.00		0.10	-0.21; 0.36] -0.21; 0.40] -0.39; 0.59]
Von Ah, D, et al. 2018 Rahmani, S, et al. 2015	28 64.86 20.04 27 22.98 3.08 12 41.66 6.15	28 29 12	62.85 22.38 39.58	2.24 b 7.22 b	baseline baseline baseline	0.00		0.11 0.22 0.30	-0.41; 0.63] -0.30; 0.75] -0.51; 1.10]
Yoo, HJ, et al. 2004 Cengiz, HO, et al., 2023 Jelvehzadeh, F, et al., 2022	30 93.41 16.90 32 63.06 19.74 24 4.71 1.07	30 33 24	87.88 1 55.22 1 3.94	14.96 b 18.26 b 1.06 b	baseline baseline baseline	0.00 0.00 0.00	*	0.34 0.41 0.71	-0.17; 0.85] -0.08; 0.90] [0.13; 1.30]
Penedo, FJ, et al., 2007 Heiney, SP, et al., 2003 Von Ah, D, et al., 2012 I.	41 -87.22 13.82 33 6.00 1.50 26 22.15 4.45	30 33 29	-79.63 1 6.80 22.58	14.56 fi 1.50 fi 2.24 fi	followup followup followup	12.00 16.00 8.00	퓤	-0.53 -0.53 -0.12	-1.01; -0.05] -1.02; -0.04] -0.65; 0.41]
Peng, L, et al., 2022 Reich, RR, et al. 2016 Heiney SP, et al. 2003	28 66.67 24.00 167 68.43 27.76 33 6.20 1.30	29 155 33	69.25 2 70.36 2 6.30	22.17 f	ollowup	4.00 12.00 6.00	1	-0.11 -0.08	-0.63; 0.41] -0.29; 0.14] -0.55; 0.41]
Esplen MJ, et al., 2018 Reich, RR, et al. 2016 Patroni S. et al. 2015	131 73.40 16.70 167 65.76 26.18 12 12.00 61.11	63 155 12	74.30 1 66.24 2	17.70 f	ollowup	48.00 6.00		-0.05	-0.35, 0.25] -0.24; 0.20]
Peng, L, et al., 2022 Von Ah, D, et al., 2012 II.	28 72.32 22.11 27 22.71 2.08	29 29	71.26 1	15.26 f	ollowup	0.10 8.00		0.06	-0.46; 0.57] -0.47; 0.58]
Lee, J1, et al., 2022 Lee, JT, et al., 2022 Esplen MJ, et al., 2018	29 4.05 0.60 29 4.05 0.60 131 14.90 9.40	25 63	4.00 4.00 14.00	0.60 f 0.60 f 9.40 f	ollowup followup followup	12.00 24.00 8.00	Ŧ	0.08	-0.45; 0.62] -0.45; 0.62] -0.21; 0.40]
Xia, S, et al., 2023 Esplen MJ, et al., 2018 Schellekens, MPJ, et al. 2016	80 67.70 16.20 131 72.60 16.60 69 107.36 18.80	80 63 70	65.80 1 70.30 1 103.34 2	14.40 f 18.00 f 22.35 f	ollowup ollowup ollowup	4.00 24.00 8.00	幕	0.12 0.13 0.19	-0.19; 0.43] -0.17; 0.44] -0.14; 0.53]
Xia, S, et al., 2023 Xia, S, et al., 2023 Yoo HJ et al. 2004	80 72.70 15.80 80 78.00 14.30 30 97.01 18.24	80 80 30	68.00 1 72.90 1 88.13 1	13.50 f 13.40 f 16.18 f	ollowup ollowup	12.00 24.00 12.00	100 H	0.32	[0.01; 0.63] [0.05; 0.68] -0.01; 1.02]
Hernandez, EG, et al. 2018 Compen F, et al. 2020 II. Mibuta ME et al. 2019	28 71.73 15.45 90 0.85 0.17 22 14.10 2.60	28 78	62.80 1 0.75	17.63 f	ollowup	24.00 8.00	Ē	0.53	-0.00; 1.06] [0.25; 0.86]
Compen F, et al. 2020 I. Hernandez, EG, et al. 2018	77 0.86 0.13 28 74.38 11.48	78 28	0.75	0.19 1	ollowup	8.00 8.00		0.67	[0.35; 1.00] [0.20; 1.29]
Yoo, HJ, et al. 2004 Rahmani, S, et al. 2015	30 102.00 19.94 12 66.66 9.40	30 12	88.18 1 54.16 1	14.02 f	ollowup	24.00 8.00	-	0.79	[0.26; 1.32] [0.30; 2.06]
Liu, T, et al., 2019 Liu, T, et al., 2019 Jelvehzadeh, F, et al., 2022	49 62.67 10.32 49 72.33 13.36 24 6.05 1.00	53 53 24	49.47 1 56.95 1 4.65	10.92 h 10.03 f 0.80 f	ollowup ollowup ollowup	9.00 12.00 12.00	-	1.23 1.30 1.52	[0.81; 1.66] [0.87; 1.73] [0.87; 2.17]
Jelvehzadeh, F, et al., 2022 Nikbakhsh, N, et al., 2018 Random effect	24 6.16 1.09 20 81.70 10.04 2872	24 20 2539	4.58 47.39 1	0.92 fi 12.93 fi	ollowup	8.00 12.00	↓	1.54 2.91 0.44	[0.89; 2.19] [1.99; 3.82] [0.21; 0.67]
Prediction interval self-help					_			i	-0.83; 1.72]
van den Berg, SW, et al. 2015 II. Wang, TJ, et al.2023 van der Hout, AVD, et al. 2019 Wolker	70 66.79 16.57 70 102.30 18.40 320 85.30 14.90	80 72 304	69.79 1 104.40 1 85.40 1	17.10 b 17.10 b 13.60 b	aseline baseline baseline	0.00 0.00 0.00		-0.17 -0.12 -0.01	-0.49; 0.15] -0.45; 0.21] -0.16; 0.15]
walker, LG, et al., 1998 Rosen, KD, et al., 2018 Wang, TJ, et al 2023	48 3.25 0.70 57 93.61 22.68 70 105.40 17.80	48 55 72	3.25 92.96 2 103.50 2	0.66 b 25.12 b 20.00 f	baseline baseline followup	0.00 0.00 8.00		0.00 0.03 0.10	-0.40; 0.40] -0.34; 0.40] -0.23; 0.43]
van der Hout, AVD, et al. 2019 van der Hout, AVD, et al. 2019 van der Hout, AVD, et al. 2019	320 88.70 13.20 320 88.40 12.10 320 89.30 12.30	304 304 304	86.50 1 86.20 1 87.00 1	13.10 f 12.80 f 12.70 f	followup followup followup	12.00 1.00 24.00		0.17 0.18 0.18	[0.01; 0.32] [0.02; 0.33] [0.03; 0.34]
Wang, TJ, et al 2023 Wang, TJ, et al 2023 Walker, LG, et al., 1998	70 107.30 16.70 70 106.90 16.60 48 3.29 0.80	72 72 48	103.30 1 102.70 2 2.90	19.00 f 20.00 f 0.78 f	ollowup followup followup	16.00 24.00 15.00	100 H	0.22 0.23 0.49	-0.11; 0.55] -0.10; 0.56] [0.08; 0.90]
Rosen, KD, et al., 2018 van den Berg, SW, et al. 2015 II. Random effect	57 107.35 17.79 70 73.30 1.78 1910	55 80 1870	96.04 2 69.88	23.96 f 1.67 f	ollowup	5.00 4.00	÷ =	0.53 1.97 0.42	[0.16; 0.91] [1.58; 2.36] -0.00; 0.831
Prediction interval Random effect	12488	12601						0.48	1.38; 2.21]
Prediction interval							.4 .2 0 2	۱ r	-0.73; 1.70]

Figure S5.2. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the type subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S5.3.T24

Study	Experimental Patient N Mean Si) Patient M	Control I Mean Si	D follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
Li, X, et al., 2017 Garssen B, et al., 2012 Rodin G, et al., 2019	102 56.32 7.8 34 74.40 4.2 22 103.92 64	0 108 0 36 5 20	62.38 11. 76.50 4.3 105.71 6.8	46 baseline 10 baseline 10 baseline	0.00		-0.61 [-0.89; -0.34] -0.49 [-0.96; -0.01] -0.41 [-1.03; 0.20]
Seliniotaki, T, et al., 2021 Zhao,X, et al. 2015 Seriety M et al. 2018	27 62.00 33 62 7.85 2.5 20 56.40 15	2 62 2 62	72.20 16 8.75 2.3	20 baseline 18 baseline	0.00	*	-0.38 [-0.92; 0.17] -0.36 [-0.72; -0.01] -0.33 [-0.94; 0.28]
Fann, JR, et al., 2010 Elyasi, F, et al., 2021 I.	112 5.39 0.2 15 3.30 1.9	1 103 0 15	5.45 0.2 3.80 1.5	0 baseline 0 baseline	0.00	-	-0.29 [-0.56; -0.02] -0.28 [-1.00; 0.44]
Chu, X. et al. 2020 Elyasi, F. et al. 2021 II.	42 65.20 16. 20 3.50 1.8	7 42 0 20	68.91 16. 3.80 1.5	63 baseline 60 baseline	0.00	1	-0.22 [-0.65; 0.21] -0.18 [-0.80; 0.44]
Nápoles AM, et al. 2015 Dirksen, S. et al. 2007 Zhao, Y. et al. 2021	76 66.46 16. 34 83.30 11. 52 52.70 2	02 75 00 38	68.83 15. 84.80 9.2	33 baseline 20 baseline	0.00		-0.15 [-0.47; 0.17] -0.14 [-0.60; 0.32]
Qiu, H, et al., 2021 Qiu, H, et al., 2018 II. Sandsund, C, et al., 2017	98 76.78 19. 72 64.20 21.	4 51 91 196 80 70	79.49 21. 66.70 19.	60 baseline 70 baseline	0.00		-0.13 [-0.37; 0.11] -0.12 [-0.45; 0.21]
Hall S, et al., 2011 I. Reese, JB, et al., 2021 Qiu, H, et al., 2018 I.	22 12.32 4.3 73 60.80 16. 98 78.09 18.	5 23 70 71 86 196	12.74 4.2 61.90 14 79.49 21	30 baseline 60 baseline	0.00 0.00 0.00		-0.10 [-0.68; 0.49] -0.07 [-0.40; 0.26] -0.07 [-0.31; 0.18]
Chan, et al. 2005 Marchioro, G, et al. 1996 Breitbart, W, et al. 2018 II.	80 58.29 50. 18 -58.44 22. 86 6.19 1.6	71 75 89 18 0 74	60.44 40. -57.72 20. 6.24 1.6	96 baseline 25 baseline 10 baseline	0.00 0.00 0.00		-0.05 [-0.36; 0.27] -0.03 [-0.69; 0.62] -0.03 [-0.34; 0.28]
Gao Q, et al. 2020 Breitbart, W, et al. 2018 I. Kissane, DW, et al., 2023	40 -68.20 8.2 94 6.29 1.5 55 25.80 8.3	5 40 0 74 0 52	-68.44 8.8 6.24 1.6 25.30 8.9	12 baseline 10 baseline 10 baseline	0.00 0.00 0.00		0.03 [-0.41; 0.47] 0.03 [-0.27; 0.34] 0.06 [-0.32; 0.44]
Girgis, A, et al., 2009 I. Girgis, A, et al., 2009 II. Klinkhammer-Schalke, M et al., 2012	110 73.20 19. 120 74.00 18. 100 54.35 26.	50 117 20 117 09 100	71.90 17. 71.90 17. 51.45 23.	60 baseline 60 baseline 19 baseline	0.00 0.00 0.00		0.07 [-0.19; 0.33] 0.12 [-0.14; 0.37] 0.12 [-0.16; 0.39]
Powell, CB, et al., 2008 Thomas, ML, et al., 2012 Cheung YL, et al. 2002	21 78.30 17. 64 68.80 15. 29 4.96 1.7	70 43 90 88 4 30	75.60 17. 63.60 15. 4.36 1.6	90 baseline 60 baseline 12 baseline	0.00 0.00 0.00		0.15 [-0.37; 0.67] 0.33 [0.00; 0.65] 0.35 [-0.16; 0.87]
Peoples, AR, et al., 2016 Gaston-Johansson, F, et al., 2011 van der Meulen, IC, et al., 2013	24 78.90 15. 38 22.60 4.3 88 67.30 2.3	80 24 0 35 0 91	71.90 19. 20.60 4.0 66.20 2.3	70 baseline 10 baseline 10 baseline	0.00 0.00 0.00	-	0.39 [-0.18; 0.96] 0.48 [0.01; 0.94] 0.48 [0.18; 0.77]
Northouse, LL, et al., 2015 Ham, K, et al. 2019 Lu, Z, et al., 201	17 81.30 3.8 21 47.69 18 203 61.70 4.0	8 19 42 21 0 103	79.63 2.9 38.22 15 56.30 6.0	16 baseline 47 baseline 10 baseline	0.00 0.00 0.00	-	0.48 [-0.19; 1.14] 0.55 [-0.07; 1.16] 1.13 [0.88; 1.38]
Beatty, L. et al. 2015 Serfaty M, et al., 2018 Savard, J, et al., 2006	30 56.22 3.8 20 63.80 19. 21 3.62 0.9	8 30 30 22 5 16	59.37 3.9 72.20 16 3.95 0.9	12 followup 60 followup 11 followup	6.00 12.00 8.00	-	-0.80 [-1.32; -0.27] -0.45 [-1.07; 0.16] -0.34 [-1.00; 0.31]
Hall S ,et al., 2011 I. Chan, et al. 2005 Sandsund, C, et al., 2017	22 12.50 4.5 80 60.31 41. 72 67.50 22.	9 23 82 75 60 70	13.70 3.8 66.46 47. 69.40 21.	9 followup 98 followup 10 followup	4.00 12.00 24.00	*	-0.26 [-0.85; 0.32] -0.14 [-0.45; 0.18] -0.09 [-0.42; 0.24]
Chan, et al. 2005 Chan, et al. 2005 Klinkhammer-Schalke, M et al., 2012	80 71.69 74. 80 71.61 51. 100 53.62 22.	3 75 52 75 46 100	77.23 63. 75.69 53. 55.07 20.	91 followup 26 followup 29 followup	72.00 60.00 12.00		-0.08 [-0.39; 0.24] -0.08 [-0.39; 0.24] -0.07 [-0.34; 0.21]
Sandsund, C, et al., 2017 Reese, JB, et al., 2021 Chan, et al. 2005	72 66.20 19. 73 61.80 18. 80 73.13 34.	10 70 20 71 18 75	67.30 22 62.60 13 73.75 47	00 followup 90 followup 11 followup	12.00 8.00 36.00	*	-0.05 [-0.38; 0.28] -0.05 [-0.38; 0.28] -0.01 [-0.33; 0.30]
Breitbart, W, et al. 2018 II. Northhouse, LL, et al., 2007 Chan, et al. 2005	86 6.47 1.2 107 87.00 10. 80 67.38 46.	0 74 80 121 78 75	6.48 1.6 86.90 10 66.55 51	10 followup 50 followup 44 followup	4.00 32.00 24.00		-0.01 [-0.32; 0.30] 0.01 [-0.25; 0.27] 0.02 [-0.30; 0.33]
Northhouse, LL, et al., 2007 Girgis, A, et al., 2009 I. Chan, et al. 2005	104 86.10 10. 110 79.20 19. 80 77.86 49.	0 114 20 117 34 75	85.80 10. 78.60 16. 76.04 45.	70 followup 70 followup 64 followup	48.00 24.00 48.00		0.03 [-0.24; 0.29] 0.03 [-0.23; 0.29] 0.04 [-0.28; 0.35]
Breitbart, W, et al. 2018 II. Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II.	86 6.55 1.6 27 65.00 28 98 80.28 26	0 74 00 26 77 196	6.49 1.5 64.00 20. 78.03 31.	60 followup 50 followup 55 followup	8.00 8.00 4.00	-	0.04 [-0.27; 0.35] 0.04 [-0.50; 0.58] 0.07 [-0.17; 0.32]
Girgis, A, et al., 2009 II. Klinkhammer-Schalke, M et al., 2012 Marchioro, G. et al. 1996	120 79.90 17. 100 64.13 23. 18 -54.17 16.	0 117 56 100 90 18	78.60 16. 62.32 21. -56.33 17.	70 followup 38 followup 72 followup	24.00 48.00 4.00		0.08 [-0.18; 0.33] 0.08 [-0.20; 0.36] 0.12 [-0.53; 0.78]
Girgis, A, et al., 2009 I. Breitbart, W, et al. 2018 II. Powell, CB, et al., 2008	110 78.30 19. 86 6.65 1.6 21 80.40 26.	10 117 0 74 30 43	76.00 16. 6.44 1.5 77.10 21.	30 followup 50 followup 20 followup	12.00 16.00 12.00		0.13 [-0.13; 0.39] 0.13 [-0.18; 0.45] 0.14 [-0.38; 0.66]
Northhouse, LL, et al., 2007 Klinkhammer-Schalke, M et al., 2012 Girgis A. et al., 2009 II	112 87.20 10. 100 65.21 22. 120 79.00 16	50 123 09 100 40 117	85.50 10. 61.23 23. 76.00 16.	30 followup 55 followup 30 followup	16.00 36.00 12.00		0.16 [-0.09; 0.42] 0.17 [-0.10; 0.45] 0.18 [-0.07; 0.44]
Elyasi, F, et al., 2021 I. Nápoles AM, et al. 2015 Elyasi, E, et al. 2021 II.	15 4.30 1.0 76 77.24 15. 20 4.30 1.0	0 15 13 75 0 20	4.10 1.1 74.39 15. 4.10 1.1	10 followup 34 followup 10 followup	24.00 12.00 24.00		0.19 [-0.53; 0.90] 0.19 [-0.13; 0.51] 0.19 [-0.43; 0.81]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II. Serfaty M et al. 2018	98 89.52 33 98 94.70 35 20 67.70 23	6 196 9 196 0 22	83.21 31 87.72 34 63.20 16	55 followup 70 followup 60 followup	12.00 24.00 24.00		0.20 [-0.05; 0.44] 0.20 [-0.04; 0.44] 0.22 [-0.39; 0.82]
Breitbart, W, et al. 2018 I. Hall S, et al. 2011 I. Nénoles AM et al. 2015	94 6.87 1.7 22 13.17 4.7 76 80.64 13	0 74 5 23	6.48 1.6 12.00 4.8 77.02 15	10 followup 15 followup 15 followup	4.00		0.23 [-0.07; 0.54] 0.24 [-0.35; 0.83] 0.25 [-0.07; 0.57]
Kissane, DW, et al., 2023 Dirksen, S. et al., 2007 Seriety M. et al., 2018	55 27.40 7.7 34 91.60 15 20 72.90 19	0 52	25.40 7.8 87.70 14.	10 followup 70 followup 70 followup	24.00 10.00	통	0.26 [-0.12, 0.64] 0.26 [-0.20, 0.72] 0.27 [-0.33, 0.88]
Kissane, DW, et al., 2018 Thomas, ML, et al., 2012	55 27.90 8.1 64 70.50 17.	0 52	24.80 8.9 64.40 16	10 followup 30 followup	12.00		0.36 [-0.02; 0.74] 0.36 [0.04; 0.69]
Walczak, A, et al., 2017 Lu, Z, et al., 201	61 77.76 18. 203 64.40 5.0	0 49 0 103	70.87 16. 62.30 6.0	33 followup 10 followup	4.00 9.00		0.37 [0.09, 0.88] 0.39 [0.01; 0.77] 0.39 [0.15; 0.63]
Zhang, J, et al., 2018 I. Zhang, J, et al., 2021 Qiu, H, et al., 2018 I.	94 7.06 1.5 61 9.67 3.7 98 91.32 29	0 74 1 61 00 196	6.44 1.5 8.21 3.0 78.03 31	12 followup 15 followup	12.00 4.00	臺更	0.41 [0.10; 0.72] 0.43 [0.07; 0.79] 0.43 [0.19; 0.68]
Hentbart, W, et al. 2018 I. Ham, K, et al. 2019 Peoples, AR, et al., 2016	94 7.33 1.7 21 54.69 19 24 87.90 13	0 74 80 21 90 24	6.49 1.5 45.02 16 79.70 15	0 followup 05 followup 70 followup	8.00 10.00 7.00		0.52 [0.21; 0.83] 0.53 [-0.09; 1.14] 0.54 [-0.03; 1.12]
Gaston-Johansson, F, et al., 2011 Garssen B, et al., 2012 Garssen B, et al., 2012	38 24.70 4.3 34 78.40 3.7 34 80.40 3.3	0 35 0 36 0 36	21.90 5.0 76.40 2.9 78.20 3.2	10 followup 10 followup 20 followup	48.00 5.00 2.00	훈	0.60 [0.13; 1.07] 0.60 [0.12; 1.08] 0.67 [0.19; 1.15]
Garssen B, et al., 2012 Peoples, AR, et al., 2016 Qiu, H, et al., 2018 I.	34 75.50 3.6 24 91.40 15. 98 113.18 35.	0 36 00 24 59 196	72.90 3.8 78.60 20 87.72 34	10 followup 50 followup 70 followup	13.00 12.00 24.00		0.69 [0.21; 1.18] 0.70 [0.11; 1.28] 0.72 [0.48; 0.97]
Qiu, H, et al., 2018 I. Chu, X. et al, 2020 Chu, X. et al, 2020	98 107.32 31. 42 85.41 16. 42 84.94 14.	23 196 08 42 59 42	83.21 31. 71.90 18. 71.59 18.	55 followup 50 followup 73 followup	12.00 12.00 8.00		0.76 [0.51; 1.02] 0.77 [0.33; 1.22] 0.79 [0.34; 1.23]
Gao Q, et al. 2020 Garssen B, et al., 2012 Marchioro, G, et al. 1996	40 -54.26 7.0 34 81.00 3.4 18 -48.72 12.	3 40 0 36 22 18	-60.17 7.2 78.20 3.2 -60.78 14	8 followup 6 followup 85 followup	4.00 4.00 12.00	*	0.82 [0.36; 1.27] 0.84 [0.35; 1.33] 0.87 [0.18; 1.55]
Rodin, G, et al., 2019 Rodin, G, et al., 2019 van der Meulen, IC, et al., 2013	22 110.14 6.8 22 110.41 7.2 88 77.50 2.8	3 20 9 20 0 91	103.57 7.7 103.70 7.0 74.50 2.6	1 followup 10 followup 10 followup	4.00 8.00 48.00		0.89 [0.25; 1.53] 0.92 [0.28; 1.56] 1.11 [0.79; 1.42]
Li, X, et al., 2017 Zhao,X, et al. 2015 Marchioro, G, et al. 1996	102 76.58 9.0 62 10.65 2.0 18 -44.72 9.1	6 108 2 62 8 18	64.28 12 8.22 2.0 -60.78 13	49 followup 17 followup 26 followup	12.00 0.30 24.00	*	1.12 [0.83; 1.41] 1.18 [0.80; 1.56] 1.38 [0.64; 2.11]
Beatty, L. et al. 2015 Marchioro, G. et al. 1996 Rodin G. et al. 2019	30 68.50 3.6 18 -41.17 6.9 22 114.37 6.9	4 30 1 18 7 20	62.85 3.6 -60.28 13 100.61 7.5	i4 followup 33 followup 30 followup	13.03 36.00 12.00		1.53 [0.95; 2.11] 1.76 [0.98; 2.54] 1.87 [1.13; 2.60]
Cheung YL, et al. 2002 Fann, JR, et al., 2009 Beath L, et al. 2015	29 7.48 1.1 112 6.30 0.2 30 74.04 33	2 30 5 103 8 30	5.56 0.5 5.74 0.2 65.27 3.6	60 followup 25 followup	10.00 24.00 26.07	1	2.20 [1.54; 2.85] 2.23 [1.89; 2.57] 2.28 [1.62; 2.94]
Zhao, X, et al., 2021 Fann, JR, et al., 2009 Fann, IR, et al., 2009	52 66.68 32 112 6.51 0.2 112 6.33 0.2	1 51 5 103 2 103	55.07 6.3 5.84 0.2 5.72 0.3	12 followup 19 followup	12.00 96.00 12.00	-	2.31 [1.80; 2.81] 2.47 [2.12; 2.83] 2.53 [2.17; 2.80]
Cheung YL, et al. 2002 Fann, JR, et al. 2009 Northouse LL et al. 2015	29 7.51 0.9 112 6.67 0.2 17 88.51 30	8 30 3 103 3 10	4.96 0.6 5.95 0.2 76.94 3.4	6 followup	5.00 48.00 2.00	+	- 3.02 [2.26; 3.78] 3.06 [2.66; 3.45]
Fann, JR, et al., 2009 Random effect Production interval	112 6.33 0.2 7706	5 103 8192	5.35 0.2	4 followup	72.00	\$	3.98 [3.52; 4.45] 0.46 [0.11; 0.80]
group Heiney SP et al 2003	33 600 13	0 33	6.40 17	IO haseline	0.00	-	.0 25 1.0 74: 0 231
Liu, T, et al., 2019 Lee, JT, et al., 2022 Peng L et al., 2022	49 66.61 10. 29 3.50 0.6 28 69.05 16.	0 25 9 29	69.54 15 3.60 0.8 71.26 17	27 baseline 10 baseline 15 baseline	0.00		-0.22 [-0.61; 0.17] -0.14 [-0.68; 0.39] -0.13 [-0.65; 0.39]
Penedo, FJ, et al., 2007 Von Ah, D, et al., 2012 I. Schellekens, MPL et al. 2016	41 -82.35 14 26 22.06 3.4 59 95.43 21	02 30 4 29	-80.57 13. 22.38 2.2	21 baseline 24 baseline 54 baseline	0.00		-0.13 [-0.60; 0.34] -0.11 [-0.64; 0.42] -0.07 [-0.41; 0.26]
Compen F, et al. 2010 I. Reich, RR, et al. 2016	77 0.75 0.2 167 62.44 27	1 78 52 155	0.76 0.1	17 baseline 58 baseline	0.00		-0.05 [-0.37; 0.26] -0.01 [-0.23; 0.21]
Nikbakhsh, N, et al., 2018 Compen, et al. 2020 II. Capter M L et al. 2020 II.	20 44.09 8.4 90 0.77 0.1	8 20 9 78	43.64 13.	73 baseline 17 baseline	0.00		0.02 [-0.25, 0.33] 0.04 [-0.58, 0.66] 0.05 [-0.25, 0.36]
Mihuta, ME, et al., 2018 Hernandez, EG, et al. 2018	32 11.90 4.4 28 64.86 20.	0 33	11.50 3.6 62.85 15	50 baseline 56 baseline	0.00		0.10 [-0.21, 0.40] 0.10 [-0.39, 0.59] 0.11 [-0.41, 0.63]
Rahmani, S. et al. 2015 Yoo, HJ, et al. 2015	27 22.96 3.0 12 41.66 6.1 30 93.41 16.	6 29 5 12 90 30	39.58 7.2 87.88 14	2 baseline 96 baseline	0.00	- <u>F</u>	0.22 [-0.30, 0.75] 0.30 [-0.51; 1.10] 0.34 [-0.17; 0.85]
Jelvehzadeh, F, et al., 2022 Penedo, FJ, et al., 2007	24 4.71 1.0 41 -87.22 13.	4 33 7 24 82 30	3.94 1.0 -79.63 14	16 baseline 56 followup	0.00	-	0.41 [-0.08, 0.90] 0.71 [0.13; 1.30] -0.53 [-1.01; -0.05]
Heiney, SP, et al., 2003 Von Ah, D, et al., 2012 I. Peng, L, et al., 2022	33 6.00 1.5 26 22.15 4.4 28 66.67 24	0 33 5 29 0 29	6.80 1.5 22.58 2.2 69.25 22	10 followup 17 followup	16.00 8.00 4.00		-0.53 [-1.02, -0.04] -0.12 [-0.65, 0.41] -0.11 [-0.63, 0.41]
Reich, RR, et al. 2016 Heiney, SP, et al., 2003 Esplen MJ, et al., 2018	167 68.43 27. 33 6.20 1.3 131 73.40 16.	6 155 0 33 70 63	70.36 22 6.30 1.6 74.30 17	70 followup i0 followup 70 followup	12.00 6.00 48.00		-0.08 [-0.29; 0.14] -0.07 [-0.55; 0.41] -0.05 [-0.35; 0.25]
Reich, RR, et al. 2016 Rahmani, S, et al. 2015 Peng, L, et al., 2022	167 65.76 26. 12 12.00 61. 28 72.32 22.	8 155 11 12 11 29	66.24 24 12.00 58 71.26 15	76 followup 33 followup 26 followup	6.00 16.00 0.10	-	-0.02 [-0.24; 0.20] 0.00 [-0.80; 0.80] 0.06 [-0.46; 0.57]
Von Ah, D, et al.,2012 II. Lee, JT, et al., 2022 Lee, JT, et al., 2022	27 22.71 2.0 29 4.05 0.6 29 4.05 0.6	8 29 0 25 0 25	22.58 2.2 4.00 0.6 4.00 0.6	4 followup 10 followup 10 followup	8.00 12.00 24.00		0.06 [-0.47; 0.58] 0.08 [-0.45; 0.62] 0.08 [-0.45; 0.62]
Esplen MJ, et al., 2018 Xia, S, et al., 2023 Esplen MJ, et al., 2018	131 14.90 9.4 80 67.70 16. 131 72.60 16.	0 63 20 80 50 63	14.00 9.4 65.80 14 70.30 18	40 followup 40 followup 00 followup	8.00 4.00 24.00	The second se	0.10 [-0.21; 0.40] 0.12 [-0.19; 0.43] 0.13 [-0.17; 0.44]
Schellekens, MPJ, et al. 2016 Xia, S, et al., 2023 Xia, S, et al., 2023	69 107.36 18. 80 72.70 15. 80 78.00 14.	80 70 80 80 80 80	103.34 22. 68.00 13. 72.90 13.	35 followup 50 followup 40 followup	8.00 12.00 24.00		0.19 [-0.14; 0.53] 0.32 [0.01; 0.63] 0.37 [0.05; 0.68]
Yoo, HJ, et al. 2004 Hernandez, EG, et al. 2018 Compen F, et al. 2020 II.	30 97.01 18. 28 71.73 15. 90 0.85 0.1	24 30 15 28 7 78	88.13 16. 62.80 17. 0.75 0.1	18 followup 63 followup 19 followup	12.00 24.00 8.00		0.51 [-0.01; 1.02] 0.53 [-0.00; 1.06] 0.55 [0.25; 0.86]
Mihuta, ME, et al., 2018 Compen F, et al. 2020 I. Hemandez, EG, et al. 2018	32 14.10 2.6 77 0.86 0.1 28 74.38 11	0 33 3 78 48 28	12.30 3.6 0.75 0.1 64.40 14.	10 followup 19 followup 73 followup	4.00 8.00 8.00		0.56 [0.07; 1.06] 0.67 [0.35; 1.00] 0.75 [0.20; 1.29]
Cengiz, HO, et al., 2023 Yoo, HJ, et al. 2004 Rahmani, S. et al. 2015	32 66.98 17. 30 102.00 19. 12 66.66 9.4	2 33 4 30 0 12	53.03 18. 88.18 14. 54.16 10.	65 followup 02 followup 95 followup	8.00 24.00 8.00	*	0.76 [0.25; 1.26] 0.79 [0.26; 1.32] 1.18 [0.30; 2.06]
Liu, T, et al., 2019 Liu, T, et al., 2019 Jebebradeb F, et al., 2022	49 62.67 10. 49 72.33 13. 24 6.05 1.0	32 53 36 53 0 24	49.47 10. 56.95 10. 4.65 0.6	92 followup 03 followup	9.00 12.00 12.00	*	1.23 [0.81; 1.66] 1.30 [0.87; 1.73] 1.52 [0.87; 2.17]
Jelvehzadeh, F, et al., 2022 Nikbakhsh, N, et al., 2018 Random effect	24 6.16 1.0 20 81.70 10.	9 24 04 20 2539	4.58 0.9 47.39 12	12 followup 93 followup	8.00 12.00		1.54 [0.89; 2.19] - 2.91 [1.99; 3.82] 0.39 [0.06; 0.72]
Prediction interval		2338					[-0.90; 1.68]
van den Berg, SW, et al. 2015 II. Wang, TJ, et al 2023 van der Hout AVD, et al 2010	70 66.79 16. 70 102.30 18.	57 80 40 72	69.79 17. 104.40 17. 85.40 40	91 baseline 10 baseline 60 baseline	0.00		-0.17 [-0.49; 0.15] -0.12 [-0.45; 0.21]
Walker, LG, et al., 1998 Rosen, KD, et al., 2018 Wann, TL et al. 2018	48 3.25 0.7 57 93.61 22 70 105 40 17	0 48 8 55 10 70	3.25 0.6 92.96 25	12 baseline	0.00	#	0.00 [-0.40; 0.40] 0.03 [-0.34; 0.40] 0.10 [-0.22; 0.40]
van der Hout, AVD, et al. 2019 van der Hout, AVD, et al. 2019 van der Hout, AVD, et al. 2019	320 88.70 13. 320 88.40 12. 320 80.00 12.	20 304 10 304	86.20 12 87.00 40	10 followup 80 followup 70 followup	12.00		0.17 [0.01; 0.32] 0.18 [0.02; 0.33] 0.18 [0.02; 0.33]
Wang, TJ, et al 2023 Wang, TJ, et al 2023 Walker I C, et al 2023	70 107.30 16. 70 106.90 16. 48 3.00 16.	0 72 0 72	103.30 19. 102.70 20.	00 followup 00 followup	16.00 24.00		0.22 [-0.11; 0.55] 0.23 [-0.10; 0.56] 0.49 [-0.09; 0.00]
Rosen, KD, et al., 2018 van den Berg, SW, et al. 2015 II. Randen Berg, SW, et al. 2015 II.	57 107.35 17. 70 73.30 1.7	- 40 19 55 8 80	96.04 23. 69.88 1.6	96 followup 17 followup	5.00	<u> </u>	0.53 [0.16; 0.91] 1.97 [1.58; 2.36]
Prediction interval	12488	12604				-	[-1.29; 2.02]
Prediction interval					-		[-0.86; 1.73]

Figure S5.3. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the type subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S5.4.T48

Study	Experime Patient N Mean	ental SD Patient	Control N Mean S	D follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
Li, X, et al., 2017 Garssen B, et al., 2012 Rodin G, et al., 2019	102 56.32 34 74.40 22 103.9	2 7.80 108 4.20 36 2 6.45 20	62.38 11. 76.50 4.3	46 baseline 30 baseline	0.00	-	-0.61 [-0.89; -0.34] -0.49 [-0.96; -0.01] -0.41 [-1.03; 0.20]
Seliniotaki, T, et al., 2015 Zhao,X, M et al. 2015	27 62.00 62 7.85	2 0.45 20 33.80 26 2.52 62	72.20 16.	20 baseline 38 baseline	0.00	*	-0.38 [-0.92, 0.17] -0.36 [-0.72; -0.01]
Fann, JR, et al., 2019 Elyasi, F, et al., 2021 I.	112 5.39 15 3.30	0.21 103 1.90 15	5.45 0.1 3.80 1.5	20 baseline 50 baseline	0.00	-	-0.29 [-0.56; -0.02] -0.28 [-1.00; 0.44]
Chu, X. et al, 2020 Elyasi, F. et al., 2021 II.	42 65.20 20 3.50	16.77 42 1.80 20	68.91 16 3.80 1.5	63 baseline 50 baseline	0.00	1	-0.22 [-0.65; 0.21] -0.18 [-0.80; 0.44]
Nápoles AM, et al. 2005 Dirksen, S. et al. 2007 Zhos X. et al. 2007	76 66.46 34 83.30	16.92 75 11.90 38	43.11 3.1 68.83 15. 84.80 9.1	33 baseline 20 baseline	0.00		-0.15 [-0.47; 0.17] -0.14 [-0.60; 0.32]
Qiu, H, et al., 2018 II. Sandsund, C, et al., 2017	98 76.78 72 64.20	19.91 196 21.80 70	79.49 21. 66.70 19.	60 baseline 70 baseline	0.00		-0.13 [-0.37; 0.11] -0.12 [-0.45; 0.21]
Hall S, et al., 2011 I. Reese, JB, et al., 2021 Qiu, H, et al., 2018 I.	73 60.80 98 78.09	4.35 23 16.70 71 18.86 196	12.74 4. 61.90 14. 79.49 21.	30 baseline 60 baseline	0.00		-0.07 [-0.31; 0.18] -0.07 [-0.31; 0.18]
Chan, et al. 2005 Marchioro, G, et al. 1996 Breitbart, W, et al. 2018 II.	80 58.25 18 -58.4 86 6.19	4 22.39 18 1.60 74	60.44 40. -57.72 20. 6.24 1.4	96 baseline 25 baseline 50 baseline	0.00	-	-0.05 [-0.36; 0.27] -0.03 [-0.69; 0.62] -0.03 [-0.34; 0.28]
Gao Q, et al. 2020 Breitbart, W, et al. 2018 I. Kissane, DW, et al., 2023	40 -68.20 94 6.29 55 25.80	1.50 74 8.30 52	-08.44 8. 6.24 1. 25.30 8.	52 baseline 50 baseline 50 baseline	0.00	÷	0.03 [-0.41; 0.47] 0.03 [-0.27; 0.34] 0.06 [-0.32; 0.44]
Girgis, A, et al., 2009 I.	110 73.20	19.60 117	71.90 17.	60 baseline	0.00		0.07 [-0.19; 0.33]
Girgis, A, et al., 2009 II.	120 74.00	18.20 117	71.90 17.	60 baseline	0.00		0.12 [-0.14; 0.37]
Klinkhammer-Schalke, M et al., 2012	100 54.35	26.09 100	51.45 23.	19 baseline	0.00		0.12 [-0.16; 0.39]
Thomas, ML, et al., 2008 Cheung YL, et al. 2002	21 78.30 64 68.80 29 4.96	17.70 43 15.90 88 1.74 30	75.60 17. 63.60 15. 4.36 1.6	60 baseline 52 baseline	0.00		0.15 [-0.37; 0.67] 0.33 [0.00; 0.65] 0.35 [-0.16; 0.87]
Peoples, AR, et al., 2016	24 78.90	15.30 24	71.90 19	70 baseline	0.00		0.39 [-0.18; 0.96]
Gaston-Johansson, F, et al., 2011	38 22.60	4.30 35	20.60 4.0	00 baseline	0.00		0.48 [0.01; 0.94]
van der Meulen, IC, et al., 2013	88 67.30	2.30 91	66.20 2.3	30 baseline	0.00		0.48 [0.18; 0.77]
Northouse, LL, et al., 2015	17 81.30	3.88 19	79.63 2.1	47 baseline	0.00	_	0.48 [-0.19; 1.14]
Ham, K, et al. 2019	21 47.69	18.42 21	38.22 15.	47 baseline	0.00		0.55 [-0.07; 1.16]
Lu, Z, et al., 201	203 61.70	4.00 103	56.30 6.0	00 baseline	0.00		1.13 [0.88; 1.38]
Beatty, L. et al. 2015	30 56.22	2 3.88 30	59.37 3.9	92 followup	6.00	-	-0.80 [-1.32; -0.27]
Serfaty M, et al., 2018	20 63.80	19.80 22	72.20 16.	60 followup	12.00		-0.45 [-1.07; 0.16]
Savard, J, et al., 2006	21 3.62	0.95 16	3.95 0.1	91 followup	8.00		-0.34 [-1.00; 0.31]
Hall S ,et al., 2011 I.	22 12.50	4.99 23	13.70 3.1	39 followup	4.00		-0.26 [-0.85; 0.32]
Chan, et al. 2005	80 60.31	41.32 75	66.46 47.	98 followup	12.00		-0.14 [-0.45; 0.18]
Sandsund, C, et al., 2017	72 67.50	22.60 70	69.40 21.	10 followup	24.00		-0.09 [-0.42; 0.24]
Chan, et al. 2005	80 71.69	74.33 75	77.23 63.	91 followup	72.00		-0.08 [-0.39; 0.24]
Chan, et al. 2005	80 71.61	51.52 75	75.69 53.	26 followup	60.00		-0.08 [-0.39; 0.24]
Klinkhammer-Schalke, M et al., 2012	100 53.62	22.46 100	55.07 20.	29 followup	12.00		-0.07 [-0.34; 0.21]
Sandsund, C, et al., 2017	72 66.20	19.10 70	67.30 22	00 followup	12.00		-0.05 [-0.38; 0.28]
Reese, JB, et al., 2021	73 61.80	18.20 71	62.60 13	90 followup	8.00		-0.05 [-0.38; 0.28]
Chan, et al. 2005	80 73.13	34.88 75	73.75 47	11 followup	36.00		-0.01 [-0.33; 0.30]
Breitbart, W, et al. 2018 II.	86 6.47	1.20 74	6.48 1.9	50 followup	4.00	-	-0.01 [-0.32; 0.30]
Northhouse, LL, et al., 2007	107 87.00	10.80 121	86.90 10.	60 followup	32.00		0.01 [-0.25; 0.27]
Chan, et al. 2005	80 67.38	46.78 75	66.55 51.	44 followup	24.00		0.02 [-0.30; 0.33]
Northhouse, LL, et al., 2007	104 86.10	10.90 114	85.80 10.	70 followup	48.00	-	0.03 [-0.24; 0.29]
Girgis, A, et al., 2009 I.	110 79.20	19.20 117	78.60 16.	70 followup	24.00		0.03 [-0.23; 0.29]
Chan, et al. 2005	80 77.86	49.64 75	76.04 45.	64 followup	48.00		0.04 [-0.28; 0.35]
Breitbart, W, et al. 2018 II.	86 6.55	1.60 74	6.49 1.5	50 followup	8.00	-	0.04 [-0.27; 0.35]
Seliniotaki, T, et al., 2021	27 65.00	28.00 26	64.00 20.	50 followup	8.00		0.04 [-0.50; 0.58]
Qiu, H, et al., 2018 II.	98 80.28	26.77 196	78.03 31.	55 followup	4.00		0.07 [-0.17; 0.32]
Girgis, A, et al., 2009 II.	120 79.90	17.40 117	78.60 16.	70 followup	24.00	-	0.08 [-0.18; 0.33]
Klinkhammer-Schalke, M et al., 2012	100 64.13	23.56 100	62.32 21.	38 followup	48.00		0.08 [-0.20; 0.36]
Marchioro, G, et al. 1996	18 -54.1	7 16.90 18	-56.33 17.	72 followup	4.00		0.12 [-0.53; 0.78]
Girgis, A, et al., 2009 I.	110 78.30	19.40 117	76.00 16.	30 followup	12.00		0.13 [-0.13; 0.39]
Breitbart, W, et al. 2018 II.	86 6.65	1.60 74	6.44 1.5	50 followup	16.00		0.13 [-0.18; 0.45]
Powell, CB, et al., 2008	21 80.40	26.30 43	77.10 21.	20 followup	12.00		0.14 [-0.38; 0.66]
Northhouse, LL, et al., 2007	112 87.20	10.60 123	85.50 10.	30 followup	16.00		0.16 [-0.09; 0.42]
Klinkhammer-Schalke, M et al., 2012	100 65.21	22.09 100	61.23 23.	55 followup	36.00		0.17 [-0.10; 0.45]
Girgis, A. et al., 2009 II	120 79.00	16.40 117	76.00 16.	30 followup	12.00		0.18 [-0.07; 0.44]
Elyasi, F, et al., 2021 I.	15 4.30	1.00 15	4.10 1.	10 followup	24.00		0.19 [-0.53; 0.90]
Nápoles AM, et al. 2015	76 77.24	15.13 75	74.39 15.	34 followup	12.00		0.19 [-0.13; 0.51]
Elyasi E, et al. 2021 II	20 4.30	1.00 20	4.10 1	10 followup	24.00		0.19 [-0.43; 0.81]
Qiu, H, et al., 2018 II.	98 89.52	33.46 196	83.21 31.	55 followup	12.00		0.20 [-0.05; 0.44]
Qiu, H, et al., 2018 II.	98 94.70	35.69 196	87.72 34.	70 followup	24.00		0.20 [-0.04; 0.44]
Seriaty M et al., 2018 II.	20 67.70	23.80 22	63.20 16	60 followup	24.00		0.22 [-0.39; 0.82]
Breitbart, W, et al. 2018 I. Hall S, et al. 2011 I. Nénoles AM et al. 2015	94 6.87 22 13.17 76 80.64	1.70 74 4.75 23	6.48 1.0 12.00 4.0 77.02 15	50 followup 55 followup 52 followup	4.00 1.00 24.00		0.23 [-0.07; 0.54] 0.24 [-0.35; 0.83] 0.25 [-0.07; 0.57]
Kissane, DW, et al., 2023 Dirksen, S. et al., 2007 Serfety M. et al., 2018	55 27.40 34 91.60 20 72.90	7.70 52 15.00 38	25.40 7.1 87.70 14	30 followup 70 followup 70 followup	24.00 10.00	- Here	0.26 [-0.12, 0.64] 0.26 [-0.20; 0.72] 0.27 [-0.33; 0.89]
Kissane, DW, et al., 2018 Thomas, ML, et al., 2012 Kisshammer, Scholice, M et al., 2011	55 27.90 64 70.50	8.10 52 17.30 88	24.80 8.9 64.40 16.	30 followup	12.00		0.36 [-0.02; 0.74] 0.36 [0.04; 0.69]
Walczak, A, et al., 2017 Lu, Z, et al., 2017	61 77.76 203 64.40	18.80 49 5.00 103	70.87 16. 62.30 6.0	33 followup 00 followup	4.00		0.39 [0.05, 0.65] 0.39 [0.01; 0.77] 0.39 [0.15; 0.63]
Zhang, J, et al., 2021 Qiu, H, et al., 2021	94 7.00 61 9.67 98 91.32	3.71 61 29.00 196	8.21 3.0 78.03 31	12 followup 55 followup	12.00	1 ALE	0.43 [0.10; 0.72] 0.43 [0.07; 0.79] 0.43 [0.19; 0.68]
Ham, K, et al. 2019 Peoples, AR, et al., 2016 Context International Context Internationa	21 54.69 24 87.90	19.80 21 13.90 24	45.02 16.	05 followup 70 followup	10.00		0.53 [-0.09; 1.14] 0.54 [-0.03; 1.12]
Gassen B, et al., 2012	38 24.70	4.30 35	21.90 5.0	0 followup	48.00	-	0.60 [0.13; 1.07]
Gassen B, et al., 2012	34 78.40	3.70 36	76.40 2.1	20 followup	5.00		0.60 [0.12; 1.08]
Gassen B, et al., 2012	34 80.40	3.30 36	78.20 3.1	20 followup	2.00		0.67 [0.19; 1.15]
Gaissen B, et al., 2012 Peoples, AR, et al., 2016 Qiu, H, et al., 2018 I.	24 91.40 98 113.1	15.00 24 8 35.69 196	78.60 20.	60 followup 70 followup	12.00 24.00	-	0.70 [0.11; 1.28] 0.72 [0.48; 0.97]
Chu, X. et al, 2020 Chu, X. et al, 2020 Chu, X. et al, 2020	42 85.41 42 84.94	2 31.23 190 16.08 42 14.59 42	71.90 18. 71.59 18.	50 followup 73 followup	12.00	*	0.76 [0.51; 1.02] 0.77 [0.33; 1.22] 0.79 [0.34; 1.23]
Gao Q, et al. 2020	40 -54.2	5 7.03 40	-60.17 7.	28 followup	4.00	-	0.82 [0.36; 1.27]
Garssen B, et al., 2012	34 81.00	3.40 36	78.20 3.	20 followup	4.00		0.84 [0.35; 1.33]
Marchioro, G, et al. 1996	18 -48.7	2 12.22 18	-60.78 14	85 followup	12.00		0.87 [0.18; 1.55]
Rodin, G, et al., 2019	22 110.1	4 6.83 20	103.57 7.1	1 followup	4.00		0.89 [0.25; 1.53]
Rodin, G, et al., 2019	22 110.4	1 7.29 20	103.70 7.1	0 followup	8.00		0.92 [0.28; 1.56]
van der Meulen, IC, et al., 2013	88 77.50	2.80 91	74.50 2.1	30 followup	48.00		1.11 [0.79; 1.42]
LI, X, et al., 2017	102 76.58	9.06 108	64.28 12	49 followup	12.00	-	1.12 [0.83; 1.41]
Zhao,X, et al. 2015	62 10.65	2.02 62	8.22 2.0	07 followup	0.30		1.18 [0.80; 1.56]
Marchioro, G, et al. 1996	18 -44.73	2.9.18 18	-60.78 13	26 followup	24.00		1.38 [0.64; 2.11]
Beatty, L. et al. 2015	30 68.50	0 3.64 30	62.85 3.0	54 followup	13.03	-	1.53 [0.95; 2.11]
Marchioro, G, et al. 1996	18 -41.1	7 6.91 18	-60.28 13.	33 followup	36.00		1.76 [0.98; 2.54]
Rodin, G, et al., 2019	22 114.3	7 6.97 20	100.61 7.5	50 followup	12.00		1.87 [1.13; 2.60]
Cheung YL, et al. 2002	29 7.48	1.12 30	5.56 0.5	50 followup	10.00	1	2.20 [1.54; 2.85]
Fann, JR, et al., 2009	112 6.30	0.25 103	5.74 0.1	25 followup	24.00		2.23 [1.89; 2.57]
Beatty, L. et al. 2015	30 74.04	3.78 30	65.27 3.1	31 followup	26.07		2.28 [1.62; 2.94]
Zhao, X, et al., 2021 Fann, JR, et al., 2009 Fann, JR, et al., 2009	52 66.68 112 6.51 112 6.33	0.25 103 0.22 103	55.07 6. 5.84 0.1 5.72 0.1	32 followup 29 followup 26 followup	12.00 96.00 12.00	1	2.31 [1.80; 2.81] 2.47 [2.12; 2.83] 2.53 [2.17; 2.89]
Cheung YL, et al. 2002	29 7.51	0.98 30	4.96 0.0	56 followup	5.00	*	- 3.02 [2.26; 3.78]
Fann, JR, et al., 2009	112 6.67	0.23 103	5.95 0.1	24 followup	48.00		3.06 [2.66; 3.45]
Northouse, LL, et al., 2015	17 88.51	3.03 19	76.94 3.4	44 followup	2.00		→ 3.48 [2.41; 4.55]
Fann, JR, et al., 2009 Random effect Prediction interval	112 6.33 7706	0.25 103 8192	5.35 0.1	24 followup	72.00		3.98 [3.52; 4.45] 0.70 [-0.30; 1.69] [-0.99; 2.38]
group Heiney, SP, et al., 2003	33 6.00	1.70 33	6.40 1.4	40 baseline	0.00	-	-0.25 [-0.74; 0.23]
Liu, T, et al., 2019	49 66.61	10.85 53	69.54 15.	27 baseline	0.00		-0.22 [-0.61; 0.17]
Lee, JT, et al., 2022	29 3.50	0.60 25	3.60 0.1	30 baseline	0.00		-0.14 [-0.68; 0.39]
Peng, L, et al., 2022	28 69.05	16.49 29	71.26 17.	05 baseline	0.00		-0.13 [-0.65; 0.39]
Penedo, FJ, et al., 2007	41 -82.3	5 14.02 30	-80.57 13.	21 baseline	0.00	*	-0.13 [-0.60; 0.34]
Von Ah, D, et al., 2012 I.	26 22.06	3.44 29	22.38 2.1	24 baseline	0.00		-0.11 [-0.64; 0.42]
Schellekens, MPJ, et al. 2016	69 95.43	21.60 70	97.09 23.	54 baseline	0.00		-0.07 [-0.41; 0.26]
Compen F, et al. 2020 I.	77 0.75	0.21 78	0.76 0.1	17 baseline	0.00	-	-0.05 [-0.37; 0.26]
Reich, RR, et al. 2016	167 62.44	27.52 155	62.74 24.	68 baseline	0.00		-0.01 [-0.23; 0.21]
Xia, S, et al., 2023	80 61.40	16.60 80	61.10 15.	70 baseline	0.00		0.02 [-0.29; 0.33]
Nikbakhsh, N, et al., 2018 Compen F, et al. 2020 II. Esplen MJ, et al., 2018	20 44.05 90 0.77 131 70.50	0.19 78 16.50 63	43.64 13. 0.76 0. 68.90 17.	73 baseline 17 baseline 20 baseline	0.00 0.00 0.00	-	0.04 [-0.58; 0.66] 0.05 [-0.25; 0.36] 0.10 [-0.21; 0.40]
Mihuta, ME, et al., 2018	32 11.90	4.40 33	11.50 3.0	50 baseline	0.00	「	0.10 [-0.39; 0.59]
Hernandez, EG, et al. 2018	28 64.86	20.04 28	62.85 15.	86 baseline	0.00		0.11 [-0.41; 0.63]
Von Ah, D, et al., 2012 II.	27 22.98	3.08 29	22.38 2.3	24 baseline	0.00		0.22 [-0.30; 0.75]
Rahmani, S, et al. 2015	12 41.66	6.15 12	39.58 7.1	22 baseline	0.00		0.30 [-0.51; 1.10]
Yoo, HJ, et al. 2004	30 93.41	16.90 30	87.88 14.	96 baseline	0.00		0.34 [-0.17; 0.85]
Cengiz, HO, et al., 2023	32 63.06	19.74 33	55.22 18.	26 baseline	0.00		0.41 [-0.08; 0.90]
Jelvehzadeh, F, et al., 2022 Penedo, FJ, et al., 2007 Heiney, SP, et al., 2003	24 4.71 41 -87.2 33 6.00	1.07 24 2 13.82 30 1.50 33	3.94 1.0 -79.63 14. 6.80 1.5	56 followup 50 followup	0.00 12.00 16.00	=	0.71 [0.13; 1.30] -0.53 [-1.01; -0.05] -0.53 [-1.02; -0.04]
Von Ah, D, et al.,2012 I.	26 22.15	4.45 29	22.58 2.	24 followup	8.00	書	-0.12 [-0.65; 0.41]
Peng, L, et al., 2022	28 66.67	24.00 29	69.25 22	17 followup	4.00		-0.11 [-0.63; 0.41]
Reich, RR, et al. 2016	167 68.43	27.76 155	70.36 22	70 followup	12.00		-0.08 [-0.29; 0.14]
Heiney, SP, et al., 2003	33 6.20	1.30 33	6.30 1.0	50 followup	6.00		-0.07 [-0.55; 0.41]
Esplen MJ, et al., 2018	131 73.40	16.70 63	74.30 17.	70 followup	48.00		-0.05 [-0.35; 0.25]
Reich, RR, et al. 2016	167 65.76	26.18 155	66.24 24.	76 followup	6.00		-0.02 [-0.24; 0.20]
Rahmani, S, et al. 2015	12 12.00	61.11 12	12.00 58.	33 followup	16.00		0.00 [-0.80; 0.80]
Peng, L, et al., 2022	28 72.32	22.11 29	71.26 15.	26 followup	0.10		0.06 [-0.46; 0.57]
Von Ah. D. et al., 2012 II.	27 22.71	2.08 29	22.58 2.3	24 followup	8.00		0.06 [-0.47; 0.58]
Lee, JT, et al., 2022	29 4.05	0.60 25	4.00 0.0	50 followup	12.00	-	0.08 [-0.45; 0.62]
Lee, JT, et al., 2022	29 4.05	0.60 25	4.00 0.0	50 followup	24.00		0.08 [-0.45; 0.62]
Esplen MJ, et al., 2018	131 14.90	9.40 63	14.00 9.4	40 followup	8.00		0.10 [-0.21; 0.40]
Xia, S, et al., 2023	80 67.70	16.20 80	65.80 14.	40 followup	4.00		0.12 [-0.19; 0.43]
Esplen MJ, et al., 2018	131 72.60	16.60 63	70.30 18.	00 followup	24.00		0.13 [-0.17; 0.44]
Schellekens, MPJ, et al. 2016	69 107.3	5 18.80 70	103.34 22	35 followup	8.00		0.19 [-0.14; 0.53]
Xia, S. et al., 2023	80 72.70	15.80 80	68.00 13.	50 followup	12.00		0.32 [0.01; 0.63]
Xia, S. et al., 2023	80 78.00	14.30 80	72.90 13.	40 followup	24.00		0.37 [0.05; 0.68]
Yoo, HJ. et al. 2004	30 97.01	18.24 30	88.13 16.	18 followup	12.00		0.51 [-0.01; 1.02]
Hemandez, EG, et al. 2018 Compen F, et al. 2020 II. Mihuta, ME, et al. 2018	28 71.73 90 0.85 32 14.10	0.17 78 2.60 33	62.80 17. 0.75 0. 12.30 3.0	63 followup 19 followup 50 followup	24.00 8.00 4.00	書	0.53 [-0.00; 1.06] 0.55 [0.25; 0.86] 0.56 [0.07; 1.06]
Compen F, et al. 2020 I. Hernandez, EG, et al. 2018 Cengiz, HD, et al. 2023	77 0.86 28 74.38 32 66.98	0.13 78	0.75 0.164.40 14.	19 followup 73 followup 65 followup	8.00 8.00 8.00	*	0.67 [0.35; 1.00] 0.75 [0.20; 1.29] 0.76 [0.25; 1.26]
Yoo, HJ, et al. 2004	30 102.0	0 19.94 30	88.18 14.	02 followup	24.00	+	0.79 [0.26; 1.32]
Rahmani, S, et al. 2015	12 66.66	9.40 12	54.16 10.	95 followup	8.00		1.18 [0.30; 2.06]
Liu, T, et al. 2019	49 62.67	10.32 53	49.47 10	92 followup	9.00		1.23 [0.81; 1.66]
Liu, T, et al., 2019 Jelvehzadeh, F, et al., 2022	49 72.33 24 6.05 24 6.16	13.36 53 1.00 24	56.95 10. 4.65 0.1	03 followup 30 followup	12.00 12.00	-	1.30 [0.87; 1.73] 1.52 [0.87; 2.17] 1.54 [0.99; 2.19]
Nikbakhsh, N, et al., 2018 Random effect	20 81.70 2872	10.04 20 2539	47.39 12	93 followup	12.00	*	- 2.91 [1.99; 3.82] 0.63 [-0.25; 1.50]
self-help van den Bern SW et al 2015 II	70 66.70	16.57 80	69.79 17	91 baseline	0.00	_	-0.17 [-0.49: 0.15]
Wang, TJ, et al 2023 van der Hout, AVD, et al. 2019 Walker, LG, et al. 1998	70 102.3 320 85.30 48 3.25	0 18.40 72 1 14.90 304 0.70 48	104.40 17. 85.40 13. 3.25 0	10 baseline 60 baseline 56 baseline	0.00	神田神	-0.12 [-0.45; 0.21] -0.01 [-0.16; 0.15] 0.00 [-0.40; 0.40]
Rosen, KD, et al., 2018	57 93.61	22.68 55	92.96 25.	12 baseline	0.00		0.03 [-0.34; 0.40]
Wang, TJ, et al 2023	70 105.4	0 17.80 72	103.50 20.	00 followup	8.00		0.10 [-0.23; 0.43]
van der Hout. AVD. et al 2019	320 88.77	1 13.20 304	86.50 13	10 followup	12.00		0.17 [0.01: 0.32]
van der Hout, AVD, et al. 2019	320 88.40	12.10 304	86.20 12	80 followup	1.00		0.18 [0.02; 0.33]
van der Hout, AVD, et al. 2019	320 89.30	12.30 304	87.00 12	70 followup	24.00		0.18 [0.03; 0.34]
Wang, TJ, et al 2023	70 107.3	0 16.70 72	103.30 19	00 followup	16.00		0.22 [-0.11: 0.55]
Wang, TJ, et al 2023 Walker, LG, et al., 1998 Rosen, KD, et al., 2018	70 106.9 48 3.29 57 107.3	0 16.60 72 0.80 48 5 17.79 55	102.70 20 2.90 0. 96.04 23	00 followup 78 followup 96 followup	24.00 15.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.23 [-0.10; 0.56] 0.49 [0.08; 0.90] 0.53 [0.16; 0.91]
van den Berg, SW, et al. 2015 II. Random effect Prediction interval	70 73.30 1910	1.78 80 1870	69.88 1.	57 followup	4.00	<u></u>	1.97 [1.58; 2.36] 0.60 [-0.38; 1.58] [-1.10; 2.31]
Random effect Prediction interval	12488	12601				_	0.69 [-0.29; 1.67] [-0.99; 2.36]
						.4 .2 0 2	4

Figure S5.4. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the type subgroups as predicted at week 48 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

S6. Subgroup analysis of Global QoL: Cancer Stage

Figure S6.1.T0

Start.	EX	perimental	D-4	Control			F - H H			0.54 01
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early										
Zhao,X, et al. 2015	62	7.85 2.52	62	8.75	2.38	baseline	0.00		-0.36	[-0.72; -0.01]
Chu, X. et al, 2020	42	66.61 10.85	42	69.54	15.03	baseline	0.00		-0.22	[-0.65; 0.21]
Zhao, X, et al., 2021	52	53.70 3.14	51	54.69	9.61	baseline	0.00		-0.14	[-0.52; 0.25]
Wang, TJ, et al 2023	70	102.30 18.40	72	104.40	17.10	baseline	0.00	一世	-0.12	[-0.45; 0.21]
Marchioro, G, et al. 1996 Walker I G, et al. 1998	18	-58.44 22.39	18	-57.72	20.25	baseline	0.00		-0.03	[-0.69; 0.62]
Nikbakhsh, N. et al., 2018	20	44.09 8.48	20	43.64	13.73	baseline	0.00		0.04	[-0.58: 0.66]
Yoo, HJ, et al. 2004	30	93.41 16.90	30	87.88	14.96	baseline	0.00	-	0.34	[-0.17; 0.85]
Cengiz, HO, et al., 2023	32	63.06 19.74	33	55.22	18.26	baseline	0.00	_ 	0.41	[-0.08; 0.90]
Wang TL et al 2015	30	56.22 3.88	30	59.37	3.92	followup	6.00		-0.80	[-1.32; -0.27]
Marchioro, G, et al. 1996	18	-54.17 16.90	18	-56.33	17.72	followup	4.00		0.12	[-0.53; 0.78]
Wang, TJ, et al 2023	70	107.30 16.70	72	103.30	19.00	followup	16.00		0.22	[-0.11; 0.55]
Wang, IJ, et al 2023 Walker IC, et al 1999	70	106.90 16.60	/2	102.70	20.00	followup	24.00		0.23	[-0.10; 0.56]
Yoo, HJ, et al. 2004	30	97.01 18.24	30	88.13	16.18	followup	12.00	÷	0.43	[-0.01; 1.02]
Cengiz, HO, et al., 2023	32	66.98 17.72	33	53.03	18.65	followup	8.00	듣	0.76	[0.25; 1.26]
Chu, X. et al, 2020	42	85.41 16.08	42	71.90	18.50	followup	12.00	二	0.77	[0.33; 1.22]
Yoo, HJ, et al. 2020	30	102.00 19.94	30	88.18	14.02	followup	24.00		0.79	[0.26; 1.32]
Marchioro, G, et al. 1996	18	-48.72 12.22	18	-60.78	14.85	followup	12.00		0.87	[0.18; 1.55]
Zhao,X, et al. 2015	62	10.65 2.02	62	8.22	2.07	followup	0.30		1.18	[0.80; 1.56]
Liu, 1, et al., 2019 Liu, T, et al. 2019	49	72.33 13.36	53	49.47	10.92	followup	9.00	17	1.23	[0.81, 1.00]
Marchioro, G, et al. 1996	18	-44.72 9.18	18	-60.78	13.26	followup	24.00		1.38	[0.64; 2.11]
Beatty, L. et al. 2015	30	68.50 3.64	30	62.85	3.64	followup	13.03		1.53	[0.95; 2.11]
Marchioro, G, et al. 1996 Reathy L. et al. 2015	18	-41.17 6.91	18	-60.28	13.33	followup	36.00		1.76	[0.98; 2.54]
Zhao, X, et al., 2015	52	66.68 3.21	51	55.07	6.32	followup	12.00	-	2.20	[1.80; 2.84]
Nikbakhsh, N, et al., 2018	20	81.70 10.04	20	47.39	12.93	followup	12.00		2.91	[1.99; 3.82]
Random effect	1251		1271					*	0.66	[0.14; 1.17]
Prediction interval										[-0.65; 1.97]
advanced										
Rodin, G, et al., 2019	22	103.92 6.45	20	106.71	6.80	baseline	0.00		-0.41	[-1.03; 0.20]
Serfaty M, et al., 2018	20	56.40 15.50	22	61.40	14.40	baseline	0.00		-0.33	[-0.94; 0.28]
Walczak, A, et al., 2017 Heinev SP et al. 2003	33	71.84 10.33 600 170	49	75.99 6.40	15.72	baseline	0.00		-0.26	[-0.63; 0.12] [-0.74: 0.23]
Savard, J, et al., 2006	21	42.51 3.19	16	43.11	3.91	baseline	0.00		-0.17	[-0.82; 0.48]
Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00	-	-0.13	[-0.60; 0.34]
Kissane, DW, et al., 2023	202	25.80 8.30	52	25.30	8.90	baseline	0.00	T	0.06	[-0.32; 0.44]
Penedo, FJ, et al., 2007	41	-87.22 13.82	30	-79.63	14.56	followup	12.00		-0.53	[-1.01; -0.05]
Heiney, SP, et al., 2003	33	6.00 1.50	33	6.80	1.50	followup	16.00		-0.53	[-1.02; -0.04]
Serfaty M, et al., 2018	20	63.80 19.80	22	72.20	16.60	followup	12.00		-0.45	[-1.07; 0.16]
Heinev SP et al. 2003	33	620 130	33	6.30	1.60	followup	6.00		-0.34	[-1.00, 0.31]
Serfaty M, et al., 2018	20	67.70 23.80	22	63.20	16.60	followup	24.00		0.22	[-0.39; 0.82]
Kissane, DW, et al., 2023	55	27.40 7.70	52	25.40	7.80	followup	24.00	물	0.26	[-0.12; 0.64]
Serfaty M, et al., 2018 Kieseppe DW, et al., 2022	20	72.90 19.10	22	67.90	16.70	followup	18.00	古	0.27	[-0.33; 0.88]
Walczak, A. et al., 2017	61	77.76 18.80	49	24.80	16.33	followup	4.00	-	0.30	[-0.02, 0.74]
Lu, Z, et al., 201	203	64.40 5.00	103	62.30	6.00	followup	9.00	÷	0.39	[0.15; 0.63]
Rodin, G, et al., 2019	22	110.14 6.83	20	103.57	7.71	followup	4.00		0.89	[0.25; 1.53]
Rodin, G, et al., 2019 Rodin, G, et al., 2019	22	110.41 7.29	20	103.70	7.00	followup	8.00		0.92	[0.28; 1.56]
Random effect	1084	114.57 0.57	819	100.01	1.50	lonowup	12.00	÷ -	0.21	[-0.44; 0.85]
Prediction interval										[-1.15; 1.56]
survivor										
van den Berg, SW, et al. 2015 II.	70	66.79 16.57	80	69.79	17.91	baseline	0.00	=	-0.17	[-0.49; 0.15]
Lee, JT, et al., 2022	29	3.50 0.60	25	3.60	0.80	baseline	0.00		-0.14	[-0.68; 0.39]
Peng, L, et al., 2022	28	69.05 16.49	29	71.26	17.05	baseline	0.00		-0.13	[-0.65; 0.39]
Von Ah D et al 2012 I	26	22.06 3.44	29	22.38	2 2 2 4	baseline	0.00		-0.13	[-0.57, 0.11]
Qiu, H, et al., 2018 I.	98	78.09 18.86	196	79.49	21.60	baseline	0.00		-0.07	[-0.31; 0.18]
Dieng M, et al. 2020	70	0.78 0.20	81	0.77	0.22	baseline	0.00		0.05	[-0.27; 0.37]
Von An, D, et al.,2012 II. Peoples AR et al. 2016	27	22.98 3.08	29	22.38	2.24	baseline	0.00		0.22	[-0.30; 0.75] [-0.18: 0.96]
McCaughan, E, et al., 2018	13	85.83 14.10	4	76.88	22.04	baseline	0.00	- <u>-</u>	0.53	[-0.61; 1.67]
Jelvehzadeh, F, et al., 2022	24	4.71 1.07	24	3.94	1.06	baseline	0.00		0.71	[0.13; 1.30]
Von Ah, D, et al.,2012 I.	26	22.15 4.45	29	22.58	2.24	followup	8.00		-0.12	[-0.65; 0.41]
Dieng M et al. 2022	28	0.07 24.00	29	0.04	0.23	followup	48.00		0.05	[-0.83, 0.41] [-0.27: 0.37]
Dieng M, et al. 2020	70	0.04 0.16	81	0.03	0.23	followup	26.00	-	0.05	[-0.27; 0.37]
Peng, L, et al., 2022	28	72.32 22.11	29	71.26	15.26	followup	0.10		0.06	[-0.46; 0.57]
Von Ah, D, et al.,2012 II.	27	22.71 2.08	29	22.58	2.24	followup	8.00		0.06	[-0.47; 0.58]
Lee. JT. et al., 2018 II.	29	4.05 0.60	25	4.00	0.60	followup	12.00	-	0.07	[-0.45: 0.62]
Lee, JT, et al., 2022	29	4.05 0.60	25	4.00	0.60	followup	24.00		0.08	[-0.45; 0.62]
Qiu, H, et al., 2018 II.	98	89.52 33.46	196	83.21	31.55	followup	12.00	三	0.20	[-0.05; 0.44]
Qiu, H, et al., 2018 II. McCaughan E et al. 2019	98 13	94.70 35.69	196	87.72	34.70	followup	24.00		0.20	[-0.04; 0.44] [-0.84: 1.41]
Qiu, H, et al., 2018 I.	98	91.32 29.00	196	78.03	31.55	followup	4.00	÷.	0.43	[0.19; 0.68]
Peoples, AR, et al., 2016	24	87.90 13.90	24	79.70	15.70	followup	7.00		0.54	[-0.03; 1.12]
Peoples, AR, et al., 2016	24	91.40 15.00	24	78.60	20.60	followup	12.00		0.70	[0.11; 1.28]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I	98	107.32 31.23	196	87.72	34.70	followup	24.00 12.00		0.72	[0.48, 0.97]
Jelvehzadeh, F, et al., 2022	24	6.05 1.00	24	4.65	0.80	followup	12.00		1.52	[0.87; 2.17]
Jelvehzadeh, F, et al., 2022	24	6.16 1.09	24	4.58	0.92	followup	8.00		1.54	[0.89; 2.19]
van den Berg, SW, et al. 2015 II. Random effect	1591	/3.30 1./8	2/01	69.88	1.67	ronowup	4.00	L =	1.97	[1.58; 2.36] [.0.23: 4.041
Prediction interval	1301		2401						0.39	[-0.97; 1.75]
Random effect Prediction interval	3916		4491						0.41	[-0.16; 0.98] [-0.94; 1.76]
							Г		٦	
							-4 In favor of	-2 0 2 control group In favor of inte	4 rvention	aroup
										3. a a b

Figure S6.1. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer stage subgroups as predicted at week 0 (post-intervention). SMD -Standardized mean difference, CI -confidence interval.

Figure S6.2.T12

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early										
Zhao,X, et al. 2015	62	7.85 2.52	62	8.75	2.38	baseline	0.00		-0.36	[-0.72; -0.01]
Chu, X. et al, 2020	42	65.20 16.77	42	68.91	16.63	baseline	0.00	重	-0.22	[-0.65; 0.21]
Zhao X et al. 2019	49	53 70 3 14	53 51	09.54 54.69	9.61	baseline	0.00		-0.22	[-0.61, 0.17]
Wang, TJ, et al 2023	70	102.30 18.40	72	104.40	17.10	baseline	0.00	- 폭	-0.12	[-0.45; 0.21]
Marchioro, G, et al. 1996	18	-58.44 22.39	18	-57.72	20.25	baseline	0.00	- <u>±</u> -	-0.03	[-0.69; 0.62]
Walker, LG, et al., 1998	48	3.25 0.70	48	3.25	0.66	baseline	0.00		0.00	[-0.40; 0.40]
Nikbakhsh, N, et al., 2018	20	44.09 8.48	20	43.64	13.73	baseline	0.00		0.04	[-0.58; 0.66]
Cengiz, HO, et al., 2023	32	63.06 19.74	33	55.22	18.26	baseline	0.00		0.41	[-0.08; 0.90]
Beatty, L. et al. 2015	30	56.22 3.88	30	59.37	3.92	followup	6.00		-0.80	[-1.32; -0.27]
Wang, TJ, et al 2023	70	105.40 17.80	72	103.50	20.00	followup	8.00		0.10	[-0.23; 0.43]
Marchioro, G, et al. 1996	18	-54.17 16.90	18	-56.33	17.72	followup	4.00		0.12	[-0.53; 0.78]
Wang TJ et al 2023	70	106.90 16.60	72	103.30	20.00	followup	24.00		0.22	[-0.10:0.55]
Walker, LG, et al., 1998	48	3.29 0.80	48	2.90	0.78	followup	15.00	li≡ l	0.49	[0.08; 0.90]
Yoo, HJ, et al. 2004	30	97.01 18.24	30	88.13	16.18	followup	12.00	<u>+</u>	0.51	[-0.01; 1.02]
Cengiz, HO, et al., 2023	32	66.98 17.72	33	53.03	18.65	followup	8.00	重	0.76	[0.25; 1.26]
Chu X et al 2020	42	84 94 14 59	42	71.90	18.50	followup	8.00		0.79	[0.33, 1.22]
Yoo, HJ, et al. 2004	30	102.00 19.94	30	88.18	14.02	followup	24.00		0.79	[0.26; 1.32]
Marchioro, G, et al. 1996	18	-48.72 12.22	18	-60.78	14.85	followup	12.00		0.87	[0.18; 1.55]
Zhao,X, et al. 2015	62	10.65 2.02	62	8.22	2.07	followup	0.30		1.18	[0.80; 1.56]
Liu, I, et al., 2019 Liu, T, et al. 2019	49	72 33 13 36	53	49.47	10.92	followup	9.00		1.23	[0.81, 1.00]
Marchioro, G. et al. 1996	18	-44.72 9.18	18	-60.78	13.26	followup	24.00		1.38	[0.64: 2.11]
Beatty, L. et al. 2015	30	68.50 3.64	30	62.85	3.64	followup	13.03		1.53	[0.95; 2.11]
Marchioro, G, et al. 1996	18	-41.17 6.91	18	-60.28	13.33	followup	36.00		1.76	[0.98; 2.54]
Beatty, L. et al. 2015	30	74.04 3.78	30	65.27	3.81	followup	26.07		2.28	[1.62; 2.94]
Nikhakhah N et al. 2018	20	81 70 10 04	20	47 39	12.02	followup	12.00		2.31	[1.00, 2.01]
Random effect	1251	01.70 10.04	1271	41.55	12.00	lonowap	12.00		0.82	[0.49; 1.14]
Prediction interval										[-0.45; 2.08]
advance of										
advanced Rodin C at al. 2019	22	102.02 6.45	20	106 71	6 00	bacalina	0.00		0.41	1 0 2 0 201
Serfaty M. et al., 2018	22	56.40 15.50	20	61.40	14.40	baseline	0.00		-0.41	[-0.94: 0.28]
Walczak, A, et al., 2017	61	71.84 16.33	49	75.99	15.72	baseline	0.00	록	-0.26	[-0.63; 0.12]
Heiney, SP, et al., 2003	33	6.00 1.70	33	6.40	1.40	baseline	0.00		-0.25	[-0.74; 0.23]
Savard, J, et al., 2006	21	42.51 3.19	16	43.11	3.91	baseline	0.00		-0.17	[-0.82; 0.48]
Penedo, FJ, et al., 2007 Kissano, DW, et al., 2022	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00		-0.13	[-0.60; 0.34]
Lu, Z. et al., 201	203	61.70 4.00	103	56.30	6.00	baseline	0.00	T in	1.13	[0.88: 1.38]
Penedo, FJ, et al., 2007	41	-87.22 13.82	30	-79.63	14.56	followup	12.00		-0.53	[-1.01; -0.05]
Heiney, SP, et al., 2003	33	6.00 1.50	33	6.80	1.50	followup	16.00	크	-0.53	[-1.02; -0.04]
Serfaty M, et al., 2018	20	63.80 19.80	22	72.20	16.60	followup	12.00		-0.45	[-1.07; 0.16]
Heinev SP et al. 2000	21	6.20 1.30	22	6.30	1.60	followup	6.00		-0.34	[-1.00, 0.31]
Serfaty M, et al., 2018	20	67.70 23.80	22	63.20	16.60	followup	24.00		0.22	[-0.39; 0.82]
Kissane, DW, et al., 2023	55	27.40 7.70	52	25.40	7.80	followup	24.00		0.26	[-0.12; 0.64]
Serfaty M, et al., 2018	20	72.90 19.10	22	67.90	16.70	followup	18.00		0.27	[-0.33; 0.88]
Kissane, DW, et al., 2023 Walczak A et al. 2017	55	27.90 8.10	52	24.80	8.90	followup	12.00	Ē	0.30	[-0.02; 0.74]
Lu. Z. et al., 201	203	64.40 5.00	103	62.30	6.00	followup	9.00	—	0.39	[0.15: 0.63]
Rodin, G, et al., 2019	22	110.14 6.83	20	103.57	7.71	followup	4.00	-)	0.89	[0.25; 1.53]
Rodin, G, et al., 2019	22	110.41 7.29	20	103.70	7.00	followup	8.00		0.92	[0.28; 1.56]
Rodin, G, et al., 2019	22	114.37 6.97	20	100.61	7.50	followup	12.00		1.87	[1.13; 2.60]
Random effect Prediction interval	1084		819						0.30	[-0.07; 0.80] [-0.98· 1.71]
										[-0.00] [111]
survivor										
van den Berg, SW, et al. 2015 II.	70	66.79 16.57	80	69.79	17.91	baseline	0.00		-0.17	[-0.49; 0.15]
Peng Letal 2022	29	3.50 0.60	25	3.00	17.05	baseline	0.00		-0.14	[-0.68; 0.39]
Qiu, H, et al., 2018 II.	98	76.78 19.91	196	79.49	21.60	baseline	0.00		-0.13	[-0.37; 0.11]
Von Ah, D, et al.,2012 I.	26	22.06 3.44	29	22.38	2.24	baseline	0.00		-0.11	[-0.64; 0.42]
Qiu, H, et al., 2018 I.	98	78.09 18.86	196	79.49	21.60	baseline	0.00	크	-0.07	[-0.31; 0.18]
Von Ab, D, et al. 2020	/0 27	0.78 0.20	81	0.77	0.22	baseline	0.00		0.05	[-0.27; 0.37]
Peoples, AR, et al., 2016	24	78.90 15.30	24	71.90	19.70	baseline	0.00		0.39	[-0.18; 0.96]
McCaughan, E, et al., 2018	13	85.83 14.10	4	76.88	22.04	baseline	0.00		0.53	[-0.61; 1.67]
Jelvehzadeh, F, et al., 2022	24	4.71 1.07	24	3.94	1.06	baseline	0.00		0.71	[0.13; 1.30]
Von Ah, D, et al.,2012 I. Bang, L, et al.,2022	26	22.15 4.45	29	22.58	2.24	followup	8.00		-0.12	[-0.65; 0.41]
Dieng M et al. 2022	28	0.07 24.00	29	09.25	0.23	followup	48.00		0.05	[-0.03, 0.41]
Dieng M, et al. 2020	70	0.04 0.16	81	0.03	0.23	followup	26.00		0.05	[-0.27; 0.37]
Peng, L, et al., 2022	28	72.32 22.11	29	71.26	15.26	followup	0.10		0.06	[-0.46; 0.57]
Von Ah, D, et al.,2012 II.	27	22.71 2.08	29	22.58	2.24	followup	8.00		0.06	[-0.47; 0.58]
QIU, H, et al., 2018 II.	98	80.28 26.77	196	78.03	31.55	followup	4.00	_ <u>=</u>	0.07	[-0.17; 0.32]
Lee, IT et al. 2022	29	4.05 0.00	25	4.00	0.60	followup	24.00		0.08	[-0.45: 0.62]
Qiu, H, et al., 2018 II.	98	89.52 33.46	196	83.21	31.55	followup	12.00		0.20	[-0.05; 0.44]
Qiu, H, et al., 2018 II.	98	94.70 35.69	196	87.72	34.70	followup	24.00		0.20	[-0.04; 0.44]
McCaughan, E, et al., 2018	13	85.76 17.07	4	80.22	22.75	followup	4.00		0.29	[-0.84; 1.41]
Qiu, H, et al., 2018 I. Peoples AR et al. 2016	98	91.32 29.00	24	78.03	31.55	followup	4.00		0.43	[0.19, 0.08] [-0.03; 1.12]
Peoples, AR, et al., 2016	24	91.40 15.00	24	78.60	20.60	followup	12.00		0.70	[0.11; 1.28]
Qiu, H, et al., 2018 I.	98	113.18 35.69	196	87.72	34.70	followup	24.00		0.72	[0.48; 0.97]
Qiu, H, et al., 2018 I.	98	107.32 31.23	196	83.21	31.55	followup	12.00		0.76	[0.51; 1.02]
Jeivenzaden, F, et al., 2022	24	0.05 1.00 6.16 1.00	24	4.65	08.0	followup	12.00		1.52	[U.87; 2.17] [0.80: 0.10]
van den Berg, SW. et al. 2015 II	70	73.30 1.78	80	69.88	1.67	followup	4.00		1.97	[1.58; 2.36]
Random effect	1581		2401					÷ -	0.55	[0.20; 0.90]
Prediction interval										[-0.73; 1.83]
Random effect	3046		4404						0.64	1034-0071
Prediction interval	3910		4431					<u> </u>	0.01	[-0.58: 1.79]
									1	

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S6.2, Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer stage subgroups as predicted at week 12 (postintervention). SMD -Standardized mean difference, CI confidence interval.

Figure S6.3.T24

	E	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early										
Zhao,X, et al. 2015	62	7.85 2.52	62	8.75	2.38	baseline	0.00		-0.36	[-0.72; -0.01]
Chu, X. et al, 2020	42	65.20 16.77	42	68.91	16.63	baseline	0.00	<u></u>	-0.22	[-0.65; 0.21]
Liu, T, et al., 2019	49	66.61 10.85	53	69.54	15.27	baseline	0.00		-0.22	[-0.61; 0.17]
Wang T.L et al 2023	52	102 30 18 40	72	104 40	17 10	baseline	0.00		-0.14	[-0.52, 0.25]
Marchioro, G, et al. 1996	18	-58.44 22.39	18	-57.72	20.25	baseline	0.00		-0.03	[-0.69; 0.62]
Walker, LG, et al., 1998	48	3.25 0.70	48	3.25	0.66	baseline	0.00	÷.	0.00	[-0.40; 0.40]
Nikbakhsh, N, et al., 2018	20	44.09 8.48	20	43.64	13.73	baseline	0.00		0.04	[-0.58; 0.66]
Yoo, HJ, et al. 2004 Cengiz HO et al. 2023	30	93.41 16.90	30	87.88	14.96	baseline	0.00		0.34	[-0.17; 0.85]
Beatty, L. et al. 2015	30	56.22 3.88	30	59.37	3.92	followup	6.00		-0.80	[-1.32: -0.27]
Wang, TJ, et al 2023	70	105.40 17.80	72	103.50	20.00	followup	8.00	-	0.10	[-0.23; 0.43]
Marchioro, G, et al. 1996	18	-54.17 16.90	18	-56.33	17.72	followup	4.00		0.12	[-0.53; 0.78]
Wang, 1J, et al 2023 Wang, TL, et al 2023	70	107.30 16.70	72	103.30	19.00	followup	16.00	重	0.22	[-0.11; 0.55]
Walker IG et al 1998	48	3 29 0 80	48	2 90	0.78	followup	24.00		0.23	[0.08: 0.90]
Yoo, HJ, et al. 2004	30	97.01 18.24	30	88.13	16.18	followup	12.00		0.51	[-0.01; 1.02]
Cengiz, HO, et al., 2023	32	66.98 17.72	33	53.03	18.65	followup	8.00		0.76	[0.25; 1.26]
Chu, X. et al, 2020	42	85.41 16.08	42	71.90	18.50	followup	12.00		0.77	[0.33; 1.22]
Voo HL et al. 2020	42	84.94 14.59 102.00 10.04	42	71.59	18.73	followup	24.00		0.79	[0.34, 1.23]
Marchioro, G. et al. 1996	18	-48.72 12.22	18	-60.78	14.85	followup	12.00		0.87	[0.18; 1.55]
Zhao,X, et al. 2015	62	10.65 2.02	62	8.22	2.07	followup	0.30		1.18	[0.80; 1.56]
Liu, T, et al., 2019	49	62.67 10.32	53	49.47	10.92	followup	9.00		1.23	[0.81; 1.66]
Liu, I, et al., 2019 Marchiere, C, et al. 1996	49	/2.33 13.30	53	56.95	10.03	followup	12.00		1.30	[0.87; 1.73]
Beatty L et al 2015	30	68.50 3.64	30	62.85	3.64	followup	13.03		1.50	[0.04, 2.11]
Marchioro, G, et al. 1996	18	-41.17 6.91	18	-60.28	13.33	followup	36.00		1.76	[0.98; 2.54]
Beatty, L. et al. 2015	30	74.04 3.78	30	65.27	3.81	followup	26.07		2.28	[1.62; 2.94]
Zhao, X, et al., 2021	52	66.68 3.21	51	55.07	6.32	followup	12.00		2.31	[1.80; 2.81]
NIKDaKNSN, N, et al., 2018 Random effect	20	81.70 10.04	20	47.39	12.93	tollowup	12.00		- 2.91	[1.99; 3.82]
Prediction interval	12.51		12/1						0.05	[-0.45: 2.16]
										,,
advanced								_		
Rodin, G, et al., 2019	22	103.92 6.45	20	106.71	6.80	baseline	0.00		-0.41	[-1.03; 0.20]
Walczak A et al 2017	20	71.84 16.33	22 49	75.00	14.40	baseline	0.00		-0.33	[-0.94, 0.28]
Heiney, SP, et al., 2003	33	6.00 1.70	33	6.40	1.40	baseline	0.00		-0.20	[-0.74: 0.23]
Savard, J, et al., 2006	21	42.51 3.19	16	43.11	3.91	baseline	0.00	- -	-0.17	[-0.82; 0.48]
Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00	- <u>+</u>	-0.13	[-0.60; 0.34]
Kissane, DW, et al., 2023	55	25.80 8.30	52	25.30	8.90	baseline	0.00	T	0.06	[-0.32; 0.44]
Penedo El etal 2007	203	-87 22 13 82	30	-79.63	14.56	followup	12 00		-0.53	[-1.01:-0.05]
Heiney, SP, et al., 2003	33	6.00 1.50	33	6.80	1.50	followup	16.00		-0.53	[-1.02; -0.04]
Serfaty M, et al., 2018	20	63.80 19.80	22	72.20	16.60	followup	12.00		-0.45	[-1.07; 0.16]
Savard, J, et al., 2006	21	3.62 0.95	16	3.95	0.91	followup	8.00		-0.34	[-1.00; 0.31]
Heiney, SP, et al., 2003 Sorfaty M, et al., 2019	33	6770 22.90	33	62.20	1.60	followup	6.00		-0.07	[-0.55; 0.41]
Kissane, DW, et al., 2023	55	27.40 7.70	52	25.40	7.80	followup	24.00		0.22	[-0.12: 0.64]
Serfaty M, et al., 2018	20	72.90 19.10	22	67.90	16.70	followup	18.00	-	0.27	[-0.33; 0.88]
Kissane, DW, et al., 2023	55	27.90 8.10	52	24.80	8.90	followup	12.00		0.36	[-0.02; 0.74]
Walczak, A, et al.,2017	61	77.76 18.80	49	70.87	16.33	followup	4.00		0.39	[0.01; 0.77]
Rodin, G. et al., 2019	203	110.14 6.83	20	103.57	7.71	followup	4.00		0.89	[0.25: 1.53]
Rodin, G, et al., 2019	22	110.41 7.29	20	103.70	7.00	followup	8.00	-	0.92	[0.28; 1.56]
Rodin, G, et al., 2019	22	114.37 6.97	20	100.61	7.50	followup	12.00		1.87	[1.13; 2.60]
Random effect	1084		819						0.40	[-0.12; 0.93]
Prediction Interval										[-0.93; 1.74]
survivor										
van den Berg, SW, et al. 2015 II.	70	66.79 16.57	80	69.79	17.91	baseline	0.00	<u></u>	-0.17	[-0.49; 0.15]
Lee, JT, et al., 2022	29	3.50 0.60	25	3.60	0.80	baseline	0.00		-0.14	[-0.68; 0.39]
Peng, L, et al., 2022 Oiu H et al. 2018 II	28	76 78 19 91	29	79.49	21.60	baseline	0.00		-0.13	[-0.05, 0.39]
Von Ah, D, et al.,2012 I.	26	22.06 3.44	29	22.38	2.24	baseline	0.00	- -	-0.11	[-0.64; 0.42]
Qiu, H, et al., 2018 I.	98	78.09 18.86	196	79.49	21.60	baseline	0.00	<u>.</u>	-0.07	[-0.31; 0.18]
Dieng M, et al. 2020	70	0.78 0.20	81	0.77	0.22	baseline	0.00	一一世	0.05	[-0.27; 0.37]
Von An, D, et al., 2012 II. Peoples AR et al. 2016	2/	22.98 3.08	29	22.38	2.24	baseline	0.00		0.22	[-0.30; 0.75]
McCaughan E et al. 2018	13	85.83 14.10	4	76.88	22.04	baseline	0.00		0.53	[-0.61: 1.67]
Jelvehzadeh, F, et al., 2022	24	4.71 1.07	24	3.94	1.06	baseline	0.00		0.71	[0.13; 1.30]
Von Ah, D, et al.,2012 I.	26	22.15 4.45	29	22.58	2.24	followup	8.00	- <u>+</u> -	-0.12	[-0.65; 0.41]
Peng, L, et al., 2022 Diang M, et al. 2020	28	66.67 24.00	29	69.25	22.17	followup	4.00		-0.11	[-0.63; 0.41]
Dieng M, et al. 2020 Dieng M, et al. 2020	70	0.05 0.18	81 91	0.04	0.23	followup	48.00	重日	0.05	[-0.27; 0.37]
Peng, L, et al., 2022	28	72.32 22.11	29	71.26	15.26	followup	0.10		0.06	[-0.46; 0.57]
Von Ah, D, et al.,2012 II.	27	22.71 2.08	29	22.58	2.24	followup	8.00		0.06	[-0.47; 0.58]
Qiu, H, et al., 2018 II.	98	80.28 26.77	196	78.03	31.55	followup	4.00	*	0.07	[-0.17; 0.32]
Lee, JI, et al., 2022	29	4.05 0.60	25	4.00	0.60	followup	12.00	1	0.08	[-0.45; 0.62]
Qiu H et al. 2022	29 98	4.00 0.00	20 196	4.00	31.55	followup	24.00 12.00		0.08	[-0.45, 0.62]
Qiu, H, et al., 2018 II.	98	94.70 35.69	196	87.72	34.70	followup	24.00		0.20	[-0.04; 0.44]
McCaughan, E, et al., 2018	13	85.76 17.07	4	80.22	22.75	followup	4.00		0.29	[-0.84, 1.41]
Qiu, H, et al., 2018 I.	98	91.32 29.00	196	78.03	31.55	followup	4.00	10 A	0.43	[0.19; 0.68]
Peoples, AR, et al., 2016	24	87.90 13.90	24	79.70	15.70	followup	7.00		0.54	[-0.03; 1.12]
Qiu. H. et al., 2018 I	24 98	113.18 35.69	196	87 72	34 70	followup	24.00	-	0.70	[0.48: 0.97]
Qiu, H, et al., 2018 I.	98	107.32 31.23	196	83.21	31.55	followup	12.00	i i i i i i i i i i i i i i i i i i i	0.76	[0.51; 1.02]
Jelvehzadeh, F, et al., 2022	24	6.05 1.00	24	4.65	0.80	followup	12.00		1.52	[0.87; 2.17]
Jeivehzadeh, F, et al., 2022	24	6.16 1.09	24	4.58	0.92	followup	8.00		1.54	[0.89; 2.19]
Random effect	1581	13.30 1.78	2401	09.66	1.07	ronowup	4.00		0.50	[0.12: 1.06]
Prediction interval	1501		2.101						0.00	[-0.72; 1.89]
Random effect Prediction interval	3916		4491					<u> </u>	0.66	[0.18; 1.14]
r realeann mervar									-	[-0.00, 1.90]

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S6.3.Subgroup analysis of the Global QoL Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer stage subgroups as predicted at week 24 (postintervention). SMD -Standardized mean difference, CI confidence interval.

Figure S6.4.T48

Shudu	Ex	perimental	Defined	Control	CD	6 - 11	F - H	CMD of interested over	CHID	
Study	Patient N	mean SD	Patient N	Mean	SD	tonow-up	Follow-up time	SMD of Interested event	SMD	95%-CI
early										
Zhao,X, et al. 2015	62	7.85 2.52	62	8.75	2.38	baseline	0.00		-0.36	[-0.72; -0.01]
Chu, X. et al, 2020	42	65.20 16.77	42	68.91	16.63	baseline	0.00		-0.22	[-0.65; 0.21]
Liu, T, et al., 2019	49	66.61 10.85	53	69.54	15.27	baseline	0.00		-0.22	[-0.61; 0.17]
Wang TL et al 2023	52	102 30 18 40	72	104.09	9.01	baseline	0.00		-0.14	[-0.52, 0.25] [-0.45: 0.21]
Marchioro G et al 1996	18	-58 44 22 39	18	-57 72	20.25	baseline	0.00		-0.03	[-0.69: 0.62]
Walker, LG, et al., 1998	48	3.25 0.70	48	3.25	0.66	baseline	0.00	王	0.00	[-0.40; 0.40]
Nikbakhsh, N, et al., 2018	20	44.09 8.48	20	43.64	13.73	baseline	0.00		0.04	[-0.58; 0.66]
Yoo, HJ, et al. 2004	30	93.41 16.90	30	87.88	14.96	baseline	0.00		0.34	[-0.17; 0.85]
Cengiz, HO, et al., 2023	32	63.06 19.74	33	55.22	18.26	baseline	0.00	_ 17	0.41	[-0.08; 0.90]
Beatty, L. et al. 2015	30	56.22 3.88	30	59.37	3.92	followup	6.00		-0.80	[-1.32; -0.27]
Marchioro C et al 1006	10	5/ 17 16 00	10	103.50 56.22	20.00	followup	8.00		0.10	[-0.23, 0.43]
Wang T.L et al 2023	70	107 30 16 70	72	103.30	19 00	followup	16.00	포	0.12	[-0.33, 0.76]
Wang, TJ, et al 2023	70	106.90 16.60	72	102.70	20.00	followup	24.00		0.23	[-0.10; 0.56]
Walker, LG, et al., 1998	48	3.29 0.80	48	2.90	0.78	followup	15.00		0.49	[0.08; 0.90]
Yoo, HJ, et al. 2004	30	97.01 18.24	30	88.13	16.18	followup	12.00		0.51	[-0.01; 1.02]
Cengiz, HO, et al., 2023	32	66.98 17.72	33	53.03	18.65	followup	8.00	1	0.76	[0.25; 1.26]
Chu, X. et al. 2020	42	85.41 10.08	42	71.90	18.50	followup	12.00		0.77	[0.33; 1.22]
	30	102 00 10 04	30	99.19	14.02	followup	24.00	1	0.79	[0.34, 1.23]
Marchioro, G. et al. 1996	18	-48.72 12.22	18	-60.78	14.85	followup	12.00	÷	0.87	[0.18: 1.55]
Zhao,X, et al. 2015	62	10.65 2.02	62	8.22	2.07	followup	0.30		1.18	[0.80; 1.56]
Liu, T, et al., 2019	49	62.67 10.32	53	49.47	10.92	followup	9.00		1.23	[0.81; 1.66]
Liu, T, et al., 2019	49	72.33 13.36	53	56.95	10.03	followup	12.00		1.30	[0.87; 1.73]
Marchioro, G, et al. 1996	18	-44.72 9.18	18	-60.78	13.26	followup	24.00		1.38	[0.64; 2.11]
Beatty, L. et al. 2015 Marabiana, C. at al. 1006	30	08.50 3.64	30	62.85	3.64	followup	13.03		1.53	[0.95; 2.11]
Reatty L et al 2015	30	74.04 3.78	30	-00.20	3.81	followup	26.00		2.28	[0.96, 2.54]
Zhao, X. et al., 2021	52	66.68 3.21	51	55.07	6.32	followup	12.00		2.31	[1.80: 2.81]
Nikbakhsh, N, et al., 2018	20	81.70 10.04	20	47.39	12.93	followup	12.00		- 2.91	[1.99; 3.82]
Random effect	1251		1271						0.56	[-3.44; 4.57]
Prediction interval										[-4.69; 5.82]
advanced		400.00.045		400 74		base a Base	0.00		0.44	
Rodin, G, et al., 2019 Sorfaty M, et al., 2019	22	103.92 0.45	20	106.71	0.80	baseline	0.00		-0.41	[-1.03; 0.20]
Walczak A et al 2017	61	71.84 16.33	49	75.99	15 72	haseline	0.00		-0.35	[-0.63: 0.20]
Heiney, SP, et al., 2003	33	6.00 1.70	33	6.40	1.40	baseline	0.00		-0.25	[-0.74: 0.23]
Savard, J, et al., 2006	21	42.51 3.19	16	43.11	3.91	baseline	0.00		-0.17	[-0.82; 0.48]
Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00		-0.13	[-0.60; 0.34]
Kissane, DW, et al., 2023	55	25.80 8.30	52	25.30	8.90	baseline	0.00		0.06	[-0.32; 0.44]
Lu, Z, et al., 201	203	61.70 4.00	103	56.30	6.00	baseline	0.00	_ ! =	1.13	[0.88; 1.38]
Penedo, FJ, et al., 2007	41	-87.22 13.82	30	-79.63	14.56	followup	12.00		-0.53	[-1.01; -0.05]
Serfety M et al. 2003	20	63.90 10.90	22	72.20	16.60	followup	12.00		-0.05	[-1.02, -0.04] [-1.07: 0.16]
Savard J et al. 2006	20	3.62 0.95	16	3.95	0.91	followup	8.00		-0.45	[-1.07, 0.10]
Heiney, SP, et al., 2003	33	6.20 1.30	33	6.30	1.60	followup	6.00	-	-0.07	[-0.55: 0.41]
Serfaty M, et al., 2018	20	67.70 23.80	22	63.20	16.60	followup	24.00		0.22	[-0.39; 0.82]
Kissane, DW, et al., 2023	55	27.40 7.70	52	25.40	7.80	followup	24.00	き	0.26	[-0.12; 0.64]
Serfaty M, et al., 2018	20	72.90 19.10	22	67.90	16.70	followup	18.00	- <u>-</u>	0.27	[-0.33; 0.88]
Kissane, DW, et al., 2023	55	27.90 8.10	52	24.80	8.90	followup	12.00		0.36	[-0.02; 0.74]
Walczak, A, et al., 2017	202	64.40 5.00	49	62.20	10.33	followup	4.00		0.39	[0.01; 0.77]
Rodin G et al. 2019	203	110 14 6 83	20	103.57	771	followup	4 00	÷	0.35	[0.25] 1.53]
Rodin, G. et al., 2019	22	110.41 7.29	20	103.70	7.00	followup	8.00	1	0.92	0.28; 1.56]
Rodin, G, et al., 2019	22	114.37 6.97	20	100.61	7.50	followup	12.00		1.87	[1.13; 2.60]
Random effect	1084		819						- 0.11	[-3.67; 3.89]
Prediction interval										[-4.79; 5.01]
auguina.										
van den Berg, SW, et al. 2015 II.	70	66 79 16 57	80	60 70	17 01	haseline	0.00		-0.17	L0 49: 0 151
Lee IT et al 2022	29	3.50 0.60	25	3.60	0.80	baseline	0.00		-0.14	[-0.68: 0.39]
Peng, L, et al., 2022	28	69.05 16.49	29	71.26	17.05	baseline	0.00		-0.13	[-0.65; 0.39]
Qiu, H, et al., 2018 II.	98	76.78 19.91	196	79.49	21.60	baseline	0.00		-0.13	[-0.37; 0.11]
Von Ah, D, et al.,2012 I.	26	22.06 3.44	29	22.38	2.24	baseline	0.00		-0.11	[-0.64; 0.42]
Qiu, H, et al., 2018 I.	98	78.09 18.86	196	79.49	21.60	baseline	0.00		-0.07	[-0.31; 0.18]
Von Ab D ot al 2020	27	0.78 0.20	20	22.20	0.22	baseline	0.00	<u> </u>	0.05	[-0.27, 0.37]
Peoples, AR, et al., 2016	24	78.90 15.30	23	71.90	19.70	baseline	0.00		0.39	[-0.18: 0.96]
McCaughan, E. et al., 2018	13	85.83 14.10	4	76.88	22.04	baseline	0.00		0.53	[-0.61: 1.67]
Jelvehzadeh, F, et al., 2022	24	4.71 1.07	24	3.94	1.06	baseline	0.00		0.71	[0.13; 1.30]
Von Ah, D, et al.,2012 I.	26	22.15 4.45	29	22.58	2.24	followup	8.00		-0.12	[-0.65; 0.41]
Peng, L, et al., 2022	28	66.67 24.00	29	69.25	22.17	followup	4.00		-0.11	[-0.63; 0.41]
Dieng M, et al. 2020	70	0.05 0.18	81	0.04	0.23	followup	48.00	重	0.05	[-0.27; 0.37]
Dieng M, et al. 2020 Reng L et al. 2022	29	72 32 22 11	20	0.03	15.26	followup	20.00		0.05	[-0.27, 0.37]
Von Ah D et al 2012 II	20	22.71 2.08	29	22.58	2 24	followup	8.00		0.06	[-0.47; 0.57] [-0.47; 0.58]
Qiu, H, et al., 2018 II.	98	80.28 26.77	196	78.03	31.55	followup	4.00		0.07	[-0.17; 0.32]
Lee, JT, et al., 2022	29	4.05 0.60	25	4.00	0.60	followup	12.00		0.08	[-0.45; 0.62]
Lee, JT, et al., 2022	29	4.05 0.60	25	4.00	0.60	followup	24.00	<u>+</u>	0.08	[-0.45; 0.62]
Qiu, H, et al., 2018 II.	98	89.52 33.46	196	83.21	31.55	followup	12.00	÷	0.20	[-0.05; 0.44]
Qiu, H, et al., 2018 II.	98	94.70 35.69	196	87.72	34.70	followup	24.00	<u> </u>	0.20	[-0.04; 0.44]
Nicoaugnan, E, et al., 2018 Oiu H et al. 2018 I	13	91.22 20.00	4	78.02	22.70 31 FF	followure	4.00		0.29	[-0.04, 1.41] [0.10 0.601
Peoples AR et al 2016	24	87.90 13.00	24	79 70	15 70	followup	7.00		0.43	[-0.03: 1.12]
Peoples, AR, et al., 2016	24	91.40 15.00	24	78.60	20.60	followup	12.00		0.70	[0.11; 1.28]
Qiu, H, et al., 2018 I.	98	113.18 35.69	196	87.72	34.70	followup	24.00		0.72	[0.48; 0.97]
Qiu, H, et al., 2018 I.	98	107.32 31.23	196	83.21	31.55	followup	12.00	· · · · ·	0.76	[0.51; 1.02]
Jelvehzadeh, F, et al., 2022	24	6.05 1.00	24	4.65	0.80	followup	12.00		1.52	[0.87; 2.17]
Jeivenzaden, F, et al., 2022	24	6.16 1.09	24	4.58	0.92	followup	8.00		1.54	[0.89; 2.19]
Random effect	1594	13.30 1.78	2404	09.68	1.07	ronowup	4.00		1.97	[1.36, 2.36] [.4.75: 5.341
Prediction interval	1301		2401						0.50	[-6.31; 6.901
Random effect	3916		4491						0.35	[-5.65; 6.36]
Prediction interval									7	[-7.01; 7.71]

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S6.4. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer stage subgroups as predicted at week 48 (postintervention). SMD -Standardized mean difference, CI confidence interval.

S7. Subgroup analysis of Global QoL: Cancer type

Figure S7.1.T0

Study	E: Patient M	kperimental I Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast Garssen B, et al., 2012	34	74.40 4.20	36	76.50	4.30	baseline	0.00	-	-0.49	[-0.96; -0.01]
Seliniotaki, T, et al., 2021 Elyasi, F, et al., 2021 I.	27 15	62.00 33.80 3.30 1.90	26 15	72.20 3.80	16.20 1.50	baseline baseline	0.00		-0.38 -0.28	[-0.92; 0.17] [-1.00; 0.44]
Heiney, SP, et al., 2003 Chu, X. et al, 2020	33 42	6.00 1.70 65.20 16.77	33 42	6.40 68.91	1.40 16.63	baseline baseline	0.00	二言	-0.25 -0.22	[-0.74; 0.23] [-0.65; 0.21]
Elyasi, F, et al., 2021 II. van den Berg, SW, et al. 2015 II.	20 70	3.50 1.80 66.79 16.57	20 80	3.80 69.79	1.50 17.91	baseline baseline	0.00		-0.18 -0.17	[-0.80; 0.44] [-0.49; 0.15]
Savard, J, et al., 2006 Nápoles AM, et al. 2015	21 76	42.51 3.19 66.46 16.92	16 75	43.11 68.83	3.91 15.33	baseline baseline	0.00	불	-0.17	[-0.82; 0.48] [-0.47: 0.17]
Dirksen, S. et al, 2007 Peng. L. et al., 2022	34 28	83.30 11.90 69.05 16.49	38 29	84.80 71.26	9.20 17.05	baseline baseline	0.00	*	-0.14	[-0.60; 0.32] [-0.65; 0.39]
Qiu, H, et al., 2018 II. Von Ah. D. et al., 2012 I.	98 26	76.78 19.91 22.06 3.44	196 29	79.49	21.60	baseline baseline	0.00	-	-0.13	[-0.37; 0.11] [-0.64; 0.42]
Schellekens, MPJ, et al. 2016 Reese, JB, et al. 2021	69 73	95.43 21.60 60.80 16.70	70 71	97.09 61.90	23.54	baseline baseline	0.00		-0.07	[-0.41; 0.26] [-0.40; 0.26]
Qiu, H, et al., 2018 I. Marchioro, G. et al. 1996	98 18	78.09 18.86	196 18	79.49	21.60	baseline	0.00		-0.07	[-0.31; 0.18]
Reich, RR, et al. 2016	167	62.44 27.52	155	62.74	24.68	baseline	0.00		-0.01	[-0.23; 0.21]
Walker, LG, et al., 1998	48	3.25 0.70	48	3.25	0.66	baseline	0.00	重	0.00	[-0.40; 0.40]
Nikbakhsh, N, et al., 2018 Esplen MJ, et al., 2018	20	44.09 8.48	20	43.64	13.73	baseline	0.00		0.03	[-0.58; 0.66]
Klinkhammer-Schalke, M et al., 2012	100	54.35 26.09	100	51.45	23.19	baseline	0.00	<u> 1</u>	0.12	[-0.16; 0.39]
Rahmani, S, et al. 2015	12	41.66 6.15	12	39.58	7.22	baseline	0.00	-	0.22	[-0.51; 1.10]
Cengiz, HO, et al., 2023	30	63.06 19.74	30	55.22	18.26	baseline	0.00		0.34	[-0.08; 0.90]
Jelvehzadeh, F, et al., 2022	24	4.71 1.07	24	3.94	1.06	baseline	0.00	_	0.48	[0.13; 1.30]
Savard, J, et al., 2003	33 21	3.62 0.95	33 16	6.80 3.95	0.91	followup	8.00	-	-0.53	[-1.02; -0.04] [-1.00; 0.31]
Von An, D, et al., 2012 I. Peng, L, et al., 2022	26	22.15 4.45 66.67 24.00	29	22.58 69.25	22.24	followup	4.00		-0.12	[-0.65; 0.41] [-0.63; 0.41]
Reich, RR, et al. 2016 Heiney, SP, et al., 2003	167 33	68.43 27.76 6.20 1.30	155 33	70.36 6.30	22.70 1.60	followup followup	12.00 6.00		-0.08 -0.07	[-0.29; 0.14] [-0.55; 0.41]
Klinkhammer-Schalke, M et al., 2012 Esplen MJ, et al., 2018	100 131	53.62 22.46 73.40 16.70	100 63	55.07 74.30	20.29 17.70	followup followup	12.00 48.00	-	-0.07 -0.05	[-0.34; 0.21] [-0.35; 0.25]
Reese, JB, et al., 2021 Reich, RR, et al. 2016	73 167	61.80 18.20 65.76 26.18	71 155	62.60 66.24	13.90 24.76	followup followup	8.00 6.00		-0.05 -0.02	[-0.38; 0.28] [-0.24; 0.20]
Rahmani, S, et al. 2015 Seliniotaki, T, et al., 2021	12 27	12.00 61.11 65.00 28.00	12 26	12.00 64.00	58.33 20.50	followup followup	16.00 8.00		0.00	[-0.80; 0.80] [-0.50; 0.58]
Peng, L, et al., 2022 Von Ah, D, et al., 2012 II.	28 27	72.32 22.11 2.08	29 29	71.26 22.58	15.26	followup	0.10 8.00		0.06	[-0.46; 0.57] [-0.47; 0.58]
Qiu, H, et al., 2018 II. Klinkhammer-Schalke, M et al., 2012	98 100	80.28 26.77 64.13 23.56	196 100	78.03 62.32	31.55	followup	4.00 48.00		0.07	[-0.17; 0.32] [-0.20; 0.36]
Esplen MJ, et al., 2018 Marchioro, G. et al. 1996	131	14.90 9.40	63 18	14.00	9.40	followup	8.00	1	0.10	[-0.21; 0.40]
Esplen MJ, et al., 2018 Klinkhammer-Schalke, Met al. 2012	131	72.60 16.60	63 100	70.30	18.00	followup	24.00		0.13	[-0.17; 0.44]
Elyasi, F, et al., 2021 I. Nápolos AM, et al. 2015	15	4.30 1.00	15	4.10	1.10	followup	24.00		0.19	[-0.53; 0.90]
Elyasi, F, et al., 2021 II.	20	4.30 1.00	20	4.10	1.10	followup	24.00		0.19	[-0.43; 0.81]
Qiu, H, et al., 2018 II.	98	89.52 33.46	196	83.21	31.55	followup	12.00		0.19	[-0.05; 0.44]
Nápoles AM, et al. 2015	98 76	94.70 35.69 80.64 13.64	196 75	87.72	34.70	followup	24.00	통	0.20	[-0.04; 0.44] [-0.07; 0.57]
Dirksen, S. et al. 2007 Hoffman, CJ, et al., 2012	34 101	91.60 15.00 103.56 17.91	38 106	87.70 96.84	14.70 21.14	followup	10.00 8.00	E.	0.26	[-0.20; 0.72] [0.07; 0.62]
Klinkhammer-Schalke, M et al., 2012 Hoffman, CJ, et al., 2012	100 101	63.41 22.11 103.78 17.85	100 106	55.07 96.22	23.19 19.43	followup	24.00 12.00	-	0.37	[0.09; 0.65] [0.13; 0.68]
Qiu, H, et al., 2018 I. Walker, LG, et al., 1998	98 48	91.32 29.00 3.29 0.80	196 48	78.03 2.90	31.55 0.78	followup followup	4.00 15.00	-	0.43 0.49	[0.19; 0.68] [0.08; 0.90]
Yoo, HJ, et al. 2004 Rosen, KD, et al., 2018	30 57	97.01 18.24 107.35 17.79	30 55	88.13 96.04	16.18 23.96	followup followup	12.00 5.00	-	0.51 0.53	[-0.01; 1.02] [0.16; 0.91]
Gaston-Johansson, F, et al., 2011 Garssen B, et al., 2012	38 34	24.70 4.30 78.40 3.70	35 36	21.90 76.40	5.00 2.90	followup followup	48.00 5.00	*	0.60 0.60	[0.13; 1.07] [0.12; 1.08]
Garssen B, et al., 2012 Garssen B, et al., 2012	34 34	80.40 3.30 75.50 3.60	36 36	78.20 72.90	3.20 3.80	followup	2.00 13.00	*	0.67	[0.19; 1.15] [0.21; 1.18]
Qiu, H, et al., 2018 I. Cengiz HO, et al., 2023	98 32	113.18 35.69 66.98 17.72	196 33	87.72 53.03	34.70 18.65	followup	24.00 8.00	<u> </u>	0.72	[0.48; 0.97] [0.25; 1.26]
Qiu, H, et al., 2018 I. Chu X et al. 2020	98 42	107.32 31.23 85.41 16.08	196 42	83.21 71.90	31.55	followup	12.00		0.76	[0.51; 1.02]
Chu, X. et al, 2020 Yoo, H.J. et al, 2004	42 30	84.94 14.59 102.00 19.94	42 30	71.59 88.18	18.73 14.02	followup	8.00 24.00	· · · · · · · · · · · · · · · · · · ·	0.79	[0.34; 1.23] [0.26; 1.32]
Garssen B, et al., 2012 Marchioro, C, et al. 1996	34	81.00 3.40	36	78.20	3.20	followup	4.00	-	0.84	[0.35; 1.33]
Rahmani, S, et al. 2015 Marchiere, C, et al. 1996	12	66.66 9.40	12	54.16	10.95	followup	8.00		1.18	[0.30; 2.06]
Jelvehzadeh, F, et al., 2022	24	6.05 1.00	24	4.65	0.80	followup	12.00		1.50	[0.87; 2.17]
Marchioro, G, et al. 1996	24 18 70	-41.17 6.91	18	-60.28	13.33	followup	36.00	-	1.54	[0.98; 2.54]
Nikbakhsh, N, et al., 2018	20	81.70 10.04	20	47.39	12.93	followup	12.00		- 2.91	[1.99; 3.82]
Prediction interval	4/01		5Z10					- <u>+</u> -	0.55	[-0.47; 1.52]
gastroenterological	100	F6 22 7 00	100	60.00	11.46	hanalina	0.00	_	0.61	10.00: 0.241
Li, X, et al., 2017 Wang, TJ, et al 2023	70	102.30 18.40	72	02.38 104.40	11.40	baseline	0.00	-	-0.01	[-0.89; -0.34] [-0.45; 0.21]
Xia, S, et al., 2023 Gao Q, et al. 2020	80 40	61.40 16.60 -68.20 8.25	80 40	61.10 -68.44	15.70 8.82	baseline	0.00	흰	0.02	[-0.29; 0.33] [-0.41; 0.47]
Wang, TJ, et al 2023	29 70	4.96 1.74 105.40 17.80	30 72	4.36 103.50	1.62	followup	8.00	1	0.35	[-0.16; 0.87] [-0.23; 0.43]
Xia, S, et al., 2023 Wang, TJ, et al 2023	80 70	67.70 16.20 107.30 16.70	80 72	65.80 103.30	14.40 19.00	followup followup	4.00 16.00	喜	0.12	[-0.19; 0.43] [-0.11; 0.55]
Wang, TJ, et al 2023 Xia, S, et al., 2023	70 80	106.90 16.60 72.70 15.80	72 80	102.70 68.00	20.00 13.50	followup followup	24.00 12.00	Ē	0.23 0.32	[-0.10; 0.56] [0.01; 0.63]
Xia, S, et al., 2023 Zhang, J, et al., 2021	80 61	78.00 14.30 9.67 3.71	80 61	72.90 8.21	13.40 3.02	followup followup	24.00 12.00	<u> </u>	0.37 0.43	[0.05; 0.68] [0.07; 0.79]
Gao Q, et al. 2020 Li, X, et al., 2017	40 102	-54.26 7.03 76.58 9.06	40 108	-60.17 64.28	7.28 12.49	followup followup	4.00 12.00		0.82 1.12	[0.36; 1.27] [0.83; 1.41]
Cheung YL, et al. 2002 Cheung YL, et al. 2002	29 29	7.48 1.12 7.51 0.98	30 30	5.56 4.96	0.50 0.66	followup followup	10.00 5.00		2.20 3.02	[1.54; 2.85] [2.26; 3.78]
Random effect Prediction interval	1032		1055						0.71	[-0.00; 1.42] [-0.55; 1.97]
gynaecological										
Sandsund, C, et al., 2017 Chan. et al. 2005	72 80	64.20 21.80 58.29 50.71	70 75	66.70 60.44	19.70 40.96	baseline baseline	0.00	畫	-0.12	[-0.45; 0.21] [-0.36; 0.27]
Powell, CB, et al., 2008 Chap. et al. 2005	21 80	78.30 17.70	43	75.60	17.90	baseline	0.00	-	0.15	[-0.37; 0.67] [-0.45; 0.18]
Sandsund, C, et al., 2017 Chap. et al. 2005	72	67.50 22.60 71.69 74.33	70	69.40 77.23	21.10	followup	24.00	重	-0.09	[-0.42; 0.24]
Chan, et al. 2005 Sandsund, C. et al. 2017	80	71.61 51.52	75	75.69	53.26	followup	60.00	重	-0.08	[-0.39; 0.24]
Chan, et al. 2005 Chan, et al. 2005	80	73.13 34.88	75	73.75	47.11	followup	36.00	重	-0.01	[-0.33; 0.30]
Chan, et al. 2005 Rewell CR et al. 2009	80	77.86 49.64	75	76.04	45.64	followup	48.00	1	0.02	[-0.28; 0.35]
Random effect	818	80.40 20.30	821	11.10	21.20	lonowup	12.00	<u> </u>	0.27	[-0.31; 0.85]
prostate										[-1.27, 1.00]
Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00	+	-0.13	[-0.60; 0.34] [-0.19; 1.14]
McCaughan, E, et al., 2018	13	85.83 14.10	4	76.88	22.04	baseline	0.00		0.53	[-0.61; 1.67]
Northhouse, LL, et al., 2007	41	87.00 10.80	121	86.90	10.60	followup	32.00		0.01	[-0.25; 0.27]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	112	87.20 10.60	123	85.50	10.70	followup	16.00		0.03	[-0.24, 0.29]
Northouse, LL, et al., 2018 Northouse, LL, et al., 2015	13 17	65.70 17.07 88.51 3.03	4 19	80.22 76.94	22.75 3.44	followup	4.00		→ 3.48	[-0.84; 1.41] [2.41; 4.55]
Random effect Prediction interval	465		464						0.54	[-0.68; 1.76] [-1.20; 2.28]
Random effect	7076		7618					\$	0.54	[0.17; 0.91]
Prediction interval							- -			[-0.45; 1.54]
							-4 In favor of	-∠ U 2 control group In favor of inte	4 irvention	group

Figure S7.1. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer type subgroups as predicted at week 0 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S7.2.T12

Study	Experimental Patient N Mean SD	Patient N M	ontrol Mean SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
Garssen B. et al., 2012	34 74.40 4.2	36 7	6.50 4.30	baseline	0.00	-	-0.49	[-0.96; -0.01]
Seliniolaki, T, et al., 2021 Elyasi, F, et al., 2021 I.	27 62.00 33.6 15 3.30 1.9	0 26 7 0 15	72.20 16.20 3.80 1.50	baseline baseline	0.00		-0.38	[-0.92; 0.17] [-1.00; 0.44]
Heiney, SP, et al., 2003 Chu, X, et al. 2020	33 6.00 1.7 42 65.20 16 7) 33 7 42 6	6.40 1.40 38 91 16.63	baseline	0.00	掌	-0.25	[-0.74; 0.23] [-0.65; 0.21]
Elyasi, F, et al., 2021 II. van den Berg, SW, et al. 2015 II.	20 3.50 1.8) 20 7 80 6	3.80 1.50	baseline	0.00	- <u>-</u>	-0.18	[-0.80; 0.44] [-0.49] 0.15]
Savard, J. et al., 2005 Nápoles AM, et al., 2015	21 42.51 3.1 76 66.46 16.9	9 16 4 2 75 6	13.11 3.91 38.83 15.33	baseline	0.00	-2	-0.17	[-0.82; 0.48]
Dirksen, S. et al, 2007 Peng L. et al. 2022	34 83.30 11.9 28 69.05 16.4	0 38 8	34.80 9.20 1 25 17.05	baseline	0.00	<u></u>	-0.14	[-0.60: 0.32]
Qiu, H, et al., 2018 II. Von Ab. D. et al. 2012 I	98 76.78 19.9 26 22.06 3.4	1 196 7	9.49 21.60	baseline	0.00	<u>.</u>	-0.13	[-0.37: 0.11] [-0.64 0.42]
Schellekens, MPJ, et al. 2016 Reese, IB et al. 2021	69 95.43 21.6 73 50.80 15.7	0 70 5	7 09 23.54	baseline	0.00	<u>±</u>	-0.07	[-0.41, 0.26]
Qiu, H. et al., 2018 I Narchiere, G. et al. 1995	98 78.09 18.8	6 196 7	9.49 21.60	baseline	0.00	*	-0.07	[-0.31, 0.18]
Reich, RR, et al. 2016	167 62.44 27.5	2 155 6	32.74 24.68	baseline	0.00		-0.01	[-0.23, 0.21]
Walker, LG, et al., 1998	48 3.25 0.7	2 106 8	3.25 0.66	baseline	0.00	풒	0.00	[-0.40, 0.40]
Nikbakhsh, N, et al., 2018 Sikbakhsh, N, et al., 2018	20 44.09 8.4	a 00 a a 20 4	13.64 13.73	baseline	0.00		0.03	[-0.58, 0.66]
Klinkhammer-Schaike, M et al., 2012	2 100 54.35 26.0	9 100 5	5145 23.19	baseline	0.00	<u>.</u>	0.10	[-0.16; 0.39]
Rahmani, S, et al. 2015	12 41.66 5.1	12 3	39.58 7.22	baseline	0.00		0.22	[-0.51; 1.10]
Cengiz, HO, et al., 2023	30 93.41 168	4 33 5	5.22 18.26	baseline	0.00	-	0.41	[-0.08; 0.90]
Jelvehzadeh, F, et al., 2022	38 22.00 4.3 24 4.71 1.0	1 30 4 7 24	3.94 1.06	baseline	0.00	_	0.48	[0.13; 1.30]
Heiney, SP, et al., 2003 Savard, J. et al., 2006	33 6.00 1.5 21 3.62 0.9	33 5 16	6.80 1.50 3.95 0.91	followup	8.00		-0.53	[-1.02] -0.04]
Peng, L, et al., 2022	26 22.15 4.4 28 66.67 24.0	0 29 6	22.58 2.24 39.25 22.17	followup	4.00		-0.12	[-0.65, 0.41] [-0.63, 0.41]
Reich, RR, et al. 2016 Heiney, SP, et al., 2003	167 68.43 27.7 33 6.20 1.3	6 155 7) 33	6.30 1.60	followup	12:00		-0.08	[-0.29; 0.14] [-0.55; 0.41]
Klinkhammer-Schaike, M et al., 2012 Esplen MJ, et al., 2018	2 100 53.62 22.4 131 73.40 187	5 100 5 0 63 7	i5.07 20.29 74.30 17.70	followup followup	12 00 48 00		-0.07	[-0.34; 0.21] [-0.35; 0.25]
Reese, JB, et al., 2021 Reich, RR, et al. 2016	73 51.80 18.2 167 65.76 26.1	0 71 6 8 155 6	52.60 13.90 56.24 24.76	followup	8.00 6.00	常	-0.05	[-0.36; 0.28] [-0.24; 0.20]
Rahmani, S. et al. 2015 Seliniotaki, T. et al., 2021	12 12.00 61.1 27 65.00 28.0	1 12 1 0 26 6	12.00 58.33	followup	16.00 8.00		0.00	[-0.80, 0.80] [-0.50; 0.58]
Peng, L, et al., 2022 Von Ah, D, et al., 2012 II.	28 72.32 22.1 27 22.71 2.0	1 29 7 3 29 2	1.26 15.26	followup	0.10	#	0.06	[-0.46; 0.57] [-0.47; 0.58]
Qiu, H, et al., 2018 II. Klinkhammer-Schalke, M et al., 2012	98 80.28 26.7 2 100 64.13 23.5	7 196 7 6 100 6	78.03 31.55 52.32 21.38	followup	4.00	蓋	0.07	[-0.17: 0.32] [-0.20: 0.36]
Esplen MJ, et al., 2018 Marchioro, G. et al. 1998	131 14.90 9.4 18 -54.17 16.9	0 63 1	14.00 9.40	followup	8.00	<u></u>	0.10	[-0.21, 0.40]
Esplen MJ, et al., 2018 Klinkhammer-Schalke, Miet al., 2012	131 72.60 16.6	0 63 7 9 100 6	0 30 18.00	followup	24.00	营	0 13	[-0.17: 0.44] [-0.10: 0.45]
Elyasi, F, et al., 2021 I. Náncies Al/ et al. 2015	15 4.30 1.0 75 77.24 15.1	15	4 10 1.10	followup	24 00	-	0.19	[-0.53, 0.90]
Elyasi, F, et al., 2021 IL Schellekans, MPL et al. 2016	20 4.30 1.0	0 20	4.10 1.10	followup	24 00	-	0.19	[-0.43, 0.81]
Giu, H, et al., 2018 II.	98 89.52 33.4	6 196 E	33.21 31.55	followup	12.00		0.20	[-0.05, 0.44]
Nápoles AM, et al. 2015	76 80.64 13.6	4 75 7	7 02 15.62	followup	24.00	동	0.25	[-0.07, 0.57]
Hoffman, CJ, et al., 2012	101 103.56 17.9	1 106 9	96.84 21.14	tollowup	8.00	2	0.20	10.07; 0.62
Hoffman, CJ, et al., 2012	2 100 63.41 22.1 101 103.78 17.8	1 100 5 5 106 9	6.22 19.43	followup	24.00	*	0.37	[0.09; 0.65]
Ciu, H. et al., 2018 I Walker, LG, et al., 1998	98 91.32 29.0 48 3.29 0.8	0 196 7	2.90 0.78	tollowup	4.00		0.43	[0.19, 0.68] [0.08; 0.90]
Yoo, HJ, et al. 2004 Rosen, KD, et al., 2018	30 97.01 182 57 107.35 17.7	4 30 8 9 55 9	13 16.18 16.04 23.96	followup	12.00 5.00		0.51	[-0.01; 1.02] [0.16; 0.91]
Gaston-Johansson, F, et al., 2011 Garssen B, et al., 2012	38 24.70 4.3 34 78.40 3.7) <u>35</u> 2) <u>36</u> 7	21.90 5.00 76.40 2.90	followup	48.00 5.00		0.60	0.13; 1.07]
Garssen B, et al., 2012 Garssen B, et al., 2012	34 80.40 3.3 34 75.50 3.6	0 36 7 0 36 7	78.20 3.20 72.90 3.80	followup	2.00		0.67	[0.19, 1.15] [0.21, 1.18]
Qiu, H, et al., 2018 1. Cengiz, HO, et al., 2023	98 113 18 35 6 32 66.98 17.7	9 196 8 2 33 5	1772 34.70 53 03 18.65	followup	24.00 8.00		072	[0.48, 0.97] [0.25, 1.26]
Qiu, H, et al., 2018 I. Chu, X, et al. 2020	98 107.32 31.2 42 85.41 16.0	3 196 8 8 42 7	33.21 31.55 1.90 18.50	followup	12.00	38	0.76	0.51; 1.02
Chu, X. et al. 2020 Yoo, HJ, et al. 2004	42 84,94 14.5 30 102 00 19 9	9 42 7 4 30 8	1.59 18.73	followup	8.00		0.79	[0.34; 1.23]
Garssen B, et al., 2012 Marchioro, G, et al. 1996	34 81.00 3.4 18 -48.72 12.2) 36 7 2 18 -	8.20 3.20 60.78 14.85	followup	4.00		0.84	0.35, 1.33
Rahmani, S. et al. 2015 Marchiero, G. et al. 1996	12 66.66 9.4 18 -44.72 9.1	0 12 5	54.16 10.95 50.78 13.26	tollowup	8.00 24.00		1.18	[0.30; 2.06]
Jelvehzadeh, F. et al., 2022 Jelvehzadeh, F. et al., 2022	24 6.05 1.0	24	4.85 0.80	followup	12.00		1.52	0.87: 2.17
Marchiero, G. et al. 1998 van den Bern SW, et al. 2015 II.	18 -4117 69 70 7330 17	18 -1 8 - 80 - 6	60.28 13.33 59 BB 1.67	followup	38.00		1.76	[0.98; 2.54]
Nikbakhsh, N. et al., 2018	20 81.70 10.0	4 20 4	7.39 12.93	followup	12.00		- 291	[1.99, 3.82]
Prediction interval	4101	5210					0.444	[-0.49; 1.38]
gustroenterological	102 56.32 7.8	108 6	2 38 11 46	hoceline	0.00	-	.0.61	60.89 -0.340
Wang, TJ, et al 2023 Via S, et al. 2023	70 102 30 18 4	0 72 1	04 40 17.10	baseline	0.00	-	-0.12	[-0.45, 0.21]
Gao Q, et al. 2020 Choung YL, et al. 2002	40 -58 20 8 2	5 40 -1	58.44 8.82 4.28 1.62	baseline	0.00	-	0.02	[-0.41; 0.47]
Wang, TJ, et al 2023	70 105.40 17.8	0 72 1	03.50 20.00	followup	8.00	蓋	0.10	[-0.23: 0.43]
Ma, S, et al., 2023 Wang, TJ, et al 2023	70 107.30 16.7	0 72 1	03.30 19.00	followup	16.00		0.12	[-0.19; 0.43]
Wang, TJ, et al 2023 Xia, S. et al., 2023	70 106.90 16.0 80 72.70 15.8	0 72 1 0 80 6	02.70 20.00 58.00 13.50	followup	24.00	Ē	0.23	[-0.10, 0.56] [0.01; 0.63]
Zhang, J, et al., 2023 Zhang, J, et al., 2021	61 9.67 3.7	0 80 / 1 61	8.21 3.02	followup	12.00	*	0.37	[0.05; 0.58]
Gao Q, et al. 2020 Li, X, et al. 2017	40 -54.25 7.0 102 76.58 9.0	3 40 - 3 108 6	50.17 7.28 34.28 12.49	followup	4.00	1. A A A A A A A A A A A A A A A A A A A	0.82	0.36; 1.27
Cheung YL, et al. 2002 Cheung YL, et al. 2002	29 7.48 1.1 29 7.51 0.9	2 <u>30</u> 3 <u>30</u>	5.56 0.50 4.96 0.66	followup	10.00		2.20	[1.54, 2.85] [2.26, 3.78]
Random effect Prediction interval	1032	1055					0.63	[-0.00; 1.25] [-0.69; 1.94]
gynaocological	121 20.349454	15 150 I	1219/12201		13		318	
Sandsund, C, et al., 2017 Chan, et al. 2005	72 64.20 21.8 80 58.29 50.7	0 70 6 1 75 6	36.70 19.70 30.44 40.96	baseline	0.00	華	-0.12	[-0.45, 0.21] [-0.36, 0.27]
Powell, CB, et al., 2008 Chan, et al. 2005	21 78.30 177 80 60.31 41.3	0 43 7 2 75 6	75.60 17.90	followup	0.00	*	0.15	[-0.37: 0.67] [-0.45: 0.18]
Sandsund, C, et al., 2017 Chan, et al. 2005	72 67.50 22.6 80 71.69 74.3	0 70 6 3 75 7	39.40 21,10 77.23 53.91	followup	24.00 72.00	業	-0.09	[-0.42; 0.24] [-0.39; 0.24]
Chan, et al. 2005 Sandsund, C. et al., 2017	80 71.61 515 72 66.20 19.1	2 75 7 0 70 6	75.69 53.26 57.30 22.00	followup	60 00 12 00	盡	-0.08	[-0.39; 0.24]
Chan, et al. 2005 Chan, et al. 2005	80 73.13 348 80 67.38 46.7	8 75 7 8 75 6	73 75 47.11 56.55 51.44	followup	36.00 24.00	素	-0.01	[-0.33: 0.30] [-0.30: 0.33]
Chan, et al. 2005 Powell, CB, et al. 2008	80 77.86 49.6	4 75 7 0 43 7	76 04 45.64	followup	48.00	*	0.04	[-0.28, 0.35]
Random effect	010	821		tenentap			0.10	[-0.20; 0.56]
prostate								and a second
Penedo, FJ, et al., 2007 Northouse, LL, et al., 2015	41 -82.35 14.0 17 81.30 3.8	2 30 -1 3 19 7	80.57 13.21 79.63 2.96	baseline baseline	0.00		-0.13 0.48	[-0.60, 0.34] [-0.19, 1.14]
McCaughan, E, et al., 2018 Penedo, FJ, at al., 2007	13 85.83 14.1 41 -87.22 13.9	0 4 7	76.88 22.04 79.63 14.56	baseline	0.00		0.53	[-0.61; 1.67] [-1.01 -0.05]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	107 87.00 10.8 104 86.10 10.0	0 121 8	6.90 10.60 5.80 10.70	followup	32.00		0.01	[-0.25; 0.27] [-0.24, 0.29]
Northhouse, LL, st al., 2007 McCaughan E, et al., 2019	112 87.20 10.0 13 85.76 17.0	0 123 8	35.50 10.30	followup	16.00	_ <u>_</u>	0.16	[-0.09, 0.42] [-0.84, 1.41]
Northouse, LL, et al., 2015 Random effect	17 88.51 3.0 455	3 19 7 464	6.94 3.44	followup	2.00	•	* 3.48	[2.41; 4.55]
Prediction interval	19220	1000					1.4.3	1.50; 2.41]
Random effect Prediction Interval	7076	7618			-	4	0.45	[0.26; 0.64] [-0.47; 1.37]
ICT INTERNATION INCOMES					-4	-2 0 2	4	Control Control
					In favor of	control group In favor of inte	ervention	group

Figure S7.2. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer type subgroups as predicted at week 12 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S7.3.T24

Study	E Patient I	xperimental N Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast Garssen B, et al., 2012	34	74.40 4.20	36	76.50	4.30	baseline	0.00	-	-0.49	[-0.96; -0.01]
Elyasi, F, et al., 2021	15	3.30 1.90	26 15	3.80	15.20	baseline	0.00	-	-0.38	[-0.92; 0.17] [-1.00; 0.44]
Heiney, SP, et al., 2003 Chu, X. et al, 2020	33 42	6.00 1.70 65.20 16.77	33 42	6.40 68.91	1.40 16.63	baseline baseline	0.00		-0.25 -0.22	[-0.74; 0.23] [-0.65; 0.21]
van den Berg, SW, et al. 2015 II.	70	3.50 1.80	80	3.80 69.79	17.91	baseline	0.00		-0.18	[-0.80; 0.44] [-0.49; 0.15]
Nápoles AM, et al. 2006	76	42.51 3.19 66.46 16.92	75	43.11 68.83	3.91	baseline	0.00		-0.17	[-0.82; 0.48] [-0.47; 0.17]
Dirksen, S. et al. 2007 Peng, L, et al., 2022	34 28	83.30 11.90 69.05 16.49	38 29	84.80 71.26	9.20	baseline	0.00	-	-0.14	[-0.60; 0.32] [-0.65; 0.39]
Qiu, H, et al., 2018 II. Von Ah, D, et al., 2012 I.	98 26	76.78 19.91 22.06 3.44	196 29	79.49 22.38	21.60	baseline	0.00	-	-0.13	[-0.37; 0.11] [-0.64; 0.42]
Schellekens, MPJ, et al. 2016 Reese, JB, et al., 2021	69 73	95.43 21.60 60.80 16.70	70 71	97.09 61.90	23.54 14.30	baseline	0.00	Ē	-0.07	[-0.41; 0.26] [-0.40; 0.26]
Qiu, H, et al., 2018 I. Marchioro, G, et al. 1996	98 18	78.09 18.86	196	79.49 -57.72	21.60	baseline	0.00		-0.07	[-0.31; 0.18] [-0.69; 0.62]
Hoffman, CJ, et al., 2016	167	62.44 27.52 96.57 17.22	155	62.74 96.68	24.68 21.05	baseline	0.00		-0.01	[-0.23; 0.21] [-0.28; 0.27]
Walker, LG, et al., 1998 Rosen, KD, et al., 2018	48 57	3.25 0.70 93.61 22.68	48 55	3.25 92.96	0.66	baseline baseline	0.00	-	0.00	[-0.40; 0.40] [-0.34; 0.40]
Nikbakhsh, N, et al., 2018 Esplen MJ, et al., 2018	20 131	44.09 8.48 70.50 16.50	20 63	43.64 68.90	13.73 17.20	baseline baseline	0.00		0.04	[-0.58; 0.66] [-0.21; 0.40]
Klinkhammer-Schalke, M et al., 2012 Von Ah, D, et al.,2012 II.	100 27	54.35 26.09 22.98 3.08	100 29	51.45 22.38	23.19 2.24	baseline baseline	0.00	휸	0.12	[-0.16; 0.39] [-0.30; 0.75]
Rahmani, S, et al. 2015 Yoo, HJ, et al. 2004	12 30	41.66 6.15 93.41 16.90	12 30	39.58 87.88	14.96	baseline	0.00		0.30	[-0.51; 1.10] [-0.17; 0.85]
Gaston-Johansson, F, et al., 2011	32	63.06 19.74 22.60 4.30	33 35	55.22 20.60	4.00	baseline	0.00	Ē	0.41	[-0.08; 0.90] [0.01; 0.94]
Jelvehzadeh, F, et al., 2022 Heiney, SP, et al., 2003	24 33	4./1 1.0/ 6.00 1.50	24 33	3.94 6.80	1.06 1.50	followup	0.00 16.00	-	0.71	[0.13; 1.30] [-1.02; -0.04]
Savard, J, et al., 2006 Von Ah, D, et al.,2012 I.	21	3.62 0.95 22.15 4.45	16 29	3.95 22.58	0.91 2.24	followup	8.00		-0.34	[-1.00; 0.31] [-0.65; 0.41]
Peng, L, et al., 2022 Reich, RR, et al. 2016	28 167	66.67 24.00 68.43 27.76	29 155	69.25 70.36	22.17 22.70	followup followup	4.00 12.00		-0.11 -0.08	[-0.63; 0.41] [-0.29; 0.14]
Heiney, SP, et al., 2003 Klinkhammer-Schalke, M et al., 2012	33 100	6.20 1.30 53.62 22.46	33 100	6.30 55.07	1.60 20.29	followup followup	6.00 12.00	Ē	-0.07 -0.07	[-0.55; 0.41] [-0.34; 0.21]
Esplen MJ, et al., 2018 Reese, JB, et al., 2021	131 73	73.40 16.70 61.80 18.20	63 71	74.30 62.60	17.70 13.90	followup followup	48.00 8.00	1	-0.05 -0.05	[-0.35; 0.25] [-0.38; 0.28]
Reich, RR, et al. 2016 Rahmani, S, et al. 2015	167 12	65.76 26.18 12.00 61.11	155 12	66.24 12.00	24.76 58.33	followup followup	6.00 16.00		-0.02 0.00	[-0.24; 0.20] [-0.80; 0.80]
Seliniotaki, T, et al., 2021 Peng, L, et al., 2022	27 28	65.00 28.00 72.32 22.11	26 29	64.00 71.26	20.50 15.26	followup followup	8.00 0.10		0.04	[-0.50; 0.58] [-0.46; 0.57]
Von Ah, D, et al.,2012 II. Qiu, H, et al., 2018 II.	27 98	22.71 2.08 80.28 26.77	29 196	22.58 78.03	2.24 31.55	followup followup	8.00 4.00		0.06	[-0.47; 0.58] [-0.17; 0.32]
Klinkhammer-Schalke, M et al., 2012 Esplen MJ, et al., 2018	100 131	64.13 23.56 14.90 9.40	100 63	62.32 14.00	21.38 9.40	followup followup	48.00 8.00		0.08 0.10	[-0.20; 0.36] [-0.21; 0.40]
Marchioro, G, et al. 1996 Esplen MJ, et al., 2018	18 131	-54.17 16.90 72.60 16.60	18 63	-56.33 70.30	17.72 18.00	followup followup	4.00 24.00		0.12	[-0.53; 0.78] [-0.17; 0.44]
Klinkhammer-Schalke, M et al., 2012 Elyasi, F, et al., 2021 I.	100 15	65.21 22.09 4.30 1.00	100 15	61.23 4.10	23.55	followup	36.00 24.00		0.17	[-0.10; 0.45] [-0.53; 0.90]
Nápoles AM, et al. 2015 Elvasi, F. et al., 2021 II.	76 20	77.24 15.13 4.30 1.00	75 20	74.39 4.10	15.34	followup	12.00 24.00	<u></u>	0.19	[-0.13; 0.51] [-0.43; 0.81]
Schellekens, MPJ, et al. 2016 Qiu, H, et al., 2018 II.	69 98	107.36 18.80 89.52 33.46	70 196	103.34 83.21	22.35 31.55	followup followup	8.00 12.00	<u>+</u>	0.19 0.20	[-0.14; 0.53] [-0.05; 0.44]
Qiu, H, et al., 2018 II. Nápoles AM, et al. 2015	98 76	94.70 35.69 80.64 13.64	196 75	87.72 77.02	34.70 15.62	followup	24.00 24.00	트	0.20	[-0.04; 0.44] [-0.07; 0.57]
Dirksen, S. et al, 2007 Hoffman, C.J. et al., 2012	34 101	91.60 15.00 103.56 17.91	38 106	87.70 96.84	14.70	followup	10.00		0.26	[-0.20; 0.72]
Klinkhammer-Schalke, M et al., 2012 Hoffman, C.L et al. 2012	100	63.41 22.11 103.78 17.85	100	55.07 96.22	23.19	followup	24.00	*	0.37	[0.09; 0.65]
Qiu, H, et al., 2018 I. Walker I.G. et al. 1998	98 48	91.32 29.00 3.29 0.80	196 48	78.03	31.55	followup	4.00	-	0.43	0.19; 0.68]
Yoo, HJ, et al. 2004 Rosen KD, et al. 2018	30	97.01 18.24	30	88.13 96.04	16.18	followup	12.00	-	0.51	[-0.01; 1.02]
Gaston-Johansson, F, et al., 2011 Garssen B et al. 2012	38 34	24.70 4.30 78.40 3.70	35 36	21.90 76.40	5.00	followup	48.00 5.00		0.60	[0.13; 1.07]
Garssen B, et al., 2012 Garssen B, et al., 2012	34 34	80.40 3.30 75.50 3.60	36	78.20	3.20	followup	2.00		0.67	[0.19; 1.15]
Qiu, H, et al., 2018 I. Cengiz HO, et al., 2023	98	113.18 35.69	196	87.72	34.70	followup	24.00		0.72	[0.48; 0.97]
Qiu, H, et al., 2018 I. Chu, X, et al. 2020	98 42	107.32 31.23	196 42	83.21	31.55	followup	12.00		0.76	[0.51; 1.02]
Chu, X. et al, 2020 Yoo, HJ. et al, 2004	42 30	84.94 14.59 102.00 19.94	42 30	71.59 88.18	18.73	followup	8.00 24.00		0.79	[0.34; 1.23]
Garssen B, et al., 2012 Marchioro, G, et al. 1996	34 18	81.00 3.40	36 18	78.20	3.20 14.85	followup	4.00		0.84	[0.35; 1.33]
Rahmani, S, et al. 2015 Marchioro, G, et al. 1996	12	66.66 9.40 -44.72 9.18	12	54.16	10.95	followup	8.00	-	1.18	[0.30; 2.06]
Jelvehzadeh, F, et al., 2022	24	6.05 1.00	24	4.65	0.80	followup	12.00		1.52	[0.87; 2.17]
Marchioro, G, et al. 1996 van den Berg, SW, et al. 2015 II.	18 70	-41.17 6.91 73.30 1.78	18 80	-60.28 69.88	13.33 1.67	followup	36.00 4.00		1.76	[0.98; 2.54]
Nikbakhsh, N, et al., 2018 Random effect	20 4761	81.70 10.04	20 5278	47.39	12.93	followup	12.00		- 2.91 0.37	[1.99; 3.82] [0.14; 0.61]
Prediction interval										[-0.59; 1.34]
gastroenterological Li, X, et al., 2017	102	56.32 7.80	108	62.38	11.46	baseline	0.00	=	-0.61	[-0.89; -0.34]
Wang, TJ, et al 2023 Xia, S, et al., 2023	70 80	102.30 18.40 61.40 16.60	72 80	104.40 61.10	17.10 15.70	baseline baseline	0.00	「「「「「」」	-0.12 0.02	[-0.45; 0.21] [-0.29; 0.33]
Gao Q, et al. 2020 Cheung YL, et al. 2002	40 29	-68.20 8.25 4.96 1.74	40 30	-68.44 4.36	8.82	baseline baseline	0.00	*	0.03	[-0.41; 0.47] [-0.16; 0.87]
Wang, TJ, et al 2023 Xia, S, et al., 2023	70 80	105.40 17.80 67.70 16.20	72 80	103.50 65.80	20.00	followup followup	8.00 4.00	皇	0.10 0.12	[-0.23; 0.43] [-0.19; 0.43]
Wang, TJ, et al 2023 Wang, TJ, et al 2023	70 70	107.30 16.70 106.90 16.60	72 72	103.30 102.70	19.00 20.00	followup followup	16.00 24.00	葦	0.22	[-0.11; 0.55] [-0.10; 0.56]
Xia, S, et al., 2023 Xia, S, et al., 2023	80 80	72.70 15.80 78.00 14.30	80 80	68.00 72.90	13.50 13.40	followup	12.00 24.00	*	0.32	[0.01; 0.63] [0.05; 0.68]
Zhang, J, et al., 2021 Gao Q. et al. 2020	61 40	9.67 3.71 -54.26 7.03	61 40	8.21 -60.17	3.02 7.28	followup	12.00 4.00	÷	0.43	[0.07; 0.79] [0.36: 1.27]
Li, X, et al., 2017 Cheung YL, et al. 2002	102 29	76.58 9.06 7.48 1.12	108 30	64.28 5.56	12.49 0.50	followup	12.00 10.00	=	1.12 2.20	[0.83; 1.41] [1.54; 2.85]
Cheung YL, et al. 2002 Random effect	29 1032	7.51 0.98	30 1055	4.96	0.66	followup	5.00		3.02 0.56	[2.26; 3.78] [-0.01; 1.13]
Prediction interval										[-0.67; 1.79]
gynaecological Sandsund, C, et al., 2017	72	64.20 21.80	70	66.70	19.70	baseline	0.00	4	-0.12	[-0.45; 0.21]
Chan, et al. 2005 Powell, CB, et al., 2008	80 21	58.29 50.71 78.30 17.70	75 43	60.44 75.60	40.96 17.90	baseline baseline	0.00 0.00		-0.05 0.15	[-0.36; 0.27] [-0.37; 0.67]
Chan, et al. 2005 Sandsund, C, et al., 2017	80 72	60.31 41.32 67.50 22.60	75 70	66.46 69.40	47.98 21.10	followup followup	12.00 24.00	*	-0.14 -0.09	[-0.45; 0.18] [-0.42; 0.24]
Chan, et al. 2005 Chan, et al. 2005	80 80	71.69 74.33 71.61 51.52	75 75	77.23 75.69	63.91 53.26	followup	72.00 60.00		-0.08 -0.08	[-0.39; 0.24] [-0.39; 0.24]
Sandsund, C, et al., 2017 Chan, et al. 2005	72 80	66.20 19.10 73.13 34.88	70 75	67.30 73.75	22.00 47.11	followup followup	12.00 36.00	*	-0.05 -0.01	[-0.38; 0.28] [-0.33; 0.30]
Chan, et al. 2005 Chan, et al. 2005	80 80	67.38 46.78 77.86 49.64	75 75	66.55 76.04	51.44 45.64	followup	24.00 48.00		0.02	[-0.30; 0.33] [-0.28; 0.35]
Powell, CB, et al., 2008 Random effect	21 818	80.40 26.30	43 821	77.10	21.20	followup	12.00	1 A A A A A A A A A A A A A A A A A A A	0.14	[-0.38; 0.66] [-0.28; 0.50]
Prediction interval										[-1.76; 1.99]
prostate Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00	-	-0.13	[-0.60; 0.34]
Northouse, LL, et al., 2015 McCaughan, E. et al., 2018	17 13	81.30 3.88 85.83 14.10	19 4	79.63 76.88	2.96 22.04	baseline baseline	0.00		0.48	[-0.19; 1.14] [-0.61; 1.67]
Penedo, FJ, et al., 2007 Northhouse, LL, et al., 2007	41 107	-87.22 13.82 87.00 10.80	30 121	-79.63 86.90	14.56 10.60	followup	12.00 32.00		-0.53	[-1.01; -0.05] [-0.25; 0.271
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	104 112	86.10 10.90 87.20 10.60	114 123	85.80 85.50	10.70	followup	48.00 16.00	1	0.03	[-0.24; 0.29] [-0.09; 0.42]
McCaughan, E, et al., 2018 Northouse, LL. et al., 2015	13 17	85.76 17.07 88.51 3.03	4 19	80.22 76.94	22.75 3.44	followup	4.00 2.00		0.29 → 3.48	[-0.84; 1.41] [2.41; 4.55]
Random effect Prediction interval	465		464						0.38	[-0.78; 1.55] [-1.49; 2.26]
Random effect	7076		7618					4	0.37	[0.17; 0.58]
Prediction interval							г		7	[-0.58; 1.33]
							-4 In favor of	-2 0 2 control group In favor of inte	4 rventior	n aroup

Figure S7.3. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer type subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S7.4.T48

Study	Patient N	operimental I Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast Garssen B. et al. 2012	24	74.40 4.00	26	76 60	4 20	haealing	0.00	_	-0.40	L0.96: -0.041
Seliniotaki, T, et al., 2012	27	62.00 33.80	26	70.50	4.30	baseline	0.00	-	-0.49	[-0.92; 0.17]
Heiney, SP, et al., 2003	33	6.00 1.70	33	6.40	1.40	baseline	0.00		-0.28	[-0.74; 0.23]
Chu, X. et al. 2020 Elyasi, F, et al., 2021 II.	42	65.20 16.77 3.50 1.80	42	68.91 3.80	16.63	baseline baseline	0.00		-0.22	[-0.65; 0.21] [-0.80; 0.44]
van den Berg, SW, et al. 2015 II. Savard, J, et al., 2006	70 21	66.79 16.57 42.51 3.19	80 16	69.79 43.11	17.91 3.91	baseline baseline	0.00		-0.17 -0.17	[-0.49; 0.15] [-0.82; 0.48]
Nápoles AM, et al. 2015 Dirksen, S. et al, 2007	76 34	66.46 16.92 83.30 11.90	75 38	68.83 84.80	15.33 9.20	baseline baseline	0.00		-0.15 -0.14	[-0.47; 0.17] [-0.60; 0.32]
Peng, L, et al., 2022 Qiu, H, et al., 2018 II.	28 98	69.05 16.49 76.78 19.91	29 196	71.26 79.49	17.05 21.60	baseline baseline	0.00 0.00		-0.13 -0.13	[-0.65; 0.39] [-0.37; 0.11]
Von Ah, D, et al.,2012 I. Schellekens, MPJ, et al. 2016	26 69	22.06 3.44 95.43 21.60	29 70	22.38 97.09	2.24 23.54	baseline baseline	0.00 0.00		-0.11 -0.07	[-0.64; 0.42] [-0.41; 0.26]
Reese, JB, et al., 2021 Qiu, H, et al., 2018 I.	73 98	60.80 16.70 78.09 18.86	71 196	61.90 79.49	14.30 21.60	baseline baseline	0.00		-0.07 -0.07	[-0.40; 0.26] [-0.31; 0.18]
Marchioro, G, et al. 1996 Reich, RR, et al. 2016	18 167	-58.44 22.39 62.44 27.52	18 155	-57.72 62.74	20.25 24.68	baseline baseline	0.00 0.00		-0.03 -0.01	[-0.69; 0.62] [-0.23; 0.21]
Hoffman, CJ, et al., 2012 Walker, LG, et al., 1998	101 48	96.57 17.22 3.25 0.70	106 48	96.68 3.25	21.05 0.66	baseline baseline	0.00		-0.01 0.00	[-0.28; 0.27] [-0.40; 0.40]
Rosen, KD, et al., 2018 Nikbakhsh, N, et al., 2018	57 20	93.61 22.68 44.09 8.48	55 20	92.96 43.64	25.12 13.73	baseline baseline	0.00		0.03	[-0.34; 0.40] [-0.58; 0.66]
Esplen MJ, et al., 2018 Klinkhammer-Schalke, M et al., 2012	131 100	70.50 16.50 54.35 26.09	63 100	68.90 51.45	17.20 23.19	baseline baseline	0.00		0.10 0.12	[-0.21; 0.40] [-0.16; 0.39]
Von Ah, D, et al.,2012 II. Rahmani, S, et al. 2015	27 12	22.98 3.08 41.66 6.15	29 12	22.38 39.58	2.24 7.22	baseline baseline	0.00	*	0.22	[-0.30; 0.75] [-0.51; 1.10]
Yoo, HJ, et al. 2004 Cengiz, HO, et al., 2023	30 32	93.41 16.90 63.06 19.74	30 33	87.88 55.22	14.96 18.26	baseline baseline	0.00	-	0.34 0.41	[-0.17; 0.85] [-0.08; 0.90]
Gaston-Johansson, F, et al., 2011 Jelvehzadeh, F, et al., 2022	38 24	22.60 4.30 4.71 1.07	35 24	20.60 3.94	4.00 1.06	baseline baseline	0.00	-	0.48 0.71	[0.01; 0.94] [0.13; 1.30]
Heiney, SP, et al., 2003 Savard, J, et al., 2006	33 21	6.00 1.50 3.62 0.95	33 16	6.80 3.95	1.50 0.91	followup followup	16.00 8.00		-0.53 -0.34	[-1.02; -0.04] [-1.00; 0.31]
Von Ah, D, et al.,2012 I. Peng, L, et al., 2022	26 28	22.15 4.45 66.67 24.00	29 29	22.58 69.25	2.24 22.17	followup	8.00 4.00	*	-0.12 -0.11	[-0.65; 0.41] [-0.63; 0.41]
Reich, RR, et al. 2016 Heiney SP et al. 2003	167 33	68.43 27.76 6.20 1.30	155 33	70.36 6.30	22.70	followup	12.00 6.00		-0.08	[-0.29; 0.14] [-0.55; 0.41]
Klinkhammer-Schalke, M et al., 2012 Esplen MJ et al. 2018	100 131	53.62 22.46 73.40 16.70	100 63	55.07 74.30	20.29	followup	12.00 48.00		-0.07	[-0.34; 0.21] [-0.35; 0.25]
Reese, JB, et al., 2021 Reich RB, et al. 2016	73	61.80 18.20 65.76 26.18	71	62.60	13.90	followup	8.00	-	-0.05	[-0.38; 0.28]
Rahmani, S, et al. 2015 Seliniotaki, T, et al. 2021	12	12.00 61.11	12	12.00	58.33	followup	16.00		0.00	[-0.80; 0.80]
Peng, L, et al., 2022	28	72.32 22.11	29	71.26	15.26	followup	0.10		0.06	[-0.46; 0.57]
Qiu, H, et al., 2018 II. Klinkhammer-Schalke M et al. 2013	98	80.28 26.77	196	78.03	31.55	followup	4.00		0.07	[-0.17; 0.32]
Esplen MJ, et al., 2018 Marchioro, G. et al. 1996	131	14.90 9.40	63	14.00	9.40	followup	8.00	<u>-</u>	0.10	[-0.21; 0.40]
Esplen MJ, et al., 2018	131	72.60 16.60	63	70.30	18.00	followup	24.00	픂	0.12	[-0.17; 0.44]
Elyasi, F, et al., 2021 I. Népeleo AM et al., 2015	15	4.30 1.00	15	4.10	1.10	followup	24.00	<u>-</u>	0.17	[-0.53; 0.90]
Elyasi, F, et al., 2021 II.	20	4.30 1.00	20	4.10	1.10	followup	24.00		0.19	[-0.43; 0.81]
Qiu, H, et al., 2018 II.	98	89.52 33.46	196	83.21	31.55	followup	12.00		0.19	[-0.05; 0.44]
Qiu, H, et al., 2018 II. Nápoles AM, et al. 2015	98 76	94.70 35.69 80.64 13.64	196 75	87.72 77.02	34.70	followup	24.00	분	0.20	[-0.04; 0.44] [-0.07; 0.57]
Dirksen, S. et al. 2007 Hoffman, CJ, et al., 2012	34 101	91.60 15.00 103.56 17.91	38 106	87.70 96.84	14.70	followup	10.00	Ē	0.26	[-0.20; 0.72] [0.07; 0.62]
Klinkhammer-Schalke, M et al., 2012 Hoffman, CJ, et al., 2012	100	63.41 22.11 103.78 17.85	100	55.07 96.22	23.19 19.43	followup	24.00	Ē	0.37	[0.09; 0.65]
Qiu, H, et al., 2018 I. Walker, LG, et al., 1998	98 48	91.32 29.00 3.29 0.80	196 48	78.03 2.90	31.55 0.78	followup	4.00 15.00	툳	0.43	[0.19; 0.68] [0.08; 0.90]
Yoo, HJ, et al. 2004 Rosen, KD, et al., 2018	30 57	97.01 18.24 107.35 17.79	30 55	88.13 96.04	16.18 23.96	followup followup	12.00 5.00	E	0.51 0.53	[-0.01; 1.02] [0.16; 0.91]
Gaston-Johansson, F, et al., 2011 Garssen B, et al., 2012	38 34	24.70 4.30 78.40 3.70	35 36	21.90 76.40	5.00 2.90	followup followup	48.00 5.00		0.60 0.60	[0.13; 1.07] [0.12; 1.08]
Garssen B, et al., 2012 Garssen B, et al., 2012	34 34	80.40 3.30 75.50 3.60	36 36	78.20 72.90	3.20 3.80	followup followup	2.00 13.00	-	0.67 0.69	[0.19; 1.15] [0.21; 1.18]
Qiu, H, et al., 2018 I. Cengiz, HO, et al., 2023	98 32	113.18 35.69 66.98 17.72	196 33	87.72 53.03	34.70 18.65	followup followup	24.00 8.00	-	0.72	[0.48; 0.97] [0.25; 1.26]
Qiu, H, et al., 2018 I. Chu, X. et al, 2020	98 42	107.32 31.23 85.41 16.08	196 42	83.21 71.90	31.55 18.50	followup followup	12.00 12.00	-	0.76 0.77	[0.51; 1.02] [0.33; 1.22]
Chu, X. et al, 2020 Yoo, HJ, et al. 2004	42 30	84.94 14.59 102.00 19.94	42 30	71.59 88.18	18.73 14.02	followup followup	8.00 24.00	*	0.79 0.79	[0.34; 1.23] [0.26; 1.32]
Garssen B, et al., 2012 Marchioro, G, et al. 1996	34 18	81.00 3.40 -48.72 12.22	36 18	78.20 -60.78	3.20 14.85	followup followup	4.00 12.00	-	0.84 0.87	[0.35; 1.33] [0.18; 1.55]
Rahmani, S, et al. 2015 Marchioro, G, et al. 1996	12 18	66.66 9.40 -44.72 9.18	12 18	54.16 -60.78	10.95 13.26	followup followup	8.00 24.00		1.18 1.38	[0.30; 2.06] [0.64; 2.11]
Jelvehzadeh, F, et al., 2022 Jelvehzadeh, F, et al., 2022	24 24	6.05 1.00 6.16 1.09	24 24	4.65 4.58	0.80 0.92	followup followup	12.00 8.00		1.52 1.54	[0.87; 2.17] [0.89; 2.19]
Marchioro, G, et al. 1996 van den Berg, SW, et al. 2015 II.	18 70	-41.17 6.91 73.30 1.78	18 80	-60.28 69.88	13.33 1.67	followup	36.00 4.00		1.76 1.97	[0.98; 2.54] [1.58; 2.36]
Nikbakhsh, N, et al., 2018 Random effect	20 4761	81.70 10.04	20 5278	47.39	12.93	followup	12.00	÷	- 2.91 0.28	[1.99; 3.82] [-0.03; 0.59]
Prediction interval										[-0.81; 1.37]
gastroenterological Li, X, et al., 2017	102	56.32 7.80	108	62.38	11.46	baseline	0.00	=	-0.61	[-0.89; -0.34]
Wang, TJ, et al 2023 Xia, S, et al., 2023	70 80	102.30 18.40 61.40 16.60	72 80	104.40 61.10	17.10 15.70	baseline baseline	0.00	「「「「「」」	-0.12 0.02	[-0.45; 0.21] [-0.29; 0.33]
Gao Q, et al. 2020 Cheung YL, et al. 2002	40 29	-68.20 8.25 4.96 1.74	40 30	-68.44 4.36	8.82 1.62	baseline baseline	0.00	*	0.03	[-0.41; 0.47] [-0.16; 0.87]
Wang, TJ, et al 2023 Xia, S, et al. 2023	70 80	105.40 17.80 67.70 16.20	72 80	103.50 65.80	20.00	followup	8.00	튶	0.10	[-0.23; 0.43] [-0.19; 0.43]
Wang, TJ, et al 2023 Wang, TJ, et al 2023	70 70	107.30 16.70	72 72	103.30	19.00	followup	16.00 24.00	-	0.22	[-0.11; 0.55] [-0.10; 0.56]
Xia, S, et al., 2023 Xia, S, et al., 2023	80 80	72.70 15.80 78.00 14.30	80 80	68.00 72.90	13.50 13.40	followup	12.00		0.32	[0.01; 0.63]
Zhang, J, et al., 2021 Gao O, et al. 2020	61 40	9.67 3.71	61 40	8.21	3.02	followup	12.00	-	0.43	[0.07; 0.79]
Li, X, et al., 2017 Cheung YL et al. 2002	102	76.58 9.06	108 30	64.28 5.56	12.49	followup	12.00	-	1.12	[0.83; 1.41]
Cheung YL, et al. 2002 Random effect	29 1032	7.51 0.98	30 1055	4.96	0.66	followup	5.00		- 3.02	[2.26; 3.78]
Prediction interval	1002		1000						0110	[-0.70; 1.62]
gynaecological Sandsund, C, et al., 2017	72	64.20 21.80	70	66.70	19.70	baseline	0.00	4	-0.12	[-0.45; 0.21]
Chan, et al. 2005 Powell CB et al. 2008	80 21	58.29 50.71 78.30 17.70	75 43	60.44 75.60	40.96	baseline baseline	0.00	4	-0.05 0.15	[-0.36; 0.27] [-0.37; 0.67]
Chan, et al. 2005 Sandsund, C. et al., 2017	80 72	60.31 41.32 67.50 22.60	75 70	66.46 69.40	47.98 21.10	followup	12.00 24.00		-0.14	[-0.45; 0.18] [-0.42; 0.24]
Chan, et al. 2005 Chan, et al. 2005	80 80	71.69 74.33 71.61 51.52	75 75	77.23	63.91 53.26	followup	72.00	클	-0.08	[-0.39; 0.24] [-0.39; 0.24]
Sandsund, C, et al., 2017 Chan, et al. 2005	72 80	66.20 19.10 73.13 34.88	70 75	67.30 73.75	22.00	followup	12.00 36.00	#	-0.05	[-0.38; 0.28] [-0.33; 0.30]
Chan, et al. 2005 Chan, et al. 2005	80 80	67.38 46.78 77.86 49.64	75 75	66.55 76.04	51.44 45.64	followup	24.00 48.00		0.02	[-0.30; 0.33] [-0.28; 0.35]
Powell, CB, et al., 2008 Pandom effect	21	80.40 26.30	43	77.10	21.20	followup	12.00	곷	0.14	[-0.38; 0.66]
Prediction interval	010		021						0.02	[-1.76; 1.80]
prostate Penedo, FJ, et al., 2007	41	-82.35 14.02	30	-80.57	13.21	baseline	0.00	-	-0.13	[-0.60; 0.34]
Northouse, LL, et al., 2015 McCaughan, E. et al., 2018	17 13	81.30 3.88 85.83 14.10	19 4	79.63 76.88	2.96	baseline baseline	0.00		0.48	[-0.19; 1.14] [-0.61; 1.67]
Penedo, FJ, et al., 2007 Northhouse, LL, et al., 2007	41 107	-87.22 13.82 87.00 10.80	30 121	-79.63	14.56	followup	12.00 32.00	-=1	-0.53	[-1.01; -0.05]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	104 112	86.10 10.90	114 123	85.80 85.50	10.70	followup	48.00		0.03	[-0.24; 0.29] [-0.09; 0.42]
McCaughan, E, et al., 2018 Northouse, LL et al. 2015	13 17	85.76 17.07	4	80.22	22.75	followup	4.00		0.29	[-0.84, 1.41]
Random effect Prediction interval	465		464				2.20		0.29	[-0.75; 1.33] [-1.41: 1.99]
Random effect	7076		7618					L.	0.26	[-0.02: 0.54]
Prediction interval							г		7	[-0.89; 1.40]
							-4 In favor of	-2 0 2 control group In favor of inte	4 erventior	group

Figure S7.4. Subgroup analysis of the Global QoL. Forest plot represents the difference between the intervention vs. control group in the Global QoL domain with the cancer type subgroups as predicted at week 48 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

S8.Subgroup analysis of Emotional QoL: Provider

Figure S8.1.T0

Study	Experimental Patient N Mean SD	Patient N	Control I Mean SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
Study psychologist Selinidaki, T, et al., 2021 Reich, RR, et al., 2016 Serfaty M, et al., 2018 Peng, L, et al., 2022 Rahmani, S, et al. 2015 Oui, H, et al., 2020 Chan, et al., 2020 Chan, et al., 2020 Chan, et al., 2000 Chan, et al., 2000 Chan, et al., 2000 Chan, et al., 2000 Chan, et al., 2001 Denedo, FJ, et al., 2010 Penedo, FJ, et al., 2010 Serfaty M, et al., 2018 Chan, et al., 2016 Chan, et al., 2005 Chan, et al., 2008 Chan, et al., 2007 Chan, et al., 2007	Experimental Patient N Mean SD 27 56.10 29.10 12.30 5.21 167 63.38 17.42 20 12.30 5.22 12 11.11 8.94 11.50 6.30 96 11.72 6.65 21.30 15.26 12 11.11 8.94 11.50 6.30 98 11.72 6.65 21.30 15.26 12 16.10 4.20 20.3 30 21 16.10 4.20 4.34 4.44 100 51.68 29.03 3.01 20.01 100 51.68 29.03 3.31 20 15.60 4.20 20 15.60 4.20 3.31 20.01 15.60 4.20 20 15.60 4.20 3.31 20.01 15.60 4.20 21 18.80 0.73.39 6.76 7.77 7.57 3.31 20 15.60	Patient N 266 122 275 196 195 229 12 196 195 229 12 196 195 239 196 192 196 196 197 196 196 196 196 196 196 196 196	Control Mean SO 74.20 20.99 68.57 18.20 74.20 8.65 74.20 9.05 71.20 8.56 71.22 8.56 71.22 8.56 71.22 8.56 71.22 8.56 71.30 4.94 75.00 23.00 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.30 4.94 71.31 4.90 71.32 5.50 85.00 19.00 75.90 2.00 75.91 4.90 75.92 7.81 85.00 17.00 </td <td>tollow-up baseline ba</td> <td>Follow-up time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</td> <td>SMD of interested event</td> <td>SMD -0.700 -0.266 -0.256 -0.256 -0.15 -0.15 -0.16 -0.026 -0.266 -0.266 -0.264 -0.226 -0.15 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.22 -0.18 -0.11 -0.15 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.25 -0.32 -</td> <td>95%-CI (126: 0.15) [0.48: 0.05] [0.48: 0.05] [0.48: 0.05] [0.57] 1.05] [0.57] 1.</td>	tollow-up baseline ba	Follow-up time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	SMD of interested event	SMD -0.700 -0.266 -0.256 -0.256 -0.15 -0.15 -0.16 -0.026 -0.266 -0.266 -0.264 -0.226 -0.15 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.22 -0.18 -0.11 -0.15 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.25 -0.32 -	95%-CI (126: 0.15) [0.48: 0.05] [0.48: 0.05] [0.48: 0.05] [0.57] 1.05] [0.57] 1.
Prediction interval healthcare professional Zaman, ACCNM, et al., 2021 Berglund, G. et al. 2007 Grigis, A. et al., 20081. Braeken APB, et al., 2013 Guo, Z. et al., 2013 Scholiek, P. et al., 2013 Scholiek, P. et al., 2013 Scholiek, P. et al., 2013 Vin et al., 2014 Unit et al., 2014 Unit et al., 2014 Description, A. et al., 2021 Heynar, F. et al., 2021 Berglund, G. et al., 2021 Berglund, G. et al., 2021 Berglund, G. et al., 2021 Berglund, G. et al., 2021 Braeken APB, et al., 2013 Grigis, A. et al., 2009 II. Sandsund, C., et al., 2017 Braeken APB, et al., 2013 Grigis, A. et al., 2009 II. Sandsund, C., et al., 2017 Braeken APB, et al., 2017 Grigis, A. et al., 2009 II. Sandsund, C., et al., 2017 Hoffman, C.J., et al., 2017 Grigis, A. et al., 2009 II. Grigis, A. et al., 2009 II. Grigis, A. et al., 2009 II. Grigis, A. et al., 2017 Hoffman, C.J., et al., 2017 Grub, A. et al., 2017 Braeken APB, et al., 2013 Grub, C., et al., 2017 Hoffman, C.J., et al., 2017 Beakly, L. et al., 2015 Beakly, L. et al., 2015 Heinderson, VP, et al., 2013 Reakty, L. et al., 2015 Heinderson, VP, et al., 2013 Prediction interval	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 150 70 117 144 89 55 27 20 10 33 46 50 46 44 20 33 34 65 35 117 70 95 35 55 55 55 55 55 55 55 55 55 55 55 55	$\begin{array}{ccccc} 45.30 & 9.80 \\ 83.60 & 19.70 \\ 67.90 & 23.40 \\ 79.70 & 22.70 \\ 79.70 & 22.70 \\ 79.70 & 22.70 \\ 79.70 & 22.70 \\ 79.70 & 22.70 \\ 79.71 & 14.71 \\ 73.93 & 23.08 \\ 79.75 & 14.20 \\ 84.90 & 18.50 \\ 87.80 & 18.00 \\ 89.60 & 2.60 \\ 99.60 & 2.60 $	baseline bas	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	◆ → ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★	$\begin{array}{c} -0.13\\ -0.12\\ -0.03\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.10\\ 0.13\\ 0.18\\ 0.18\\ 0.22\\ 0.34\\ -0.33\\ -0.33\\ -0.33\\ -0.33\\ -0.33\\ -0.33\\ -0.33\\ -0.33\\ 0.01\\ 0.05\\ 0.08\\ 0.11\\ 0.12\\ 0.14\\ 0.05\\ 0.00\\ 0.40\\ 0.40\\ 0.45\\ 0.00\\ 0.41\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ 0.12\\ 0.14\\ $	$ \begin{array}{l} [0.66; \ 1.87] \\ [0.56; \ 1.87] \\ [0.55; \ 0.29] \\ [0.47; \ 0.23] \\ [0.36; \ 0.30] \\ [0.25; \ 0.25] \\ [0.25; \ 0.26] \\ [0.22; \ 0.21] \\ [0.25; \ 0.26] \\ [0.22; \ 0.21] \\ [0.25; \ 0.26] \\ [0.22; \ 0.21] \\ [0.25; \ 0.26] \\ [0.$
Inurse Zhao X, et al. 2015 van der Meulen, IC, et al. 2013 Walczakia, AS, et al. 2001 Urisen, B, et al. 2007 Drisen, B, et al. 2007 Drisen, B, et al. 2007 Vu, Q, et al. 2020 Vu, Q, et al. 2021 Vu, Y, et al. 2017 Vu, Y, et al. 2017 Vu, Y, et al. 2020 Vim, SH, et al. 2020 Vim, SH, et al. 2021 Viañe, N, et al. 2019 Zhao X, et al. 2019 Zhao X, et al. 2019 Zhao X, et al. 2019 Viañe, N, et al. 2019 Zhao X, et al. 2019 Viañe, N, et al. 2019 Viañe, N, et al. 2019 Viañe, N, et al. 2017 Viañe, N, et al. 2017 Viañe, N, et al. 2017 Vian, YH, et al. 2021 Chou, J, et al. 2020 Zhao X, et al. 2021 Chou, J, et al. 2020 Zhao X, et al. 2021 Random effect Prediction interval		62 91 154 49 860 88 114 43 00 47 154 47 47 47 49 114 47 47 30 30 318 49 114 47 47 30 91 147 47 30 91 12198 12198 12198	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	baseline bas	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	· · · · · · · · · · · · · ·	0.88 0.87 0.21 0.21 0.01 0.02 0.02 0.02 0.02 0.02	

Figure S8.1, Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the provider subgroups as predicted at week 0 (post-intervention) SMD -Standardized mean difference, CI -confidence interval - confidence interval.

Figure S8.2.T12

Study	E) Patient M	operimental I Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
psychologist Seliniotaki, T, et al., 2021	27	56.10 29.10	26	74.20	20.90	baseline	0.00		-0.70	[-1.26; -0.15]
Serfaty M, et al. 2016	20	63.83 17.42 12.30 5.20	155 22	68.57 13.60	4.90	baseline	0.00		-0.26	[-0.48; -0.05] [-0.86; 0.36]
Peng, L, et al., 2022 Rahmani, S, et al. 2015	28 12	69.94 16.25 11.11 8.94	29 12	12.50	9.05	baseline	0.00		-0.15	[-0.67; 0.37] [-0.95; 0.65]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I. Hernandez EC, et al. 2019	98	11.72 6.65	196	12.22	6.56	baseline	0.00		-0.08	[-0.32; 0.13] [-0.32; 0.17]
Johansson, B, et al., 2008 Powell CB, et al. 2008	128	74.00 23.00	116	75.00	23.00	baseline	0.00	1	-0.04	[-0.29; 0.21]
Chan, et al. 2005 Liu, T, et al., 2019	80 49	58.10 45.50 71.18 18.38	75 53	54.60 69.23	48.48 22.04	baseline baseline	0.00		0.07	[-0.24; 0.39] [-0.29; 0.48]
Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2020	41 95	-19.24 4.04 -20.03 3.80	30 97	-19.63 -20.46	3.43 3.74	baseline baseline	0.00		0.10 0.11	[-0.37; 0.57] [-0.17; 0.40]
Klinkhammer-Schalke, M et al., 2012 Arving, C, et al., 2007	100 47	51.86 29.03 69.00 25.00	100 38	48.14 63.00	28.29 18.00	baseline baseline	0.00 0.00		0.13 0.27	[-0.15; 0.41] [-0.16; 0.70]
Rodrigez, B, et al., 2014 Lu, Z, et al., 201	8 203	88.54 22.24 79.70 3.60	7 103	79.76 71.30	36.28 4.90	baseline baseline	0.00 0.00		0.28 2.05	[-0.74; 1.30] [1.76; 2.34]
Penedo, FJ, et al., 2007 Serfaty M, et al., 2018	41 20	-20.73 3.31 15.40 4.50	30 22	-19.20 16.60	3.62 4.90	followup followup	12.00 12.00	콜	-0.44 -0.25	[-0.92; 0.04] [-0.86; 0.36]
Chan, et al. 2005	20 80	15.60 4.20 65.70 47.01	22 75	16.50 73.94	39.30	followup	24.00		-0.22	[-0.83; 0.38] [-0.50; 0.13]
Johansson, B, et al., 2008 Sorfety M et al. 2019	128	83.00 18.00	116	85.00	19.00	followup	24.00	<u> </u>	-0.11	[-0.36; 0.16]
Reich, RR, et al. 2016 Chan, et al. 2005	167	71.33 19.41	155	72.71	19.13	followup	12.00		-0.07	[-0.29; 0.15]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.73 57.02	75	78.59	56.21 55.80	followup	48.00	1	-0.03	[-0.35; 0.28]
Chan, et al. 2005 Johansson, B. et al., 2008	80 128	68.59 48.12 85.00 17.00	75 116	69.81 85.00	48.88 17.00	followup	24.00 48.00		-0.03	[-0.34; 0.29] [-0.25; 0.25]
Rahmani, S, et al. 2015 Qiu, H, et al., 2018 II.	12 98	12.00 48.61 12.32 9.06	12 196	12.00 11.90	23.61 7.89	followup followup	16.00 4.00		0.00 0.05	[-0.80; 0.80] [-0.19; 0.29]
Johansson, B, et al., 2008 Chan, et al. 2005	128 80	87.00 17.00 77.37 58.41	116 75	86.00 73.44	20.00 52.28	followup followup	96.00 36.00		0.05 0.07	[-0.20; 0.31] [-0.24; 0.39]
Klinkhammer-Schalke, M et al., 2012 Reich, RR, et al. 2016	100 167	63.52 27.07 70.87 18.02	100 155	61.29 69.36	27.29 18.78	followup	48.00 6.00		0.08	[-0.20; 0.36] [-0.14; 0.30]
Powell, CB, et al., 2008 Arving, C, et al., 2007	21 47	18.50 5.40 76.00 24.00	43	18.00 74.00	5.90 20.00	followup	12.00	Ē	0.09	[-0.44; 0.61] [-0.34; 0.52]
Penedo, FJ, et al., 2008	95	-20.18 3.80	97	-20.62	3.84	followup	24.00		0.11	[-0.17; 0.40] [-0.17; 0.40]
Qiu, H, et al., 2018 II. Hernandez EG, et al. 2018	98 28	14.23 7.67	196	13.10	8.87	followup	12.00	<u> </u>	0.13	[-0.11; 0.38]
Klinkhammer-Schalke, M et al., 2012 Rodrigez, B. et al., 2014	100	66.50 26.80 88.54 22.24	100 7	59.06 79.76	29.53 36.28	followup	36.00		0.26	[-0.02; 0.54] [-0.74; 1.30]
Hernandez, EG, et al. 2018 Penedo, FJ, et al., 2020	28 95	16.12 4.09 -19.20 3.90	28 97	14.72 -20.43	4.63 3.84	followup followup	8.00 48.00	- 1	0.32 0.32	[-0.21; 0.84] [0.03; 0.60]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	82.00 20.00 66.25 25.31	38 100	75.00 56.58	24.00 28.54	followup followup	24.00 24.00		0.32 0.36	[-0.11; 0.75] [0.08; 0.64]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 I.	27 98	74.50 24.50 15.42 9.06	26 196	61.70 11.90	36.70 7.89	followup followup	8.00 4.00	Ē	0.41 0.42	[-0.14; 0.95] [0.18; 0.67]
Arving, C, et al., 2007 Rodrigez, B, et al., 2014	47 8	80.00 21.00 93.33 10.87	38	69.00 80.56	23.00 26.79	followup	4.00 2.00	-	0.50	[0.06; 0.93] [-0.44; 1.65]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	98 98	19.23 9.76 20.00 8.37	196 196	13.10 13.52	8.87	followup	12.00 24.00		0.67	[0.42; 0.91] [0.55; 1.05]
Peng, L, et al., 2019 Peng, L, et al., 2022	49 28	80.95 13.20 80.22 14.07	53 29	51.93 70.12	9.05	followup	9.00 4.00		0.81	[0.40; 1.21] [0.40; 1.50]
Liu, T, et al., 2019	49	74.12 9.50	53 103	56.57 77.60	16.10	followup	12.00	1	1.31	[0.88; 1.73]
Rahmani, S, et al. 2015 Random effect	12 4497	56.94 11.14	12 4960	22.91	10.73	followup	8.00		* 3.00 0.40	[1.78; 4.23]
Prediction interval									I	[-0.85; 1.64]
healthcare professional Zaman, ACGNM, et al., 2021	42	44.00 9.90	46	45.30	9.80	baseline	0.00	<u>+</u>	-0.13	[-0.55; 0.29]
Berglund, G. et al. 2007 Sandsund, C, et al., 2017	39 72	81.20 18.90 67.10 25.30	150 70	83.60 67.90	19.70	baseline	0.00	Ē	-0.12	[-0.47; 0.23] [-0.36; 0.30]
Girgis, A, et al., 2009 II. Girgis, A, et al., 2009 I. Braakan ABB, et al. 2012	120	80.70 21.60	117	79.70	22.70	baseline	0.00		0.01	[-0.25, 0.26] [-0.22; 0.31]
Guo, Z, et al., 2013 Schofield P, et al., 2012	89	72.57 12.51	89	70.12	14.71	baseline	0.00		0.13	[-0.16; 0.43] [-0.20: 0.56]
Yun et al., 2017 Hoffman, C.L. et al., 2012	134 102	76.80 19.40	72	73.00	23.00	baseline	0.00	E	0.18	[-0.20; 0.30] [-0.10; 0.47] [-0.05: 0.49]
Elyasi, F, et al., 2021 II. Elyasi, F, et al., 2021 I.	20 15	10.60 3.10 11.50 3.80	20 15	9.60 9.60	2.60 2.60	baseline baseline	0.00		0.34 0.57	[-0.28; 0.97] [-0.16; 1.30]
Cengiz, HO, et al., 2023 Zaman, ACGNM, et al., 2021	32 42	12.90 5.40 47.70 9.70	33 46	9.75 50.80	5.22 7.50	baseline followup	0.00 48.00	-	0.59 -0.36	[0.09; 1.08] [-0.78; 0.07]
Berglund, G. et al. 2007 Zaman, ACGNM, et al., 2021	39 42	81.60 20.10 46.20 10.70	150 46	87.80 49.40	18.00 8.30	followup followup	48.00 24.00	륀	-0.33 -0.33	[-0.69; 0.02] [-0.75; 0.09]
Braeken APB, et al. 2013 Elyasi, F, et al., 2021 II.	136 20	78.38 22.75 9.40 2.10	144 20	79.46 9.50	20.68	followup	12.00 24.00		-0.05 -0.04	[-0.28; 0.18] [-0.66; 0.58]
Schofield, P, et al. 2015 Schofield, P, et al., 2013	30 55	69.03 4.81 75.31 22.19	30 53	69.16 75.51	4.79	followup	6.00 12.00	-	-0.03	[-0.53; 0.48] [-0.39; 0.37]
Girgis, A, et al., 2009 II. Girgis, A, et al., 2009 I. Zaman, ACCNM, et al., 2021	110	86.40 20.20	117	84.90 84.90	18.50	followup	12.00		0.05	[-0.21, 0.30] [-0.18; 0.34]
Yun et al., 2017 Braeken APB, et al. 2013	134 136	78.00 19.90	72 144	75.90	18.30	followup	48.00	E.	0.11	[-0.18; 0.39] [-0.12: 0.35]
Girgis, A, et al., 2009 II. Sandsund, C, et al., 2017	120 72	86.70 18.70 70.00 23.90	117 70	84.40 66.40	18.90 26.20	followup followup	24.00 12.00		0.12 0.14	[-0.13; 0.38] [-0.19; 0.47]
Zaman, ACGNM, et al., 2021 Girgis, A, et al., 2009 I.	42 110	46.80 9.80 88.70 17.30	46 117	45.30 84.40	9.20 18.90	followup followup	12.00 24.00	耆	0.16 0.24	[-0.26; 0.58] [-0.02; 0.50]
Sandsund, C, et al., 2017 Hoffman, CJ, et al., 2012	72 102	75.50 20.20 18.14 3.82	70 109	66.70 16.59	28.60 4.40	followup followup	24.00 8.00	*	0.35 0.37	[0.02; 0.69] [0.10; 0.65]
Schofield, P, et al., 2013 Elyasi, F, et al., 2021 I.	55 15	81.43 20.19 11.00 3.40	53 15	73.23 9.50	20.40 2.60	followup	8.00 24.00		0.40	[0.02; 0.78] [-0.25; 1.21]
Hoffman, CJ, et al., 2012 McCusker, J, et al., 2021	102 99	18.59 3.75 43.30 9.20	109 119	16.28 37.40	4.42 9.80	followup	12.00 24.00	1	0.56	[0.28; 0.84] [0.34; 0.89]
Guo, 2, et al., 2013 Cengiz, HO, et al., 2023	32	74.18 11.43 13.56 5.78	33	8.75	5.14	followup	2.00 8.00		0.64	[0.33; 0.94] [0.36; 1.38]
Beatty, L. et al. 2015 Henderson VP et al. 2013	30 53	76.54 4.22	30 58	71.38	4.09	followup	26.07	-	1.21	[0.66; 1.76]
Random effect Prediction interval	2895		3085					÷ –	0.48	[0.25; 0.71] [-0.77; 1.74]
nurse										-
znao,X, et al. 2015 van der Meulen, IC, et al., 2013 Mel achian, SA et al., 2001	62 88	5.41 1.79 64.80 2.40	62 91	7.24 66.90	2.31	baseline baseline	0.00	Ē	-0.88	[-1.25; -0.51] [-1.18; -0.56]
Walczak, A, et al., 2001 Dirksen, S, et al., 2007	290 61	16.76 4.80	49	17.73	4.56	baseline	0.00		-0.20	[-0.58; 0.17] [-0.56: 0.361
Fang, P, et al.,2020 Thomas MI et al. 2012	60 64	46.14 5.12	60 88	46.55	5.23	baseline	0.00		-0.08	[-0.44; 0.28]
Klafke, N, et al., 2019 Wu Q et al. 2021	120 43	50.00 26.00 62.34 6.76	114 43	50.70 62.45	26.50	baseline	0.00	1	-0.03	[-0.28; 0.23]
Qin, X, et al., 2017 Kim, YH, et al., 2017	50 30	73.61 10.68 56.40 16.50	50 30	72.41 53.30	9.34 16.50	baseline baseline	0.00		0.12	[-0.27; 0.51] [-0.32; 0.69]
Gao Q, et al. 2020 Kim, SH, et al., 2021	40 47	-56.85 4.66 72.00 17.70	40 47	-58.20 65.40	4.78 21.00	baseline baseline	0.00 0.00	喜	0.28 0.34	[-0.16; 0.72] [-0.07; 0.74]
Zhao, X, et al., 2021 McLachlan, SA, et al., 2001	52 296	64.03 4.42 45.80 30.20	51 154	58.12 50.70	0.42 25.00	baseline followup	0.00 24.00		1.86 -0.17	[1.39; 2.32] [-0.37; 0.02]
Klafke, N, et al., 2019 Zhao,X, et al. 2015	120 62	62.80 22.30 7.91 2.24	114 62	64.20 7.81	22.40 1.98	followup followup	12.00 0.30		-0.06 0.05	[-0.32; 0.19] [-0.31; 0.40]
Klafke, N, et al., 2019 Klafke, N, et al., 2019	34 120	20.80 2.30 59.10 25.40	38 114	20.60	4.00	followup	24.00		0.06	[-0.40; 0.52] [-0.15; 0.36]
Kim, SH, et al., 2021 Walczak, A. et al. 2017	47	75.90 16.30	47	71.70	4.90 18.40 4.80	followup	20.00	De la companya de la comp	0.10	[-0.17; 0.65] [-0.11: 0.65]
Klafke, N, et al., 2019 Kim, SH, et al. 2021	120 47	65.90 25.60 79.00 15.70	49 114 47	56.30 69.60	24.70	followup	48.00		0.38	[0.12; 0.64]
Kim, YH, et al., 2017 Kim, YH, et al., 2017	30 30	67.80 15.10 70.80 14.50	30 30	56.70 57.80	21.90	followup	6.00		0.58	[0.07; 1.10]
Wu, Q, et al., 2021 Gao Q, et al. 2020	43 40	81.54 8.21 -49.55 4.20	43 40	74.21	7.33	followup	12.00 4.00		0.93	[0.49; 1.38] [0.59; 1.53]
Zhou, J, et al., 2020 Qin, X, et al., 2017	59 50	64.81 9.32 90.72 8.27	59 50	55.54 75.60	7.29 10.01	followup followup	2.00 2.00	1 ·	1.10 1.63	[0.71; 1.49] [1.18; 2.09]
van der Meulen, IC, et al., 2013 Fang, P, et al., 2020	88 60	84.90 3.00 63.52 6.47	91 60	77.20 47.56	2.80 5.14	followup followup	48.00 4.00	1	2.64 2.71	[2.24; 3.05] [2.21; 3.21]
znao, X, et al., 2021 Random effect	52 2470	71.02 2.31	51 2198	58.91	5.21	followup	12.00		2.99 0.65	[2.42; 3.56] [0.27; 1.04]
Random effect	0262		10243						0.40	[-0.00; 1.95]
Prediction interval	5002		.0243				г		 -	[-0.71; 1.69]
							-4 In favor of	-2 0 2 control group In favor of inte	4 rvention	group

Figure S8.2. Forest plot represents the difference between the intervention vs. control group in the Emotional Qod. domain with the provider subgroups as predicted at week 12 (post-intervention). SMD -Standardized mean difference, CI - confidence interval - confidence interval

69

Figure S8.3.T24

Study

Experimental

Control

Study	Patient N	Mean SD	Patient N	Mean SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
Semiolawi, T, et al., 2021 Semiolawi, T, et al., 2021 Senfal, M, et al., 2015 Senfal, M, et al., 2012 Rahmani, S, et al. 2015 Dim, H, et al., 2022 Rahmani, S, et al., 2022 Rahmani, S, et al., 2012 Denason, D, et al., 2020 Powell, CB, et al., 2020 Powell, CB, et al., 2020 Powell, CB, et al., 2020 Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020 Rahman, S, et al., 2017 Rendo, FJ, et al., 2020 Rahman, S, et al., 2017 Rendo, FJ, et al., 2017 Senfal, M, et al., 2018 Senfal, M, et al., 2018 Senfal, M, et al., 2018 Chan, et al. 2005 Chan, et al. 2005 Klinkhammer-Schaike, M et al., 2012 Johansson, B, et al., 2018 Dohansson, B, et al., 2018 Rahmanes, Schaike, M et al., 2012 Selfal, RR, et al., 2018 Rahmanes, Schaike, M et al., 2012 Klinkhammer-Schaike, M et al., 2012 Klinkhammer-Schaike, M et al., 2012 Rahmanes, B, et al., 2000 Aning, C, et al., 2007 Aning, C, et al., 2007 Mongo, C, et al., 2007 Mongo, C, et al., 2007 Mongo, C, et al., 2018 Minhammer-Schaike, M et al., 2012 Selimoda, T, et al., 2020 Aning, C, et al., 2019 Peng, L, et al., 2022 Peng, L, et al., 2022 Peng, L, et al., 2022 Hu, T, et al., 2020 Mannon, S, et al., 2014 Rahmani, S, et al., 2015 Handon et meticul Heidhicker profesioned	27 107 20 218 218 219 218 219 219 20 20 20 20 20 20 20 20 20 20	55.10 29.10 53.31 77.42 12.30 5.20 53.31 77.42 12.30 5.20 59.44 16.25 11.11 8.94 11.30 5.20 11.11 8.94 11.30 5.20 11.30 5.20 12.00 4.20 15.50 7.00 12.00 4.20 12.00 4.20 12	2655229121956029114355309710038770307222750016221555757575161296105513381107761958200728973800259688770616529993810321225555757575161219610155433811077619582007289738002596887706165299938103212000	$\begin{array}{c} 7420 \\ 7420 \\ 7420 \\ 7420 \\ 7420 \\ 7421 \\ 7560 \\ 71360 \\ 71250 $	baseline bas	0.00 0.00 0.00 <td>↓ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■</td> <td>$\begin{array}{c} -0.70 & [+2.8], -0.16]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.07]\\ -0.25 & [+0.48], -0.07]\\ -0.04 & [+0.28], -0.47]\\ -0.07 & [+0.28], -0.47]\\ -0.25 & [+0.48], -0.47]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.38], -0.44]\\ -0.11 & [+0.38], -0.44]\\ -0.11 & [+0.38], -0.44]\\ -0.05 & [+0.38], -0.42]\\ -0.05 & [+0.38], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.28 & [+0.28]$</td>	↓ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	$\begin{array}{c} -0.70 & [+2.8], -0.16]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.06]\\ -0.25 & [+0.48], -0.07]\\ -0.25 & [+0.48], -0.07]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.04 & [+0.28], -0.47]\\ -0.07 & [+0.28], -0.47]\\ -0.25 & [+0.48], -0.47]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.48], -0.43]\\ -0.25 & [+0.38], -0.44]\\ -0.11 & [+0.38], -0.44]\\ -0.11 & [+0.38], -0.44]\\ -0.05 & [+0.38], -0.42]\\ -0.05 & [+0.38], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.05 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.42]\\ -0.28 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.14 & [+0.28], -0.44]\\ -0.28 & [+0.28]$
health care professional Zaman ACCNuk, et al. 2021 Berglund, G. et al. 2017 Girgis, A. et al. 2007 Girgis, A. et al. 2008 L Brasken APE, et al. 2013 Girgis, A. et al. 2008 L Brasken APE, et al. 2013 Schotleid, P. et al. 2013 Yun et al., 2012 Hofman, CJ. et al. 2012 Elsask, et al. 2021 L Elsask, et al. 2021 L Elsask, et al. 2021 L Brasken APE, et al. 2012 Zaman, ACCNuk, et al. 2021 Brasken APE, et al. 2013 Girgis, A. et al. 2021 L Elsask, et al. 2021 L Brasken APE, et al. 2013 Girgis, A. et al. 2021 B Brasken APE, et al. 2013 Girgis, A. et al. 2003 L Girgis, A. et al. 2009 L Sandsund, C, et al. 2013 Girgis, A. et al. 2009 L Sandsund, C, et al. 2013 Girgis, A. et al. 2009 L Sandsund, C, et al. 2017 Brasken APE, et al. 2013 Girgis, A. et al. 2009 L Sandsund, C, et al. 2017 Brasken APE, et al. 2013 Girgis, A. et al. 2009 L Sandsund, C, et al. 2017 Brasken APE, et al. 2013 Girgis, A. et al. 2019 Brasken, A. et al. 2012 Brasken, APE, et al. 2013 Girgis, A. et al. 2019 Brasken, A. et al. 2012 Brasken, A. et al. 2012 Brasken, A. et al. 2014 Hofman, CJ, et al. 2012 Brasken, L. et al. 2012 Brasken, L. et al. 2012 Brasken, L. et al. 2012 Brasken, L. et al. 2015 Brasken, L. e	42 39 72 120 136 89 55 134 42 20 55 120 30 20 55 120 30 20 55 120 30 42 42 20 55 120 30 55 120 30 55 120 30 55 20 55 20 20 30 30 55 20 30 30 30 55 20 30 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c} 4400 & 9.90\\ 81.2018,90\\ 67.1025.30\\ 79.9020.30\\ 80.7021620.30\\ 80.7021620.30\\ 177.1022.92\\ 7267125.71\\ 2267125.71\\ 177.021.70\\ 115.91\\ 3.84\\ 10.60\\ 3.10\\ 115.91\\ 3.84\\ 10.60\\ 3.10\\ 115.91\\ 3.84\\ 10.60\\ 3.80\\ 115.91\\ 3.84\\ 10.60\\ 3.80\\ 115.91\\ 3.84\\ 10.60\\ 3.80\\ 115.91\\ 3.84\\ 10.60\\ 3.80\\ 115.91\\ 3.84\\ 10.60\\ 3.80\\ 115.91\\ 10.60\\ 3.80\\ 115.91\\ 10.60\\ 3.80\\ 10.80\\ $	46 150 70 117 117 144 953 72 210 90 115 33 4 50 109 117 70 117 117 144 20 30 30 30 53 53 117 117 117 144 953 109 105 20 115 20 117 20 110 117 20 117 20 117 20 110 117 20 110 110 110 110 110 110 110 110 110	$\begin{array}{c} 45.30 \\ 83.60 \\ 19.70 \\ 83.60 \\ 19.70 \\ 87.90 \\ 23.40 \\ 22.70 \\ 79.70 \\ 22.70 \\ 79.70 \\ 22.70 \\ 77.71 \\ 27.70 \\$	baseline bas	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.00 12.00 12.00 12.00 12.00 12.00 12.00 24.00 2.4.00 8.00 8.00 8.00 8.00 8.00 9.00 9.00 9.00 9.00	- 由本体的国家市建设的社会社会的社会社会会生活者 由于在一个社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会	$\begin{array}{c} 0.13 \ -0.55, \ 0.29] \\ -0.12 \ -0.47, \ 0.23 \\ -0.12 \ -0.35, \ 0.26] \\ -0.14 \ -0.25, \ 0.26] \\ -0.14 \ -0.25, \ 0.26] \\ -0.14 \ -0.25, \ 0.26] \\ -0.14 \ -0.25, \ 0.26] \\ -0.15 \ -0.15, \ 0.16] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.15 \ -0.15 \ -0.15] \\ -0.15 \ -0.1$
DBTSB Zhao X et al 2015 Una der Meulen, IC, et al. 2013 Walczakia, As, et al. 2001 Walczakia, As, et al. 2007 Dirkeen, S. et al. 2007 Fang, P. et al. 2020 Thomas, M. et al. 2017 Kiafke, N. et al. 2012 Kiafke, N. et al. 2012 Kiafke, N. et al. 2017 Kiafke, N. et al. 2017 Caso Q. et al. 2020 Kiafke, N. et al. 2017 Zhao X, et al. 2017 Kiafke, N. et al. 2017 Kiafke, N. et al. 2017 Kiafke, N. et al. 2017 Dirkeen, S. et al. 2017 Kiafke, N. et al. 2017 Kiafke, N. et al. 2019 Dirkeen, S. et al. 2017 Kiafke, N. et al. 2019 Dirkeen, S. et al. 2017 Kiafke, N. et al. 2017 Xiafke, N. et al. 2017 Xiafke, N. et al. 2017 Zhoo X, et al. 2021 Zhoo X, et al. 2020 Zhoo X, et al. 2020 Zhao X, et al. 2020 Zhao X, et al. 2020 Zhao X, et al. 2020	82 989 941 940 940 940 940 940 940 940 940 940 940	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62 91 154 938 60 88 114 433 60 88 114 433 60 88 114 433 60 88 114 433 60 88 114 433 60 88 114 433 60 88 114 9 80 80 80 80 80 80 80 80 80 80 80 80 80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	baseline balowup tollowup	0 00 0 00		$\begin{array}{c} 0.88 [+125; -0.51] \\ 0.07 [+1.16]; -0.56] \\ 0.07 [+1.16]; -0.56] \\ 0.056 [+0.76; -0.36] \\ 0.056 [+0.76; -0.36] \\ 0.016 [+0.55; 0.036] \\ 0.016 [+0.55; 0.26] \\ 0.016 [+0.55; 0.26] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.44; 0.28] \\ 0.02 [+0.45; 0.29] \\ 0.03 [+0.36; 0.28] \\ 0.04 [+0.36; 0.28] \\ 0.04 [+0.36; 0.28] \\ 0.04 [+0.36; 0.28] \\ 0.04 [+0.36; 0.28] \\ 0.04 [+0.36; 0.28] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36; 0.36] \\ 0.05 [+0.36$
Random effect Prediction interval	9862		10243			In favor	4 -2 0 2 of control group In favor of inte	0.31 [0.12; 0.50] [-0.94; 1.56] 4 rvention group

Figure S8.3. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the provider subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI - confidence interval - confidence interval

Figure S8.4.T48

Study

Experimental

Control

Study	Patient N	Mean SD	Patient N	Mean SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
psychologial selinidatii, J. et al. 2021 Reich, RR, et al. 2016 Sertaft M. et al. 2018 Pang, L., et al. 2018 Paneol, F., et al. 2008 Paneol, F., et al. 2008 Paneol, F., et al. 2008 Paneol, F., et al. 2007 Paneol, F., et al. 2007 Paneol, F., et al. 2019 Paneol, F., et al. 2017 Paneol, F., et al. 2017 Sertaft M. et al. 2018 Chan, et al. 2007 Sertaft M. et al. 2018 Chan, et al. 2006 Chan, et al. 2018 Chan, et al. 2016 Chan, et al. 2006 Chan, et al. 2018 Dohansson, B. et al. 2008 Chan, et al. 2006 Chan, et al. 2006 Chan, et al. 2006 Chan, et al. 2006 Chan, et al. 2007 Obansson, B. et al. 2008 Chan, et al. 2008 Chan, et al. 2006 Chan, et al. 2007 Chan, et al. 2006 Chan, et al. 2007 Chan, et al. 2007 Chan, et al. 2007 Chan, et al. 2007 Chan, et al. 2008 Chan, et al. 2008 Chan, et al. 2018 Hermandez, E.G., et al. 2018 Hermandez, E.	277 1670 288 128 128 128 128 128 128 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.1522.2322.11191528.2115.33.097.103.387.103.3022.22.75.101.112.155.75.75.75.75.1112.1919.153.43.39.111.97.101.1919.118.28.100.7.28.97.38.103.24.119.03.111.23.22.25.101.12.12.155.75.75.75.75.1112.1919.153.43.39.111.97.101.112.111.23.1111.23.111.23.111.23.111.23.1111.23.1111.23.1111.23.1111.23.1111.23	$\begin{array}{rrrr} 74.20 & 20.9 \\ 88.57 & 18.3; \\ 13.60 & 4.90 \\ 72.41 & 16.0; \\ 12.52 & 9.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 12.52 & 6.56 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 13.39 & 4.90 \\ 19.33 & 4.20 \\ 19.33 & 4.20 \\ 19.33 & 4.20 \\ 19.20 \\ $	Daseline baseline	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	·····································	-0.70 -0.28 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.10 -0.02 -0.02 -0.10 -0.02	
healthcare professional Zaman, ACONM, et al., 2021 Bergland, G. et al., 2007 Grigis, A. et al., 2007 Grigis, A. et al., 2009 II. Groups, A. et al., 2007 II. Hoffman, C.J. et al., 2017 Hoffman, C.J. et al., 2017 Ergland, F. et al., 2021 Ergland, F. et al., 2021 Ergland, F. et al., 2021 Ergland, A. et al., 2021 Grigis, A. et al., 2013 Granan, ACONM, et al., 2021 Granan, ACONM, et al., 2021 Granan, ACONM, et al., 2021 Groups, A. et al., 2009 Ergland, A. et al., 2009 Groups, A. et al., 2009 Ergland, A. et al., 2001 Groups, A. et al., 2009 Ergland, A. et al., 2001 Groups, A. et al., 2009 Ergland, A. et al., 2017 Hoffman, C.J., et al., 2017 Hoffman, C.J., et al., 2017 Hoffman, C.J., et al., 2017 Ergland, J. et al., 2017 Hoffman, C.J., et al., 2015 Hoffman, C.J., et al., 2015 Ho	42 399 720 1100 1105 89 55 102 15 242 42 102 15 242 102 15 242 102 15 242 102 15 242 102 15 242 102 15 242 102 102 15 242 102 102 102 102 102 102 102 102 102 10	$\begin{array}{c} 44.00 & 9.96\\ 8120 & 18.60\\ 67.10 & 25.30\\ 79.10 & 20.30\\ 80.70 & 21.60\\ 77.72 & 22.67\\ 22.72 & 47.22 & 27.27\\ 77.72 & 47.22 & 27.27\\ 77.75 & 40.19 & 20.20\\ 16.81 & 10.80\\ 17.76 & 10.28 & 20.27\\ 17.76 & 10.19 & 20.21\\ 17.76 & 10.19 & 20.21\\ 17.76 & 10.19 & 20.21\\ 17.77 & 10.2 & 10.20\\ 17.77 & 10.2 & 10.20\\ 17.77 & 10.2 & 10.20\\ 17.77 & 10.2 & 10.20\\ 17.77 & 10.2 & 10.20\\ 17.77 & 10.2 & 10.20\\ 18.20 & 10.70\\ 17.51 & 10.22 & 10.20\\ 18.20 & 10.70\\ 17.51 & 10.22 & 10.20\\ 18.20 & 10.70\\ 17.51 & 10.22 & 10.20\\ 18.20 & 10.70\\ 17.51 & 20.21\\ 18.41 & 20.11\\ 18.20 & 37.5\\ 18.20 & 34.00\\ $	46. 1500 700 1177 1177 1174 14 150 46 151 1177 1090 151 1177 1090 151 1177 1090 151 1177 1090 151 1090 151 1090 151 1090 151 1090 151 1090 151 1777 1777 1777 1777 1777 1777 1777	$\begin{array}{c} 43.30 & 9.86\\ 83.60 & 19.7\\ 77.90 & 23.4\\ 79.70 & 22.7\\ 79.70 & 22.7\\ 79.70 & 22.7\\ 77.00 & 23.0\\ 70.12 & 24.1\\ 77.12 & 24.2\\ 85.0 & 26.0\\ 9.60 & 26.0\\ 9.60 & 26.0\\ 9.60 & 26.0\\ 9.60 & 26.0\\ 9.75 & 5.22\\ 9.78 & 13.0\\ 9.15 & 5.22\\ 9.80 & 1.5\\ 9.60 & 26.0\\ 9.15 & 5.22\\ 9.80 & 1.5\\ 9.80 & $	baseline followup followup	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 由本本地的出来方法的法法中的法法中的法律中的法律的基本并且在法律和法律的法律中 本	$\begin{array}{c} -0.13\\ -0.12\\ -0.03\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.10\\ 0.12\\ 0.32\\ 0.$	[40.55; 0.29] [40.47; 0.28] [40.36; 0.30] [40.25; 0.20] [40.25; 0.20] [40.25; 0.20] [40.25; 0.20] [40.25; 0.20] [40.25; 0.20] [40.25; 0.40] [40.25; 0.50] [40.25; 0.50] [4
Purse van der Meulen, IC, et al. 2013 Walczachien 84, et al. 2010 Walczach, 84, et al. 2001 Ukiachien 84, et al. 2001 Driksen, 8 at al. 2007 Fanz, P., et al. 2002 Klarke, N. et al. 2012 Wu, C, et al. 2012 Gao, Q. et al. 2021 Cao, X. et al. 2017 Gao, Q. et al. 2021 Zhao, X. et al. 2021 Zhao, X. et al. 2021 Driksen, 8 at al. 2017 Driksen, 8 at al. 2019 Driksen, 8 at al. 2021 Thom, 8 at al. 2021 Yang, 9 at al. 2021 Zhao, Y. et al. 2021 Zhao, Y. et al. 2021 Zhao, Y. et al. 2020 Zhao,	82 88 296 61 46 40 40 40 40 40 40 40 40 40 40 40 40 40	541 179 64 80 240 46 10 2620 1676 480 2010 280 1676 480 2010 280 50 80 2600 26 00 26 00 27 00 17 00 16 70 16 10 17 00 16 10 10	52 91 154 93 80 8114 43 50 8407 154 407 154 407 154 407 154 407 154 407 154 409 8114 409 808 8114 409 808 8114 409 808 8114 409 808 8114 409 808 8114 409 808 8114 409 808 8114 409 808 8114 809 8114 8114 810 8114 810 8114 810 810 810 810 810 810 810 810	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	baseline bas	0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 + + + + +	-0.88 -0.87 -0.56 -0.21 -0.10 -0.08 -0.04 -0.03 -0.02 0.12 0.02 0.0	
Random effect Prediction interval	9862		10243			-4 In favor of	-2 0 2 control organic la Paulo effecte	0.10 1 4	[-0.23; 0.43] [-1.24; 1.44]
						In favor of	control group in favor of inte	avention	moup

Figure S8.4. Forest plot represents the difference between the intervention vs. control group in the Emotional Qod. domain with the provider subgroups as predicted at week 48 (post-intervention). SMD -Standardized mean difference, CI - confidence interval - confidence interval

71
S9.Subgroup analysis of Emotional QoL: Environment

Figure S9.1.T0

Study	Ex Patient N	perimental Mean SD	Patient N	Control I Mean	SD fo	ollow-up	Follow-up time	SMD of interested event	SMD	95%-CI
face to face Zhao X, et al. 2015	62	541 179	62	724 2	231 b	aseline	0.00	-	-0.88	[-1 25: -0.51]
van der Meulen, IC, et al., 2013 Selipieteki T. et al. 2021	88	64.80 2.40	91	66.90 2	2.40 b	aseline	0.00	-	-0.87	[-1.18; -0.56]
McLachlan, SA, et al., 2001	296	46.00 29.20	154	61.10 22	2.00 b	aseline	0.00		-0.56	[-0.76; -0.36]
Reich, RR, et al. 2016 Serfaty M, et al., 2018	167 20	63.83 17.42 12.30 5.20	155 22	68.57 18 13.60 4	8.32 b 4.90 b	baseline baseline	0.00		-0.26 -0.25	[-0.48; -0.05] [-0.86; 0.36]
Nápoles AM, et al. 2015 Rahmani, S, et al. 2015	76 12	12.07 4.91 11.11 8.94	75 12	12.86 5 12.50 9	5.14 b 9.05 b	baseline baseline	0.00		-0.16 -0.15	[-0.48; 0.16] [-0.95; 0.65]
Berglund, G. et al. 2007 Oiu H. et al. 2018 II	39 98	81.20 18.90	150 196	83.60 19	9.70 b	aseline	0.00	<u> 출</u>	-0.12	[-0.47; 0.23] [-0.35; 0.13]
Fang, P, et al.,2020	60	46.14 5.12	60	46.55 5	5.23 b	aseline	0.00	돌	-0.08	[-0.44; 0.28]
Hernandez, EG, et al. 2018	98 28	13.07 5.26	28	12.22 6	1.94 b	paseline	0.00		-0.08	[-0.32; 0.17] [-0.59; 0.46]
Klafke, N, et al., 2019 Powell, CB, et al., 2008	120 21	50.00 26.00 16.10 4.20	114 43	50.70 26 16.20 5	6.50 b 5.00 b	baseline baseline	0.00 0.00		-0.03 -0.02	[-0.28; 0.23] [-0.54; 0.50]
Chan, et al. 2005 Liu T et al. 2019	80 49	58.10 45.50 71.18 18.38	75 53	54.60 48	8.48 b 2.04 b	aseline aseline	0.00	二 二 二	0.07	[-0.24; 0.39] [-0.29: 0.48]
Braeken APB, et al. 2013 Benedo, El, et al. 2007	136	78.40 20.77	144	76.12 24	4.16 b	aseline	0.00	1	0.10	[-0.13; 0.34]
Qin, X, et al., 2017	50	73.61 10.68	50	72.41 9	9.34 b	aseline	0.00	-	0.12	[-0.27; 0.51]
Guo, Z, et al., 2013	89	51.86 29.03 72.57 12.51	89	48.14 28	8.29 D 4.71 b	baseline	0.00	돋	0.13	[-0.15; 0.41] [-0.16; 0.43]
Schofield, P, et al., 2013 Arving, C, et al., 2007	55 47	77.12 22.92 69.00 25.00	53 38	72.93 23 63.00 18	3.08 b 8.00 b	baseline baseline	0.00 0.00	-	0.18 0.27	[-0.20; 0.56] [-0.16; 0.70]
Rodrigez, B, et al., 2014 Gao Q. et al. 2020	8 40	88.54 22.24 -56.85 4.66	7 40	79.76 36	6.28 b 4.78 b	baseline baseline	0.00	-	0.28	[-0.74; 1.30] [-0.16: 0.72]
Elyasi, F, et al., 2021 II. Elyasi, F, et al. 2021 I	20	10.60 3.10	20	9.60 2	2.60 b	aseline	0.00		0.34	[-0.28; 0.97]
Zhao, X, et al., 2021	52	64.03 4.42	51	58.12 0	0.42 b	aseline	0.00	[] 풀	1.86	[1.39; 2.32]
Penedo, FJ, et al., 2007	41	-20.73 3.31	30	-19.20 3	4.90 D 3.62 fo	ollowup	12.00	-	-0.44	[-0.92; 0.04]
Serfaty M, et al., 2018	39 20	81.60 20.10 15.40 4.50	22	87.80 18 16.60 4	8.00 fo 4.90 fo	ollowup	48.00		-0.33	[-0.69; 0.02] [-0.86; 0.36]
Serfaty M, et al., 2018 Chan, et al. 2005	20 80	15.60 4.20 65.70 47.01	22 75	16.50 3 73.94 39	3.70 fo 9.30 fo	ollowup	24.00 12.00		-0.22 -0.19	[-0.83; 0.38] [-0.50; 0.13]
McLachlan, SA, et al., 2001 Klinkhammer-Schalke, M et al., 2012	296 100	45.80 30.20	154 100	50.70 25	5.00 fo	ollowup	24.00 12.00	쁼	-0.17	[-0.37; 0.02]
Serfaty M, et al., 2018 Reich RP, et al. 2016	20	16.60 5.50	22	17.10 4	4.40 fc	ollowup	18.00		-0.10	[-0.70; 0.51]
Klafke, N, et al., 2019	120	62.80 22.30	114	64.20 22	a. 13 f0 2.40 f0	ollowup	12.00		-0.07	[-0.29, 0.15] [-0.32; 0.19]
onan, et al. 2005 Braeken APB, et al. 2013	80 136	78.38 22.75	75 144	79.44 64 79.46 20	4.08 fo 0.68 fo	ollowup	/2.00 12.00	a 1	-0.05 -0.05	[-0.37; 0.26] [-0.28; 0.18]
Elyasi, F, et al., 2021 II. Chan. et al. 2005	20 80	9.40 2.10 76.73 57.02	20 75	9.50 2 78.59 56	2.60 fo 6.21 fo	ollowup	24.00 48.00	-	-0.04	[-0.66; 0.58] [-0.35: 0.28]
Chan, et al. 2005 Chan, et al. 2005	80	73.39 67.76	75	75.30 55	5.80 f	ollowup	60.00	重	-0.03	[-0.35; 0.28]
Schofield, P, et al., 2013	55	75.31 22.19	53	75.51 22	2.22 fo	ollowup	12.00		-0.01	[-0.39; 0.37]
Zhao,X, et al. 2015	12 62	7.91 2.24	12 62	7.81 1	3.61 fo 1.98 fo	ollowup	0.30		0.00	[-0.80; 0.80] [-0.31; 0.40]
Qiu, H, et al., 2018 II. Chan, et al. 2005	98 80	12.32 9.06 77.37 58.41	196 75	11.90 7 73.44 52	7.89 fo 2.28 fo	ollowup	4.00 36.00		0.05 0.07	[-0.19; 0.29] [-0.24; 0.39]
Klinkhammer-Schalke, M et al., 2012 Reich RR et al. 2016	100 167	63.52 27.07 70.87 18.02	100 155	61.29 27	7.29 fo	ollowup	48.00	畫	0.08	[-0.20; 0.36]
Powell, CB, et al., 2008	21	18.50 5.40	43	18.00 5	5.90 fc	ollowup	12.00	圭	0.09	[-0.44; 0.61]
Klafke, N, et al., 2019	120	59.10 25.40	114	56.50 23	3.00 fo	ollowup	24.00	÷	0.09	[-0.34, 0.32]
Braeken APB, et al. 2013 Qiu, H, et al., 2018 II.	136 98	83.66 20.80 14.58 9.06	144 196	81.23 20	0.60 fo 7.89 fo	ollowup	48.00 24.00		0.12	[-0.12; 0.35] [-0.12; 0.37]
Qiu, H, et al., 2018 II. Hernandez, EG, et al. 2018	98 28	14.23 7.67 14.00 4.69	196 28	13.10 8 13.32 5	3.87 fo 5.32 fo	ollowup	12.00 24.00	-	0.13	[-0.11; 0.38] [-0.39; 0.66]
Klinkhammer-Schalke, M et al., 2012 Rodrigez B, et al., 2014	100	66.50 26.80 88.54 22.24	100	59.06 29	9.53 fo	ollowup	36.00		0.26	[-0.02; 0.54] [-0.74: 1.30]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73 4	4.33 fo	ollowup	12.00		0.30	[-0.02; 0.62]
Arving, C, et al., 2007	28 47	16.12 4.09 82.00 20.00	28	14.72 4 75.00 24	4.00 fo	ollowup	24.00	Ē	0.32	[-0.21; 0.84] [-0.11; 0.75]
Klinkhammer-Schalke, M et al., 2012 Klafke, N, et al., 2019	100 120	66.25 25.31 65.90 25.60	100 114	56.58 28 56.30 24	8.54 fo 4.70 fo	ollowup ollowup	24.00 48.00	-	0.36 0.38	[0.08; 0.64] [0.12; 0.64]
Schofield, P, et al., 2013 Seliniotaki, T, et al., 2021	55 27	81.43 20.19 74.50 24.50	53 26	73.23 20	0.40 fo 6.70 fo	ollowup	8.00 8.00		0.40	[0.02; 0.78] [-0.14: 0.95]
Nápoles AM, et al. 2015	76	16.39 3.30	75	14.89 3	3.95 fo	ollowup	24.00	-	0.41	[0.09; 0.73]
Elyasi, F, et al., 2021 I.	15	11.00 3.40	15	9.50 2	2.60 fo	ollowup	24.00		0.42	[-0.25; 1.21]
Arving, C, et al., 2007 Rodrigez, B, et al., 2014	47	93.33 10.87	38 7	80.56 26	3.00 fc 6.79 fc	ollowup	2.00	-	0.50	[0.06; 0.93] [-0.44; 1.65]
Guo, Z, et al., 2013 Qiu, H, et al., 2018 I.	89 98	74.18 11.43 19.23 9.76	89 196	66.03 14 13.10 8	4.00 fo 3.87 fo	ollowup	2.00 12.00	「「「」	0.64 0.67	[0.33; 0.94] [0.42; 0.91]
Qiu, H, et al., 2018 I. Liu T et al. 2019	98 49	20.00 8.37 63.49 13.78	196 53	13.52 7 51.93 14	7.89 fo 4.62 fo	ollowup	24.00 9.00	<u>_</u>	0.80	[0.55; 1.05] [0.40: 1.21]
Gao Q, et al. 2020 Zhou L et al. 2020	40	-49.55 4.20	40	-53.56 3	3.25 fo	ollowup	4.00	重	1.06	[0.59; 1.53]
Liu, T, et al., 2019	49	74.12 9.50	53	56.57 16	6.10 fc	ollowup	12.00		1.31	[0.88; 1.73]
Lu, Z, et al., 2017	203	90.72 8.27 85.40 3.50	50 103	75.60 10	0.01 fd 5.60 fd	ollowup	9.00		1.63	[1.18; 2.09] [1.52; 2.08]
van der Meulen, IC, et al., 2013 Fang, P, et al.,2020	88 60	84.90 3.00 63.52 6.47	91 60	77.20 2 47.56 5	2.80 fo 5.14 fo	ollowup	48.00 4.00	1 =	2.64 2.71	[2.24; 3.05] [2.21; 3.21]
Zhao, X, et al., 2021 Rahmani, S, et al. 2015	52 12	71.02 2.31	51 12	58.91 5 22.91 10	5.21 fc 0.73 fc	ollowup	12.00 8.00		· 2.99 → 3.00	[2.42; 3.56]
Henderson, VP, et al., 2013 Pandom offect	53	18.00 0.40	58	16.90 0	0.30 fo	ollowup	16.00	→	- 3.11	[2.55; 3.67]
Prediction interval	0000		0900					+	0.11	[-0.65; 2.19]
telephone		00.40		00.10			0.00			10.50 0.57
ыrksen, S. et al, 2007 Thomas, ML, et al., 2012	34 64	20.10 2.80 16.50 5.60	38 88	20.40 3 16.70 5	s.10 b 5.30 b	oaseline oaseline	0.00 0.00	重	-0.10 -0.04	[-0.56; 0.36] [-0.36; 0.29]
Girgis, A, et al., 2009 II. Yun et al., 2017	120 134	79.90 20.30 76.80 19.40	117 72	79.70 22 73.00 23	2.70 b 3.00 b	baseline baseline	0.00	2	0.01 0.18	[-0.25; 0.26] [-0.10; 0.47]
Kim, SH, et al., 2021 Girgis A et al. 2009 II	47 120	72.00 17.70	47 117	65.40 21 84.90 18	1.00 b	ollowun	0.00		0.34	[-0.07; 0.74]
Dirksen, S. et al, 2007 Yun et al. 2017	34	20.80 2.30	38	20.60 4	4.00 fo	ollowup	10.00	畫	0.06	[-0.40; 0.52]
Girgis, A, et al., 2009 II.	120	86.70 18.70	117	84.40 18	8.90 fo	ollowup	24.00	王	0.12	[-0.13; 0.38]
Kim, SH, et al., 2012	64 47	17.60 5.30 75.90 16.30	88 47	16.80 4 71.70 18	1.90 fo 8.40 fo	ollowup	20.00	톧	0.16	[-0.17; 0.48] [-0.17; 0.65]
Kim, SH, et al., 2021 McCusker, J, et al., 2021	47 99	79.00 15.70 43.30 9.20	47 119	69.60 18 37.40 9	8.90 fo 9.80 fo	ollowup	8.00 24.00	-	0.54 0.62	[0.12; 0.95] [0.34; 0.89]
Random effect Prediction interval	1064		1007						0.65	[0.24; 1.06] [-0.82; 2.11]
online										
Peng, L, et al., 2022 Wu, Q. et al., 2021	28 43	69.94 16.25 62.34 6.76	29 43	72.41 16	6.08 b	aseline aseline	0.00	1	-0.15 -0.02	[-0.67; 0.37] [-0.44: 0.41]
Penedo, FJ, et al., 2020	95	-20.03 3.80	97	-20.46 3	3.74 b	aseline	0.00	種	0.11	[-0.17; 0.40]
Beatty, L. et al. 2015	32 30	69.03 4.81	33 30	9.75 5 69.16 4	4.79 fc	ollowup	6.00	±.	-0.03	[-0.53; 0.48]
Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020	95 95	-20.18 3.80 -19.20 3.90	97 97	-20.62 3	5.84 fo 3.84 fo	ollowup	24.00 48.00	Ē.	0.11 0.32	[-0.17; 0.40] [0.03; 0.60]
Cengiz, HO, et al., 2023 Wu, Q, et al., 2021	32 43	13.56 5.78 81.54 8.21	33 43	8.75 5 74.21 7	5.14 fo 7.33 fo	ollowup ollowup	8.00 12.00	+	0.87 0.93	[0.36; 1.38] [0.49; 1.38]
Peng, L, et al., 2022 Beatty, L. et al. 2015	28 30	80.95 13.20 72.59 4.87	29 30	70.12 9 67.43 4	9.05 fc 4.89 fr	ollowup	4.00 13.03		0.95 1.04	[0.40; 1.50] [0.50: 1.59]
Peng, L, et al., 2022 Beatty L, et al. 2015	28	83.33 14.87	29	69.25 8 71.39	3.94 fo	ollowup	0.10		1.14	[0.57; 1.70]
Random effect	609	10.34 4.22	620	71.30 4	- e r - 10	onowup	20.01	4	0.94	[0.57; 1.30]
Pandom offect	0470		0500						0.70	[0.30: 4.40]
Rediction interval	81/6		8582				г		0.79	[0.38; 1.19] [-0.63; 2.20]
							-4 In favor of	-2 0 2 control group In favor of int	4 erventior	group

Figure S9.1. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the environment subgroups as predicted at week 0 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S9.2.T12

Study	Exp Patient N	erimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
face to face Zhao.X. et al. 2015	62	5.41 1.79	62	7.24	2.31	baseline	0.00	=	-0.88	[-1.25: -0.51]
van der Meulen, IC, et al., 2013 Seliniotaki, T. et al., 2021	88 27	64.80 2.40 56.10 29.10	91 26	66.90 74.20	2.40	baseline baseline	0.00	-	-0.87	[-1.18; -0.56] [-1.26: -0.15]
McLachlan, SA, et al., 2001 Reich, RR, et al. 2016	296 167	46.00 29.20 63.83 17.42	154 155	61.10 68.57	22.00 18.32	baseline baseline	0.00	-	-0.56	[-0.76; -0.36] [-0.48; -0.05]
Serfaty M, et al., 2018 Nápoles AM, et al. 2015	20 76	12.30 5.20 12.07 4.91	22 75	13.60 12.86	4.90 5.14	baseline baseline	0.00		-0.25 -0.16	[-0.86; 0.36] [-0.48; 0.16]
Rahmani, S, et al. 2015 Berglund, G. et al. 2007	12 39	11.11 8.94 81.20 18.90	12 150	12.50 83.60	9.05 19.70	baseline baseline	0.00 0.00		-0.15 -0.12	[-0.95; 0.65] [-0.47; 0.23]
Qiu, H, et al., 2018 II. Fang, P, et al.,2020	98 60	11.50 6.30 46.14 5.12	196 60	12.22 46.55	6.56 5.23	baseline baseline	0.00		-0.11 -0.08	[-0.35; 0.13] [-0.44; 0.28]
Qiu, H, et al., 2018 I. Hernandez, EG, et al. 2018	98 28	11.72 6.65 13.07 5.26	196 28	12.22 13.39	6.56 4.94	baseline baseline	0.00		-0.08	[-0.32; 0.17] [-0.59: 0.46]
Klafke, N, et al., 2019 Powell, CB, et al., 2008	120 21	50.00 26.00 16.10 4.20	114 43	50.70 16.20	26.50 5.00	baseline baseline	0.00		-0.03	[-0.28; 0.23] [-0.54; 0.50]
Chan, et al. 2005 Liu, T, et al., 2019	80 49	58.10 45.50 71.18 18.38	75 53	54.60 69.23	48.48 22.04	baseline baseline	0.00		0.07 0.10	[-0.24; 0.39] [-0.29; 0.48]
Braeken APB, et al. 2013 Penedo, FJ, et al., 2007	136 41	78.40 20.77	144 30	76.12 -19.63	24.16 3.43	baseline baseline	0.00 0.00		0.10 0.10	[-0.13; 0.34] [-0.37; 0.57]
Qin, X, et al., 2017 Klinkhammer-Schalke, M et al., 2012	50 100	73.61 10.68 51.86 29.03	50 100	72.41 48.14	9.34 28.29	baseline baseline	0.00 0.00		0.12 0.13	[-0.27; 0.51] [-0.15; 0.41]
Guo, Z, et al., 2013 Schofield, P. et al., 2013	89 55	72.57 12.51 77.12 22.92	89 53	70.77 72.93	14.71 23.08	baseline baseline	0.00	茎	0.13	[-0.16; 0.43] [-0.20; 0.56]
Arving, C, et al., 2007 Rodrigez, B, et al., 2014	47 8	69.00 25.00 88.54 22.24	38 7	63.00 79.76	18.00 36.28	baseline baseline	0.00		0.27	[-0.16; 0.70] [-0.74; 1.30]
Gao Q, et al. 2020 Elyasi, F, et al., 2021 II.	40 20	-56.85 4.66 10.60 3.10	40 20	-58.20 9.60	4.78 2.60	baseline baseline	0.00		0.28 0.34	[-0.16; 0.72] [-0.28; 0.97]
Elyasi, F, et al., 2021 I. Zhao, X, et al., 2021	15 52	11.50 3.80 64.03 4.42	15 51	9.60 58.12	2.60 0.42	baseline baseline	0.00	++	0.57 1.86	[-0.16; 1.30] [1.39; 2.32]
Lu, Z, et al., 201 Penedo, FJ, et al., 2007	203 41	79.70 3.60	103 30	71.30	4.90 3.62	baseline followup	0.00 12.00	-	2.05 -0.44	[1.76; 2.34] [-0.92; 0.04]
Berglund, G. et al. 2007 Serfaty M. et al., 2018	39 20	81.60 20.10 15.40 4.50	150 22	87.80 16.60	18.00 4.90	followup	48.00 12.00		-0.33	[-0.69; 0.02] [-0.86; 0.36]
Serfaty M, et al., 2018 Chan, et al. 2005	20 80	15.60 4.20 65.70 47.01	22 75	16.50 73.94	3.70 39.30	followup followup	24.00 12.00		-0.22 -0.19	[-0.83; 0.38] [-0.50; 0.13]
McLachlan, SA, et al., 2001 Klinkhammer-Schalke, M et al., 2012	296 100	45.80 30.20 55.34 28.29	154 100	50.70 58.56	25.00 28.29	followup followup	24.00 12.00		-0.17 -0.11	[-0.37; 0.02] [-0.39; 0.16]
Serfaty M, et al., 2018 Reich, RR, et al. 2016	20 167	16.60 5.50 71.33 19.41	22 155	17.10 72.71	4.40	followup	18.00 12.00		-0.10	[-0.70; 0.51] [-0.29; 0.15]
Klafke, N, et al., 2019 Chan, et al. 2005	120 80	62.80 22.30 75.77 73.38	114 75	64.20 79.44	22.40 64.08	followup followup	12.00 72.00	-	-0.06 -0.05	[-0.32; 0.19] [-0.37; 0.26]
Braeken APB, et al. 2013 Elyasi, F, et al., 2021 II.	136 20	78.38 22.75 9.40 2.10	144 20	79.46 9.50	20.68	followup	12.00 24.00		-0.05	[-0.28; 0.18] [-0.66; 0.58]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.73 57.02 73.39 67.76	75 75	78.59 75.30	56.21 55.80	followup	48.00 60.00	*	-0.03	[-0.35; 0.28] [-0.35; 0.28]
Chan, et al. 2005 Schofield, P. et al., 2013	80 55	68.59 48.12 75.31 22.19	75 53	69.81 75.51	48.88 22.22	followup followup	24.00 12.00	-	-0.03 -0.01	[-0.34; 0.29] [-0.39; 0.37]
Rahmani, S, et al. 2015 Zhao X, et al. 2015	12 62	12.00 48.61 7.91 2.24	12 62	12.00 7.81	23.61 1.98	followup	16.00 0.30		0.00	[-0.80; 0.80] [-0.31; 0.40]
Qiu, H, et al., 2018 II. Chan et al. 2005	98 80	12.32 9.06 77.37 58.41	196 75	11.90 73.44	7.89	followup	4.00		0.05	[-0.19; 0.29] [-0.24: 0.39]
Klinkhammer-Schalke, M et al., 2012 Reich RR et al. 2016	100 167	63.52 27.07 70.87 18.02	100	61.29 69.36	27.29	followup	48.00	÷.	0.08	[-0.20; 0.36]
Powell, CB, et al., 2008 Arving C, et al., 2007	21 47	18.50 5.40 76.00 24.00	43 38	18.00 74.00	5.90 20.00	followup	12.00		0.09	[-0.44; 0.61] [-0.34: 0.52]
Klafke, N, et al., 2019 Braeken APB, et al. 2013	120 136	59.10 25.40 83.66 20.80	114 144	56.50 81.23	23.00 20.60	followup	24.00 48.00		0.11	[-0.15; 0.36] [-0.12; 0.35]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98	14.58 9.06 14.23 7.67	196 196	13.52 13.10	7.89	followup	24.00	÷.	0.13	[-0.12; 0.37]
Hernandez, EG, et al. 2018 Klinkhammer-Schalke M et al. 2012	28	14.00 4.69	28	13.32	5.32	followup	24.00		0.13	[-0.39; 0.66]
Rodrigez, B, et al., 2014 Nápoles AM et al. 2015	8	88.54 22.24	7	79.76	36.28	followup	0.10		0.28	[-0.74; 1.30]
Hernandez, EG, et al. 2018 Apring C, et al. 2007	28	16.12 4.09	28	14.72	4.63	followup	8.00		0.32	[-0.21; 0.84]
Klinkhammer-Schalke, M et al., 2012	100 120	66.25 25.31 65.90 25.60	100	56.58	28.54	followup	24.00		0.36	[0.08; 0.64]
Schofield, P, et al., 2013 Seliniotaki T et al. 2021	55	81.43 20.19	53	73.23	20.40	followup	8.00		0.40	[0.02; 0.78]
Nápoles AM, et al. 2015 Oiu H. et al. 2019	76	16.39 3.30	75	14.89	3.95	followup	24.00		0.41	[0.09; 0.73]
Elyasi, F, et al., 2001 I.	15	11.00 3.40	15	9.50	2.60	followup	24.00		0.48	[-0.25; 1.21]
Rodrigez, B, et al., 2014 Guo, Z, et al., 2013	8	93.33 10.87 74 18 11 43	7	80.56	26.79	followup	2.00		0.60	[-0.44; 1.65]
Qiu, H, et al., 2018 I. Qiu, H, et al. 2018 I.	98 98	19.23 9.76 20.00 8.37	196 196	13.10 13.52	8.87	followup	12.00	툍	0.67	[0.42; 0.91]
Liu, T, et al., 2019 Gao O, et al. 2020	49	63.49 13.78	53	51.93	14.62	followup	9.00	-	0.81	[0.40; 1.21]
Zhou, J, et al., 2020	59	64.81 9.32 74.12 9.50	59	55.54	7.29	followup	2.00	-	1.10	[0.71; 1.49]
Qin, X, et al., 2017	50 203	90.72 8.27	50 103	75.60	10.01	followup	2.00	-	1.63	[1.18; 2.09]
van der Meulen, IC, et al., 2013 Fang, P. et al. 2020	88 60	84.90 3.00 63.52 6.47	91 60	77.20	2.80	followup	48.00		2.64	[2.24; 3.05]
Zhao, X, et al., 2021 Rahmani, S, et al. 2015	52 12	71.02 2.31	51 12	58.91 22.91	5.21	followup	12.00		2.99 → 3.00	[2.42; 3.56]
Henderson, VP, et al., 2013 Random effect	53 6503	18.00 0.40	58	16.90	0.30	followup	16.00		3.11	[2.55; 3.67]
Prediction interval	2000		2000						GIJE	[-0.82; 1.86]
telephone Dirksen, S. et al. 2007	34	20.10 2.80	38	20.40	3.10	baseline	0.00	!	-0.10	[-0.56: 0.36]
Thomas, ML, et al., 2012 Girgis, A, et al., 2009 II.	64 120	16.50 5.60 79.90 20.30	88 117	16.70 79.70	5.30 22.70	baseline baseline	0.00	-	-0.04 0.01	[-0.36; 0.29] [-0.25; 0.26]
Yun et al., 2017 Kim, SH, et al., 2021	134 47	76.80 19.40 72.00 17.70	72 47	73.00 65.40	23.00 21.00	baseline baseline	0.00 0.00		0.18 0.34	[-0.10; 0.47] [-0.07; 0.74]
Girgis, A, et al., 2009 II. Dirksen, S. et al. 2007	120 34	85.70 16.40 20.80 2.30	117 38	84.90 20.60	18.50 4.00	followup followup	12.00 10.00	-	0.05 0.06	[-0.21; 0.30] [-0.40; 0.52]
Yun et al., 2017 Girgis, A. et al., 2009 II.	134 120	78.00 19.90 86.70 18.70	72 117	75.90 84.40	18.30 18.90	followup followup	48.00 24.00	÷.	0.11 0.12	[-0.18; 0.39] [-0.13: 0.38]
Thomas, ML, et al., 2012 Kim, SH, et al., 2021	64 47	17.60 5.30 75.90 16.30	88 47	16.80 71.70	4.90 18.40	followup followup	12.00 20.00	喜	0.16 0.24	[-0.17; 0.48] [-0.17; 0.65]
Kim, SH, et al., 2021 McCusker, J, et al., 2021	47 99	79.00 15.70 43.30 9.20	47 119	69.60 37.40	18.90 9.80	followup followup	8.00 24.00	*	0.54 0.62	[0.12; 0.95] [0.34; 0.89]
Random effect Prediction interval	1064		1007					-	0.40	[0.16; 0.63] [-1.24; 2.04]
online										
Peng, L, et al., 2022 Wu, Q, et al., 2021	28 43	69.94 16.25 62.34 6.76	29 43	72.41 62.45	16.08 6.63	baseline baseline	0.00 0.00		-0.15 -0.02	[-0.67; 0.37] [-0.44; 0.41]
Penedo, FJ, et al., 2020 Cengiz, HO, et al., 2023	95 32	-20.03 3.80 12.90 5.40	97 33	-20.46 9.75	3.74 5.22	baseline baseline	0.00 0.00	#: # -	0.11 0.59	[-0.17; 0.40] [0.09; 1.08]
Beatty, L. et al. 2015 Penedo, FJ, et al., 2020	30 95	69.03 4.81 -20.18 3.80	30 97	69.16 -20.62	4.79 3.84	followup followup	6.00 24.00		-0.03 0.11	[-0.53; 0.48] [-0.17; 0.40]
Penedo, FJ, et al., 2020 Cengiz, HO, et al., 2023	95 32	-19.20 3.90 13.56 5.78	97 33	-20.43 8.75	3.84 5.14	followup followup	48.00 8.00	<u>≖</u> ; ≖	0.32 0.87	[0.03; 0.60] [0.36; 1.38]
Wu, Q, et al., 2021 Peng, L, et al., 2022	43 28	81.54 8.21 80.95 13.20	43 29	74.21 70.12	7.33 9.05	followup followup	12.00 4.00	-	0.93 0.95	[0.49; 1.38] [0.40; 1.50]
Beatty, L. et al. 2015 Peng, L, et al., 2022	30 28	72.59 4.87 83.33 14.87	30 29	67.43 69.25	4.89 8.94	followup followup	13.03 0.10		1.04 1.14	[0.50; 1.59] [0.57; 1.70]
Beatty, L. et al. 2015 Random effect	30 609	76.54 4.22	30 620	71.38	4.21	followup	26.07	*	1.21 0.69	[0.66; 1.76] [0.45; 0.92]
Prediction interval										[-1.08; 2.45]
Random effect Prediction interval	8176		8582				-	*	0.53	[0.33; 0.72] [-0.80; 1.85]
							-4	-2 0 2	4	
							in tavor of	control group in favor of inte	ervention	i group

Figure S9.2. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the environment subgroups as predicted at week 12 (postintervention). SMD – Standardized mean difference, CI - confidence interval.

Figure S9.3.T24

Study	E) Patient N	kperimental I Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of inter	ested event	SMD	95%-CI
face to face Zhao.X. et al. 2015	62	5.41 1.79	62	7.24	2.31	baseline	0.00	-		-0.88	[-1.25: -0.51]
van der Meulen, IC, et al., 2013 Seliniotaki, T, et al., 2021	88	64.80 2.40 56 10 29 10	91	66.90	2.40	baseline	0.00	-		-0.87	[-1.18; -0.56] [-1.26; -0.15]
McLachlan, SA, et al., 2021	296	46.00 29.20	154	61.10	22.00	baseline	0.00	린		-0.56	[-0.76; -0.36]
Serfaty M, et al., 2018	20	12.30 5.20	22	08.57 13.60	4.90	baseline	0.00		_	-0.26	[-0.48, -0.05] [-0.86; 0.36]
Nápoles AM, et al. 2015 Rahmani, S, et al. 2015	76 12	12.07 4.91 11.11 8.94	75 12	12.86 12.50	5.14 9.05	baseline baseline	0.00 0.00			-0.16 -0.15	[-0.48; 0.16] [-0.95; 0.65]
Berglund, G. et al. 2007 Qiu, H. et al., 2018 II.	39 98	81.20 18.90 11.50 6.30	150 196	83.60 12.22	19.70 6.56	baseline baseline	0.00			-0.12 -0.11	[-0.47; 0.23] [-0.35; 0.13]
Fang, P, et al.,2020 Oiu H et al. 2018	60 98	46.14 5.12	60 196	46.55	5.23	baseline baseline	0.00			-0.08	[-0.44; 0.28] [-0.32; 0.17]
Hernandez, EG, et al. 2018	28	13.07 5.26	28	13.39	4.94	baseline	0.00		-	-0.06	[-0.59; 0.46]
Powell, CB, et al., 2019	21	16.10 4.20	43	16.20	5.00	baseline	0.00		-	-0.02	[-0.54; 0.50]
Liu, T, et al., 2019	49	71.18 18.38	53	69.23	48.48 22.04	baseline	0.00		-	0.07	[-0.24, 0.39] [-0.29; 0.48]
Braeken APB, et al. 2013 Penedo, FJ, et al., 2007	136 41	78.40 20.77	144 30	76.12	24.16 3.43	baseline baseline	0.00		-	0.10 0.10	[-0.13; 0.34] [-0.37; 0.57]
Qin, X, et al., 2017 Klinkhammer-Schalke, M et al., 2012	50 100	73.61 10.68 51.86 29.03	50 100	72.41 48.14	9.34 28.29	baseline baseline	0.00	1	+	0.12 0.13	[-0.27; 0.51] [-0.15; 0.41]
Guo, Z, et al., 2013 Schofield P. et al. 2013	89 55	72.57 12.51	89 53	70.77	14.71	baseline baseline	0.00	1	÷	0.13	[-0.16; 0.43] [-0.20: 0.56]
Arving, C, et al., 2007 Rodrigez B, et al. 2014	47	69.00 25.00 88.54 22.24	38	63.00 79.76	18.00	baseline	0.00		÷	0.27	[-0.16; 0.70] [-0.74; 1.30]
Gao Q, et al. 2020	40	-56.85 4.66	40	-58.20	4.78	baseline	0.00	1	÷	0.28	[-0.16; 0.72]
Elyasi, F, et al., 2021 I.	15	11.50 3.80	15	9.60	2.60	baseline	0.00	-	<u>.</u>	0.54	[-0.26; 0.97]
Zhao, X, et al., 2021 Lu, Z, et al., 201	52 203	64.03 4.42 79.70 3.60	51 103	58.12 71.30	0.42 4.90	baseline baseline	0.00	_	-	1.86 2.05	[1.39; 2.32] [1.76; 2.34]
Penedo, FJ, et al., 2007 Berglund, G. et al. 2007	41 39	-20.73 3.31 81.60 20.10	30 150	-19.20 87.80	3.62 18.00	followup followup	12.00 48.00			-0.44 -0.33	[-0.92; 0.04] [-0.69; 0.02]
Serfaty M, et al., 2018 Serfaty M, et al., 2018	20 20	15.40 4.50 15.60 4.20	22 22	16.60 16.50	4.90 3.70	followup followup	12.00 24.00			-0.25 -0.22	[-0.86; 0.36] [-0.83: 0.38]
Chan, et al. 2005 McLachian, SA, et al. 2001	80	65.70 47.01	75	73.94	39.30	followup	12.00	글		-0.19	[-0.50; 0.13]
Klinkhammer-Schalke, M et al., 2012	100	55.34 28.29	100	58.56	28.29	followup	12.00			-0.11	[-0.39; 0.16]
Reich, RR, et al. 2016	167	71.33 19.41	155	72.71	4.40	followup	12.00			-0.10	[-0.29; 0.15]
Klarke, N, et al., 2019 Chan, et al. 2005	120 80	62.80 22.30 75.77 73.38	114 75	64.20 79.44	22.40 64.08	followup followup	12.00 72.00			-0.06 -0.05	[-0.32; 0.19] [-0.37; 0.26]
Braeken APB, et al. 2013 Elvasi, F. et al., 2021 II.	136 20	78.38 22.75 9.40 2.10	144 20	79.46 9.50	20.68	followup followup	12.00 24.00		_	-0.05 -0.04	[-0.28; 0.18] [-0.66; 0.58]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.73 57.02	75 75	78.59 75.30	56.21 55.80	followup	48.00 60.00			-0.03 -0.03	[-0.35; 0.28] [-0.35; 0.28]
Chan, et al. 2005 Schofeld B. et al. 2012	80	68.59 48.12	75	69.81	48.88	followup	24.00			-0.03	[-0.34; 0.29]
Rahmani, S, et al. 2015	12	12.00 48.61	12	12.00	23.61	followup	16.00		-	0.00	[-0.80; 0.80]
Qiu, H, et al., 2018 II.	98	12.32 9.06	62 196	11.90	7.89	followup	4.00			0.05	[-0.31, 0.40] [-0.19; 0.29]
Chan, et al. 2005 Klinkhammer-Schalke, M et al., 2012	80 100	77.37 58.41 63.52 27.07	75 100	73.44 61.29	52.28 27.29	followup followup	36.00 48.00		Ē	0.07 0.08	[-0.24; 0.39] [-0.20; 0.36]
Reich, RR, et al. 2016 Powell, CB, et al., 2008	167 21	70.87 18.02 18.50 5.40	155 43	69.36 18.00	18.78 5.90	followup followup	6.00 12.00		-	0.08 0.09	[-0.14; 0.30] [-0.44; 0.61]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 120	76.00 24.00 59.10 25.40	38 114	74.00 56.50	20.00 23.00	followup followup	12.00 24.00	1	-	0.09 0.11	[-0.34; 0.52] [-0.15: 0.36]
Braeken APB, et al. 2013 Oiu H. et al. 2018 II	136 98	83.66 20.80	144 196	81.23 13.52	20.60	followup	48.00 24.00	1 I	÷	0.12	[-0.12; 0.35] [-0.12: 0.37]
Qiu, H, et al., 2018 II. Hernandez EG, et al. 2018	98 28	14.23 7.67	196 28	13.10	8.87	followup	12.00	1	÷ • -	0.13	-0.11; 0.38]
Klinkhammer-Schalke, M et al., 2012	100	66.50 26.80	100	59.06	29.53	followup	36.00		-	0.26	[-0.02; 0.54]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73	4.33	followup	12.00		÷	0.28	[-0.74, 1.30] [-0.02; 0.62]
Hernandez, EG, et al. 2018 Arving, C, et al., 2007	28 47	16.12 4.09 82.00 20.00	28 38	14.72 75.00	4.63 24.00	followup followup	8.00 24.00	1		0.32	[-0.21; 0.84] [-0.11; 0.75]
Klinkhammer-Schalke, M et al., 2012 Klafke, N, et al., 2019	100 120	66.25 25.31 65.90 25.60	100 114	56.58 56.30	28.54 24.70	followup followup	24.00 48.00		÷	0.36 0.38	[0.08; 0.64] [0.12; 0.64]
Schofield, P, et al., 2013 Seliniotaki, T, et al., 2021	55 27	81.43 20.19 74.50 24.50	53 26	73.23 61.70	20.40 36.70	followup	8.00 8.00	1	.	0.40	[0.02; 0.78]
Nápoles AM, et al. 2015 Oiu H. et al. 2018 I	76	16.39 3.30	75	14.89	3.95	followup	24.00			0.41	[0.09; 0.73]
Elyasi, F, et al., 2021 I.	15	11.00 3.40	15	9.50	2.60	followup	24.00	+		0.42	[-0.25; 1.21]
Rodrigez, B, et al., 2014	8	93.33 10.87	7	80.56	26.79	followup	2.00	-	-	0.50	[-0.44; 1.65]
Guo, Z, et al., 2013 Qiu, H, et al., 2018 I.	89 98	74.18 11.43 19.23 9.76	89 196	66.03 13.10	14.00 8.87	followup	12.00			0.64	[0.33; 0.94] [0.42; 0.91]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	20.00 8.37 63.49 13.78	196 53	13.52 51.93	7.89 14.62	followup followup	24.00 9.00		-	0.80 0.81	[0.55; 1.05] [0.40; 1.21]
Gao Q, et al. 2020 Zhou, J, et al., 2020	40 59	-49.55 4.20 64.81 9.32	40 59	-53.56 55.54	3.25 7.29	followup followup	4.00 2.00			1.06 1.10	[0.59; 1.53] [0.71; 1.49]
Liu, T, et al., 2019 Oin X et al. 2017	49 50	74.12 9.50	53 50	56.57 75.60	16.10	followup	12.00 2.00			1.31	[0.88; 1.73]
Lu, Z, et al., 201 van der Meulen IC, et al. 2013	203	85.40 3.50	103	77.60	5.60	followup	9.00			1.80	[1.52; 2.08]
Fang, P, et al., 2020	60	63.52 6.47	60	47.56	5.14	followup	4.00		는 물	2.71	[2.21; 3.21]
Rahmani, S, et al. 2015	12	56.94 11.14	12	22.91	10.73	followup	8.00			• 3.00	[2.42, 3.50] [1.78; 4.23]
Random effect	53 6503	18.00 0.40	58 6955	16.90	0.30	followup	16.00		÷ =	3.11 0.34	[2.55; 3.67] [0.07; 0.61]
Prediction interval								-			[-1.05; 1.73]
telephone Dirksen, S. et al, 2007	34	20.10 2.80	38	20.40	3.10	baseline	0.00	-	H	-0.10	[-0.56; 0.36]
Thomas, ML, et al., 2012 Girgis, A, et al., 2009 II.	64 120	16.50 5.60 79.90 20.30	88 117	16.70 79.70	5.30 22.70	baseline baseline	0.00 0.00	1		-0.04 0.01	[-0.36; 0.29] [-0.25; 0.26]
Yun et al., 2017 Kim, SH, et al., 2021	134 47	76.80 19.40 72.00 17.70	72 47	73.00 65.40	23.00 21.00	baseline baseline	0.00		+ +	0.18 0.34	[-0.10; 0.47] [-0.07; 0.74]
Girgis, A, et al., 2009 II. Dirksen, S, et al. 2007	120 34	85.70 16.40	117 38	84.90 20.60	18.50	followup	12.00 10.00			0.05	[-0.21; 0.30] [-0.40; 0.52]
Yun et al., 2017 Cirgin A. et al., 2000 II	134	78.00 19.90	72	75.90	18.30	followup	48.00	1		0.11	[-0.18; 0.39]
Thomas, ML, et al., 2003 II.	64	17.60 5.30	88	16.80	4.90	followup	12.00			0.12	[-0.17; 0.48]
Kim, SH, et al., 2021 Kim, SH, et al., 2021	47	79.00 15.70	47	69.60	18.90	followup	8.00	-	÷.	0.24	[0.12; 0.95]
McCusker, J, et al., 2021 Random effect	99 1064	43.30 9.20	119 1007	37.40	9.80	followup	24.00		,≡ ¢	0.62	[0.34; 0.89] [-0.04; 0.48]
Prediction interval											[-1.35; 1.79]
online Peng, L, et al., 2022	28	69.94 16.25	29	72.41	16.08	baseline	0.00	-		-0.15	[-0.67; 0.37]
Wu, Q, et al., 2021 Penedo, FJ, et al., 2020	43 95	62.34 6.76 -20.03 3.80	43 97	62.45 -20.46	6.63 3.74	baseline baseline	0.00 0.00		-	-0.02 0.11	[-0.44; 0.41] [-0.17; 0.40]
Cengiz, HO, et al., 2023 Beatty, L. et al. 2015	32 30	12.90 5.40 69.03 4.81	33 30	9.75 69.16	5.22 4.79	baseline followup	0.00	_	+	0.59 -0.03	[0.09; 1.08] [-0.53: 0.48]
Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020	95 95	-20.18 3.80	97 97	-20.62	3.84 3.84	followup	24.00 48.00	1	-	0.11	[-0.17; 0.40] [0.03; 0.60]
Cengiz, HO, et al., 2023	32	13.56 5.78	33	8.75	5.14	followup	8.00		-	0.87	[0.36; 1.38]
Peng, L, et al., 2022 Beatty L, et al. 2015	28	80.95 13.20	29	70.12	9.05	followup	4.00		-	0.95	[0.40; 1.50]
Peng, L, et al., 2015 Reathy L, et al., 2015	28	83.33 14.87	29	69.25	8.94	followup	0.10		-	1.14	[0.57; 1.70]
Random effect	609	10.04 4.22	620	11.38	4.21	ronowup	20.07		\$	0.51	[0.19; 0.83]
Prediction interval	0470		0500							0.01	[-1.17; Z.19]
Prediction interval	81/6		6562				г		<u> </u>	0.34	[-1.03; 1.71]
							-4 In favor of	-2 0 control group	2 In favor of inter	4 vention	group

Figure S9.3. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the environment subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI - confidence interval. 75

Figure S9.4.T48

Study	E) Patient M	kperimental N Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
face to face Zhao X, et al. 2015	62	541 179	62	7 24	231	baseline	0.00	-	-0.88	[-1 25] -0 51]
van der Meulen, IC, et al., 2013 Seliniotaki, T. et al., 2021	88 27	64.80 2.40 56 10 29 10	91 26	66.90 74.20	2.40	baseline	0.00	-	-0.87	[-1.18; -0.56]
McLachlan, SA, et al., 2001 Reich RR, et al. 2016	296	46.00 29.20	154	61.10	22.00	baseline	0.00	크	-0.56	[-0.76; -0.36]
Serfaty M, et al., 2018	20	12.30 5.20	22	13.60	4.90	baseline	0.00		-0.20	[-0.86; 0.36]
Rahmani, S, et al. 2015	12	11.11 8.94	12	12.50	9.05	baseline	0.00		-0.10	[-0.95; 0.65]
Qiu, H, et al., 2018 II.	98	11.50 6.30	196	12.22	6.56	baseline	0.00		-0.12	[-0.35; 0.13]
Qiu, H, et al., 2018 I.	98	40.14 5.12 11.72 6.65	196	40.55	5.23 6.56	baseline	0.00		-0.08	[-0.32; 0.17]
Hernandez, EG, et al. 2018 Klafke, N, et al., 2019	28 120	13.07 5.26 50.00 26.00	28 114	13.39 50.70	4.94 26.50	baseline	0.00	-	-0.06	[-0.59; 0.46] [-0.28; 0.23]
Chan, et al. 2005	80	16.10 4.20 58.10 45.50	43 75	16.20 54.60	5.00 48.48	baseline	0.00		-0.02	[-0.54; 0.50] [-0.24; 0.39]
Liu, T, et al., 2019 Braeken APB, et al. 2013	49 136	71.18 18.38 78.40 20.77	53 144	69.23 76.12	22.04 24.16	baseline baseline	0.00	Ē	0.10	[-0.29; 0.48] [-0.13; 0.34]
Penedo, FJ, et al., 2007 Qin, X, et al., 2017	41 50	-19.24 4.04 73.61 10.68	30 50	-19.63 72.41	3.43 9.34	baseline baseline	0.00	÷	0.10	[-0.37; 0.57] [-0.27; 0.51]
Klinkhammer-Schalke, M et al., 2012 Guo, Z, et al., 2013	100 89	51.86 29.03 72.57 12.51	100 89	48.14 70.77	28.29 14.71	baseline baseline	0.00 0.00	差	0.13 0.13	[-0.15; 0.41] [-0.16; 0.43]
Schofield, P, et al., 2013 Arving, C, et al., 2007	55 47	77.12 22.92 69.00 25.00	53 38	72.93 63.00	23.08 18.00	baseline baseline	0.00 0.00	툳	0.18 0.27	[-0.20; 0.56] [-0.16; 0.70]
Rodrigez, B, et al., 2014 Gao Q, et al. 2020	8 40	88.54 22.24 -56.85 4.66	7 40	79.76 -58.20	36.28 4.78	baseline baseline	0.00 0.00		0.28 0.28	[-0.74; 1.30] [-0.16; 0.72]
Elyasi, F, et al., 2021 II. Elyasi, F, et al., 2021 I.	20 15	10.60 3.10 11.50 3.80	20 15	9.60 9.60	2.60 2.60	baseline baseline	0.00		0.34 0.57	[-0.28; 0.97] [-0.16; 1.30]
Zhao, X, et al., 2021 Lu, Z, et al., 201	52 203	64.03 4.42 79.70 3.60	51 103	58.12 71.30	0.42 4.90	baseline baseline	0.00 0.00		1.86 2.05	[1.39; 2.32] [1.76; 2.34]
Penedo, FJ, et al., 2007 Berglund, G. et al. 2007	41 39	-20.73 3.31 81.60 20.10	30 150	-19.20 87.80	3.62 18.00	followup followup	12.00 48.00		-0.44 -0.33	[-0.92; 0.04] [-0.69; 0.02]
Serfaty M, et al., 2018 Serfaty M, et al., 2018	20 20	15.40 4.50 15.60 4.20	22 22	16.60 16.50	4.90 3.70	followup followup	12.00 24.00		-0.25 -0.22	[-0.86; 0.36] [-0.83; 0.38]
Chan, et al. 2005 McLachlan, SA, et al., 2001	80 296	65.70 47.01 45.80 30.20	75 154	73.94 50.70	39.30 25.00	followup followup	12.00 24.00	+	-0.19 -0.17	[-0.50; 0.13] [-0.37; 0.02]
Klinkhammer-Schalke, M et al., 2012 Serfaty M, et al., 2018	100 20	55.34 28.29 16.60 5.50	100 22	58.56 17.10	28.29 4.40	followup followup	12.00 18.00		-0.11 -0.10	[-0.39; 0.16] [-0.70; 0.51]
Reich, RR, et al. 2016 Klafke, N, et al., 2019	167 120	71.33 19.41 62.80 22.30	155 114	72.71 64.20	19.13 22.40	followup followup	12.00 12.00		-0.07 -0.06	[-0.29; 0.15] [-0.32; 0.19]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	75.77 73.38 78.38 22.75	75 144	79.44 79.46	64.08 20.68	followup followup	72.00 12.00		-0.05 -0.05	[-0.37; 0.26] [-0.28; 0.18]
Elyasi, F, et al., 2021 II. Chan, et al. 2005	20 80	9.40 2.10 76.73 57.02	20 75	9.50 78.59	2.60 56.21	followup	24.00 48.00		-0.04 -0.03	[-0.66; 0.58] [-0.35; 0.28]
Chan, et al. 2005 Chan, et al. 2005	80 80	73.39 67.76 68.59 48.12	75 75	75.30 69.81	55.80 48.88	followup followup	60.00 24.00	÷.	-0.03 -0.03	[-0.35; 0.28] [-0.34; 0.29]
Schofield, P, et al., 2013 Rahmani, S, et al. 2015	55 12	75.31 22.19 12.00 48.61	53 12	75.51 12.00	22.22 23.61	followup	12.00 16.00	-	-0.01 0.00	[-0.39; 0.37] [-0.80; 0.80]
Zhao,X, et al. 2015 Qiu, H, et al., 2018 II.	62 98	7.91 2.24 12.32 9.06	62 196	7.81 11.90	1.98 7.89	followup followup	0.30 4.00	÷.	0.05	[-0.31; 0.40] [-0.19; 0.29]
Chan, et al. 2005 Klinkhammer-Schalke, M et al., 2012	80 100	77.37 58.41 63.52 27.07	75 100	73.44 61.29	52.28 27.29	followup	36.00 48.00	蓋	0.07	[-0.24; 0.39] [-0.20; 0.36]
Reich, RR, et al. 2016 Powell, CB, et al., 2008	167 21	70.87 18.02 18.50 5.40	155 43	69.36 18.00	18.78 5.90	followup	6.00 12.00		0.08	[-0.14; 0.30] [-0.44; 0.61]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 120	76.00 24.00 59.10 25.40	38 114	74.00 56.50	20.00 23.00	followup	12.00 24.00	불	0.09 0.11	[-0.34; 0.52] [-0.15; 0.36]
Braeken APB, et al. 2013 Qiu, H, et al., 2018 II.	136 98	83.66 20.80 14.58 9.06	144 196	81.23 13.52	20.60 7.89	followup	48.00 24.00	÷	0.12 0.13	[-0.12; 0.35] [-0.12; 0.37]
Qiu, H, et al., 2018 II. Hernandez, EG, et al. 2018	98 28	14.23 7.67 14.00 4.69	196 28	13.10 13.32	8.87 5.32	followup followup	12.00 24.00		0.13 0.13	[-0.11; 0.38] [-0.39; 0.66]
Klinkhammer-Schalke, M et al., 2012 Rodrigez, B, et al., 2014	100 8	66.50 26.80 88.54 22.24	100 7	59.06 79.76	29.53 36.28	followup followup	36.00 0.10		0.26	[-0.02; 0.54] [-0.74; 1.30]
Nápoles AM, et al. 2015 Hernandez, EG, et al. 2018	76 28	15.93 3.52 16.12 4.09	75 28	14.73 14.72	4.33 4.63	followup followup	12.00 8.00	-	0.30 0.32	[-0.02; 0.62] [-0.21; 0.84]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	82.00 20.00 66.25 25.31	38 100	75.00 56.58	24.00 28.54	followup followup	24.00 24.00		0.32 0.36	[-0.11; 0.75] [0.08; 0.64]
Klafke, N, et al., 2019 Schofield, P, et al., 2013	120 55	65.90 25.60 81.43 20.19	114 53	56.30 73.23	24.70 20.40	followup followup	48.00 8.00	*	0.38 0.40	[0.12; 0.64] [0.02; 0.78]
Seliniotaki, T, et al., 2021 Nápoles AM, et al. 2015	27 76	74.50 24.50 16.39 3.30	26 75	61.70 14.89	36.70 3.95	followup followup	8.00 24.00	1	0.41 0.41	[-0.14; 0.95] [0.09; 0.73]
Qiu, H, et al., 2018 I. Elyasi, F, et al., 2021 I.	98 15	15.42 9.06 11.00 3.40	196 15	11.90 9.50	7.89 2.60	followup followup	4.00 24.00	-	0.42 0.48	[0.18; 0.67] [-0.25; 1.21]
Arving, C, et al., 2007 Rodrigez, B, et al., 2014	47 8	80.00 21.00 93.33 10.87	38 7	69.00 80.56	23.00 26.79	followup followup	4.00 2.00		0.50 0.60	[0.06; 0.93] [-0.44; 1.65]
Guo, Z, et al., 2013 Qiu, H, et al., 2018 I.	89 98	74.18 11.43 19.23 9.76	89 196	66.03 13.10	14.00 8.87	followup followup	2.00 12.00		0.64 0.67	[0.33; 0.94] [0.42; 0.91]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	20.00 8.37 63.49 13.78	196 53	13.52 51.93	7.89 14.62	followup followup	24.00 9.00	-	0.80 0.81	[0.55; 1.05] [0.40; 1.21]
Gao Q, et al. 2020 Zhou, J, et al., 2020	40 59	-49.55 4.20 64.81 9.32	40 59	-53.56 55.54	3.25 7.29	followup followup	4.00 2.00	-	1.06 1.10	[0.59; 1.53] [0.71; 1.49]
Liu, T, et al., 2019 Qin, X, et al., 2017	49 50	74.12 9.50 90.72 8.27	53 50	56.57 75.60	16.10 10.01	followup followup	12.00 2.00		1.31 1.63	[0.88; 1.73] [1.18; 2.09]
Lu, Z, et al., 201 van der Meulen, IC, et al., 2013	203 88	85.40 3.50 84.90 3.00	103 91	77.60 77.20	5.60 2.80	followup followup	9.00 48.00		1.80 2.64	[1.52; 2.08] [2.24; 3.05]
Fang, P, et al.,2020 Zhao, X, et al., 2021	60 52	63.52 6.47 71.02 2.31	60 51	47.56 58.91	5.14 5.21	followup followup	4.00 12.00	-	2.71 2.99	[2.21; 3.21] [2.42; 3.56]
Rahmani, S, et al. 2015 Henderson, VP, et al., 2013	12 53	56.94 11.14 18.00 0.40	12 58	22.91 16.90	10.73 0.30	followup followup	8.00 16.00	-	→ 3.00 3.11	[1.78; 4.23] [2.55; 3.67]
Prediction interval	6503		6955					<u> </u>	0.19	[-0.41; 0.80] [-1.60; 1.99]
telephone Dirkson Stat 2007	24	20 10 0.00	20	20.40	3 10	hanalise	0.00		_0.40	L0.56: 0.261
Thomas, ML, et al., 2007 Girgis A et al. 2000 II	64 120	16.50 5.60	30 88 117	20.40 16.70 79.70	5.30	baseline	0.00		-0.10	[-0.36; 0.30] [-0.36; 0.29] [-0.25: 0.26]
Yun et al., 2017 Kim, SH, et al., 2021	134	76.80 19.40	72	73.00	23.00	baseline	0.00	E.	0.18	[-0.10; 0.47] [-0.07: 0.74]
Girgis, A, et al., 2009 II. Dirksen, S, et al. 2007	120 34	85.70 16.40	117	84.90	18.50	followup	12.00	2	0.05	[-0.21; 0.30]
Yun et al., 2017 Girgis A et al. 2009 II	134 120	78.00 19.90	72 117	75.90	18.30	followup	48.00	蓋	0.11	[-0.18; 0.39]
Thomas, ML, et al., 2012 Kim SH et al. 2021	64 47	17.60 5.30 75.90 16.30	88 47	16.80 71.70	4.90	followup	12.00	100 H	0.16	[-0.17; 0.48]
Kim, SH, et al., 2021 McCusker, J. et al., 2021	47 99	79.00 15.70 43.30 9.20	47 119	69.60 37.40	18.90 9.80	followup	8.00 24.00		0.54	[0.12; 0.95] [0.34; 0.89]
Random effect Prediction interval	1064		1007			-		-	0.07	[-0.44; 0.59] [-1.51; 1.65]
online										
Peng, L, et al., 2022 Wu, Q, et al., 2021	28 43	69.94 16.25 62.34 6.76	29 43	72.41 62.45	16.08 6.63	baseline baseline	0.00		-0.15 -0.02	[-0.67; 0.37] [-0.44; 0.41]
Penedo, FJ, et al., 2020 Cengiz, HO, et al., 2023	95 32	-20.03 3.80 12.90 5.40	97 33	-20.46 9.75	3.74 5.22	baseline baseline	0.00	<u>j</u>	0.11 0.59	[-0.17; 0.40] [0.09; 1.08]
Beatty, L. et al. 2015 Penedo, FJ, et al., 2020	30 95	69.03 4.81 -20.18 3.80	30 97	-20.62	4.79	followup	6.00 24.00	훈	-0.03	[-0.53; 0.48] [-0.17; 0.40]
Penedo, FJ, et al., 2020 Cengiz, HO, et al., 2023	95 32	-19.20 3.90	33	-20.43	3.84 5.14	followup	48.00		0.32	[0.03; 0.60]
Peng, L, et al., 2021 Reatty L et al., 2015	43 28 30	01.04 8.21 80.95 13.20 72.50 4.07	43 29 30	74.21 70.12	9.05 4.90	followup	4.00		0.93	[0.49, 1.38] [0.40; 1.50] [0.50; 1.50]
Peng, L, et al., 2015 Beatty L, et al. 2015	28	83.33 14.87	29 30	69.25 71.20	4.09 8.94 4.21	followup	0.10		1.04	[0.57; 1.70] [0.66: 1.76]
Random effect Prediction interval	609	10.07 4.22	620	. 1.30		.oowup	20.01		0.36	[-0.19; 0.92] [-1.29; 2.02]
Random effect	8176		8582						0.19	[-0.40; 0.79]
Prediction interval							Г		٦.	[-1.60; 1.98]
							-4 In favor of	-2 0 2 control group In favor of inte	4 rvention	group

Figure S9.4. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the environment subgroups as predicted at week 48 (postintervention). SMD – Standardized mean difference, CI - confidence interval.

S10.Subgroup analysis of Emotional QoL: Type

Figure S10.1.T0

Study	E) Patient M	perimental Mean SD I	Patient M	Control Mean SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
individual Zhao X, et al. 2015 van der Meulen, IC, et al., 2013 Setimotaki, T, et al., 2021 McLachian, SA, et al., 2001 Sartaw M, et al., 2001	62 88 27 296	5.41 1.79 64.80 2.40 56.10 29.10 46.00 29.20	62 91 26 154	7.24 2.3 66.90 2.4(74.20 20.9 61.10 22.0	f baseline baseline baseline baseline	0.00	18 18 18 18 18 18 18 18 18 18 18 18 18 1	-0.88 -0.87 -0.70 -0.56	(-1.25, -0.51] (-1.18, -0.56] (-1.26, -0.15] (-0.76, -0.36] (-0.85, -0.36]
Walczak, A. et al. 2015 Nápoles AM, et al. 2015 Zaman ACONM. et al. 2015	20 61 76 42	12.30 5.20 16.76 4.80 12.07 4.91 44.00 9.90	49 75 46	17.73 4.50 12.85 5.14	baseline baseline baseline	0.00		-0.25 -0.21 -0.15	-0.56, 0.56 [-0.58, 0.17] [-0.48, 0.16] [-0.55, 0.29]
Qiu, H, et al., 2018 II. Dirksen, S et al. 2007 Fano, P et al. 2020	98 34 60	11.50 6.30 20.10 2.80 46.14 5.12	196 38 60	12.22 6.5t 20.40 3.10 46.55 5.22	baseline baseline	0.00		-0.11 -0.10 -0.08	-0.35; 0.13] [-0.56; 0.36] [-0.44; 0.28]
Oiu, H. et al., 2019 1 Johansson, B. et al., 2008 Thomas ML et al., 2012	98 128 64	11.72 8.65 74.00 23.00 16.50 5.60	196 116 88	12.22 6.56 75.00 23.0 16.70 5.30	baseline baseline baseline	0.00		-0.08 -0.04 -0.04	0.32, 0.17
Sandsund, C, et al., 2017 Klafke, N, et al., 2019 Presell, CB at al., 2008	72 120	67.10 25.30 50.00 26.00 16.10 4.20	70	67.90 23.4 50.70 26.5 16.20 5.00	0 baseline 0 baseline	0.00		-0.03	0.36, 0.30
Wu, O, et al., 2021 Girgis, A, et al., 2009 II Cirgis, A, et al., 2009 II	43 120	52.34 5.76 79.90 20.30	43	62.45 5.63 79.70 22.7	baseline baseline	0.00	美麗	-0.02	-0.44; 0.41] -0.25; 0.26]
Chan, et al. 2005 Braeken APB, et al. 2013 Oin X, et al. 2017	80 136	58.10 45.50 78.40 20.77 73.61 10.69	75 144	54.60 48.4 76.12 24.1 72.41 9.20	8 baseline 5 baseline	0.00	1 HE HE	0.07	-0.24; 0.39 -0.13; 0.34 -0.27; 0.51
Klinkhammer-Schalke, M et al., 2012 Schoteld, P, et al., 2013	100 55	51.86 29.03 77.12 22.92	100 53	48.14 28.2	9 baseline 9 baseline 9 baseline	0.00		0.12	-0.27, 0.51 -0.15, 0.41 -0.20, 0.56
Kim, YH, et al., 2017 Arving, C, st al., 2007	30 47	76.80 19.40 56.40 16.50 69.00 25.00	30 38	53.30 16.5 63.00 18.0	0 baseline 0 baseline	0.00	「「「「」	0.19	-0.10 0.47 -0.32 0.69 -0.16 0.70
Gae Q, et al. 2020 Kim, SH, et al. 2021	40 47	56.85 4.66 72.00 17.70	40 47	-58.20 4.78 85.40 21.0	baseline baseline baseline	0.00		0.28	-0.74, 1.30 [-0.16, 0.72] [-0.07, 0.74]
Elyasi, F, et al., 2021 1. Zhao, X, et al., 2021	15 52	11.50 3.80 64.03 4.42	15 51	9.60 2.60 9.60 2.60 58.12 0.42	baseline baseline baseline	0.00		0.57	-0.28, 0.87
Zaman, ACGNM, et al., 2021 Zaman, ACGNM, et al., 2021 Zaman, ACGNM, et al., 2021	203 42 42	47.70 9.70 46.20 10.70	46 46	71.30 4.90 50.80 7.50 49.40 8.30	followup	48.00 24.00		-0.36	-0.78; 0.07] [-0.75; 0.09]
Serfaty M, et al., 2018 Serfaty M, et al., 2018 Chan, et al. 2005	20 20 80	15.40 4.50 15.60 4.20 65.70 47.01	22 22 75	16.50 4.90 16.50 3.70 73.94 39.3	followup followup followup	24.00 12.00		-0.25 -0.22 -0.19	-0.86, 0.36 -0.83, 0.38 -0.50, 0.13
McLachian, SA, et al., 2001 Klinkhammer-Schalke, M et al., 2012 Johansson, B, et al., 2008	296 100 128	45.80 30.20 55.34 28.29 83.00 18.00	154 100 116	58.56 28.2 85.00 19.0	9 followup 9 followup 0 followup	12.00 24.00		-0.17 -0.11 -0.11	-0.37, 0.02 [-0.39, 0.16] [-0.36, 0.14]
Senaty M, et al., 2018 Klafke, N, et al., 2019 Chan, et al. 2005	20 120 80	16.60 5.50 62.80 22.30 75.77 73.38	22 114 75	17.10 4.40 64.20 22.4 79.44 64.0	0 followup 8 followup	18.00 12.00 72.00	-	-0.10 -0.05 -0.05	-0.70, 0.51] [-0.32, 0.19] [-0.37, 0.26]
Braeken APB, et al. 2013 Elyasi, F. et al., 2021 II. Chan, et al. 2005	136 20 80	78.38 22.75 9.40 2.10 75.73 57.02	144 20 75	79.46 20.6 9.50 2.60 78.59 56.2	a followup followup 1 followup	12.00 24.00 48.00		-0.05 -0.04 -0.03	-0.26; 0.18] [-0.66; 0.58] [-0.35; 0.28]
Chan, et al. 2005 Beatty, L. et al. 2015 Chan, et al. 2005	80 30 80	73.39 67.76 69.03 4.81 58.59 48.12	75 30 75	75.30 55.8 69.16 4.78 69.81 48.8	followup followup followup	60,00 6.00 24.00		-0.03 -0.03 -0.03	-0.35, 0.28] [-0.53; 0.48] [-0.34; 0.29]
Schotield, P. et al., 2013 Johansson, B, et al., 2008 Girgis, A, et al., 2009 II.	55 128 120	75.31 22.19 85.00 17.00 85.70 16.40	53 116 117	75.51 22.2 85.00 17.0 84.90 18.5	2 followup 0 followup 0 followup	12.00 48.00 12.00		-0.01 0.00 0.05	-0.39; 0.37 [-0.25; 0.25] [-0.21; 0.30]
Zhao X, et al. 2015 Qiu, H, et al., 2018 II Johansson, B, et al., 2008	62 98 128	7.91 2.24 12.32 9.06 87.00 17.00	62 196 116	7.81 1.98 11.90 7.89 66.00 20.0	followup followup 0 followup	0.30 4.00 96.00	「「「」	0.05 0.05 0.05	-0.31; 0.40] -0.19; 0.29] (-0.20; 0.31]
Dirksen, S. et al. 2007 Chan, et al. 2005 Girgls, A. et al., 2009 I	34 80 110	20.80 2.30 77.37 58.41 85.40 20.20	38 75 117	20.60 4.00 73.44 52.2 84.90 18.5	6 followup 6 followup 0 followup	10.00 35.00 12.00		0.06 0.07 0.08	-0.40, 0.52 -0.24; 0.39 -0.16; 0.34
Klinkhammer-Schalke, M et al., 2012 Zaman, ACGNM, et al., 2021 Powell, CB, et al., 2008	100 42 21	63.52 27.07 47.60 8.80 18.50 5.40	100 46 43	61.29 27.2 46.80 10.4 18.00 5.90	9 followup 0 followup) followup	48.00 36.00 12.00		0.08 80.0 90.0	-0.20; 0.36] [-0.34; 0.50] [-0.44; 0.61]
Arving, C, et al., 2007 Klafke, N, et al., 2019 Johansson, B, et al., 2008	47 120 128	76.00 24.00 59.10 25.40 83.00 18.00	38 114 116	74.00 20.0 58.50 23.0 81.00 19.0	0 followup 0 followup 0 followup	12.00 24.00 12.00	富	0.09 0.11 0.11	-0.34, 0.52] -0.15, 0.36] -0.14, 0.36]
Yun et al., 2017 Braeken AP8, et al. 2013 Girgis, A. et al., 2009 II.	134 136 120	78.00 19.90 83.66 20.80 86.70 18.70	72 144 117	75.90 18.3 81.23 20.6 84.40 18.9	0 followup 0 followup 0 followup	48.00 48.00 24.00		0.11 0.12 0.12	-0.18, 0.39 -0.12, 0.35 -0.13, 0.38
Qiu, H, et al. 2018 II. Qiu, H, et al. 2018 II. Sandsund, C, et al. 2017	98 98 72	14.58 9.06 14.23 7.67 70.00 23.90	196 196 70	13.52 7.80 13.10 8.87 66.40 26.2	followup followup followup	24.00 12.00 12.00		0.13 0.13 0.14	0.12, 0.37] 0.11, 0.38] 0.19; 0.47]
Zaman, ACGNM, et al., 2021 Thomas, ML, et al., 2012 Girola A et al., 20091	42 64 110	45.80 9.80 17.60 5.30 88.70 17.30	46 88	45.30 9.20 16.80 4.90 84.40 18.9	followup followup	12.00 12.00 24.00		0.15	-0.26; 0.58] -0.17; 0.48] -0.02; 0.501
Kim, SH, et al., 2021 Klinkhammer-Schalke, M et al., 2012 Walczak, A. et al., 2017	47 100	75.90 16.30 66.50 26.80 17.89 4.63	47 100 49	71.70 19.4 59.06 29.5	0 followup 3 followup	20.00		0.24 0.26 0.27	0.17.0.65
Rodrigez, B. et al., 2014 Nápoles AM, et al. 2015 Animo C. et al. 2007	8 76	88.54 22.24 15.93 3.52 82.00 20.00	7 75 29	79.76 36.2 14.73 4.33 75.00 24.0	B followup followup	0.10		0.28	-0.74, 1.30 -0.02, 0.62 -0.11, 0.75
Sandsund, C. et al., 2017 Klinkhammer-Schalke, M et al., 2012 Klatke, N. et al., 2019	72 100 120	75.50 20.20 86.25 25.31	70 100	66.70 28.6 56.58 28.5 55.30 24.7	0 followup 4 followup 8 followup	24.00 24.00 48.00	144	0.35	0.02, 0.69
Scholield, P. et al., 2013 Selinotaki, T. et al., 2021 Nénolas AM et al. 2021	55 27 75	81.43 20.19 74.50 24.50	53 26 75	73.23 20.4 61.70 36.7	0 followup 0 followup	8.00 8.00 24.00	(Walk)	0.40	0.02, 0.78
Qiu, H, et al., 2018 I. Elyasi, F, et al., 2021 I.	98 15	15.42 9.06 11.00 3.40	196 15	11.90 7.85	followup followup	4.00 24.00		0.42	0.18; 0.67
Kim, SH, et al., 2007 Kim, YH, et al., 2017 Dodlars B, et al., 2017	47 30	79.00 15.70 67.80 15.10	47 30	69.60 18.9 56.70 21.9	0 followup 0 followup	8.00 6.00		0.50	0.12 0.95
McCusker, J, et al., 2014 Qiu, H, et al., 2018 L	99 98	43.30 9.20 19.23 9.76	119 196	37.40 9.80 13.10 8.87	followup	24.00		0.62	0 34, 0.89
Qiu, H, et al., 2017 Qiu, H, et al., 2018 I. Wu, Q, et al., 2021	98 43	20.00 8.37 81.54 8.21	196 43	13.52 7.80 74.21 7.33	followup followup	24.00	1	0.00	0.15, 1.20
Gao Q, et al. 2020 Zhou, J, et al. 2020	40 59	49.55 4.20 64.81 9.32	40	-53.56 3.25 55.54 7.29	followup followup	4.00	*	1.06	0.50, 1.59
Qin, X, et al., 2017 Lu, Z, et al., 2017	50 203	90.72 8.27 85.40 3.50	50 103	75.60 10.0	1 followup followup	2.00	Ē.	1.63	1.18; 2.09]
Fang, P. et al., 2020 Zhao, X, et al., 2021	60 52	63.52 6.47 71.02 2.31	60 51	47.56 5.14 58.91 5.21	followup followup followup	4.00	1	2.64 2.71 2.99	2.24, 3.05 [2.21, 3.21] [2.42, 3.56]
Prodiction interval	8195		8357					0.60	0.26: 0.95] -0.74; 1.95]
Reich, RR, et al. 2016 Peng. L. et al., 2022	167 28	63.83 17.42 69.94 16.25	155 29	68.57 18.3 72.41 16.0	2 baseline 8 baseline	0.00		-0.26 -0.15	-0.48: -0.05] -0.67: 0.37]
Berglund, G et al. 2015 Hemandez, EG, et al. 2018	39 28	81.20 18.90 13.07 5.26	150 28	83.60 19.7 13.39 4.94	D baseline D baseline D baseline	0.00	르	-0.12 -0.06	-0.95, 0.65 -0.47; 0.23 -0.59; 0.46
Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2020	41 95	-19.24 4.04 -20.03 3.80	30 97	-19.63 3.43 -20.46 3.74	baseline baseline baseline	0.00		0.10	-0.29 0.48 -0.37, 0.57 -0.17, 0.40
Cengiz, HO, et al., 2023 Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2007	32 41	12.90 5.40	33 30	9.75 5.22	2 baseline 2 followup	0.00	±Ť	0.59	0.09, 1.08
Reich, RR, et al. 2015 Reimani, S, et al. 2015 Reimani, S, et al. 2015	167 12	71.33 19.41	155 12	72.71 19.1	3 followup 1 followup	12.00	100	-0.07	-0.09, 0.02 -0.29, 0.15 -0.80, 0.80
Penedo, FJ, et al., 2020 Hemandez, EG, et al., 2018 Hemandez, EG, et al. 2018	95 28	-20.18 3.80 14.00 4.69	97 26	-20.62 3.84 13.32 5.32	followup	24.00 24.00		0.11	-0.17; 0.40] [-0.39; 0.66]
Penedo, FJ, et al., 2020 Guo, Z, et al., 2013	95 89	-19.20 3.90 74.18 11.43	97 89	-20.43 3.84	followup followup	48.00	Real Provide P	0.32	0.03; 0.60
Cengiz, HO, et al., 2023 Peng L, et al., 2022	32 28	13.56 5.78 80.95 13.20	33 29	8.75 5.14 70.12 9.05	followup	8.00 4.00		0.87	0.36, 1.38
Liu, T, et al., 2019 Rahmani, S, et al. 2015 Hendmani, S, et al. 2015	49 12	74.12 9.50	53 12	56.57 16.1 22.91 10.7	0 followup 3 followup	12.00 8.00		- 3.00	0.88, 1.73
Random effect Prodiction interval	- 03 1592	18.00 0.40	- 98 1784	10.90 0.31	 IOHOWUP 	10,00		0.73	[2.55, 3.67] [0.29; 1.16] [0.68; 2.13]
self-help Takano, T. et al., 2021 Willems, R. et al., 2018	31 199	74.70 24.61	38 221	83.80 14.7	3 baseline baseline	0.00	-	-0.46	-0.94; 0.03 -0.53 -0.141
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124	50.00 18.00 54.00 22.00 82.00 21.00	121 121 121	56.00 21.0 63.00 21.0 59.00 22.0	0 baseline 0 followup	0.00	A REAL	0.20 0.05 0.14	-0.05: 0.461 -0.20; 0.301
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020 Takano, T, et al., 2020	124 124	65.00 22.00 64.00 23.00 80.10 14.20	121 121 20	61.00 24.0 59.00 25.0 75.40 10.0	0 followup 0 followup	7.00		0.17	0.08 0.42
Takano, T. et al., 2021 Willems, R. et al., 2016 Random officer	31 188	84.20 13.36 84.90 2.20	38 221	77.30 16.0 77.10 2.50	9 followup 1 followup	12.00 24.00	*	0.46	0.02, 0.94
Prediction interval	10873		11302					0.64	2.04; 3.40]
Prediction interval							4 -2 0 2	4	-0.70; 1.98]
						in favor o	f control group In favor of inte	ervention	group

Figure S10.1. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the type subgroups as predicted at week 0 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S10.2.T12

Study	Ex Patient N	perimental Mean SD	Patient	Control Mean	\$D	follow-up	Follow-up time	SMD of Interested event	SMD	95%-CI
individual Zhao,X, et al. 2015	62	5.41 1.79	62	7.24	231	baseline	0.00	*	-0.88	[-1.25, -0.51]
van der Meulen, IC, et al., 2013 Selimiotaki, T, et al., 2021	88 27	64.80 2.40 56.10 29.10	91 26	66.90 74.20	2.40	baseline	0.00	-	-0.87	[-1.18, -0.56] [-1.26, -0.15]
McLachlan, SA, et al., 2001 Berfaty M, et al., 2018	296	46 00 29 20 12.30 5.20	104	13.60	4.90	baseline	0.00		-0.56	[-0.86: 0.36]
Nápoles AM, et al. 2015 Zaman, ACGNU, et al. 2021	76	12.07 4.91	75	12.86	5.14	baseline	0.00	重	-0.15	[-0.48; 0.16]
Diu, H, el al., 2019 II. Dirksen, S. et al. 2007	98 34	11.50 6.30 20.10 2.80	196 38	12.22 20.40	6.56	baseline	0.00	-	-0.11	[-0.35; 0.13] [-0.56; 0.36]
Fang, P. et al. 2020 Diu, H. et al., 2018 I.	60 98	46.14 5.12 11.72 6.65	60 196	48.55 12.22	523 6.56	baseline baseline	0.00	*	-0.08	[-0.44, 0.28] [-0.32, 0.17]
Johansson, B, et al., 2008 Thomas, ML, et al., 2012	128 64	74.00 23.00 16.50 5.60	116 88	75.00 16.70	23.00 5.30	baseline baseline	0.00	# *	-0.04 -0.04	[-0.29; 0.21] [-0.36; 0.29]
Sandsund, C, et al., 2017 Klafke, N, et al., 2019	72 120	67.10 25.30 50.00 26.00	70 114	67.90 50.70	23.40 26.50	baseline baseline	0.00		-0.03	[-0.36; 0.30] [-0.28; 0.23]
Wu, Q. et al., 2021	43	62.34 6.76	43	62.45	6.63	baseline	0.00	100	-0.02	[-0.44; 0.41]
Girgis, A. et al., 2009 I. Girgis, A. et al., 2009 I. Chan at al. 2005	110	80.70 21.50 58 10 45 50	117	79.70	22.70	baseline	0.00	1	0.04	[-0.22; 0.31] [-0.24: 0.39]
Braeken APB, et al. 2013 Din, X, et al., 2017	136 50	78.40 20.77 73.61 10.68	144 50	76.12	24.16 9.34	baseline baseline	0.00	業	0.10	[-0.13; 0.34] [-0.27; 0.51]
Klinkhammer-Schalke, M et al., 2012 Schofield, P, et al., 2013	100 55	51.86 29.03 77.12 22.92	100 53	49.14 :	28.29 23.08	baseline baseline	0.00	墨	0.13	[-0.15; 0.41] [-0.20; 0.56]
Yun et al., 2017 Kim, YH, st al., 2017	134 30	76.80 19.40 56.40 16.50	72 30	73.00 53.30	23.00	baseline baseline	0.00	통	0.18	[-0.10, 0.47] [-0.32, 0.69]
Arving, C, et al., 2007 Rodrigez, B, et al., 2014 Rodrigez, B, et al., 2014	47	69.00 25.00 86.54 22.24	38	63.00 79.76	18.00	baseline	0.00	- <u>Ē</u> -	0.27	[-0.16; 0.70] [-0.74; 1.30]
Kim, SH, et al., 2021 Elvasi E et al., 2021	47	72.00 17.70	47	65,40	21.00	baseline	0.00		0.34	[-0.07; 0.74]
Elyasi, F. et al., 2021 I. Zhao, X. et al., 2021	15 52	1150 3.80 64.03 4.42	15 51	9.60 58.12	2.60	baseline baseline	0.00	*	0.57	[-0.16, 1.30] [1.39; 2.32]
Lu, Z, et al., 201 Zaman, ACGNM, et al., 2021	203 42	79.70 3.50 47.70 9.70	103 46	71.30	4.90	baseline followup	0.00 48.00		2.05	[1.76; 2.34] [-0.78; 0.07]
Zaman, ACGNM, et al., 2021 Serfaly M, et al., 2018	42 20	46.20 10.70 15.40 4.50	46 22	49.40 16.60	8.30 4.90	followup followup	24.00 12.00		-0.33 -0.25	[-0.75; 0.09] [-0.86; 0.36]
Serfaly M, et al., 2018 Chan, st al. 2005	20 80	15.60 4.20 65.70 47.01	22 75	16.50 73.94	370	followup	24.00		-0.22	[-0.83; 0.38] [-0.50; 0.13]
McLachtan, SA, et al., 2003 Klinkhammer-Schalke, Miet al., 2012 Jobaneson, B. et al., 2008	100 128	45.80 30.20 55.34 28.29 83.00 18.00	100	58.56	25.00	followup	12,00	2	-0.17	[-0.39; 0.16] [-0.36; 0.14]
Sentaty M, et al., 2018 Klafke, N, et al., 2019	20	16.60 5.50	22	17.10	4.40	followup	18.00		-0.10	[-0.70; 0.51] [-0.32; 0.19]
Chan, et al. 2005 Braeken APB, et al. 2013	00 135	76.77 73.39 78.38 22.75	75 144	79.44	54.08 20 68	followup	72.00		-0.05	[-0.37; 0.26] [-0.28; 0.18]
Elyasi, F. et al., 2021 II. Chan, et al. 2005	20 80	9.40 2.10 76.73 57.02	20 75	9.50 78.59	2.60	followup	24.00 48.00	*	-0.04 -0.03	[-0.66, 0.58] [-0.35, 0.28]
Chan, et al. 2005 Beatty, L. et al. 2015	80 30	73.39 67.76 69.03 4.81	75 30	75.30 69.16	55.80 4.79	followup followup	60.00 6.00	畫	-0.03	[-0.35; 0.28] [-0.53; 0.48]
unan, et al. 2005 Schoffeld, P. et al., 2013 Johanneen, P. et al., 2022	80 55	58.59 48.12 75.31 22.19	75 53	69.81 75.51	48.88	followup	24.00	-	-0.03	[-0.34; 0.29] [-0.39, 0.37]
Johansson, B, et al., 2008 Girgis, A, et al., 2009 II.	128	85.00 17.00 85.70 16.40	115	85.00	17.00	followup	48.00	重	0.05	[-0.25, 0.25] [-0.21, 0.30]
Diu, H. et al., 2018 II. Johansson, B. et al., 2008	98	1232 906	196	11.90	7.89	followup	4.00		0.05	[-0 19, 0.29] [-0 20: 0 31]
Dintsen, S. et al, 2007 Chan, et al, 2005	34 80	20.80 2.30	38 75	20.60	4.00	followup	10.00		0.06	[-0.40; 0.52] [-0.24, 0.39]
Girgis, A. et al., 2009 I. Klinkhammer-Schalke, M et al., 2012	110 100	86.40 20.20 63.52 27.07	117 100	84.90 61.29	18.50	followup	12.00 48.00		0.08	[-0.18, 0.34] [-0.20, 0.36]
Zaman, ACGNM, et al., 2021 Powell, CB, et al., 2008	42 21	47.60 8.80 18.50 5.40	48 43	46.80 18.00	10.40 5.90	followup followup	36.00 12.00		0 08 0 09	[-0.34, 0.50] [-0.44, 0.61]
Arving, C. et al., 2007 Klafke, N. et al., 2019	47	76.00 24.00 59.10 25.40	38 114	74.00	20.00	followup followup	12.00 24.00	重	0.09	[-0.34; 0.52] [-0.15; 0.36]
Jonansson, B, et al., 2008 Yun et al., 2017 Desekse ADD, et al. 2012	128	78.00 19.90	72	75.90	18.30	followup	48.00	2	0.11	[-0.14; 0.36] [-0.18; 0.39]
Girgis, A. et al., 2019 II Din, H. et al., 2019 II	120	86.70 18.70	117	84.40	20.50	followup	24.00	E	0.12	[-0.12; 0.35] [-0.13; 0.38] [-0.12; 0.37]
Qiu, H. et al., 2018 II. Bandsund, C. et al., 2017	98 72	14.23 7.67	196	13.10	8.87	followup	12.00	罿	0.13	[-0.11, 0.38] [-0.19: 0.47]
Zaman, ACGNM, et al., 2021 Thomas, ML, et al., 2012	42 64	46.80 9.80	46 88	45.30 16.90	9.20 4.90	followup	12.00	蓋	0.16	[-0.26; 0.58] [-0.17; 0.48]
Girgis, A. et al., 2009 I. Kim, SH, et al., 2021	110	88.70 17.30 75.90 16.30	117 47	84.40 71.70	18.90 18.40	followup followup	24.00 20.00	1	0.24	[-0.02; 0.50] [-0.17; 0.65]
Klinkhammer-Schalke, M et al., 2012 Walczak, A, et al., 2017	100	66 50 26 80 17 88 4 63	100	59.06 16.61	29.53 4.80	followup	36.00	통	0.26	[-0.02, 0.54] [-0.11; 0.65]
Rodrigez, B, et al., 2014 Nápoles AM, et al. 2015	8 76	88.54 22.24 15.93 3.52	7	79.76 14.73	433	followup	0.10		0.28	[-0.74; 1.30] [-0.02; 0.62]
Wing, C. et al., 2007 Sandsund, C. et al., 2017 Clickhammer, Schalter, M. et al., 2012	72	75.50 20.20	70	66.70	28.60	followup	24.00		0.32	[0.02, 0.69]
Klafke, N, et al., 2019 Schofield P, et al., 2013	120	65 90 25.60 81 43 20 19	114	56.30	24.70	followup	48.00	10	0.38	[0 12, 0 64]
Seliniotaki, T, et al., 2021 Nápoles AM, et al. 2015	27 76	74.50 24.50 16.39 3.30	26 75	61.70 14.89	36 70	followup followup	8.00 24.00		0.41	[-0.14; 0.95] [0.09; 0.73]
Qiu, H, et al., 2018 I. Elyasi, F, et al., 2021 I.	98 15	15.42 9.06 11.00 3.40	196 15	11.90 9.50	7.89	followup followup	4.00 24.00	8	0.42	[0.18; 0.67] [-0.25; 1.21]
Aving, C. et al., 2007 Kim, SH, et al., 2021	47	80.00 21.00 79.00 15.70	38 47	69.00 69.60	23.00	followup	4.00		0.50	[0.06, 0.93] [0.12, 0.95]
Kim, YH, stal., 2017 Rodrigez, B. stal., 2014 McCurkez, L. stal., 2024	30	93 33 10.87 43 30 9.20	7	56.70 80.56	26.79	followup	2.00		0.58	[-0.44, 1.65]
Diu, H. et al., 2018 I. Kim, YH. et al., 2017	98 30	19,23 9,76 70,80 14,50	196	13 10 57 80	8.87	followup	12.00		0.62	[0.42; 0.91]
Diu, H, el al., 2018 I. Wu, Q, et al., 2021	98 43	20.00 8.37 81.54 8.21	196 43	13.52 74.21	7.89	followup	24.00		0.80	[0.55; 1.05]
Beatty, L. et al. 2015 Cao O, et al. 2020	30 40	72.59 4.87	30 40	67.43 -53.56	4.89	followup followup	13.03 4.00	*	1.04 1.06	[0.50, 1.59] [0.59; 1.53]
Zhou, J. et al., 2020 Beatty, L. et al. 2015	69 30	64.81 9.32 76.54 4.22	59 30	55.54 71.38	7.29	followup	2.00 26.07		1.10	[0.71; 1.49] [0.56; 1.76]
uin, X, etal., 2017 Lu, Z, etal., 201 Lu, Z, etal., 201	203	90.72 8.27 85.40 3.50	103	75.60	5.60	followup	9.00	1. The second se	1.63	[1.18; 2.09] [1.52; 2.08]
van der Meuten, IC, et al., 2013 Fang, P, et al., 2020 Zhan, X, et al., 2021	60 62	63.52 6.47 71.02 2.31	60 61	47.56	280 514 521	followup	49.00	1 1 2	2.64	[2.24, 3.06] [2.21, 3.21] [2.42, 3.56]
Random effect Prediction interval	8192	11,06 2,01	-8357	00.01	0.6.1	nonovrop.		0	0:40	[0.28; 0.64] [0.84: 1.761
group										
Reich, RR. et al. 2016 Peng, L. et al., 2022	167	63.83 17.42 69.94 16.25	155 29	68.57 72.41	18.32	baseline baseline	0.00	-	-0.26	[-0.48, -0.05] [-0.67, 0.37]
Rahmani, S. et al. 2015 Berglund, C. et al. 2007	12	11.11 8.94 81.20 18.90	12	12.50 83.60	9.05	baseline	0.00	-	-0.15	[-0.95; 0.65] [-0.47; 0.23]
Liu, T. et al., 2019 Repedo E.L. et al., 2007	49	71.18 18.38	53	69.23	22.04	baseline	0.00	*	0.10	[-0.29; 0.48] [-0.27; 0.57]
Penedo, FJ, et al., 2020 Guo, Z, et al., 2013	95	-20.03 3.80	97	-20.48	374	baseline	0.00	Ē	0.11	[-0.17, 0.40]
Cengiz, HO, et al., 2023 Penedo, FJ, et al., 2007	32 41	12.90 5.40	33 30	9.75	5.22	baseline followup	0.00	-	0.59	[0.09, 1.08] [-0.92; 0.04]
Berglund, G. et al. 2007 Reich, RR, et al. 2016	39 167	81.60 20.10 71.33 19.41	150 155	87.80 72.71	18.00 19.13	followup followup	48.00 12.00	*	-0.33 -0.07	[-0.69, 0.02] [-0.29; 0.15]
Rahmani, S. et al. 2015 Reich, RR, et al. 2016	12 167	12.00 48.61 70.87 18.02	12 155	12.00 69.36	23.51 18.78	tollowup tollowup	16.00 6.00	-	0.00	[-0.80; 0.80] [-0.14; 0.30]
Hernandez, EG, et al. 2018	28	14.00 4.69	28	13.32	532	followup	24.00	-	0.13	[-0.39; 0.66]
Penedo, FJ, et al., 2018 Denedo, FJ, et al., 2020 Duo, Z, et al., 2013	28 95 99	-19.20 3.90	28 97 99	-20.43	4.03 3.84 14.00	followup	48.00		0.32	[0.03; 0.60] [0.33: 0.94]
Liu, T, et al., 2019 Cengiz, HO, et al., 2023	49 32	63.49 13.78 13.56 5.78	53 33	51.93 8.75	14.62	followup	9.00		0.81	[0.40; 1.21] [0.36; 1.36]
Peng, L, et al., 2022 Peng, L, et al., 2022	28 28	80.95 13.20 83.33 14.87	29 29	70.12 69.26	9.05	followup	4.00		0.95	[0.40; 1.50]
Liu, T. et al., 2019 Rahmani, S. et al. 2015	49 12	74.12 9.50 56.94 11.14	53 12	56.57 22.91	16 10 10 73	followup followup	12.00 8.00	*	1.31	[0.88, 1.73] [1.78, 4.23]
Henderson, VP, et al., 2013 Random effect	53 1592	18.00 0.40	58 1784	16.90	0.30	followup	16.00	*	3.11 0.58	[2.55; 3.67] [0.21: 0.95]
Prediction Interval										[-0.06; 3.03]
Takano, T. et al., 2021 Willems, R. at -1, 2048	31	74 70 24 61	38	83.80	14.73	baseline	0.00	-	-0.46	[-0.94; 0.03]
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124	60.00 18.00 64.00 22.00	121	56.00 63.00	21.00	baseline	0.00		0.20	[-0.05; 0.46] [-0.20; 0.30]
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124 124	62.00 21.00 65.00 22.00	121 121	59.00 61.00	23.00 24,00	tollowup tollowup	1.00 7.00		0.14	[-0.11; 0.39] [-0.08; 0.42]
Hauffman, A, et al., 2020 Takano, T, et al., 2021	124 31	64.00 23.00 90.10 14.20	121 39	59.00 75.40	25.00	followup followup	10.00 24.00	퇻	0.21 0.27	[-0.04, 0.46] [-0.21, 0.74]
Takano, T, et al., 2021 Willems, R, et al., 2016	31 188	84.20 13.36 84.90 2.20	38 221	77.30 77.10	16.09 2.50	followup	12.00 24.00		0.48 3.29	[-0.02, 0.94] [.2.99, 3.59]
Prediction Interval	1089		1161						0.53	[-1.30; 2.43] [-2.96; 4.03]
Random effect Prediction interval	10873		11302				1.00	4	0.49	[0.31; 0.67] [-0.80; 1.78]
							г -4	-2 0 2	4	e anno 1500 mil
							In favor of	control group In favor of inte	rvention	group

Figure S10.2. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the type subgroups as predicted at week 12 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S10.3.T24

Study	Experimenta Patient N Mean	l SD Patient	Control N Mean SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
individual Zhao,X, et al. 2015	62 5.41 1	.79 52	7.24 2.31	baseline	0.00		-0.88	[-1.25; -0.51]
Van der Meulen, IC, et al., 2013 Selinictaki, T, et al., 2021 Mel ochlag, 84, et al., 2001	27 55.10 2 296 46.00 2	40 91	74.20 20.9	baseline baseline	0.00	*	-0.87	[-1.18; -0.56] [-1.26; -0.15]
Serfaty M, et al., 2018	20 12.30 5	20 22	13.60 4.90	baseline	0.00	*	-0.25	[-0.86; 0.36] [-0.86; 0.47]
Nápoles AM, et al. 2015 Zaman, ADGNM, et al. 2021	76 12.07 4	91 75 90 45	12.85 5.14	baseline	0.00	3	-0.16	[-0.48; 0.16] [-0.55; 0.29]
Qiu, H, et al., 2018 II Dirksen, S. et al, 2007	98 1150 6 34 20.10 2	30 196 80 38	12.22 6.56 20.40 3.10	baseline baseline	0.00	-	-0.11 -0.10	(-0.35; 0.13) (-0.56; 0.36]
Fang, P, et al., 2020 Oiu, H, et al., 2018 I	60 46 14 5 98 11.72 6	12 60 65 198	48.55 5.23 12.22 6.56	baseline baseline	0.00 0.00	莆	-0.08 -0.08	[-0.44; 0.28] [-0.32; 0.17]
Johansson, B. et al., 2008 Thomas, NE, et al., 2012	128 74.00 2 64 16.50 5	.00 116 60 88	75.00 23.0 16.70 5.30) baseline baseline	0.00		-0.04	[-0.29; 0.21] [-0.36; 0.29]
Klafke, N, et al., 2019 Rome II. OD at al., 2019	120 50.00 2	1.00 114	50.70 23.4 50.70 26.5	baseline	0.00		-0.03	[-0.36, 0.30] [-0.28, 0.23]
Wu, Q. et al., 2021 Circle, A. et al., 2021	43 62.34 6	20 43 76 43	62 45 6.63 70 70 10 10 10	baseline	0.00		-0.02	[-0.54, 0.50] [-0.44, 0.41]
Girgis, A, et al., 2009 I. Chan, et al. 2005	110 00.70 2 80 58.10 4	.60 117 .50 75	79.70 22.7	baseline B baseline	0.00		0.04	[-0.22; 0.31]
Braeken APB, et al. 2013 Qin, X, et al., 2017	136 78.40 2 50 73.61 1	.77 144 .68 50	75.12 24.1 72.41 9.34	5 baseline baseline	0.00	薯	0.10	[-0.13; 0.34] [-0.27; 0.51]
Klinkhammer-Schalke, M et al., 2012 Schofteld, P, et al., 2013	2 100 51.86 2 55 77.12 2	.03 100 .9Z 53	48.14 28.2 72.93 23.0	9 baseline 3 baseline	0.00 0.00	륟	0.13 0.18	[-0.15; 0.41] [-0.20; 0.56]
Yun et al., 2017 Kim, YH, et al., 2017	134 76.80 1 30 56.40 1	1.40 72 1.50 30	73.00 23.0) baseline) baseline	0.00	통	0.18	[-0.10; 0.47] [-0.32; 0.69]
Rodrigez, B. et al., 2014 Cro.O. et al., 2014	8 88.54 2	24 7	79.76 36.2	baseline	0.00		0.28	[-0.74; 1.30] [-0.48: 0.72]
Kim, SH, et al. 2021 Elvasi E et al. 2021	47 72.00 1	.70 47 10 20	65.40 21.0 9.60 2.60	baseline baseline	0.00	11 A	0.34	[-0.07; 0.74] [-0.28; 0.97]
Elyasi, F. et al. 20211 Zhao, X. et al. 2021	15 11.50 3 52 64.03 4	80 15 42 51	9.60 2.60 58.12 0.42	baseline baseline	0.00	*	0.57	-0.16; 130] [1.39; 2.32]
Lu, Z, et al., 201 Zaman, ACGNM, et al., 2021	203 79.70 3 42 47.70 9	60 103 70 46	71.30 4.90	followup	0.00 48.00		2.05	[1.76; 2.34] [-0.78; 0.07]
Zaman, ACGNM, et al., 2021 Serrary M, et al., 2018	42 46.20 1 20 15.40 4	.70 46 50 22	49.40 8.30 16.60 4.90	followup	24.00 12.00		-0.33 -0.25	[-0.75; 0.09] [-0.86; 0.36]
Serfaty M, et al., 2018 Chan, et al. 2005	20 15.60 4	20 22	16.50 3.70 73.94 39.3	followup followup	24.00	흉	-0.22	[-0.83; 0.38] [-0.50; 0.13]
McLachian, SA, et al., 2001 Klinkhammer-Schaike, M et al., 2012 Johannen, R. et al., 2009	296 45.80 3 2 100 55.34 2 100 00 1	1.20 154 1.29 100	58.55 28.2 95.00 10.0	a followup	12.00		-0.17	[-0.37; 0.02] [-0.39; 0.16]
Serfaty M, et al., 2018 Klatke N et al. 2019	20 15.60 5	50 22	17.10 4.40	tollowup	18.00		-0.10	[-0.70; 0.51] [-0.32: 0.19]
Chan, et al. 2005 Brasken APB, et al. 2013	80 75.77 7	38 75	79.44 64.0	a followup	72.00		-0.05	[-0.37; 0.26] [-0.28; 0.18]
Elyasi, F. et al., 2021 II. Chan, et al. 2005	20 9.40 2 80 76.73 5	10 20 102 75	9.50 2.60 78.59 56.2	followup followup	24.00 48.00	-	-0.04 -0.03	[-0.66; 0.58] [-0.35; 0.28]
Chan, et al. 2005 Beatty, L. et al. 2015	80 73.39 6 30 69.03 4	.76 75 81 30	75.30 55.8	followup	50.00 6.00	辜	-0.03 -0.03	[-0.35; 0.28] [-0.53; 0.48]
Chan. et al. 2005 Schofield, P, et al., 2013	80 68.59 4 55 75.31 2	.12 75 .19 53	69.81 48.8 75.51 22.2	a followup 2 followup	24 00 12 00	-	-0.03 -0.01	[-0.34; 0.29] [-0.39; 0.37]
Johansson, B, et al., 2008 Girgis, A, et al., 2009 II.	128 85.00 1 120 85.70 1	.00 118 .40 117	85.00 17.0 84.90 18.5) followup) followup	48.00	「「「」	0.00	[-0.25; 0.25] [-0.21; 0.30]
Zhao,X, et al. 2015 Qiu, H, et al., 2018 II Japaneses R, et al., 2009	62 7.91 2 98 12.32 9	24 62 06 196	7.81 1.96	followup	0.30	E	0.05	[-0.31; 0.40] [-0.19; 0.29]
Dirksen, S. et al. 2007 Chan et al. 2005	34 20.90 2	.30 38	20.60 4.00	fellowup	10.00	물	0.06	[-0.40; 0.52] [-0.40; 0.52]
Girgis, A. et al. 2009 I. Klinkhammer-Schalke, M et al. 2012	110 85.40 2 100 63.52 2	20 117	64.90 18.5 61.29 27.2	o followup	12.00	1	0.08	[-0.18; 0.34] [-0.20; 0.36]
Zaman, ACGNM, et al., 2021 Powell, CB, et al., 2008	42 47.60 9 21 18.50 5	80 46 40 43	46.80 10.4	followup	36.00 12.00	菫	0.08	[-0.34; 0.50] [-0.44; 0.61]
Aning, C, et al., 2007 Klatke, N, et al., 2019	47 76.00 2 120 59.10 2	1.00 38 1.40 114	74.00 20.0	o followup followup	12.00 24.00	葦	0.09	[-0.34; 0.52] [-0.15; 0.36]
Johansson, B, et al., 2008 Yun et al., 2017	128 83.00 1 134 78.00 1	.00 116 .90 72	81.00 19.0 75.90 18.3	o fellowup o fellowup	12.00 48.00	嘉	0.11	[-0.14; 0.36] [-0.18; 0.39]
Braeken APB, et al. 2013 Girgis, A. et al., 2009 II	136 83.66 2 120 86.70 1	1.80 144 1.70 117	81.23 20.6 84.40 18.9	0 followup 0 followup	48.00 24.00	훞	0.12	[-0.12; 0.35] [-0.13; 0.38]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 14.58 9 98 14.23 7 70 70 00 0	06 198 67 196	13.52 7.89	followup	24.00	蓋	0.13	[-0.12; 0.37] [-0.11; 0.38]
Zaman, ACGNM, et al., 2021 Domas, ML, et al., 2021	42 46.80 9	80 46	45.30 9.20	followup	12.00	-	0.14	[-0.26; 0.58] [-0.27: 0.49]
Girgis, A. et al., 20091. Kim, SH. et al., 2021	110 88.70 1 47 75.90 1	30 117	84.40 18.9) followup	24.00	<u>2</u>	0.24	[-0.02, 0.50] [-0.17, 0.65]
Klinkhammer-Schalke, II et al., 2012 Walczak A et al. 2017	100 68.50 2 61 17.88	.80 100 63 49	59.06 29.5	3 followup	36.00		0.26	[-0.02; 0.54] [-0.11; 0.65]
Rodrigez, B, et al., 2014 Nápoles AM, et al. 2015	8 88.54 2 76 15.93 3	24 7 52 75	79.76 38.2	a followup	0.10		0.28	[-0.74; 1.30] [-0.02: 0.62]
Arving, C, et al., 2007 Sandsund, C, et al., 2017	47 82.00 2 72 75.50 2	00 38	75.00 24.0	0 followup 0 followup	24.00	謹	0.32	[-0.11; 0.75]
Klinkhammer-Schalke, M et al., 2012 Klatke, N, et al., 2019	2 100 55.25 2 120 55.90 2	.31 100 .60 114	56.58 28.5 56.30 24.7	4 followup 5 followup	24.00 48.00	単単	0.36	[0.08; 0.64] [0.12; 0.64]
Schotleid, P, et al., 2013 Seliniotaki, T, et al., 2021	55 81.43 2 27 74.50 2	19 53 150 25	73.23 20.4 61.70 35.7	3 followup 3 followup	8.00 8.00		0.40	[0.02; 0.78] [-0.14; 0.95]
Napoles AM, et al. 2015 Qiu, H, et al., 2018 I.	76 16.39 3 98 15.42 9	30 75 06 198	14.89 3.95	followup	4.00	<u> </u>	0.41	0.09; 0.73]
Aving, C, et al., 2007 Kim, SH, et al., 2007	47 80.00 2	00 38	69.00 23.0 69.60 19.0) followup	4.00	8	0.50	0.06; 0.93
Kim, YH, et al., 2017 Rodrigez, B. et al., 2014	30 67.80 1	10 30	56 70 21.9	o followup	5.00		0.58	[0.07; 1.10] [-0.44: 1.65]
McCusker, J. et al., 2021 Qiu, H. et al., 2018 I	99 43.30 9 98 19.23 9	20 119	37.40 9.80 13.10 8.87	followup	24.00		0.62	0.34; 0.89]
Kim, YH, et al., 2017 Onu, H, et al., 2018 I	30 70.80 1 98 20.00 s	150 30 37 196	57.80 22.6 13.52 7.85	followup followup	9.00 24.00	1	0.68	0.15; 1.20]
Wu, Q, et al., 2021 Beatty, L. et al. 2015	43 81.54 8 30 72.59 4	21 43 87 30	74.21 7.33 67.43 4.89	followup followup	12.00 13.03	-	0.93	[0.49; 1.38] [0.50; 1.59]
Gao Q, et al. 2020 Zhou, J, et al., 2020	40 -49.55 4 59 84.91 9	20 40 .32 59	-53.56 3.25 55.54 7.29	followup	4.00 2.00	*	1.06	[0.59; 1.53] [0.71; 1.49]
Bealty, L. et al. 2015 Qin, X, et al., 2017	30 76.54 4 50 90.72 8	22 30 27 50	71.38 4.21	followup 1 followup	26.07	*	1.21	[0.66; 1.76] [1.18; 2.09]
Lu, Z, et al., 201 van der Meulen, IC, et al., 2013	203 85.40 3	00 91	77.60 5.60	tollowup	9.00		1.80	[1.52, 2.08] [2.24; 3.05]
Zhao, X, et al., 2021 Handom effect	52 71.02 2 8±02	.31 51	58.91 5.21	tollowup	12.00	. *	2.99	[2.42; 3.56]
Prediction Interval	1. TANE 2.	Sulf					100/10	[1.00; 1.59]
group Reich, RR, et al. 2016	107 03.83 1	.42 155	68.57 18.3	2 baseline	0.00	-	-0.26	[-0.48; -0.05]
Peng, L, et al., 2022 Rahmani, S, et al. 2015	28 69.94 1 12 11.11 8	94 12	72.41 16.0	baseline baseline	0.00		-0.15	-0.67; 0.37] [-0.95; 0.65]
Berglund, G. et al. 2007 Hernandez, EG, et al. 2018	39 81.20 1 28 13.07 5	1.90 150 26 28	83.60 19.7 13.39 4.94	baseline baseline	0.00	-	-0.12	[-0.47; 0.23] [-0.59; 0.46]
Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2020	49 /1.18 1 41 -19.24 4 95 -20.02 1	04 30	-19.63 3.43	baseline	0.00		0.10	[-0.28, 0.48] [-0.37, 0.57]
Guo, Z. et al., 2013 Cenniz HO et al. 2023	69 72.57 1 32 12.90 5	40 33	70.77 14.7	1 baseline	0.00	2	0.13	[-0.16; 0.43]
Penedo, FJ, et al., 2007 Berglund, G, et al. 2007	41 -20.73 3 39 81.60 2	.31 30 .10 150	-19.20 3.62 87.80 18.0	followup followup	12.00 48.00		-0.44	(-0.92; 0.04) (-0.69; 0.02)
Reich, RR, et al. 2016 Rahmani, S, et al. 2015	167 71.33 1 12 12.00 4	L41 155 L61 12	72.71 19.1	3 followup 1 followup	12.00 16.00		-0.07	[-0.29; 0.15] [-0.80; 0.80]
Reich, RR, et al. 2016 Penedo, FJ, et al., 2020	167 70.87 1 95 -20.18 3	1.02 155 .80 97	69.35 18.7 -20.52 3.84	a followup	5.00 24.00	業	0.08	[-0.14; 0.30] [-0.17; 0.40]
Hemandez, EG, et al. 2018 Hemandez, EG, et al. 2018	28 14.00 4 28 16.12 4	69 28 09 28	13.32 5.32	followup	24.00 8.00	音	0.13	[-0.39; 0.66] [-0.21; 0.84]
Guo, Z. et al., 2013	89 74.18 1	43 89	66 03 14.0	followup	2.00	1	0.64	0.33, 0.94]
Cengiz HO, et al. 2023 Peng L et al. 2022	32 13.56 5 28 80.95 1	78 33	8 75 5.14	followup	8.00	*	0.87	0.36; 1.38]
Peng, L, et al., 2022 Liu, T, et al., 2019	28 83.33 1 49 74.12 9	.87 29 50 53	69.25 8.94 56.57 16.1	followup followup	0.10	*	1.14	0.57; 1.70]
Rahmani, 8, et al. 2015 Henderson, VP, et al., 2013	12 56.94 1 53 18.00 0	.14 12 40 58	22.91 10.7 16.90 0.30	3 followup followup	8.00 16.00		→ 3 00 - 3 11	[1.78; 4.23]
Random effect Prediction interval	1592	1784				-	0.46	[0.05; 0.87] [0.96; 1.09]
self-help Takana T stal, 2021	24 74 70 2	164	DI OL TAT	2 passiling	0.00		0.45	1004-0021
Willems, R, et al., 2021 Hauffman, A, et al., 2016	198 65.00 2	.60 221	65.00 2.30 55.00 21.0	baseline	0.00		-0.33	[-0.53; -0.14] [-0.55; -0.46]
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124 64.00 2 124 62.00 2	.00 121	63.00 21.0 59.00 23.0) followup	4.00		0.05	[-0.20; 0.30] [-0.11; 0.39]
Hauffman, A. et al., 2020 Hauffman, A. et al., 2020	124 65.00 2 124 64.00 2	100 121 100 121	61.00 24.0 59.00 25.0	tollowup followup	7.00 10.00	14 A	0.17	[-0.08; 0.42] [-0.04; 0.46]
Takano, T, et al., 2021 Takano, T, et al., 2021	31 80.10 1 31 84.20 1	20 38 30 38	75.40 19.6 77.30 16.0	5 followup 9 followup	24.00 12.00	*	0.27	[-0.21; 0.74] [-0.02; 0.94]
Willems, R. et al., 2016 Random offect	188 84.90 2 1089	20 221 1161	77.10 2.50	followup	24.00		8 3.29 0.41	[2.99; 3.59] [-1.10; 1.99]
Production interval Random offert	10873	4430					0.96	[-2.38; 3.21]
Prediction interval	10000	11302			3		91.9 T	[-0.97; 1.70]
					In favor of	4 -2 0 2 Control group In favor of int	4 ervention	group

Figure S10.3. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the type subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S10.4.T48

Study	Ex Patient N	perimental I Mean SD	Patient N	Control Mean SD	follow-up	Follow-up time	SMD of Interested event	SMD	95%-CI
individual Zhao,X, et al. 2015	62	5.41 1.79	62	7.24 2.31	baseline	0.00	*	-0.88	[-1.25; -0.51]
van der Neulen, IC, et al., 2013 Seliniotaki, T, et al., 2021	88	64.80 2.40 56.10 29.10	91 26	66.90 2.40 74.20 20.90	baseline baseline	0.00	-	-0.87	[-1.18; -0.56] [-1.26, -0.15]
Seifaly M, et al., 2018	296	46.00 29.20	154	13.60 4.90	baseline	0.00	-	-0.56	[-0.76; -0.36] [-0.86; 0.36]
Nápoles AM, et al. 2017 Nápoles AM, et al. 2015	76	12.07 4.91	49 75	12.86 5.14	baseline	0.00	Ē	-0.21	[-0.48; 0.16]
Olu H, et al., 2018 II Distrog. 9, et al. 2007	98	11.50 6.30	196	12.22 6.56	baseline	0.00		-0.13	[-0.35, 0.13] [-0.56, 0.28]
Fang P, et al. 2020	60	46.14 5.12	60	46.55 5.23	baseline	0.00		-0.08	[-0.44; 0.28] [-0.32; 0.17]
Johansson, B, et al., 2008 Thomas ML et al. 2012	128	74.00 23.00	116	75.00 23.00	baseline baseline	0.00		-0.04	-0.29; 0.21] -0.36; 0.29]
Sandsund, C. et al., 2017 Klatke, N. et al., 2019	72	67.10 25.30 50.00 26.00	70 114	67.90 23.40 50.70 26.50	baseline baseline	0.00	1	-0.03	[-0.36; 0.30] [-0.28; 0.23]
Powell, CB, et al., 2008 Wu, O, et al., 2021	21 43	16.10 4.20 62.34 6.76	43 43	16.20 5.00 62.45 6.63	baseline baseline	0.00	*	-0.02	[-0.54; 0.50] [-0.44, 0.41]
Girgis, A. et al., 2009 II. Girgis, A. et al., 2009 I	120 110	79.90 20.30 80.70 21.60	117 117	79.70 22.70 79.70 22.70	baseline baseline	0.00	2	0.01 0.04	[-0.25: 0.26] [-0.22: 0.31]
Chan, et al. 2005 Braeken APB, et al. 2013	80	58.10 45.50 78.40 20.77	75 144	54.50 48.48 76 12 24 16	baseline	0.00		0.07	[-0.24: 0.39] [-0.12: 0.34]
Klinkhammer-Schalke, M et al., 2012	100	51.86 29.03	100	48 14 28 29	baseline	0.00		0.12	[-0.27, 0.51] [-0.15, 0.41]
Yun et al., 2017	134	76.80 19.40	72	73.00 23.00	baseline	0.00	<u>.</u>	0.18	[-0.10, 0.47]
Arving, C, et al., 2017 Pedrings, B, et al., 2017	47	69.00 25.00 99.54 22.24	38	63 00 18 00 70 76 26 29	baseline	0.00	100	0.19	[-0.32, 0.08] [-0.16, 0.70]
Gao Q, et al. 2020 Kim SH et al. 2021	40	-56.85 4.66	40	-58.20 4.78	baseline	0.00	100	0.28	[-0.16, 0.72] [-0.07, 0.74]
Elyasi, F. et al., 2021 I. Elyasi, F. et al., 2021 I.	20	10 50 310	20	9.60 2.60	baseline	0.00		0.34	[-0.28: 0.97] [-0.16: 1.30]
Zhao, X, et al., 2021 Lu, Z, et al., 201	52 203	64.03 4.42 79.70 3.60	51 103	58.12 0.42 71.30 4.90	baseline baseline	0.00		1.86	[1.39; 2.32] [1.76; 2.34]
Zaman, ACGNM, et al., 2021 Zaman, ACGNM, et al., 2021	42 42	47.70 9.70 46.20 10.70	46 46	50.80 7.50 49.40 8.30	followup followup	48.00 24.00	*	-0.36	[-0.78: 0.07] [-0.75: 0.09]
Seifaly M, et al., 2018 Seifaly M, et al., 2018	20 20	15.40 4.50 15.60 4.20	22 22	16.60 4.90 16.50 3.70	fellowup fellowup	12.00 24.00		-0.25	[-0.86; 0.36] [-0.83; 0.38]
Chan, et al. 2005 McLachlan, SA, et al., 2001	80 296	65.70 47.01 45.80 30.20	75 154	73.94 39.30 50.70 25.00	fellowup fellowup	12.00 24.00		-0.19 -0.17	[-0.50, 0.13] [-0.37, 0.02]
Klinkhammer-Schalke, M et al., 2012 Johansson, B, et al., 2008	100	55.34 28.29 83.00 18.00	100	58.56 28.29 85.00 19.00	fellowup fellowup	12.00 24.00		-0.11	[-0.39, 0.16] [-0.36, 0.14]
Senaty M, et al., 2018 Klafke, N, et al., 2019	20 120	16.60 5.50 62.80 22.30	22 114	17.10 4.40 64.20 22.40	followup	18.00		-0.10 -0.06	[-0.70, 0.51] [-0.32, 0.19]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	75.77 73.38 78.38 22.75	75 144	79.44 64.08 79.46 20.68	followup followup	72.00		-0.05	-0.37: 0.26 [-0.28: 0.18]
Elyasi, F. et al., 2021 II. Chan, et al. 2005	20 80	9.40 2.10 76.73 57.02	20 75	9.50 2.60 78.59 56.21	followup	24.00 48.00	1	-0.04	[-0.66; 0.58] [-0.35; 0.28]
Gnan, et al. 2005 Beatty, L. et al. 2015	80 30	73.39 57.76 69.03 4.81	75	75.30 55.80 69.16 4.79	tollowup	60.00	-	-0.03	[-0.35; 0.28] [-0.53; 0.48]
Schofield, P, et al. 2013	55	06.59 48.12 75.31 22.19	75 53	09.81 48.88 75.51 22.22	followup	12.00	-	-0.03	-0.34, 0.29 [-0.39, 0.37]
Girgis, A. et al., 2009 I	120	85.00 17.00	116	84.90 18.50	followup	48.00	2	0.00	[-0.25; 0.25]
Zhao, X, et al. 2015 Qiu, H, et al., 2018 II.	98	12 32 9.06	196	7.81 1.96	followup	4.00	畜	0.05	[-0.31, 0.40] [-0.19, 0.29]
Dirksen, S. et al. 2007 Chan at al. 2005	34	20 80 2 30	38	20.60 4.00	followup	10.00		0.06	[-0.40; 0.52]
Girgis, A. et al., 2009 I. Klinkhammer, Scholke, M. et al., 2012	110	86 40 20 20	117	84.90 18.50	followup	12.00	-	0.08	[-0.18, 0.34]
Zaman, ACGNM, et al., 2021 Powell, CP, et al., 2009	42	47.60 8.80	46	46.80 10.40	followup	30.00	*	0.08	[-0.34, 0.50] [-0.34, 0.50]
Arving, C. et al., 2007 Klatka, N. et al., 2019	47	76.00 24.00	38	74.00 20.00	followup	12.00	*	0.09	[-0.34: 0.52]
Johansson, B, et al., 2008 Yun et al., 2017	128	83.00 18.00	115	81.00 19.00	followup	12.00	菫	0.11	[-0.14; 0.35] [-0.18: 0.39]
Braeken APB, et al. 2013 Girois A et al. 2009 II	136	83.66 20.80	144	81.23 20.60	followup	48.00	1	0.12	[-0.12; 0.35]
Qiu, H. et al., 2016 II. Qiu, H. et al., 2018 II.	98 98	14.58 9.06	195 195	13.52 7.89	followup	24.00 12.00	-	0.13	[-0.12: 0.37] [-0.11: 0.38]
Sandsund, C. et al., 2017 Zaman, ACGNM, et al., 2021	72 42	70.00 23.90 46.80 9.80	70 46	66.40 26.20 45.30 9.20	fellowup fellowup	12.00	*	0.14	[-0.19, 0.47] [-0.26, 0.58]
Thomas, ML, et al., 2012 Girgis, A, et al., 2009 I	64 110	17.60 5.30 88.70 17.30	88 117	16.80 4.90 84.40 18.90	fellowup	12.00 24.00	*	0.16	[-0 17; 0.48] [-0 02; 0.50]
Kim, SH, et al., 2021 Klinkhammer-Schalke, M et al., 2012	47	75.90 16:30 66:50 26:80	47	71.70 18.40 59.06 29.53	fellowup fellowup	20.00 36.00	1	0.24 0.26	[-0.17; 0.65] [-0.02; 0.54]
Walczak, A. et al., 2017 Rodrigez, B. et al., 2014	61 8	17.88 4.63 88.54 22.24	49 7	16.61 4.80 79.76 36.28	fellowup fellowup	4 00 0 10	-	0.27	[-0.11: 0.65] [-0.74: 1.30]
Nápoles AM, et al. 2015 Arving, C, et al., 2007	78 47	15.93 3.52 82.00 20.00	75 38	14.73 4.33 75.00 24.00	fellowup fellowup	12:00 24:00	#-	0.30 0.32	[-0.02, 0.62] [-0.11, 0.75]
Sandsund, C. et al., 2017 Klinkhammer-Schalke, M et al., 2012	100	75.50 20.20 66.25 25.31	100	56.58 28.54	followup	24.00 24.00		0.35	[0.02; 0.69] [0.08; 0.64]
Schofield, P. et al., 2013	55	65.90 25.60 81.43 20.19	53	56.30 24.70 73.23 20.40	followup	48.00 8.00		0.38	[0.12: 0.64] [0.02: 0.78]
Nápoles AM, et al. 2015 Oliv H. et al. 2015	76	16.39 3.30	75	14.89 3.95	followup	24.00		0.41	[0.09, 0.73]
Elyasi, F, et al., 2021 I Aning, C, et al., 2027 I	15	11.00 3.40	15	9.50 2.60	followup	24.00		0.48	[-0.25, 1.21]
Kim, SH, et al., 2021 Kim, YH, et al., 2017	47 30	79.00 15.70 67.80 15.10	47 30	69.60 18.90 56.70 21.90	followup	8.00	1000	0.54	0 12 0 95
Rodrigez, B, et al., 2014 McCusker, J, et al., 2021	8 99	93.33 10.87 43.30 9.20	7	80 56 26 79 37 40 9 80	followup	2.00		0.60	[-0.44, 1.65]
Oiu, H. et al., 2018 I Kim, YH, st al., 2017	98 30	19.23 976 70.80 14.50	196 30	13.10 8.87 57.80 22.60	fallowup fallowup	12.00 9.00		0.67	0.42, 0.91
Qiu, H, et al., 2018 I Wu, Q, st al., 2021	98 43	20.00 8.37 81.54 8.21	196 43	13.52 7.89 74.21 7.33	fellowup	24.00 12.00	*	0.80	[0.55; 1.05] [0.49; 1.38]
Beatty, L. et al. 2015 Gao Q, et al. 2020	30 40	72.59 4.87	30 40	67.43 4.89 -53.56 3.26	followup followup	13.03 4.00		1.04	[0.50; 1.59] [0.59; 1.63]
Zhou, J. et al., 2020 Beatty, L. et al. 2015	59	64.81 9.32 76.54 4.22	59 30	55.54 7.29 71.36 4.21	followup followup	2.00 26.07	- 11	1.10	[0.71; 1.49] [0.66, 1.76]
Qin, X, et al., 2017 Lu, Z, et al., 201	50 203	90.72 8.27 85.40 3.50	50 103	75.60 10.01	followup	2.00	<u> </u>	1.63	[1.18; 2.09] [1.52; 2.08]
van der Neulen, IC, et al., 2013 Fang, P, et al., 2020	60	84.90 3.00 63.52 6.47	91 60	77.20 2.80 47.56 5.14	followup	48.00	-	2.64	[2:24; 3:05] [2:21, 3:21]
Zhao, X, et al., 2021 Random effect	52 8192	/102 231	8357	58.91 5.21	Tollowup	12.00	\$ [*]	0.17	[2.42, 3.56] [-0.18; 0.52]
group									Contra (1997)
Reich, RR, et al. 2018 Peng, L. et al., 2022	167	63.83 17.42 69.94 16.25	155 29	68.57 18.32 72.41 16.08	baseline baseline	0 00 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0		-0.26 -0.15	[-0.48; -0.05] [-0.67; 0.37]
Rahmani, S. et al. 2015 Berglund, G. et al. 2007	12 39	1111 894 8120 1890	12 150	12.50 9.05 83.60 19.70	baseline baseline	0.00		-0.15	[-0.95; 0.65] [-0.47; 0.23]
Hemandez, EG, et al. 2018 Liu, T. et al., 2019	28	13.07 5.26 71.18 18.38	28 53	13.39 4.94 69.23 22.04	baseline baseline	0.00	幸	-0.06 0.10	[-0.59; 0.46] [-0.29; 0.48]
Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2020	41 95	-19.24 4.04 -20.03 3.80	30 97	-19.63 3.43 -20.46 3.74	baseline baseline	0.00		0.10 0.11	[-0.37: 0.57] [-0.17: 0.40]
Guo, Z, et al., 2013 Cengiz, HO, et al., 2023	89 32	72.57 12.51 12.90 5.40	89 33	70.77 14.71 9.75 5.22	baseline baseline	0.00		0.13 0.59	[-0.16; 0.43] [0.09; 1.08]
Penedo, FJ, et al., 2007 Berglund, G. et al., 2007	41 39	-20.73 3.31 91.60 20.10	30	-19.20 3.62 97.90 18.00	followup followup	12.00 48.00		-0.44	[-0.92; 0.04] [-0.69; 0.02]
Reich, RR, et al. 2016 Rahmani, S, et al. 2015	167	71.33 19.41 12.00 48.61	155	72.71 19.13 12.00 23.61	followup	12.00		-0.07	[-0.29, 0.15] [-0.80, 0.80]
Reich, RR, et al. 2016 Penedo, FJ, et al., 2020	95	70.87 18.02 -20.18 3.80	155	69.36 18.78 -20.62 3.84	followup	8.00 24.00	튪	0.08	[-0 14, 0 30] [-0 17, 0 40]
Hemandez, EG, et al. 2018 Hemandez, EG, et al. 2018	28	16.12 4.09	28	14.72 4.63	followup	8.00		0.13	[-0.21; 0.84]
Guo, Z. et al., 2013	89	74 18 11 43	89	66.03 14.00	followup	200	-	0.64	0.33, 0.94
Cengiz, HO, et al., 2023 Peng L, et al., 2027	32	13.56 5.78	33	8.75 5.14	followup	8 00		0.87	0.36, 1.38]
Peng, L. et al., 2022	28	83.33 14.87	29	69.25 8.94 56.57 16.10	followup	0.10	*	1.14	[0.57, 1.70]
Rahmani, S. et al. 2015 Henderson, VP. et al. 2013	12	56.94 11 14	12	22.91 10.73	followup	8.00		+ 3.00	[1.78, 4.23]
Random effect Prediction interval	1592		1784				-	0,29	[-0.20; 0.78] [-1.14; 1.72]
self-help Takano, T, et al. 2021	31	74.70 24.61	39	83.80 14.73	baseline	0.00		-0.46	[-0.94; 0.03]
Willems, R. et al., 2016 Hauffman, A, et al., 2020	188 124	65.00 2.50 60.00 18.00	221 121	65.80 2.30 56.00 21.00	baseline baseline	0.00		-0 33 0.20	[-0.53, -0,14] [-0.05, 0.46]
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124 124	64.00 22.00 62.00 21.00	121 121	63.00 21.00 59.00 23.00	followup followup	4.00	1	0.05	[-0.20; 0.30] [-0.11; 0.39]
Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	124 124	65.00 22.00 64.00 23.00	121 121	61.00 24.00 59.00 25.00	followup followup	7 00	毫	0.17	[-0.08; 0.42] [-0.04; 0.46]
raxano, I, et al. 2021 Takano, T, et al. 2021	31 31	80.10 14.20 84.20 13.36	38	75.40 19.66 77.30 16.09	followup followup	24.00	Ē _	0.27	[-0.21, 0.74] [-0.02; 0.94]
wmems, rk, et al., 2016 Random effect Prediction interval	168 1099	84.90 2.20	221 1161	//.10 2.50	TOHOWUD	24.00	*	3.29 0.24	[∠.99; 3.59] [-1.03; 1.52] [-1.92; 3.40]
Random effect	10873		11302				•	0.18	[-0.17; 0.53]
Prediction interval						5	.2 0 2	1	[-1.25; 1.62]
						in favor of	control group in favor of inte	rvention	group

Figure S10.4. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the type subgroups as predicted at week 48 (postintervention). SMD -Standardized mean difference, C1 - confidence interval

S11.Subgroup analysis of Emotional QoL: Cancer stage

Figure S11.1.T0

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
								1 1		
early								_ !		
Zhao,X, et al. 2015	62	5.41 1.79	62	7.24	2.31	baseline	0.00		-0.88	[-1.25; -0.51]
Takano, T, et al., 2021	31	74.70 24.61	38	83.80	14.73	baseline	0.00		-0.46	[-0.94; 0.03]
Willems, R, et al., 2016	188	65.00 2.50	221	65.80	2.30	baseline	0.00	+	-0.33	[-0.53; -0.14]
Fang, P, et al.,2020	60	46.14 5.12	60	46.55	5.23	baseline	0.00	重日	-0.08	[-0.44; 0.28]
Wu, Q, et al., 2021	43	62.34 6.76	43	62.45	6.63	baseline	0.00		-0.02	[-0.44; 0.41]
Liu, T, et al., 2019	49	71.18 18.38	53	69.23	22.04	baseline	0.00		0.10	[-0.29; 0.48]
Yun et al., 2017	134	76.80 19.40	72	73.00	23.00	baseline	0.00		0.18	[-0.10; 0.47]
Rodrigez, B, et al., 2014	8	88.54 22.24	7	79.76	36.28	baseline	0.00		0.28	[-0.74; 1.30]
Zhao, X, et al., 2021	52	64.03 4.42	51	58.12	0.42	baseline	0.00	i -	1.86	[1.39; 2.32]
Beatty, L. et al. 2015	30	69.03 4.81	30	69.16	4.79	followup	6.00		-0.03	[-0.53; 0.48]
Zhao,X, et al. 2015	62	7.91 2.24	62	7.81	1.98	followup	0.30		0.05	[-0.31; 0.40]
Yun et al., 2017	134	78.00 19.90	72	75.90	18.30	followup	48.00		0.11	[-0.18; 0.39]
Takano, T. et al., 2021	31	80.10 14.20	38	75.40	19.66	followup	24.00		0.27	[-0.21: 0.74]
Rodrigez, B, et al., 2014	8	88.54 22.24	7	79.76	36.28	followup	0.10		0.28	[-0.74; 1.30]
Takano, T, et al., 2021	31	84.20 13.36	38	77.30	16.09	followup	12.00		0.46	[-0.02; 0.94]
Rodrigez, B. et al., 2014	8	93.33 10.87	7	80.56	26.79	followup	2.00	- <u>-</u> -	0.60	[-0.44: 1.65]
Liu, T. et al., 2019	49	63.49 13.78	53	51.93	14.62	followup	9.00		0.81	0.40: 1.21
Wu Q et al. 2021	43	81.54 8.21	43	74.21	7.33	followup	12 00		0.93	[0.49: 1.38]
Beatty, L. et al. 2015	30	72.59 4.87	30	67.43	4.89	followup	13.03	 	1.04	[0.50: 1.59]
Zhou J et al 2020	59	64.81 9.32	59	55 54	7 29	followup	2 00		1 10	[071 149]
Beatty L et al 2015	30	76 54 4 22	30	71 38	4.21	followup	26.07		1 21	[0.66: 1.76]
Liu Tetal 2019	49	74 12 9 50	53	56.57	16 10	followup	12.00		131	[0.88: 1.73]
Eand P et al 2020	60	62.52 6.47	60	47.56	5 14	followup	4.00		2.71	[2.24: 2.24]
Zhao X et al. 2021	52	71 02 2 31	51	59.01	5.21	followup	12.00		2.00	[2.21, 3.21]
Handarson VP at al. 2012	52	19.00 0.40	59	16.00	0.20	followup	16.00	11 -	2.33	[2.42, 3.30]
Willema D at al. 2015	100	04.00 0.40	004	77.40	0.50	followup	24.00		2.00	[2.00; 3.07]
Pandom offect	100	04.90 2.20	4540	11.10	2.00	lollowup	24.00		3.29	[2.99, 3.09]
Ranuom enect	1044		1019						1.05	[0.24, 1.03]
Prediction Interval										[-0.96; 3.03]
- due and										
advanced			~~					÷		
Serfaty M, et al., 2018	20	12.30 5.20	22	13.60	4.90	baseline	0.00		-0.25	[-0.86; 0.36]
Walczak, A, et al.,2017	61	16.76 4.80	49	17.73	4.56	baseline	0.00	1	-0.21	[-0.58; 0.17]
Penedo, FJ, et al., 2007	41	-19.24 4.04	30	-19.63	3.43	baseline	0.00	(二)	0.10	[-0.37; 0.57]
Penedo, FJ, et al., 2020	95	-20.03 3.80	97	-20.46	3.74	baseline	0.00	豊美	0.11	[-0.17; 0.40]
Schofield, P, et al., 2013	55	77.12 22.92	53	72.93	23.08	baseline	0.00	一 一 一	0.18	[-0.20; 0.56]
Lu, Z, et al., 201	203	79.70 3.60	103	71.30	4.90	baseline	0.00	_ : =	2.05	[1.76; 2.34]
Penedo, FJ, et al., 2007	41	-20.73 3.31	30	-19.20	3.62	followup	12.00		-0.44	[-0.92; 0.04]
Serfaty M, et al., 2018	20	15.40 4.50	22	16.60	4.90	followup	12.00		-0.25	[-0.86; 0.36]
Serfaty M, et al., 2018	20	15.60 4.20	22	16.50	3.70	followup	24.00		-0.22	[-0.83; 0.38]
Serfaty M, et al., 2018	20	16.60 5.50	22	17.10	4.40	followup	18.00	- <u></u> :	-0.10	[-0.70; 0.51]
Schofield, P, et al., 2013	55	75.31 22.19	53	75.51	22.22	followup	12.00		-0.01	[-0.39; 0.37]
Penedo, FJ, et al., 2020	95	-20.18 3.80	97	-20.62	3.84	followup	24.00		0.11	[-0.17; 0.40]
Walczak, A, et al.,2017	61	17.88 4.63	49	16.61	4.80	followup	4.00		0.27	[-0.11; 0.65]
Penedo, FJ, et al., 2020	95	-19.20 3.90	97	-20.43	3.84	followup	48.00		0.32	[0.03; 0.60]
Schofield, P, et al., 2013	55	81.43 20.19	53	73.23	20.40	followup	8.00		0.40	[0.02; 0.78]
Lu, Z, et al., 201	203	85.40 3.50	103	77.60	5.60	followup	9.00		1.80	[1.52; 2.08]
Random effect	1140		902						0.47	[-0.49; 1.43]
Prediction interval										[-1.57: 2.50]
survivor										
McLachlan, SA, et al., 2001	296	46.00 29.20	154	61.10	22.00	baseline	0.00		-0.56	[-0.76: -0.36]
Peng, L. et al., 2022	28	69.94 16.25	29	72.41	16.08	baseline	0.00		-0.15	1-0.67: 0.371
Qiu H et al 2018 II	98	11 50 6 30	196	12 22	6.56	baseline	0.00		-0 11	[-0.35:0.13]
Qiu, H. et al., 2018 I.	98	11.72 6.65	196	12.22	6.56	baseline	0.00		-0.08	[-0.32: 0.17]
Kim, SH, et al., 2021	47	72.00 17.70	47	65.40	21.00	baseline	0.00	I . .	0.34	[-0.07: 0.74]
Mclachlan SA et al 2001	296	45.80 30.20	154	50 70	25.00	followup	24.00		-0.17	[-0.37·0.02]
Qiu H et al 2018 II	98	12.32 9.06	196	11 90	7 89	followup	4 00		0.05	[-0.19: 0.29]
Oiu H et al. 2018 II	08	14.58 0.06	106	13.52	7.80	followup	24.00		0.13	[-0.12: 0.37]
Oiu H et al 2018 II	98	14.00 0.00	106	13 10	8.87	followup	12.00		0.13	L0 11: 0 381
Kim SH et al. 2021	47	75 90 16 30	47	71 70	18 40	followup	20.00		0.13	[-0.17: 0.65]
	00	15.30 10.50	106	11 00	7 00	followup	4.00	i i i i i i i i i i i i i i i i i i i	0.42	[0.10; 0.00]
Kim SH at al. 20101.	47	70.00 15.70	47	60.60	19 00	followup	9.00		0.54	[0.12: 0.05]
McCueker Latel 2021	00	43.30 0.20	110	27.40	0.00	followup	24.00	12	0.60	[0.34.0.00]
Oiu H at al 20101	99	43.30 9.20	106	12 10	9.00	followup	12 00	章	0.02	[0.34, 0.69]
Oiu Li atal 2010 I.	00	20.00 0.27	106	12.10	7.00	followup	24.00	12	0.07	[0.42, 0.91]
Giu, FI, et al., 2010 I.	30	20.00 0.37	190	13.32	1.09	followup	24.00		0.60	[0.00, 1.00]
Peng, L, et al., 2022 Bang, L, et al., 2022	28	00.95 13.20	29	10.12	9.05	followup	4.00		0.95	[0.40, 1.50]
Feng, L, et al., 2022	28	63.33 14.87	29	09.25	8.94	ronowup	0.10		1.14	[0.57, 1.70]
Random effect	1/00		2223						0.39	[-0.50; 1.27]
Prediction Interval								1		[-1.75; 2.52]
Deaders offer i								🚣	0.70	10.07. 1.107
Random effect	4384		4644						0.73	[0.07; 1.40]
Prediction interval							г		1	[-1.35; 2.82]
							-4	-2 0 2 4	+	
							in favor of	control group In favor of inter	vention	group

Figure S11.1. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer stage subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S11.2.T12

	Ex	perimental		Contro						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
								1 1		
early								_		
Zhao,X, et al. 2015	62	5.41 1.79	62	7.24	2.31	baseline	0.00		-0.88	[-1.25; -0.51]
Takano, T, et al., 2021	31	74.70 24.01	38	83.80	14.73	baseline	0.00		-0.40	[-0.94; 0.03]
Forg D at al. 2010	188	00.00 2.00	221	00.80	2.30	baseline	0.00	그	-0.33	[-0.53, -0.14]
Fang, P, et al., 2020	42	40.14 0.12	42	40.00	0.23	baseline	0.00	1	-0.08	[-0.44, 0.28]
Wu, Q, et al., 2021	43	71 10 10 20	43	60.00	0.03	baseline	0.00	重日	-0.02	[-0.44, 0.41]
Liu, 1, et al., 2019 Vup et al., 2017	49	76.00 10.30	23	72.00	22.04	baseline	0.00	돌	0.10	[-0.29, 0.40]
Pedrigez R et al. 2014	0	00 54 00 04	7	70.76	25.00	baseline	0.00		0.10	[-0.10, 0.47]
7bao X et al. 2014	52	6/ 03 / /2	51	59.10	0.42	baseline	0.00		1.20	[1.20: 2.22]
Beatty L et al. 2021	30	60.03 / 81	30	60.12	1 70	followup	6.00		-0.03	[-0.53; 0.48]
Zhao X et al. 2015	62	7 01 2 24	62	7.81	1 0 8	followup	0.30		0.05	[-0.31: 0.40]
Yun et al. 2017	134	78 00 19 90	72	75.90	18.30	followup	48.00	프	0.03	[-0.18: 0.39]
Takano T et al 2021	31	80 10 14 20	38	75.40	19.66	followup	24.00		0.27	[-0.21: 0.74]
Rodrigez B et al 2014	8	88.54 22.24	7	79.76	36.28	followup	0.10		0.28	I-0 74 1 301
Takano, T. et al., 2021	31	84.20 13.36	38	77.30	16.09	followup	12.00		0.46	[-0.02: 0.94]
Rodrigez, B. et al., 2014	8	93.33 10.87	7	80.56	26.79	followup	2.00		0.60	[-0.44: 1.65]
Liu, T. et al., 2019	49	63.49 13.78	53	51.93	14.62	followup	9.00	+	0.81	[0.40; 1.21]
Wu, Q, et al., 2021	43	81.54 8.21	43	74.21	7.33	followup	12.00		0.93	[0.49; 1.38]
Beatty, L. et al. 2015	30	72.59 4.87	30	67.43	4.89	followup	13.03		1.04	[0.50; 1.59]
Zhou, J, et al., 2020	59	64.81 9.32	59	55.54	7.29	followup	2.00		1.10	[0.71; 1.49]
Beatty, L. et al. 2015	30	76.54 4.22	30	71.38	4.21	followup	26.07	: .	1.21	[0.66; 1.76]
Liu, T, et al., 2019	49	74.12 9.50	53	56.57	16.10	followup	12.00		1.31	[0.88; 1.73]
Fang, P. et al., 2020	60	63.52 6.47	60	47.56	5.14	followup	4.00		2.71	[2.21: 3.21]
Zhao, X, et al., 2021	52	71.02 2.31	51	58.91	5.21	followup	12.00		2.99	[2.42; 3.56]
Henderson, VP, et al., 2013	53	18.00 0.40	58	16.90	0.30	followup	16.00		3.11	[2.55; 3.67]
Willems, R, et al., 2016	188	84.90 2.20	221	77.10	2.50	followup	24.00		3.29	[2.99; 3.59]
Random effect	1544		1519						1.15	[0.50; 1.80]
Prediction interval										[-0.76; 3.06]
advanced										
Serfaty M, et al., 2018	20	12.30 5.20	22	13.60	4.90	baseline	0.00		-0.25	[-0.86; 0.36]
Walczak, A, et al.,2017	61	16.76 4.80	49	17.73	4.56	baseline	0.00		-0.21	[-0.58; 0.17]
Penedo, FJ, et al., 2007	41	-19.24 4.04	30	-19.63	3.43	baseline	0.00		0.10	[-0.37; 0.57]
Penedo, FJ, et al., 2020	95	-20.03 3.80	97	-20.46	3.74	baseline	0.00		0.11	[-0.17; 0.40]
Schofield, P, et al., 2013	55	77.12 22.92	53	72.93	23.08	baseline	0.00		0.18	[-0.20; 0.56]
Lu, Z, et al., 201	203	79.70 3.60	103	71.30	4.90	baseline	0.00		2.05	[1.76; 2.34]
Penedo, FJ, et al., 2007	41	-20.73 3.31	30	-19.20	3.62	followup	12.00		-0.44	[-0.92; 0.04]
Serfaty M, et al., 2018	20	15.40 4.50	22	16.60	4.90	followup	12.00		-0.25	[-0.86; 0.36]
Serfaty M, et al., 2018	20	15.60 4.20	22	16.50	3.70	followup	24.00		-0.22	[-0.83; 0.38]
Serfaty M, et al., 2018	20	16.60 5.50	22	17.10	4.40	followup	18.00	- <u></u>	-0.10	[-0.70; 0.51]
Schofield, P, et al., 2013	55	75.31 22.19	53	75.51	22.22	followup	12.00		-0.01	[-0.39; 0.37]
Penedo, FJ, et al., 2020	95	-20.18 3.80	97	-20.62	3.84	followup	24.00	一一門	0.11	[-0.17; 0.40]
Walczak, A, et al.,2017	61	17.88 4.63	49	16.61	4.80	followup	4.00	콜	0.27	[-0.11; 0.65]
Penedo, FJ, et al., 2020	95	-19.20 3.90	97	-20.43	3.84	followup	48.00		0.32	[0.03; 0.60]
Schofield, P, et al., 2013	55	81.43 20.19	53	73.23	20.40	followup	8.00		0.40	[0.02; 0.78]
Lu, Z, et al., 201	203	85.40 3.50	103	77.60	5.60	followup	9.00		1.80	[1.52; 2.08]
Random effect	1140		902						0.58	[-0.23; 1.40]
Prediction interval										[-1.57; 2.74]
SURVIVOR			454		~~~~				0.50	
McLachian, SA, et al., 2001	296	46.00 29.20	154	51.10	22.00	paseline	0.00		-0.56	[-0.76; -0.36]
Peng, L, et al., 2022	28	69.94 16.25	29	/2.41	16.08	baseline	0.00		-0.15	[-0.67; 0.37]
Qiu, H, et al., 2018 II.	98	11.50 6.30	196	12.22	6.56	baseline	0.00	= :	-0.11	[-0.35; 0.13]
Vill, H, et al., 2018 I.	98	11.72 0.05	190	12.22	0.00	baseline	0.00		-0.08	[-0.32, 0.17]
Mal applan 24 at al. 2001	4/	45.00 17.70	41	50.70	21.00	following	0.00		0.34	[-0.07, 0.74]
Oiu H at al. 2019 II	290	40.80 30.20	104	11 00	25.00	followup	24.00	12	-0.17	[-0.37, 0.02]
Qiu, H, et al., 2018 II.	90	14.52 9.00	190	12.50	7.09	followup	4.00		0.05	[-0.19, 0.29]
	90	14.00 9.00	190	12.02	0.07	followup	24.00		0.13	[-0.12, 0.37]
Kim SH at al 2021	90 47	75 00 16 30	190	71 70	19 /0	followup	20.00		0.13	[-0.17: 0.65]
	0.2	15.42 0.06	106	11 00	7 90	followup	4.00		0.24	[0.18: 0.67]
Kim SH et al. 20101.	47	79.00 15.70	130	69.60	18 00	followup	8.00		0.54	[0.12: 0.05]
McCusker Letal 2021	00	43 30 9 20	110	37.40	9.80	followup	24.00	1	0.62	[0.34: 0.90]
Qiu H et al 2018 I	99	19.23 9.20	196	13 10	8.00	followup	12 00	章	0.02	[0.42: 0.09]
Qiu, H. et al., 2018 I	98	20.00 8.37	196	13.52	7.89	followup	24.00	1 🚡	0.80	[0.55; 1.05]
Peng L et al 2022	28	80.95 13.20	29	70 12	9.05	followup	4 00		0.95	[0.40 1.50]
Peng, L, et al., 2022	28	83.33 14.87	29	69.25	8,94	followup	0.10		1.14	[0.57; 1.70]
Random effect	1700	,	2223		2.07				0.50	[0.10: 0.91]
Prediction interval			LLEV						0.00	[-1.62: 2.62]
										, rior]
Random effect	4384		4644					\$	0.78	[0.34; 1.21]
Prediction interval									_	[-1.07; 2.63]
							Г		1	
							-4	-2 0 2 4	4	
							In favor of	control group In favor of inter	rventior	group

Figure S11.2. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer stage subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S11.3.T24

	Ex	periment	tal		Control	1					
Study	Patient N	Mean	SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early											
Zhao,X, et al. 2015	62	5.41	1.79	62	7.24	2.31	baseline	0.00		-0.88	[-1.25: -0.51]
Takano, T. et al., 2021	31	74.70	24.61	38	83.80	14.73	baseline	0.00		-0.46	1-0.94: 0.031
Willems, R. et al., 2016	188	65.00	2.50	221	65.80	2.30	baseline	0.00	+	-0.33	[-0.53] -0.14]
Fang P et al 2020	60	46 14	5 12	60	46 55	5.23	baseline	0.00		-0.08	1-0.44 0.281
Wu O et al 2021	43	62.34	6.76	43	62.45	6.63	haseline	0.00		-0.02	[0.44: 0.41]
Liu T at al. 2010	40	71 10	10.70	52	60.00	22.04	baseline	0.00	二二三	0.02	[0.20: 0.40]
Vup at al. 2017	124	76.00	10.30	72	72.00	22.04	baseline	0.00		0.10	[-0.29, 0.40]
Full et al., 2017	134	70.00	19.40	12	73.00	23.00	baseline	0.00		0.10	[-0.10, 0.47]
Rodrigez, B, et al., 2014	8	88.54	22.24		79.76	36.28	baseline	0.00		0.28	[-0.74; 1.30]
Znao, X, et al., 2021	52	64.03	4.42	51	58.12	0.42	baseline	0.00	1 5	1.86	[1.39; 2.32]
Beatty, L. et al. 2015	30	69.03	4.81	30	69.16	4.79	followup	6.00		-0.03	[-0.53; 0.48]
Zhao,X, et al. 2015	62	7.91	2.24	62	7.81	1.98	followup	0.30		0.05	[-0.31; 0.40]
Yun et al., 2017	134	78.00	19.90	72	75.90	18.30	followup	48.00		0.11	[-0.18; 0.39]
Takano, T, et al., 2021	31	80.10	14.20	38	75.40	19.66	followup	24.00		0.27	[-0.21; 0.74]
Rodrigez, B, et al., 2014	8	88.54	22.24	7	79.76	36.28	followup	0.10		0.28	[-0.74; 1.30]
Takano, T, et al., 2021	31	84.20	13.36	38	77.30	16.09	followup	12.00		0.46	[-0.02; 0.94]
Rodrigez, B, et al., 2014	8	93.33	10.87	7	80.56	26.79	followup	2.00		0.60	[-0.44; 1.65]
Liu, T, et al., 2019	49	63.49	13.78	53	51.93	14.62	followup	9.00		0.81	[0.40; 1.21]
Wu, Q. et al., 2021	43	81.54	8.21	43	74.21	7.33	followup	12.00		0.93	[0.49: 1.38]
Beatty L et al 2015	30	72 59	4 87	30	67 43	4 89	followup	13.03		1 04	[0.50 1.59]
Zhou I et al 2020	59	64.81	9.32	59	55.54	7 29	followup	2 00		1 10	[071 149]
Beatty L et al 2015	30	76.54	1 22	30	71 39	1 21	followup	26.07		1 21	[0.66: 1.76]
Liu T at al 2010	40	74 12	9.50	52	56.57	16 10	followup	12.00		1.21	[0.00, 1.70]
Liu, 1, et al., 2019	49	74.12	9.00	55	47.50	10.10	followup	12.00		1.31	[0.00, 1.73]
Fang, P, et al.,2020	60	03.52	0.47	60	47.50	5.14	followup	4.00		2.71	[2.21; 3.21]
Zhao, X, et al., 2021	52	/1.02	2.31	51	58.91	5.21	followup	12.00		2.99	[2.42; 3.56]
Henderson, VP, et al., 2013	53	18.00	0.40	58	16.90	0.30	followup	16.00		3.11	[2.55; 3.67]
Willems, R, et al., 2016	188	84.90	2.20	221	77.10	2.50	followup	24.00	1: =	3.29	[2.99; 3.59]
Random effect	1544			1519						1.10	[0.30; 1.89]
Prediction interval											[-0.84; 3.04]
advanced											
Serfaty M et al. 2018	20	12 30	5 20	22	13 60	4 90	baseline	0.00		-0.25	[-0.86 ⁺ 0.36]
Walczak A et al 2017	61	16 76	4 80	49	17 73	4.56	baseline	0.00		-0.21	1-0.58 0.171
Penedo El et al 2007	41	-10.24	4.04	30	-10.63	3/3	haseline	0.00		0.10	[-0.37: 0.57]
Penedo El et al. 2007	05	-20.03	3.90	07	-20.46	3.74	baseline	0.00		0.10	[-0.17: 0.40]
Schofield P et al. 2012	55	77 12	22.00	52	72.02	22.00	baseline	0.00	二二三	0.10	[-0.17, 0.40]
Scholield, F, et al., 2013	202	70.70	22.92	102	74.00	23.00	baseline	0.00	E E	0.10	[4.76: 0.34]
Lu, Z, et al., 201	203	19.70	3.00	103	10.00	4.90	baseline	0.00		2.05	[1.70, 2.34]
Penedo, FJ, et al., 2007	41	-20.73	3.31	30	-19.20	3.62	tollowup	12.00		-0.44	[-0.92; 0.04]
Serfaty M, et al., 2018	20	15.40	4.50	22	16.60	4.90	followup	12.00		-0.25	[-0.86; 0.36]
Serfaty M, et al., 2018	20	15.60	4.20	22	16.50	3.70	followup	24.00		-0.22	[-0.83; 0.38]
Serfaty M, et al., 2018	20	16.60	5.50	22	17.10	4.40	followup	18.00		-0.10	[-0.70; 0.51]
Schofield, P, et al., 2013	55	75.31	22.19	53	75.51	22.22	followup	12.00	一里	-0.01	[-0.39; 0.37]
Penedo, FJ, et al., 2020	95	-20.18	3.80	97	-20.62	3.84	followup	24.00		0.11	[-0.17; 0.40]
Walczak, A, et al.,2017	61	17.88	4.63	49	16.61	4.80	followup	4.00		0.27	[-0.11; 0.65]
Penedo, FJ, et al., 2020	95	-19.20	3.90	97	-20.43	3.84	followup	48.00		0.32	[0.03; 0.60]
Schofield, P, et al., 2013	55	81.43	20.19	53	73.23	20.40	followup	8.00		0.40	[0.02; 0.78]
Lu Z et al 201	203	85 40	3 50	103	77 60	5 60	followup	9.00		1 80	1 52 2 081
Random effect	1140			902						0.53	[-0.32: 1.38]
Drediction interval	1110			UUL						0100	[1 55: 2 61]
Frediction Interval											[-1.55, 2.01]
survivor											
Mel achian SA at al. 2001	206	46.00	20.20	154	61.10	22.00	hacolina	0.00		0.59	10.76: 0.261
Rong L at al 2002	290	60.04	16.05	20	72.44	16.00	baseline	0.00		-0.50	[-0.70, -0.30]
Peng, L, et al., 2022	28	09.94	10.25	29	12.41	10.08	baseline	0.00		-0.15	[-0.07, 0.37]
QIU, H, et al., 2018 II.	98	11.50	6.30	196	12.22	6.56	baseline	0.00	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	-0.11	[-0.35; 0.13]
Qiu, H, et al., 2018 I.	98	11.72	6.65	196	12.22	6.56	baseline	0.00		-0.08	[-0.32; 0.17]
Kim, SH, et al., 2021	47	72.00	17.70	47	65.40	21.00	baseline	0.00		0.34	[-0.07; 0.74]
McLachlan, SA, et al., 2001	296	45.80	30.20	154	50.70	25.00	followup	24.00	*	-0.17	[-0.37; 0.02]
Qiu, H, et al., 2018 II.	98	12.32	9.06	196	11.90	7.89	followup	4.00		0.05	[-0.19; 0.29]
Qiu, H, et al., 2018 II.	98	14.58	9.06	196	13.52	7.89	followup	24.00		0.13	[-0.12; 0.37]
Qiu, H, et al., 2018 II.	98	14.23	7.67	196	13.10	8.87	followup	12.00		0.13	[-0.11; 0.38]
Kim, SH, et al., 2021	47	75.90	16.30	47	71.70	18.40	followup	20.00		0.24	[-0.17; 0.65]
Qiu, H. et al., 2018 I.	98	15.42	9.06	196	11,90	7,89	followup	4.00	-	0.42	[0.18: 0.67]
Kim, SH, et al. 2021	47	79.00	15,70	47	69.60	18,90	followup	8.00		0.54	0.12: 0.951
McCusker et al 2021	00	43 30	9.20	110	37.40	9.80	followup	24.00		0.62	[0.34: 0.90]
	00	10.00	9.76	106	13 10	8 97	followur	12.00	1 🗐	0.67	[0.42: 0.04]
	00	20.00	g 27	106	13.52	7.00	followur	24.00	12	0.07	[0.55: 1.0F]
Repair at al. 2010 I.	30	20.00	12.00	20	70.40	0.05	follower	24.00		0.00	[0.00, 1.00]
Peng, L, et al., 2022	28	00.95	13.20	29	10.12	9.05	followup	4.00		0.95	[0.40, 1.50]
Peng, L, et al., 2022	28	83.33	14.87	29	69.25	8.94	ioliowup	0.10		1.14	[0.57; 1.70]
Random effect	1/00			2223						0.45	[-0.07; 0.97]
Prediction interval											[-1.52; 2.42]
Random effect	4384			4644						0.70	[0.08; 1.32]
Prediction interval										1	[-1.23; 2.63]
										1	
									-4 -2 0 2 4	4	

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S11.3. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer stage subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S11.4.T48

Study	Ex Patient N	perimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
oortu								1:		
eany Zhao X et al 2015	62	541 179	62	7 24	231	baseline	0.00	-	-0.88	[-1 25: -0.51]
Takano, T, et al., 2021	31	74.70 24.6	1 38	83.80	14.73	baseline	0.00		-0.46	[-0.94; 0.03]
Willems, R, et al., 2016	188	65.00 2.50) 221	65.80	2.30	baseline	0.00	-	-0.33	[-0.53; -0.14]
Fang, P, et al.,2020	60	46.14 5.12	2 60	46.55	5.23	baseline	0.00	畫	-0.08	[-0.44; 0.28]
Wu, Q, et al., 2021	43	62.34 6.70	5 43	62.45	6.63	baseline	0.00		-0.02	[-0.44; 0.41]
Liu, I, et al., 2019 Vun et al. 2017	49	76.20 10.4	8 53	69.23 73.00	22.04	baseline	0.00	革	0.10	[-0.29; 0.48]
Rodrigez B et al 2014	8	88 54 22 2	0 12 4 7	79.76	36.28	baseline	0.00	i	0.10	[-0.74: 1.30]
Zhao, X, et al., 2021	52	64.03 4.42	2 51	58.12	0.42	baseline	0.00	Ē —	1.86	[1.39; 2.32]
Beatty, L. et al. 2015	30	69.03 4.8	30	69.16	4.79	followup	6.00	<u>+</u>	-0.03	[-0.53; 0.48]
Zhao,X, et al. 2015	62	7.91 2.24	62	7.81	1.98	followup	0.30	높	0.05	[-0.31; 0.40]
Yun et al., 2017	134	78.00 19.9	0 /2	75.90	18.30	followup	48.00		0.11	[-0.18; 0.39]
Rodrigez B et al. 2021	31	80.10 14.2	0 38 4 7	79.76	36.28	followup	24.00		0.27	[-0.21; 0.74]
Takano, T, et al., 2021	31	84.20 13.3	6 38	77.30	16.09	followup	12.00		0.46	[-0.02; 0.94]
Rodrigez, B, et al., 2014	8	93.33 10.8	77	80.56	26.79	followup	2.00		0.60	[-0.44; 1.65]
Liu, T, et al., 2019	49	63.49 13.7	8 53	51.93	14.62	followup	9.00	11	0.81	[0.40; 1.21]
Wu, Q, et al., 2021	43	81.54 8.2	43	74.21	7.33	followup	12.00	11	0.93	[0.49; 1.38]
Zhou Letal 2015	30	6/ 81 0 3	50	55.54	4.89	followup	13.03		1.04	[0.50; 1.59]
Beatty L et al 2015	30	76 54 4 22	2 30	71.38	4.21	followup	26.07	_ <u></u>	1.10	[0.66: 1.76]
Liu, T, et al., 2019	49	74.12 9.50	53	56.57	16.10	followup	12.00	-	1.31	[0.88; 1.73]
Fang, P, et al.,2020	60	63.52 6.47	60	47.56	5.14	followup	4.00		2.71	[2.21; 3.21]
Zhao, X, et al., 2021	52	71.02 2.3	51	58.91	5.21	followup	12.00		2.99	[2.42; 3.56]
Henderson, VP, et al., 2013	53	18.00 0.40) 58	16.90	0.30	followup	16.00		3.11	[2.55; 3.67]
Willems, R, et al., 2016 Random offect	188	84.90 2.20	1510	//.10	2.50	tollowup	24.00	<u>-</u>	3.29	[2.99; 3.59]
Prediction interval	1344		1315						0.50	[-6.16: 7.16]
										[0110, 1110]
advanced										
Serfaty M, et al., 2018	20	12.30 5.20) 22	13.60	4.90	baseline	0.00		-0.25	[-0.86; 0.36]
Walczak, A, et al.,2017	61	16.76 4.80) 49	17.73	4.56	baseline	0.00		-0.21	[-0.58; 0.17]
Penedo El etal 2020	41	-19.24 4.04	F 30	-19.03	3.43	baseline	0.00		0.10	[-0.37, 0.57] [-0.17: 0.40]
Schofield, P. et al., 2013	55	77.12 22.9	2 53	72.93	23.08	baseline	0.00	포	0.18	[-0.20; 0.56]
Lu, Z, et al., 201	203	79.70 3.60) 103	71.30	4.90	baseline	0.00		2.05	[1.76; 2.34]
Penedo, FJ, et al., 2007	41	-20.73 3.3	30	-19.20	3.62	followup	12.00		-0.44	[-0.92; 0.04]
Serfaty M, et al., 2018	20	15.40 4.50) 22	16.60	4.90	followup	12.00		-0.25	[-0.86; 0.36]
Serialy M, et al., 2018 Seriaty M, et al., 2018	20	15.00 4.20) 22	17 10	3.70 4.40	followup	24.00		-0.22	[-0.83, 0.38] [-0.70: 0.51]
Schofield, P. et al., 2013	55	75.31 22.1	9 53	75.51	22.22	followup	12.00		-0.01	[-0.39: 0.37]
Penedo, FJ, et al., 2020	95	-20.18 3.80	97	-20.62	3.84	followup	24.00	美	0.11	[-0.17; 0.40]
Walczak, A, et al.,2017	61	17.88 4.63	3 49	16.61	4.80	followup	4.00	문	0.27	[-0.11; 0.65]
Penedo, FJ, et al., 2020	95	-19.20 3.90) 97	-20.43	3.84	followup	48.00	<u> </u>	0.32	[0.03; 0.60]
Scholleid, P, et al., 2013	202	81.43 20.1	9 53	77.60	20.40	followup	8.00		1 00	[0.02; 0.78]
Random effect	1140	00.40 0.00	902	11.00	5.00	lollowup	9.00		-0.07	[-3.24: 3.10]
Prediction interval										[-6.94; 6.80]
survivor								_		
McLachlan, SA, et al., 2001 Rong L et al. 2022	296	46.00 29.2	0 154 5 20	61.10	22.00	baseline	0.00		-0.56	[-0.76; -0.36]
Oiu H et al. 2018 II	98	11 50 6 30) 196	12.41	6.56	baseline	0.00		-0.15	[-0.35: 0.13]
Qiu, H, et al., 2018 I.	98	11.72 6.65	5 196	12.22	6.56	baseline	0.00	王	-0.08	[-0.32; 0.17]
Kim, SH, et al., 2021	47	72.00 17.7	0 47	65.40	21.00	baseline	0.00		0.34	[-0.07; 0.74]
McLachlan, SA, et al., 2001	296	45.80 30.2	0 154	50.70	25.00	followup	24.00		-0.17	[-0.37; 0.02]
Qiu, H, et al., 2018 II.	98	12.32 9.00	5 196	11.90	7.89	followup	4.00		0.05	[-0.19; 0.29]
Qiu, H, et al., 2018 II. Oiu H et al. 2018 II.	98	14.58 9.00) 190 7 106	13.52	7.89	followup	24.00	幸	0.13	[-0.12, 0.37]
Kim, SH, et al., 2021	47	75.90 16.3	0 47	71.70	18.40	followup	20.00	<u> </u>	0.24	[-0.17; 0.65]
Qiu, H, et al., 2018 I.	98	15.42 9.00	5 196	11.90	7.89	followup	4.00	le l	0.42	[0.18; 0.67]
Kim, SH, et al., 2021	47	79.00 15.7	0 47	69.60	18.90	followup	8.00		0.54	[0.12; 0.95]
McCusker, J, et al., 2021	99	43.30 9.20) 119	37.40	9.80	followup	24.00	=	0.62	[0.34; 0.89]
Qiu, H, et al., 2018 I. Qiu, H, et al. 2019 I.	98	20.00 0.2	196	13.10	8.87	followup	12.00	==	0.67	[0.42; 0.91]
Peng, L. et al. 2022	28	80.95 13.2	0 29	70 12	9.05	followup	4.00		0.95	[0.40; 1.00]
Peng, L, et al., 2022	28	83.33 14.8	7 29	69.25	8.94	followup	0.10	-	1.14	[0.57; 1.70]
Random effect	1700		2223	-					-0.15	[-2.49; 2.19]
Prediction interval										[-4.90; 4.60]
Dandom offect	4204		4644						0.20	1442 4 523
Prediction interval	4384		4044						0.20	[-1.13; 1.53]
							Г		1	[1100, 1110]
							-4	-2 0 2 4	4	
							In favor of	control group In favor of inter	ventior	n group

Figure S11.4. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer stage subgroups as predicted at week 48 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

S12.Subgroup analysis of Emotional QoL: Cancer type

Figure S12.1.T0

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast								_		
Seliniotaki, T, et al., 2021 Reich RR et al. 2016	27 167	56.10 29.10 63.83 17.42	26 155	74.20 68.57	20.90	baseline	0.00		-0.70	[-1.26; -0.15] [-0.48: -0.05]
Nápoles AM, et al. 2015	76	12.07 4.91	75	12.86	5.14	baseline	0.00	<u> </u>	-0.16	[-0.48; 0.16]
Peng, L, et al., 2022	28	69.94 16.25	29	72.41	16.08	baseline	0.00		-0.15	[-0.67; 0.37]
Qiu, H, et al., 2018 II.	98	11.50 6.30	196	12.30	6.56	baseline	0.00		-0.15	[-0.35; 0.13]
Dirksen, S. et al, 2007	34	20.10 2.80	38	20.40	3.10	baseline	0.00	*	-0.10	[-0.56; 0.36]
QIU, H, et al., 2018 I. Hernandez, EG, et al. 2018	98 28	11.72 6.65	28	12.22	6.56 4.94	baseline	0.00		-0.08	[-0.32; 0.17] [-0.59: 0.46]
Klafke, N, et al., 2019	120	50.00 26.00	114	50.70	26.50	baseline	0.00	<u></u>	-0.03	[-0.28; 0.23]
Wu, Q, et al., 2021 Klinkhammer-Schalke M et al. 2012	43 100	62.34 6.76 51.86 29.03	43 100	62.45 48 14	6.63 28.29	baseline	0.00	1	-0.02	[-0.44; 0.41] [-0.15: 0.41]
Kim, YH, et al., 2017	30	56.40 16.50	30	53.30	16.50	baseline	0.00	- E	0.19	[-0.32; 0.69]
Hoffman, CJ, et al., 2012	102	16.91 3.84	109	15.97	4.58	baseline	0.00	-	0.22	[-0.05; 0.49]
Kim, SH, et al., 2021	47	72.00 17.70	47	65.40	21.00	baseline	0.00		0.27	[-0.07; 0.74]
Elyasi, F, et al., 2021 II.	20	10.60 3.10	20	9.60	2.60	baseline	0.00		0.34	[-0.28; 0.97]
Cengiz, HO, et al., 2021 I.	32	12.90 5.40	33	9.60	2.00 5.22	baseline	0.00		0.57	[-0.16, 1.30]
Klinkhammer-Schalke, M et al., 2012	100	55.34 28.29	100	58.56	28.29	followup	12.00	<u>1</u>	-0.11	[-0.39; 0.16]
Klafke N et al. 2019	167	71.33 19.41 62.80 22.30	155 114	72.71 64.20	19.13 22.40	followup	12.00		-0.07	[-0.29; 0.15] [-0.32: 0.19]
Elyasi, F, et al., 2021 II.	20	9.40 2.10	20	9.50	2.60	followup	24.00	- <u>+</u> -	-0.04	[-0.66; 0.58]
Rahmani, S, et al. 2015	12	12.00 48.61	12	12.00	23.61	followup	16.00		0.00	[-0.80; 0.80]
Dirksen, S. et al, 2007	34	20.80 2.30	38	20.60	4.00	followup	10.00		0.05	[-0.40; 0.52]
Klinkhammer-Schalke, M et al., 2012	100	63.52 27.07	100	61.29	27.29	followup	48.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.08	[-0.20; 0.36]
Arving, C, et al., 2007	47	76.00 24.00	38	74.00	20.00	followup	12.00		0.08	[-0.34; 0.50]
Klafke, N, et al., 2019	120	59.10 25.40	114	56.50	23.00	followup	24.00	±	0.11	[-0.15; 0.36]
Qiu, H, et al., 2018 II. Qiu H et al. 2018 II	98 98	14.58 9.06 14.23 7.67	196 196	13.52	7.89 8.87	followup	24.00	菫	0.13	[-0.12; 0.37] [-0.11: 0.38]
Hernandez, EG, et al. 2018	28	14.00 4.69	28	13.32	5.32	followup	24.00	- 돈!	0.13	[-0.39; 0.66]
Kim, SH, et al., 2021 Klinkhammer-Schalke, Miet al., 2012	47	75.90 16.30	47	71.70	18.40	followup	20.00	重日	0.24	[-0.17; 0.65]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73	4.33	followup	12.00		0.30	[-0.02; 0.62]
Hernandez, EG, et al. 2018	28	16.12 4.09	28	14.72	4.63	followup	8.00		0.32	[-0.21; 0.84]
Klinkhammer-Schalke, M et al., 2012	100	66.25 25.31	100	56.58	28.54	followup	24.00	•	0.32	[0.08; 0.64]
Hoffman, CJ, et al., 2012	102	18.14 3.82	109	16.59	4.40	followup	8.00		0.37	[0.10; 0.65]
Klatke, N, et al., 2019 Seliniotaki T, et al. 2021	120 27	65.90 25.60 74.50 24.50	114 26	56.30 61.70	24.70	followup	48.00		0.38	[0.12; 0.64] [-0.14: 0.95]
Nápoles AM, et al. 2015	76	16.39 3.30	75	14.89	3.95	followup	24.00	-	0.41	[0.09; 0.73]
Qiu, H, et al., 2018 I. Elvasi, E. et al. 2021 I	98 15	15.42 9.06	196	11.90	7.89	followup	4.00		0.42	[0.18; 0.67]
Arving, C, et al., 2007	47	80.00 21.00	38	69.00	23.00	followup	4.00	-	0.50	[0.06; 0.93]
Kim, SH, et al., 2021	47	79.00 15.70	47	69.60	18.90	followup	8.00	「雪」	0.54	[0.12; 0.95]
Kim, YH, et al., 2017	30	67.80 15.10	30	56.70	21.90	followup	6.00		0.58	[0.28, 0.84]
Qiu, H, et al., 2018 I.	98	19.23 9.76	196	13.10	8.87	followup	12.00	1 <u></u>	0.67	[0.42; 0.91]
Kim, YH, et al., 2017 Qiu H, et al., 2018 I	30 98	70.80 14.50 20.00 8.37	30 196	57.80 13.52	22.60	followup	9.00 24.00	-	0.68	[0.15; 1.20]
Cengiz, HO, et al., 2023	32	13.56 5.78	33	8.75	5.14	followup	8.00		0.87	[0.36; 1.38]
Wu, Q, et al., 2021 Reng L et al. 2022	43	81.54 8.21	43	74.21	7.33	followup	12.00	1	0.93	[0.49; 1.38]
Peng, L, et al., 2022	28	83.33 14.87	29	69.25	8.94	followup	0.10		1.14	[0.57; 1.70]
Rahmani, S, et al. 2015	12	56.94 11.14	12	22.91	10.73	followup	8.00		3.00	[1.78; 4.23]
Random effect	3817	18.00 0.40	4539	10.90	0.50	lollowup	10.00		0.77	[0.40; 1.15]
Prediction interval										[-0.21; 1.76]
gastroenterological										
Fang, P, et al.,2020	60	46.14 5.12	60	46.55	5.23	baseline	0.00		-0.08	[-0.44; 0.28]
Qin, X, et al., 2017 Gao O, et al. 2020	50 40	73.61 10.68	50 40	72.41 -58.20	9.34	baseline	0.00	<u> </u>	0.12	[-0.27; 0.51] [-0.16: 0.72]
Gao Q, et al. 2020	40	-49.55 4.20	40	-53.56	3.25	followup	4.00	-	1.06	[0.59; 1.53]
Qin, X, et al., 2017	50	90.72 8.27	50	75.60	10.01	followup	2.00		1.63	[1.18; 2.09]
Random effect	300	03.32 0.47	300	47.50	0.14	lonowup	4.00		1.34	[0.54; 2.14]
Prediction interval										[-0.27; 2.95]
gynaecological										
Sandsund, C, et al., 2017	72	67.10 25.30	70	67.90	23.40	baseline	0.00	*	-0.03	[-0.36; 0.30]
Chan et al. 2005	21	16.10 4.20 58 10 45 50	43 75	16.20 54.60	5.00 48.48	baseline	0.00		-0.02	[-0.54; 0.50] [-0.24: 0.39]
Chan, et al. 2005	80	65.70 47.01	75	73.94	39.30	followup	12.00		-0.19	[-0.50; 0.13]
Chan, et al. 2005 Chan, et al. 2005	80 80	75.77 73.38	75 75	79.44	64.08 56.21	followup	72.00		-0.05	[-0.37; 0.26]
Chan, et al. 2005	80	73.39 67.76	75	75.30	55.80	followup	60.00		-0.03	[-0.35; 0.28]
Chan, et al. 2005	80	68.59 48.12	75	69.81	48.88	followup	24.00	重し	-0.03	[-0.34; 0.29]
Powell, CB, et al., 2008	21	18.50 5.40	43	18.00	5.90	followup	12.00		0.07	[-0.24, 0.39]
Sandsund, C, et al., 2017	72	70.00 23.90	70	66.40	26.20	followup	12.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.14	[-0.19; 0.47]
Sandsund, C, et al., 2017 Zhou, J, et al., 2020	72 59	75.50 20.20 64.81 9.32	70 59	55.54	28.60	followup	24.00		0.35	[0.02; 0.69]
Random effect	877		880					•	0.62	[0.13; 1.11]
Prediction interval										[-0.51; 1.75]
prostate								1		
Berglund, G. et al. 2007 Repede El. et al. 2007	39	81.20 18.90	150	83.60	19.70	baseline	0.00	1	-0.12	[-0.47; 0.23]
Penedo, FJ, et al., 2020	95	-20.03 3.80	97	-20.46	3.74	baseline	0.00	三日日	0.11	[-0.17; 0.40]
Penedo, FJ, et al., 2007 Perelund, C, et al. 2007	41	-20.73 3.31	30	-19.20	3.62	followup	12.00		-0.44	[-0.92; 0.04]
Penedo, FJ, et al., 2020	95	-20.18 3.80	97	-20.62	3.84	followup	24.00		0.11	[-0.17; 0.40]
Penedo, FJ, et al., 2020 Random effect	95	-19.20 3.90	97	-20.43	3.84	followup	48.00		0.32	
Prediction interval	440		001						0.00	[-0.66; 1.78]
Dandam offerst	E / 22		6970						0.05	
Prediction interval	5439		0370						0.85	[0.41; 1.29] [-0.23; 1.93]
							Г.		I '	
							-4 In favor of	control group In favor of inte	4 rvention	group

Figure S12.1. Subgroup analysis of the Emotional QoL. Forest plot represents the difference between the intervention vs. control group in the Emotional QOL domain with the cancer type subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S12.2.T12

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast								_]]		
Seliniotaki, T, et al., 2021 Reich RR et al. 2016	27 167	56.10 29.10 63.83 17.42	26 155	74.20 68.57	20.90	baseline	0.00		-0.70	[-1.26; -0.15] [-0.48: -0.05]
Nápoles AM, et al. 2015	76	12.07 4.91	75	12.86	5.14	baseline	0.00	3	-0.16	[-0.48; 0.16]
Peng, L, et al., 2022 Rahmani S, et al. 2015	28	69.94 16.25	29	72.41	16.08	baseline	0.00		-0.15	[-0.67; 0.37]
Qiu, H, et al., 2018 II.	98	11.50 6.30	196	12.22	6.56	baseline	0.00		-0.11	[-0.35; 0.13]
Dirksen, S. et al, 2007	34	20.10 2.80	38	20.40	3.10	baseline	0.00		-0.10	[-0.56; 0.36]
Hernandez, EG, et al. 2018	28	13.07 5.26	28	13.39	4.94	baseline	0.00		-0.08	[-0.32, 0.17] [-0.59; 0.46]
Klafke, N, et al., 2019	120	50.00 26.00	114	50.70	26.50	baseline	0.00	±	-0.03	[-0.28; 0.23]
Klinkhammer-Schalke, M et al., 2012	43	51.86 29.03	43 100	62.45 48.14	6.63 28.29	baseline	0.00		-0.02	[-0.44; 0.41] [-0.15: 0.41]
Kim, YH, et al., 2017	30	56.40 16.50	30	53.30	16.50	baseline	0.00		0.19	[-0.32; 0.69]
Hoffman, CJ, et al., 2012	102	16.91 3.84	109	15.97	4.58	baseline	0.00	2	0.22	[-0.05; 0.49]
Kim, SH, et al., 2021	47	72.00 17.70	47	65.40	21.00	baseline	0.00	₽	0.34	[-0.07; 0.74]
Elyasi, F, et al., 2021 II.	20	10.60 3.10	20	9.60	2.60	baseline	0.00		0.34	[-0.28; 0.97]
Cengiz, HO, et al., 2023	32	12.90 5.40	33	9.75	5.22	baseline	0.00	-	0.59	[0.09; 1.08]
Klinkhammer-Schalke, M et al., 2012	100	55.34 28.29	100	58.56	28.29	followup	12.00		-0.11	[-0.39; 0.16]
Klafke, N, et al., 2019	107	62.80 22.30	100	64.20	19.13	followup	12.00		-0.07	[-0.29; 0.15] [-0.32; 0.19]
Elyasi, F, et al., 2021 II.	20	9.40 2.10	20	9.50	2.60	followup	24.00	- <u></u>	-0.04	[-0.66; 0.58]
Rahmani, S, et al. 2015	12	12.00 48.61	12	12.00	23.61	followup	16.00		0.00	[-0.80; 0.80] [-0.10; 0.20]
Dirksen, S. et al, 2007	34	20.80 2.30	38	20.60	4.00	followup	10.00		0.06	[-0.40; 0.52]
Klinkhammer-Schalke, M et al., 2012	100	63.52 27.07	100	61.29	27.29	followup	48.00	ž.	0.08	[-0.20; 0.36]
Arving, C, et al., 2007	47	76.00 24.00	38	74.00	20.00	followup	12.00	-	0.08	[-0.34; 0.50]
Klafke, N, et al., 2019	120	59.10 25.40	114	56.50	23.00	followup	24.00	-	0.11	[-0.15; 0.36]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 98	14.58 9.06	196	13.52	7.89	followup	12.00		0.13	[-0.12; 0.37] [-0.11; 0.38]
Hernandez, EG, et al. 2018	28	14.00 4.69	28	13.32	5.32	followup	24.00		0.13	[-0.39; 0.66]
Kim, SH, et al., 2021 Klinkhammer-Schalke Met al. 2012	47	75.90 16.30	47	71.70	18.40	followup	20.00	The second secon	0.24	[-0.17; 0.65] [-0.02; 0.54]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73	4.33	followup	12.00		0.20	[-0.02; 0.62]
Hernandez, EG, et al. 2018	28	16.12 4.09	28	14.72	4.63	followup	8.00	臣	0.32	[-0.21; 0.84]
Klinkhammer-Schalke, M et al., 2012	100	66.25 25.31	100	56.58	28.54	followup	24.00	-	0.32	[0.08; 0.64]
Hoffman, CJ, et al., 2012	102	18.14 3.82	109	16.59	4.40	followup	8.00	÷	0.37	[0.10; 0.65]
Seliniotaki, T. et al., 2019	120	65.90 25.60 74.50 24.50	114 26	56.30 61.70	24.70	followup	48.00		0.38	[0.12; 0.64] [-0.14: 0.95]
Nápoles AM, et al. 2015	76	16.39 3.30	75	14.89	3.95	followup	24.00	<u>-</u>	0.41	[0.09; 0.73]
Qiu, H, et al., 2018 I. Elvasi, E, et al., 2021 I.	98 15	15.42 9.06	196	11.90	7.89	followup	4.00	1 <u></u>	0.42	[0.18; 0.67]
Arving, C, et al., 2007	47	80.00 21.00	38	69.00	23.00	followup	4.00	<u> </u>	0.50	[0.06; 0.93]
Kim, SH, et al., 2021	47	79.00 15.70	47	69.60	18.90	followup	8.00	「「「」「「」」	0.54	[0.12; 0.95]
Kim, YH, et al., 2017	30	67.80 15.10	30	56.70	4.42	followup	6.00	-	0.58	[0.26, 0.64]
Qiu, H, et al., 2018 I.	98	19.23 9.76	196	13.10	8.87	followup	12.00		0.67	[0.42; 0.91]
Qiu, H. et al., 2018 I.	30 98	20.00 8.37	30 196	57.80 13.52	7.89	followup	9.00 24.00		0.68	[0.15; 1.20]
Cengiz, HO, et al., 2023	32	13.56 5.78	33	8.75	5.14	followup	8.00		0.87	[0.36; 1.38]
Wu, Q, et al., 2021 Pang L et al. 2022	43	81.54 8.21	43	74.21	7.33	followup	12.00	「二」	0.93	[0.49; 1.38]
Peng, L, et al., 2022	28	83.33 14.87	29	69.25	8.94	followup	0.10		1.14	[0.57; 1.70]
Rahmani, S, et al. 2015	12	56.94 11.14	12	22.91	10.73	followup	8.00			[1.78; 4.23]
Random effect	3817	16.00 0.40	4539	10.90	0.50	lonowup	10.00		0.50	[0.29; 0.71]
Prediction interval										[-0.41; 1.42]
gastroenterological										
Fang, P, et al.,2020	60	46.14 5.12	60	46.55	5.23	baseline	0.00	一一走!	-0.08	[-0.44; 0.28]
Qin, X, et al., 2017 Gao O, et al. 2020	50 40	73.61 10.68	50 40	72.41	9.34	baseline	0.00	重	0.12	[-0.27; 0.51] [-0.16: 0.72]
Gao Q, et al. 2020	40	-49.55 4.20	40	-53.56	3.25	followup	4.00	[] •	1.06	[0.59; 1.53]
Qin, X, et al., 2017	50	90.72 8.27	50	75.60	10.01	followup	2.00		1.63	[1.18; 2.09]
Random effect	300	03.32 0.47	300	47.50	0.14	lonowup	4.00		1.06	[0.37; 1.75]
Prediction interval										[-0.64; 2.77]
gynaecological										
Sandsund, C, et al., 2017	72	67.10 25.30	70	67.90	23.40	baseline	0.00	豊臣	-0.03	[-0.36; 0.30]
Powell, CB, et al., 2008 Chan, et al. 2005	21 80	16.10 4.20 58 10 45 50	43	16.20 54.60	5.00	baseline	0.00		-0.02	[-0.54; 0.50] [-0.24: 0.39]
Chan, et al. 2005	80	65.70 47.01	75	73.94	39.30	followup	12.00		-0.19	[-0.50; 0.13]
Chan, et al. 2005	80	75.77 73.38	75	79.44	64.08	followup	72.00	1	-0.05	[-0.37; 0.26]
Chan, et al. 2005 Chan, et al. 2005	80	73.39 67.76	75	75.30	55.80	followup	60.00		-0.03	[-0.35; 0.28]
Chan, et al. 2005	80	68.59 48.12	75	69.81	48.88	followup	24.00	*	-0.03	[-0.34; 0.29]
Chan, et al. 2005 Powell, CB, et al., 2008	80 21	18.50 5.40	75 43	18.00	52.28	followup	36.00		0.07	[-0.24; 0.39] [-0.44; 0.61]
Sandsund, C, et al., 2017	72	70.00 23.90	70	66.40	26.20	followup	12.00	モ	0.14	[-0.19; 0.47]
Sandsund, C, et al., 2017 Zhou, L et al. 2020	72	75.50 20.20	70	66.70 55.54	28.60	followup	24.00		0.35	[0.02; 0.69]
Random effect	877	04.01 0.02	880	00.04	1.20	lonomap	2.00	*	0.35	[-0.00; 0.70]
Prediction interval										[-1.07; 1.76]
prostate										
Berglund, G. et al. 2007	39	81.20 18.90	150	83.60	19.70	baseline	0.00	1	-0.12	[-0.47; 0.23]
Penedo, FJ, et al., 2007 Penedo, FJ, et al., 2020	95	-19.24 4.04 -20.03 3.80	30 97	-19.63	3.43	baseline	0.00	-	0.10	[-0.37, 0.57] [-0.17; 0.40]
Penedo, FJ, et al., 2007	41	-20.73 3.31	30	-19.20	3.62	followup	12.00	크	-0.44	[-0.92; 0.04]
Bergiuna, G. et al. 2007 Penedo, FJ, et al. 2020	39 95	81.60 20.10 -20.18 3.80	150 97	87.80 -20.62	18.00 3.84	followup	48.00 24.00		-0.33 0.11	[-0.69; 0.02] [-0.17: 0.40]
Penedo, FJ, et al., 2020	95	-19.20 3.90	97	-20.43	3.84	followup	48.00	-	0.32	[0.03; 0.60]
Random effect Prediction interval	445		651						0.29	[-0.32; 0.90] [-1.33: 1.91]
										[
Random effect Prediction interval	5439		6370					<u></u>	0.53	[0.31; 0.74] [-0.46; 1.51]
arouon mortur							r		ר י	[3113] 1.31]
							-4 In favor of	+ -2 0 2 f control group In favor of inte	4 rvention	group

Figure S12.2. Subgroup analysis of the Emotional QoL. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer type subgroups as predicted at week 12 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S12.3.T24

Study	E) Patient N	perimental I Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast Seliniotaki T et al. 2021	27	56 10 20 10	26	74.20	20.00	haceline	0.00		-0.70	[-1 26: -0 15]
Reich, RR, et al. 2016	167	63.83 17.42	155	68.57	18.32	baseline	0.00		-0.26	[-0.48; -0.05]
Nápoles AM, et al. 2015 Peng, L, et al., 2022	76 28	12.07 4.91 69.94 16.25	75 29	12.86 72.41	5.14 16.08	baseline baseline	0.00 0.00		-0.16 -0.15	[-0.48; 0.16] [-0.67; 0.37]
Rahmani, S, et al. 2015	12	11.11 8.94	12	12.50	9.05	baseline	0.00		-0.15	[-0.95; 0.65]
Dirksen, S. et al, 2007	34	20.10 2.80	38	20.40	3.10	baseline	0.00		-0.10	[-0.35; 0.13] [-0.56; 0.36]
Qiu, H, et al., 2018 I. Hernandez, EG, et al. 2018	98 28	11.72 6.65 13.07 5.26	196 28	12.22 13.39	6.56 4.94	baseline baseline	0.00		-0.08 -0.06	[-0.32; 0.17] [-0.59: 0.46]
Klafke, N, et al., 2019	120	50.00 26.00	114	50.70	26.50	baseline	0.00		-0.03	[-0.28; 0.23]
Klinkhammer-Schalke, M et al., 2012	43	51.86 29.03	43	62.45 48.14	6.63 28.29	baseline	0.00		-0.02	[-0.44; 0.41] [-0.15; 0.41]
Kim, YH, et al., 2017 Hoffman, C.L. et al., 2012	30 102	56.40 16.50 16.91 3.84	30 109	53.30 15.97	16.50 4.58	baseline	0.00		0.19	[-0.32; 0.69] [-0.05; 0.49]
Arving, C, et al., 2007	47	69.00 25.00	38	63.00	18.00	baseline	0.00	臣	0.27	[-0.16; 0.70]
Kim, SH, et al., 2021 Elyasi, F, et al., 2021 II.	47 20	72.00 17.70 10.60 3.10	47 20	65.40 9.60	21.00	baseline	0.00	-	0.34	[-0.07; 0.74] [-0.28; 0.97]
Elyasi, F, et al., 2021 I.	15	11.50 3.80	15	9.60	2.60	baseline	0.00		0.57	[-0.16; 1.30]
Klinkhammer-Schalke, M et al., 2012	100	55.34 28.29	100	58.56	28.29	followup	12.00	<u>.</u>	-0.11	[-0.39; 0.16]
Reich, RR, et al. 2016 Klafke, N. et al., 2019	167 120	71.33 19.41 62.80 22.30	155 114	72.71 64.20	19.13 22.40	followup followup	12.00 12.00		-0.07 -0.06	[-0.29; 0.15] [-0.32: 0.19]
Elyasi, F, et al., 2021 II.	20	9.40 2.10	20	9.50	2.60	followup	24.00	-	-0.04	[-0.66; 0.58]
Qiu, H, et al., 2018 II.	98	12.32 9.06	196	11.90	7.89	followup	4.00		0.00	[-0.80, 0.80] [-0.19; 0.29]
Dirksen, S. et al, 2007 Klinkhammer-Schalke M et al. 2012	34 100	20.80 2.30 63.52 27.07	38 100	20.60 61.29	4.00	followup	10.00 48.00	~ ~ ~	0.06	[-0.40; 0.52] [-0.20: 0.36]
Reich, RR, et al. 2016	167	70.87 18.02	155	69.36	18.78	followup	6.00	王	0.08	[-0.14; 0.30]
Klafke, N, et al., 2007	47	76.00 24.00 59.10 25.40	38 114	74.00 56.50	20.00	followup	24.00	Ē	0.09	[-0.34; 0.52] [-0.15; 0.36]
Qiu, H, et al., 2018 II. Oiu H, et al., 2018 II.	98 98	14.58 9.06 14.23 7.67	196 196	13.52 13.10	7.89	followup	24.00	<u></u>	0.13	[-0.12; 0.37]
Hernandez, EG, et al. 2018	28	14.00 4.69	28	13.32	5.32	followup	24.00	푼	0.13	[-0.39; 0.66]
Kim, SH, et al., 2021 Klinkhammer-Schalke, M et al., 2012	47 100	75.90 16.30 66.50 26.80	47 100	71.70 59.06	18.40 29.53	followup	20.00 36.00		0.24 0.26	[-0.17; 0.65] [-0.02; 0.54]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73	4.33	followup	12.00		0.30	[-0.02; 0.62]
Arving, C, et al., 2007	20 47	82.00 20.00	38	75.00	4.03 24.00	followup	24.00		0.32	[-0.21, 0.84] [-0.11; 0.75]
Klinkhammer-Schalke, M et al., 2012 Hoffman, C L et al., 2012	100 102	66.25 25.31 18 14 3 82	100	56.58 16.59	28.54	followup	24.00		0.36	[0.08; 0.64] [0.10: 0.65]
Klafke, N, et al., 2019	120	65.90 25.60	114	56.30	24.70	followup	48.00	÷	0.38	[0.12; 0.64]
Seliniotaki, I, et al., 2021 Nápoles AM, et al. 2015	27 76	74.50 24.50 16.39 3.30	26 75	61.70 14.89	36.70	followup	8.00 24.00	-	0.41	[-0.14; 0.95] [0.09; 0.73]
Qiu, H, et al., 2018 I.	98	15.42 9.06	196	11.90	7.89	followup	4.00		0.42	[0.18; 0.67]
Arving, C, et al., 2007	47	80.00 21.00	38	69.00	23.00	followup	4.00	-	0.48	[-0.25, 1.21] [0.06; 0.93]
Kim, SH, et al., 2021 Hoffman, CJ, et al., 2012	47 102	79.00 15.70 18.59 3.75	47 109	69.60 16.28	18.90 4.42	followup followup	8.00 12.00		0.54 0.56	[0.12; 0.95] [0.28: 0.84]
Kim, YH, et al., 2017	30	67.80 15.10	30	56.70	21.90	followup	6.00		0.58	[0.07; 1.10]
Kim, YH, et al., 2018 I.	98 30	19.23 9.76 70.80 14.50	30	13.10 57.80	8.87	followup	9.00		0.67	[0.42; 0.91] [0.15; 1.20]
Qiu, H, et al., 2018 I. Cengiz HO, et al., 2023	98 32	20.00 8.37	196	13.52	7.89	followup	24.00		0.80	[0.55; 1.05]
Wu, Q, et al., 2021	43	81.54 8.21	43	74.21	7.33	followup	12.00		0.93	[0.49; 1.38]
Peng, L, et al., 2022 Peng, L, et al., 2022	28 28	80.95 13.20 83.33 14.87	29 29	70.12 69.25	9.05 8.94	followup	4.00 0.10		0.95 1.14	[0.40; 1.50] [0.57; 1.70]
Rahmani, S, et al. 2015 Henderson VR et al. 2012	12	56.94 11.14	12	22.91	10.73	followup	8.00		• 3.00	[1.78; 4.23]
Random effect	3817	10.00 0.40	4539	10.90	0.50	lollowup	10.00	\$	0.31	[2.35, 3.67] [0.08; 0.53]
Prediction interval										[-0.63; 1.25]
gastroenterological	60	46 14 5 10	60	46 66	E 00	bosoline	0.00	1	0.00	0.44: 0.201
Qin, X, et al., 2017	50	73.61 10.68	50	72.41	9.34	baseline	0.00	差	0.12	[-0.44, 0.28] [-0.27; 0.51]
Gao Q, et al. 2020 Gao Q, et al. 2020	40 40	-56.85 4.66 -49.55 4.20	40 40	-58.20 -53.56	4.78 3.25	baseline followup	0.00		0.28	[-0.16; 0.72] [0.59: 1.53]
Qin, X, et al., 2017	50	90.72 8.27	50	75.60	10.01	followup	2.00	-	1.63	[1.18; 2.09]
Random effect	300	03.32 0.47	300	47.50	5.14	lollowup	4.00	•	0.87	[2.21, 3.21] [0.33; 1.41]
Prediction interval										[-0.48; 2.23]
gynaecological	70	67.40,05.00	70	67.00	00.40	haadiaa	0.00		0.00	0.001
Powell, CB, et al., 2008	21	67.10 25.30 16.10 4.20	70 43	67.90 16.20	23.40 5.00	baseline	0.00		-0.03	[-0.36; 0.30] [-0.54; 0.50]
Chan, et al. 2005 Chan, et al. 2005	80 80	58.10 45.50 65.70 47.01	75 75	54.60 73.94	48.48	baseline	0.00		0.07	[-0.24; 0.39] [-0.50: 0.13]
Chan, et al. 2005	80	75.77 73.38	75	79.44	64.08	followup	72.00		-0.05	[-0.37; 0.26]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.73 57.02 73.39 67.76	75 75	78.59 75.30	56.21 55.80	followup followup	48.00 60.00	書	-0.03 -0.03	[-0.35; 0.28] [-0.35; 0.28]
Chan, et al. 2005 Chan, et al. 2005	80	68.59 48.12	75	69.81	48.88	followup	24.00	豊	-0.03	[-0.34; 0.29]
Powell, CB, et al., 2008	21	18.50 5.40	43	18.00	5.90	followup	12.00		0.09	[-0.24; 0.53]
Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	72 72	70.00 23.90 75.50 20.20	70 70	66.40 66.70	26.20 28.60	followup	12.00 24.00	Ē.	0.14 0.35	[-0.19; 0.47] [0.02; 0.69]
Zhou, J, et al., 2020	59	64.81 9.32	59	55.54	7.29	followup	2.00	<u></u> [−	1.10	[0.71; 1.49]
Prediction interval	011		000					<u> </u>	0.15	[-0.15, 0.40] [-1.29; 1.60]
prostate										
Berglund, G. et al. 2007	39	81.20 18.90	150	83.60	19.70	baseline	0.00		-0.12	[-0.47; 0.23]
Penedo, FJ, et al., 2020	95	-20.03 3.80	97	-20.46	3.74	baseline	0.00	_ _	0.11	[-0.17; 0.40]
Penedo, FJ, et al., 2007 Berglund, G. et al. 2007	41 39	-20.73 3.31 81.60 20.10	30 150	-19.20 87.80	3.62	followup followup	12.00 48.00		-0.44 -0.33	[-0.92; 0.04] [-0.69: 0.02]
Penedo, FJ, et al., 2020	95	-20.18 3.80	97	-20.62	3.84	followup	24.00		0.11	[-0.17; 0.40]
Random effect	445	-15.20 3.90	651	-20.43	J.04	ronowup	+0.00	-	0.32	[-0.51; 0.70]
Prediction interval										[-1.59; 1.78]
Random effect Prediction interval	5439		6370					<u></u>	0.30	[0.09; 0.51] [-0.72: 1.32]
י וכעוכנוטוו ווונכוזמו							Г		ר י י	
							-4 In favor of	-2 U 2 control group In favor of inte	4 rvention	group

Figure S12.3.Subgroup analysis of the Emotional QoL. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer type subgroups as predicted at week 24 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S12.4.T48

Study	Ex Patient N	perimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
otau)							i choir ap anns			
Seliniotaki T et al. 2021	27	56 10 29 10	26	74 20 20	0 90	haseline	0.00		-0.70	[-1 26: -0 15]
Reich, RR, et al. 2016	167	63.83 17.42	155	68.57 18	8.32	baseline	0.00	+	-0.26	[-0.48; -0.05]
Nápoles AM, et al. 2015	76	12.07 4.91	75	12.86 5	5.14	baseline	0.00		-0.16	[-0.48; 0.16]
Peng, L, et al., 2022 Rahmani, S. et al. 2015	28 12	09.94 10.25	29 12	12.50 9	0.08	baseline	0.00		-0.15	[-0.67; 0.37] [-0.95; 0.65]
Qiu, H, et al., 2018 II.	98	11.50 6.30	196	12.22 6	5.56	baseline	0.00	<u> </u>	-0.11	[-0.35; 0.13]
Dirksen, S. et al, 2007	34	20.10 2.80	38	20.40 3	3.10	baseline	0.00	「「「」	-0.10	[-0.56; 0.36]
Hernandez, EG, et al. 2018	28	13.07 5.26	28	13.39 4	1.94	baseline	0.00		-0.08	[-0.59; 0.46]
Klafke, N, et al., 2019	120	50.00 26.00	114	50.70 26	6.50	baseline	0.00	÷.	-0.03	[-0.28; 0.23]
Wu, Q, et al., 2021 Klinkhammer-Schalke, M et al. 2012	43	62.34 6.76 51.86 29.03	43	62.45 6	6.63 8.20	baseline	0.00	톱	-0.02	[-0.44; 0.41]
Kim, YH, et al., 2017	30	56.40 16.50	30	53.30 16	6.50	baseline	0.00		0.19	[-0.32; 0.69]
Hoffman, CJ, et al., 2012	102	16.91 3.84	109	15.97 4	1.58	baseline	0.00		0.22	[-0.05; 0.49]
Arving, C, et al., 2007 Kim, SH, et al., 2021	47	69.00 25.00 72.00 17.70	38	65.40 21	8.00	baseline	0.00	-	0.27	[-0.16; 0.70] [-0.07: 0.74]
Elyasi, F, et al., 2021 II.	20	10.60 3.10	20	9.60 2	2.60	baseline	0.00		0.34	[-0.28; 0.97]
Elyasi, F, et al., 2021 I.	15	11.50 3.80	15	9.60 2	2.60	baseline	0.00		0.57	[-0.16; 1.30]
Klinkhammer-Schalke Metal 2012	32 100	12.90 5.40	33	9.75 5	8.29	followup	12.00	-	-0.11	[0.09; 1.08]
Reich, RR, et al. 2016	167	71.33 19.41	155	72.71 19	9.13	followup	12.00	-	-0.07	[-0.29; 0.15]
Klafke, N, et al., 2019	120	62.80 22.30	114	64.20 22	2.40	followup	12.00	÷.	-0.06	[-0.32; 0.19]
Rahmani, S. et al. 2015	12	9.40 2.10	12	9.50 2	3.61	followup	24.00		0.04	[-0.80; 0.58]
Qiu, H, et al., 2018 II.	98	12.32 9.06	196	11.90 7	.89	followup	4.00	<u>÷</u>	0.05	[-0.19; 0.29]
Dirksen, S. et al, 2007 Klinkhammer Schalke, Miet al, 2012	34	20.80 2.30	38	20.60 4	1.00	followup	10.00	重	0.06	[-0.40; 0.52]
Reich, RR. et al. 2016	167	70.87 18.02	155	69.36 18	8.78	followup	6.00	÷	0.08	[-0.14: 0.30]
Arving, C, et al., 2007	47	76.00 24.00	38	74.00 20	0.00	followup	12.00	<u>+</u>	0.09	[-0.34; 0.52]
Klafke, N, et al., 2019 Oiu H et al. 2018	120	59.10 25.40 14.58 0.06	114	56.50 23	3.00	followup	24.00	= =	0.11	[-0.15; 0.36] [-0.12; 0.27]
Qiu, H, et al., 2018 II.	98	14.23 7.67	196	13.10 8	.09 3.87	followup	12.00	-	0.13	[-0.11; 0.38]
Hernandez, EG, et al. 2018	28	14.00 4.69	28	13.32 5	i.32	followup	24.00	- <u>E</u> -	0.13	[-0.39; 0.66]
Kim, SH, et al., 2021 Klinkhammer-Schalke, Mietal, 2012	47	75.90 16.30	47	71.70 18	8.40	followup	20.00	<u> </u>	0.24	[-0.17; 0.65]
Nápoles AM, et al. 2015	76	15.93 3.52	75	14.73 4	9.55 1.33	followup	12.00		0.20	[-0.02; 0.54]
Hernandez, EG, et al. 2018	28	16.12 4.09	28	14.72 4	1.63	followup	8.00		0.32	[-0.21; 0.84]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47	82.00 20.00	38	75.00 24	4.00	followup	24.00	Ē	0.32	[-0.11; 0.75]
Hoffman, CJ, et al., 2012	102	18.14 3.82	100	16.59 4	1.40	followup	8.00	-+-	0.30	[0.10; 0.65]
Klafke, N, et al., 2019	120	65.90 25.60	114	56.30 24	4.70	followup	48.00		0.38	[0.12; 0.64]
Seliniotaki, T, et al., 2021	27	74.50 24.50	26	61.70 36	6.70	followup	8.00		0.41	[-0.14; 0.95]
Qiu, H, et al., 2018 I.	98	15.42 9.06	196	11.90 7	.89	followup	4.00	·+-	0.42	[0.18; 0.67]
Elyasi, F, et al., 2021 I.	15	11.00 3.40	15	9.50 2	2.60	followup	24.00		0.48	[-0.25; 1.21]
Arving, C, et al., 2007 Kim SH et al. 2021	47	80.00 21.00	38	69.00 23	3.00	followup	4.00		0.50	[0.06; 0.93]
Hoffman, CJ, et al., 2012	102	18.59 3.75	109	16.28 4	1.42	followup	12.00	-	0.56	[0.28; 0.84]
Kim, YH, et al., 2017	30	67.80 15.10	30	56.70 21	1.90	followup	6.00	<u>i .</u>	0.58	[0.07; 1.10]
Qiu, H, et al., 2018 I. Kim YH et al. 2017	98 30	19.23 9.76 70.80 14.50	196 30	13.10 8	3.87 2.60	followup	12.00		0.67	[0.42; 0.91]
Qiu, H, et al., 2018 I.	98	20.00 8.37	196	13.52 7	.89	followup	24.00	-	0.80	[0.55; 1.05]
Cengiz, HO, et al., 2023	32	13.56 5.78	33	8.75 5	5.14	followup	8.00		0.87	[0.36; 1.38]
WU, Q, et al., 2021 Peng L et al. 2022	43 28	81.54 8.21	43	70.12 9	0.05	followup	12.00		0.93	[0.49; 1.38]
Peng, L, et al., 2022	28	83.33 14.87	29	69.25 8	3.94	followup	0.10	-	1.14	[0.57; 1.70]
Rahmani, S, et al. 2015	12	56.94 11.14	12	22.91 10	0.73	followup	8.00	-	> 3.00	[1.78; 4.23]
Random effect	3817	18.00 0.40	58 4539	10.90 0	1.30	lollowup	10.00	• -	0.17	[2.55, 3.67]
Prediction interval										[-0.91; 1.25]
asstrooptorological										
Fang, P, et al.,2020	60	46.14 5.12	60	46.55 5	5.23	baseline	0.00	÷	-0.08	[-0.44; 0.28]
Qin, X, et al., 2017	50	73.61 10.68	50	72.41 9	9.34	baseline	0.00	世	0.12	[-0.27; 0.51]
Gao Q, et al. 2020 Gao Q, et al. 2020	40	-56.85 4.66	40	-58.20 4	1.78	baseline	0.00		0.28	[-0.16; 0.72]
Qin, X, et al., 2017	50	90.72 8.27	50	75.60 10	0.01	followup	2.00	-	1.63	[1.18; 2.09]
Fang, P, et al.,2020	60	63.52 6.47	60	47.56 5	5.14	followup	4.00		2.71	[2.21; 3.21]
Random effect	300		300						0.73	[0.23; 1.24]
Fredicuon interval										[-0.40, 1.55]
gynaecological	70	67 40 05 00	70	67.00 07	2.40	haceline	0.00	<u>_</u>	0.00	10.26-0.201
Powell, CB, et al., 2017	21	16.10 25.30	43	16.20 5	5.40 5.00	baseline	0.00		-0.03	[-0.30, 0.30] [-0.54; 0.50]
Chan, et al. 2005	80	58.10 45.50	75	54.60 48	8.48	baseline	0.00		0.07	[-0.24; 0.39]
Chan, et al. 2005	80	65.70 47.01	75	73.94 39	9.30	followup	12.00	물	-0.19	[-0.50; 0.13]
Chan et al 2005	80	76 73 57 02	75	78.59.56	4.08	followup	48.00		-0.05	[-0.37, 0.26]
Chan, et al. 2005	80	73.39 67.76	75	75.30 55	5.80	followup	60.00	-	-0.03	[-0.35; 0.28]
Chan, et al. 2005	80	68.59 48.12	75	69.81 48	8.88	followup	24.00		-0.03	[-0.34; 0.29]
Powell, CB, et al., 2008	21	18.50 5.40	43	18.00 5	2.28	followup	30.00		0.07	[-0.24, 0.39]
Sandsund, C, et al., 2017	72	70.00 23.90	70	66.40 26	6.20	followup	12.00	÷.	0.14	[-0.19; 0.47]
Sandsund, C, et al., 2017	72	75.50 20.20	70	66.70 28	8.60	followup	24.00		0.35	[0.02; 0.69]
Random effect	877	04.01 9.32	880	55.54 /	.29	lollowup	2.00	÷ =	0.02	[-0.46; 0.49]
Prediction interval								i		[-1.47; 1.50]
prostate										
Berglund, G. et al. 2007	39	81.20 18.90	150	83.60 19	9.70	baseline	0.00	圭	-0.12	[-0.47; 0.23]
Penedo, FJ, et al., 2007	41	-19.24 4.04	30	-19.63 3	5.43	Daseline	0.00	重	0.10	[-0.37; 0.57] [-0.17; 0.40]
Penedo, FJ, et al., 2020	41	-20.73 3.31	30	-19.20 3	3.62	followup	12.00		-0.44	[-0.92; 0.04]
Berglund, G. et al. 2007	39	81.60 20.10	150	87.80 18	8.00	followup	48.00		-0.33	[-0.69; 0.02]
Penedo, FJ, et al., 2020 Penedo, FJ, et al. 2020	95 95	-20.18 3.80 -19.20 3.00	97 97	-20.62 3	3.84 3.84	followup	24.00 48.00		0.11	[-0.17; 0.40] [0.03: 0.60]
Random effect	445	13.20 3.50	651	20.40 0		lonowup	40.00	4	-0.04	[-0.65; 0.56]
Prediction interval										[-1.61; 1.53]
Random effect	5439		6370						0.15	[-0.18; 0.47]
Prediction interval							г		 ר	[-1.07; 1.37]
							-4	-2 0 2	4	
							In favor of	control group In favor of inte	rvention	group

Figure S12.4. Subgroup analysis of the Emotional QoL. Forest plot represents the difference between the intervention vs. control group in the Emotional QoL domain with the cancer type subgroups as predicted at week 48 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

S13.Subgroup analysis of Social QoL: Provider

Figure S13.1.T0

Study	E: Patient M	xperimental Mean SD	Patient	Control Mean	SD	follow-up i	Follow-up time	SMD of interested event	SMD 95%-CI
psychologist Rodríguez Vega, B, et al., 2010	39	3.31 3.32	33	6.08	3.62	baseline	0.00		-0.79 [-1.27; -0.31]
Peng, L, et al., 2022 Serfaty M, et al., 2018	28 20	76.79 15.27 16.40 6.10	29 22	81.61 18.10	16.87	baseline	0.00		-0.30 [-0.82; 0.23] -0.24 [-0.84; 0.37]
Qiu, H, et al., 2018 II. Heiney, SP, et al., 2003	98 33	17.84 5.10 5.60 2.00	196 33	18.85 5.90	4.22	baseline baseline	0.00		-0.22 [-0.47; 0.02] -0.15 [-0.64; 0.33]
Ruiz-Vozmediano, J, et al., 2020 Seliniotaki, T, et al., 2021	31 27	69.40 29.80 74.40 29.90	32	73.40	28.40	baseline	0.00		-0.15 [-0.39, 0.09] -0.14 [-0.63; 0.36] -0.11 [-0.65; 0.43]
Antoni, MH, et al., 2006 Hernandez, EG, et al. 2018	92 28	877.61 158.55 17.11 6.05	107	891.17 17.56	152.16	baseline baseline	0.00		-0.09 [-0.37; 0.19] -0.08 [-0.60; 0.45]
Llu, T, et al., 2019 Chan, et al. 2005	49 80	63.77 24.95 54.76 60.02	53 75	65.22 56.28	23.71 54.76	baseline baseline	0.00	霊	-0.06 [-0.45; 0.33] -0.03 [-0.34; 0.29]
Johansson, B, et al., 2008 Klinkhammer-Schalke, M et al., 2012	128 100	84.00 24.00 71.21 33.50	116	82.00 67.99	25.00 34.25	baseline baseline	0.00	2	0.08 [-0.17; 0.33] 0.09 [-0.18; 0.37]
Arving, C, et al., 2007 Rahmani, S, et al. 2015 Redriger, B, et al. 2015	47 12	78.00 27.00 34.72 13.22	38 12	75.00 33.33	19.00 7.11	baseline	0.00	<u></u>	0.13 [-0.30; 0.55] 0.13 [-0.67; 0.93] 0.25 [-0.75; 1.28]
Penedo, FJ, et al., 2014 Penedo, FJ, et al., 2020 Powell CB, et al., 2008	95 21	-19.85 4.09	97	-21.16	4.24	baseline	0.00	-	0.31 [0.03; 0.60]
Lu, Z, et al., 201 Antoni, MH, et al., 2006	203 92	75.30 4.00 788.15 133.08	103 107	71.30 855.60	6.50 126.82	baseline followup	0.00 48.00	= =	0.80 [0.56; 1.05] -0.52 [-0.80; -0.23]
Heiney, SP, et al., 2003 Antoni, MH, et al., 2006	33 92	5.80 2.00 832.88 119.31	33 107	6.55 873.38	1.80 114.05	followup	16.00 24.00	1	-0.39 [-0.88; 0.10] -0.35 [-0.63; -0.07]
Chan, et al. 2005 Chan, et al. 2005 Chan, et al. 2005	80 80	76.19 54.76 65.58 54.76 76.62 54.76	75	87.23 75.11 95.06	54.76 54.78	followup	72.00 24.00 60.00	<u> </u>	-0.20 [-0.52; 0.12] -0.17 [-0.49; 0.14] -0.15 [-0.47; 0.16]
Chan, et al. 2005 Serfaty M. et al. 2018	80 20	61.47 54.76 18.70 5.30	75	69.26 19.40	54.76	followup	12.00	-	-0.14 [-0.46; 0.17] -0.12 [-0.72: 0.49]
Peng, L, et al., 2022 Klinkhammer-Schalke, M et al., 2012	28 100	80.36 20.09 78.90 27.54	29 100	82.18 81.14	19.38 24.07	followup	0.10 48.00		-0.09 [-0.61; 0.43] -0.09 [-0.36; 0.19]
Rodrigez, B, et al., 2014 Chan, et al. 2005	8 80	93.33 14.91 80.52 54.76	7 75	94.44 83.77	9.62 54.78	followup	2.00 48.00		-0.08 [-1.10; 0.93] -0.06 [-0.37; 0.26]
Peng, L, et al., 2003 Klinkhammer Schalke Mietal, 2012	33 28 100	5.80 2.00 79.17 16.49 66.00 33.00	29 100	5.90 79.89 66.74	20.11	followup	4.00		-0.05 [-0.53; 0.43] -0.04 [-0.56; 0.48] -0.02 [-0.30; 0.25]
Qiu, H, et al., 2018 II. Rahmani, S. et al. 2015	98	17.98 8.92 12.00 54.16	196	17.98	8.52	followup	4.00		0.00 [-0.24; 0.24]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II.	27 98	74.60 35.90 18.97 8.92	26 196	74.60 18.75	29.30 9.46	followup	8.00 24.00	Ť	0.00 [-0.54; 0.54] 0.02 [-0.22; 0.27]
Klinkhammer-Schalke, M et al., 2012 Arving, C, et al., 2007	100 47	72.20 28.78 76.00 25.00	100 38	71.46 75.00	29.03 19.00	followup	24.00 12.00	*	0.03 [-0.25; 0.30] 0.04 [-0.38; 0.47]
Johansson, B, et al., 2008 Chan, et al. 2005	128	91.00 18.00 80.95 54.76	116	90.00 77.92	20.00	followup	96.00 36.00		0.05 [-0.20; 0.30] 0.06 [-0.25; 0.37]
Qiu, H, et al., 2018 II. Aning C, et al. 2007	98	18.77 8.03 81.00 22.00	196	18.25	5.05	followup	12.00	1	0.08 [-0.16; 0.33] 0.08 [-0.34; 0.51]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	83.00 21.00 77.91 27.05	38 100	80.00 73.69	26.00 30.77	followup	24.00 35.00		0.13 [-0.30; 0.56] 0.15 [-0.13; 0.42]
Ruiz-Vozmediano, J, et al., 2020 Johansson, B, et al., 2008	31 128	83.30 24.70 90.00 17.00	32 116	78.70 86.00	28.50 22.00	followup	24.00 24.00	差	0.17 [-0.32; 0.67] 0.20 [-0.05; 0.46]
Johansson, B, et al., 2008 Qiu, H, et al., 2018 I.	128 98	87.00 20.00 20.01 9.15	116 196	82.00 17.98	24.00 8.52	followup	12.00	튼	0.23 [-0.03; 0.48] 0.23 [-0.01; 0.47]
Rodrigez, B, et al., 2018 Rodrigez, B, et al., 2014	20 8	21.20 4.30 95.83 11.79 20.74 4.20	7	19.70 90.48	6.70 25.20	followup	0.10		0.26 [-0.35; 0.87] 0.26 [-0.76; 1.28]
Penedo, FJ, et al., 2020 Powell CB, et al., 2008	95 21	-20.61 4.19	97 43	-21.91	4.33	followup	24.00		0.30 [0.02; 0.59]
Qiu, H, et al., 2018 I. Hemandez, EG, et al. 2018	98 28	21.75 8.70 18.82 5.79	196 28	18.75 16.40	9.46 5.07	followup	24.00	E.	0.32 [0.08; 0.57]
Serfaty M, et al., 2018 Hernandez, EG, et al. 2018	20 28	19.50 7.20 19.23 5.51	22 28	16.00 16.60	7.60 5.39	followup	24.00 8.00	1 <u>8</u>	0.46 [-0.15; 1.08] 0.48 [-0.06; 1.01]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	21.39 8.03 65.81 18.49	196 53	18.25 56.11	5.05 17.08	followup	12.00 9.00	<u>*</u>	0.50 [0.26; 0.75] 0.54 [0.15; 0.94]
Lu, I, et al., 2019 Lu, Z, et al., 201 Rahmani, S, et al. 2015	49 203	76.10 5.20	103 12	62.05 71.10 29.16	14.34 8.20 16.09	followup	9.00		0.78 [0.36; 1.16] 0.78 [0.54; 1.03] 1.55 [0.52; 2.48]
Rodriguez Vega, B, et al., 2010 Rodriguez Vega, B, et al., 2010	39 39	49.04 3.32 61.85 3.32	33 33	29.42 34.47	3.62	followup	12.00 24.00		> 5.61 [4.56; 6.66] > 7.83 [6.44; 9.22]
Random effect Prediction interval	4468		5018						0.32 [0.06; 0.58] [-0.92; 1.56]
healthcare professional	10	6.05 0.05	-	7.74	4.04	hanalina	0.00		0.62 (4.25) 0.021
Hoffman, CJ, et al., 2012 Berglund, G, et al., 2007	102	17.59 5.91 90.30 22.60	109	18.78	6.01	baseline baseline	0.00	1	-0.20 [-0.47; 0.07] -0.17 [-0.52; 0.19]
Braeken APB, et al. 2013 Schofield, P, et al., 2013	136 55	84.94 21.44 70.90 26.77	144 53	85.46 70.75	22.52 26.72	baseline baseline	0.00	100 H	-0.02 [-0.26; 0.21] 0.01 [-0.37; 0.38]
Girgis, A, et al., 2009 II. Etyasi, F, et al., 2021 I.	120 15	80.80 25.60 2.00 1.20	117 15	79.50 1.90	25.10 0.90	baseline baseline	0.00		0.05 [-0.20; 0.31] 0.09 [-0.62; 0.81]
Yun et al., 2017 Girgis, A, et al., 2009 I.	134	75.80 26.80 82.10 24.00	72 117	73.10 79.50 70.40	23.40	baseline	0.00	Ē	0.10 [-0.18; 0.39] 0.11 [-0.16; 0.37]
Sandsund, C, et al., 2017 Cheuno VI, et al. 2002	72	74.10 26.70	70	70.00	29.00	baseline	0.00	<u>=</u>	0.12 [-0.17, 0.41] 0.15 [-0.18; 0.48] 0.49 [-0.03; 1.01]
Trask, PC, et al. 2003 Etyasi, F, et al., 2021 II.	25 20	71.50 22.00 2.50 1.10	23 20	58.20 1.90	29.25 0.90	baseline baseline	0.00	-	0.51 [-0.07; 1.08] 0.59 [-0.05; 1.22]
Beatty, L. et al. 2015 Ferguson, RJ, et al., 2012	30 19	57.25 5.49 6.75 1.78	30 21	66.56 7.47	5.41 1.59	followup	6.00 8.00		-1.68 [-2.28; -1.09] -0.42 [-1.05; 0.21]
Schofield, P, et al., 2007 Schofield, P, et al., 2013	39 55	77.00 23.70 65.03 28.36 89.20 19.30	150 53	83.50 71.29	23.70 28.69 17.00	followup	48.00	크	-0.27 [-0.63; 0.08] -0.22 [-0.60; 0.16] -0.09 [-0.35; 0.17]
Scholleld, P, et al., 2009 I. Girgis, A, et al., 2009 II.	55	68.28 26.22 89.20 20.30	53 117	70.58	26.38	followup	8.00	-	-0.09 [-0.46; 0.29] -0.04 [-0.29; 0.22]
Hoffman, CJ, et al., 2012 Braeken APB, et al. 2013	102 136	18.09 5.81 86.99 20.73	109 144	18.30 87.55	5.75 19.10	followup	12.00 48.00		-0.04 [-0.31; 0.23] -0.03 [-0.26; 0.21]
Elyasi, F, et al., 2021 I. Girgis, A, et al., 2009 II.	15 120	1.80 0.90 91.90 17.60	15 117	1.80 91.90	0.90 17.40	followup followup	24.00 24.00		0.00 [-0.72; 0.72] 0.00 [-0.25; 0.25]
Girgis, A, et al., 2012 Girgis, A, et al., 2009 I.	102	18.35 5.65 92.20 15.00	109	18.26 91.90	5.88 17.40	followup	24.00		0.02 [-0.25; 0.29] 0.02 [-0.24; 0.28]
Guan, S, et al., 2019 Guo, Z, et al., 2013	50	69.05 7.24 74.35 10.67	50	68.19	8.05	followup	8.00	훕	0.11 [-0.28; 0.50]
Trask, PC, et al. 2003 Yun et al., 2017	25 134	86.10 23.50 85.30 19.50	23 72	79.40 78.20	20.62 22.40	followup followup	24.00 48.00	- 10 -	0.30 [-0.27; 0.87] 0.34 [0.06; 0.63]
Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	72 72	85.00 21.40 86.00 18.90	70	74.90 74.20	29.80 28.90	followup	12.00 24.00	툳	0.39 [0.06; 0.72] 0.48 [0.15; 0.82]
Bearly, L. et al. 2015 Trask, PC, et al. 2003 Ekonai E. et al. 2021 II	30 25	77.87 4.62 85.90 24.00	30 23	75.08	4.61 27.34	followup	13.03 8.00		0.60 [0.08; 1.11] 0.61 [0.03; 1.19]
Cheung YL, et al. 2002 Cheung YL, et al. 2002	29	10.55 0.50	30	9.64	1.56	followup	5.00	-	0.82 [-0.02, 1.25] 0.77 [0.24; 1.30] 0.83 [0.29; 1.36]
Beatty, L. et al. 2015 Random effect	30 2719	87.98 4.25	30 2863	83.84	4.75	followup	26.07		0.91 [0.37; 1.44]
Prediction interval									[-1.02; 1.46]
Walczak, A, et al.,2017 Chen, et al., 2017	61 58	21.16 4.48 58.30 6.20	49 65	22.71 59.60	4.99 6.90	baseline baseline	0.00	삨	-0.33 [-0.71; 0.05] -0.20 [-0.55; 0.16]
Fang, P, et al.,2020 Wu, Q, et al., 2021	60 43	48.50 4.11 53.77 5.51	60 43	49.08 54.34	5.01 5.53	baseline baseline	0.00	-	-0.13 [-0.48; 0.23] -0.10 [-0.53; 0.32]
McLachlan, SA, et al., 2001 Li, X, et al., 2017	296 102	41.20 22.60 13.58 2.23	154 108	42.80	18.70	baseline baseline	0.00		-0.07 [-0.27; 0.12] -0.04 [-0.31; 0.23]
Dirksen, S. et al. 2021 van der Meulen IC. et al. 2013	34	22.10 4.90 83.10 2.50	38	22.20	6.10 2.50	baseline	0.00		-0.02 [-0.48; 0.44]
Klafke, N, et al., 2019 Qin, X, et al., 2017	120 50	59.30 31.30 77.68 15.31	113 50	58.60 77.26	29.60 16.04	baseline baseline	0.00		0.02 [-0.23; 0.28] 0.03 [-0.37; 0.42]
Baoyindeligeer, L.Z. et al. 2020 Zhao,X, et al. 2015	65 62	66.59 14.95 7.01 2.18	65 62	65.59 6.76	15.24 2.39	baseline baseline	0.00	폰	0.07 [-0.28; 0.41] 0.11 [-0.24; 0.46]
Kim, YH, et al., 2012 Kim, YH, et al., 2017	30	21.10 5.40 72.80 25.30 59.02 2.41	30	19.00 62.80	20.80	baseline	0.00	Ē.	0.35 [0.03; 0.68] 0.43 [-0.09; 0.94]
McLachlan, SA, et al., 2001 Walczak, A, et al., 2017	296 61	42.00 23.70 20.94 5.40	154 49	47.50	17.90	followup	24.00		-0.25 [-0.45; -0.06] -0.10 [-0.47; 0.28]
Klafke, N, et al., 2019 Kim, SH, et al., 2021	120 47	54.50 29.60 80.30 17.60	113 47	55.10 80.40	29.50 18.50	followup	24.00 20.00	-	-0.02 [-0.28; 0.24] -0.01 [-0.41; 0.40]
Qin, X, et al., 2017 Klafke, N, et al., 2019	50 120	80.24 13.46 62.10 29.40	50 113	79.67	13.13 27.60	followup	2.00		0.04 [-0.35; 0.43] 0.08 [-0.17; 0.34]
Klafke, N, et al., 2021 Thomas, ML, et al., 2019	120 64	69.10 27.90 20.50 6.10	113 88	63.60 19.00	26.60 6.40	followup	48.00		0.20 [-0.06; 0.46] 0.24 [-0.09; 0.55]
LI, X, et al., 2017 Kim, SH, et al., 2021	102 47	15.45 2.67 81.90 15.20	108 47	14.52 74.60	3.28 23.00	followup	12.00 8.00	i i i i i i i i i i i i i i i i i i i	0.31 [0.04; 0.58] 0.37 [-0.04; 0.78]
Dirksen, S. et al. 2007 Zhou, J. et al., 2020 Zhou, S. et al. 2020	34 59	23.30 3.90 72.34 11.43	38 59	21.40	5.90 10.26	followup	10.00		0.37 [-0.10; 0.84] 0.59 [0.22; 0.96]
znao, A, et al. 2015 Kim, YH, et al., 2017 Chen, et al., 2017	62 30	8.19 2.10 75.60 26.20 47.60 7.50	62 30	0.87 58.30 42.60	27.20	followup	0.30 6.00 8.00		0.01 [0.25; 0.97] 0.64 [0.12; 1.16] 0.68 [0.31; 1.04]
Chen, et al., 2017 Kim, YH, et al., 2017	58 30	46.80 7.60 75.00 23.10	65 30	41.50 54.40	7.50	followup	24.00 9.00		0.70 [0.33; 1.06] 0.79 [0.27; 1.32]
van der Meulen, IC, et al., 2013 Wu, Q, et al., 2021	88 43	88.50 3.20 81.65 8.30	91 43	85.10 72.36	3.00 7.51	followup followup	48.00 12.00	*	1.09 [0.78; 1.41] 1.16 [0.70; 1.62]
Baoyindeligeer, L.Z. stal. 2020 Fang, P. stal. 2020 Bandom offs st	65 60	88.33 12.38 65.47 6.98	65 60	71.36 49.45	13.84 5.65	followup	2.00 4.00	=	1.28 [0.91; 1.66] 2.51 [2.03; 2.99]
Readom effect Prediction interval	2898		2655					-	0.43 [0.19; 0.68] [-0.81; 1.68]
Random effect Prediction interval	10 08 5		10536				_	÷	0.33 [0.13; 0.54] [-0.89; 1.55]
							-4 In favor of	-2 0 2 control group in favor of inte	4 arvention group

Figure S13.1. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the provider subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S13.2.T12

Study

Study	Experim Patient N Mea	iental n SD I	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
perchologiai Rodriguez Vega, B, et al., 2010 Peng, L, et al., 2022 Schfalv, M, et al., 2018 Giu, H, et al., 2018 Ruiz, Vozmediano, J, et al., 2018 Ruiz, Vozmediano, J, et al., 2020 Antoni, MH, et al., 2018 Hermandez, EG, et al. 2019 Liu, T, et al., 2019 Antoni, MH, et al., 2010 Liu, T, et al., 2019 Chan, et al. 2005 Hermandez, EG, et al. 2019 Chan, et al. 2007 Rahmani, S, et al., 2008 Monto, Liu, 2009 Rahmani, S, et al., 2010 Powell, CB, et al., 2010 Powell, CB, et al., 2010 Chan, et al. 2005 Chan, et al. 2005 Chan, et al., 2007 Chan, et al., 2007 Chan, et al., 2008 Chan, et al., 2008 Chan, et al., 2007 Chan, et al., 2007 Chan, et al., 2007 Chan, et al., 2008 Chan, et al., 2008 Chan, et al., 2007 Chan, et al., 2008 Chan, et al., 2007 Chan, et al., 2007 Chan, et al., 2008 Chan, et al., 2007 Chan, et al., 2007 Chan, et al., 2008 Chan, et al., 2008 Chan, et al., 2008 Chan, et al., 2008 Chan, et	39 3.3 28 76.7 20 116.4 91 116.6 92 116.6 93 116.6 94 117.6 93 116.6 94 117.6 94 117.6 94 117.7 94 117.1 95 -19.9 95 -19.9 95 11 22.2 90 76.1 90 76.3 92 182.1 93 18.8 94 17.7 95 -19.9 95 11 95 11 95 11 96 77.6 97 100 98 17.5 120 118.1 121 122.2 122 124.2 127 124.2 127 124.4 127 124.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 29 22 19 31 19 32 26 107 8 35 17 11 10 10 31 17 75 76 76 22 20 10 17 75 33 29 10 10 12 51 75 11 10 10 31 12 7 97 43 10 10 10 17 75 76 76 22 20 10 17 75 33 29 10 10 12 52 16 10 10 38 16 17 51 16 18 38 39 10 10 22 16 12 12 12 13 10 12 12 12 13 10 12 12 12 12 13 10 12 12 12 12 13 10 12 12 12 12 12 13 10 12 12 12 12 12 12 12 12 12 12 12 12 12	6.06 6.106 7.161 6.16 7.340 7.340 7.340 7.340 7.340 7.340 7.340 7.340 7.340 7.340 7.340 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34	3.627 16.87 7.80 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.25 5.55 4.4 4.35 7.75 9.48 4.25 4.25 4.4 4.35 7.75 9.48 4.25 4.25 4.25 4.25 5.55 7.55 9.55 5.50 7.75 9.55 5.50 7.75 9.55 5.50 7.75 7.50 7.50 7.75 7.50 7.75 7.50 7.50 7.75 7.50 7.50 7.75 7.50	Daseline Das	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		$\begin{array}{c} 0.79 & [-1.27, -0.31]\\ -0.01 & [-0.62, -0.23]\\ -0.02 & [-0.62, -0.23]\\ -0.62 & [-0.64, -0.62]\\ -0.62 & [-0.64, -0.62]\\ -0.62 & [-0.64, -0.62]\\ -0.64 & [-0.66, -0.43]\\ -0.64 & [-0.66, -0.43]\\ -0.64 & [-0.66, -0.43]\\ -0.64 & [-0.66, -0.44]\\ -0.64 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.66, -0.43]\\ -0.66 & [-0.76, -0.26]\\ $
healthcare professional Healthcare professional Fergusson, CJ, et al., 2012 Hoffman, CJ, et al., 2012 Erakien APB, et al., 2013 Schotlink, P. et al., 2013 Grigs, A. et al., 2009 II. Eryssi, F, et al., 2009 II. Eryssi, F, et al., 2007 Cheung YL, et al., 2007 Cheung YL, et al., 2007 Eryssi, F, et al., 2007 Schotlink, P, et al., 2017 Grigs, A. et al., 2007 Schotlink, P, et al., 2017 Grigs, A. et al., 2017 Ergund, G et al., 2017 Grigs, A. et al., 2017 Grigs, A. et al., 2017 Grigs, A. et al., 2010 Grigs, A. et al., 2010 Grigs, A. et al., 2010 Erseken APB, et al., 2011 Erseken APB, et al., 2011 Erseken APB, et al., 2011 Grigs, A. et al., 2012 Erseken APB, et al., 2012 Erseken APB, et al., 2017 Sandsund, C., et al., 2017 Sandsund, C., et al., 2017 Sandsund, C., et al., 2017 Ersek, P, et al., 2017 Trask, PC, et al., 2017 Sandsund, C., et al., 2017 Erseken APB, et al., 2017 Erseken APB, et al., 2017 Sandsund, C., et al., 2017 Sandsund, C., et al., 2017 Erseken, et al., 2017 Erseken, et al., 2017 Frask, PC, et al., 2015 Frask, PC, et al., 2015 Fras	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 21\\ 109\\ 150\\ 144\\ 53\\ 117\\ 57\\ 20\\ 30\\ 20\\ 30\\ 21\\ 109\\ 30\\ 30\\ 20\\ 30\\ 21\\ 109\\ 117\\ 109\\ 109\\ 20\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 3$	$\begin{array}{c} 7.31\\ 12.78\\ 9.07\\ 12.78\\ 9.07\\ 12.78\\ 1.95\\ 1.$	1.21 6.01 22.52 22.52 22.52 22.52 22.52 22.52 22.52 22.50 22.54 22.50 22.54 22.50 22.54 22.50 22.55 10.90 22.55 10.90 22.55 10.90 25.55 10.90 25.55 10.90 25.58 17.40 25.68 11.58 22.40 22.40 22.40 22.40 22.40 22.40 25.58 11.58 22.40 23.40 23.40 24.40 1.43 4.475 24.4755 24.4755 24.4755 24.4755 24.475	baseline bas	0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	→ · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 0.82 + 1.28 & 0.07 \\ -0.71 & 0.07 & 0.07 \\ -0.72 & 1.026 & 0.27 \\ -0.72 & 1.026 & 0.21 \\ -0.72 & 1.026 & 0.21 \\ -0.72 & 1.026 & 0.21 \\ -0.72 & 1.026 & 0.21 \\ -0.72 & 0.26 & 0.21 \\ -0.71 & 0.71 & 0.71 \\ -0.71 & 0.72 & 0.71 \\ -0.71 & 0.71 & 0.71 \\ -0.71 & 0.72 & 0.71 \\ -0.71 & 0.71 & 0.71 \\ -0.71 & 0.7$
Number Walczak, A. et al., 2017 Chen, et al., 2021 Walczak, A. et al., 2020 Wu, Q. et al., 2021 Mix, B. et al., 2017 Kim, S. H. et al., 2017 Kim, S. H. et al., 2017 Dirksen, S. et al., 2017 Composition of the state of	61 21.1 58 53.3 60 46.5 43 53.7 286 41.2 102 13.2 103 14.2 104 13.2 100 53.3 100 53.3 100 53.6 55 66.2 56 66.2 101 24.4 102 63.3 103 62.7 104 21.1 105 64.2 105 64.2 105 64.2 105 68.4 105 64.2 105 64.2 1102 63.4 1102 63.4 1102 63.4 1102 63.4 1102 63.4 120 72.5 58.4 45.6 30 75.6 58.4 45.6 30 75.6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49 55 60 4154 4154 4154 4154 4157 50 51 51 52 52 88 80 51 113 55 62 88 80 51 113 100 85 50 62 88 50 51 113 100 85 50 62 88 50 51 43 44 54 45 4 57 50 51 51 51 51 51 51 51 51 51 51 51 51 51	$\begin{array}{c} 22.71\\ 59.60\\ 49.08\\ 54.34\\ 19.08\\ 54.34\\ 19.08\\ 54.34\\ 19.08\\ 54.34\\ 19.08\\ 54.34\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 62.80\\ 22.83\\ 19.00\\ 22$	4.99 6.90 5.01 5.53 2.21 5.53 2.21 6.10 2.20 6.10 2.20 6.10 2.20 6.10 2.20 6.10 2.20 6.10 2.20 6.10 2.20 6.10 2.20 6.10 1.52 4.12 2.39 6.30 8.50 1.52 4.12 2.39 6.30 8.50 1.52 4.12 2.39 6.30 8.50 1.52 4.12 2.53 3.21 2.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55	baseline Das	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.33 (-0.71, 0.05) -0.20 (-0.55, 0.16) -0.31 (-0.46, 0.23) -0.11 (-0.46, 0.23) -0.11 (-0.55, 0.32) -0.01 (-0.
							-4 In favor of	-2 0 2 control group in favor of int	4 ervention group

Figure S13.2. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the provider subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI - confidence interval

Figure S13.3.T24

Study

Figure S13.3.. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the provider subgroups as predicted at week 24 (post-intervention). SMD - Standardized more difference of the subscription of the subs mean difference, CI - confidence interval

Figure S13.4.T48

Study	Experimental Patient N Mean SD	Control Patient N Mean	SD follow-up Follo	w-up time SMD of interested event	SMD 95%-CI
swychologiai: Acordiguez Vega, B, et al., 2010 Peng, L, et al., 2020 Serlay M, et al., 2010 Heiner, SP, et al., 2010 Heiner, SP, et al., 2011 Heiner, SP, et al., 2010 Heiner, SP, et al., 2010 Autori, MH, et al., 2010 Hermander, ECE, dal. 2017 Autori, MH, et al., 2020 Johansson, B, et al., 2001 Rahman, S, et al., 2017 Rahman, S, et al., 2017 Antor, MH, et al., 2006 Chan, et al., 2005 Serfay M, et al., 2018 Rahman, S, et al., 2008 Serfay M, et al., 2018 Serfay M, et al., 2018	3.3.1 3.3.2 3.3.7 7.5.79 3.3.7 7.5.79 3.3.7 7.5.79 3.3.7 5.79 3.3.7 5.79 3.3.7 5.79 3.3.7 5.79 3.3.7 5.79 3.3.7 5.70 3.3.7 5.77 3.3.7 5.77 3.3.7 5.77 3.3.7 5.77 3.3.7 5.77 3.3.7 5.77 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83 3.3.7 1.83	33 6.08 29 81.61 22 11.61 134 18.85 135 12.73.40 136 18.85 137 88.777.70 138 77.70 139 18.85 132 27.34.01 133 5.677.70 134 18.200 1000 67.99 1010 67.90 102 77.70 103 77.90 103 77.90 103 77.70 103 77.70 103 77.70 103 77.70 103 77.70 103 77.50 103 77.50 104 77.94 105 77.92 106 177.92 107 79.92 108 170.00 1196 182.55 1196 182.55 1196 182.55	3.62 bašeline 3.67 baseline 15.67 baseline 15.7 baseline 25.7 baseline 25.7 baseline 25.8 baseline 25.7 baseline 25.8 baseline 25.7 baseline 25.7 baseline 25.8 baseline 25.7<	0.00 日本 0.00 日	$\begin{array}{c} -0.79 (-1.27, -0.31) \\ -0.39 (-1.27, -0.31) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.44, -0.32) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.43) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.46, -0.44) \\ -0.34 (-0.34$
Headfluctures professional Forgisson, R.J. et al., 2012 Hoffman, G.J. et al., 2012 Brackino AFB, et al., 2013 Schrödick J. et al., 2013 Grigis, A. et al., 2009 Grigis, A. et al., 2009 Grigis, A. et al., 2009 Grigis, A. et al., 2001 Grigis, A. et al., 2001 Schofeld, P. et al., 2001 Schofeld, P. et al., 2001 Schofeld, P. et al., 2001 Schofeld, P. et al., 2001 Grigis, A. et al., 2009 Hoffman, CJ. et al., 2001 Grigis, A. et al., 2009 Hoffman, CJ. et al., 2001 Grigis, A. et al., 2009 Grigis, A. et al., 2001 Guan, S. et al., 2017 Guan, S. et al., 2018 Guan, S. et al., 2017 Gandsund, C. et al., 2017 Gandsund, C. et al., 2017 Grantsund, C. et al., 201	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 7.31 100 18.78 150 84.00 144 65.45 177 79.50 177 79.50 178 98.73 179 77.73 188 73.43 170 70.00 20 1.36 23 58.20 24 1.36 25 71.20 171 99.90 152 71.28 171 99.90 173 1.99.90 174 99.90 175 91.51 176 91.99 177 91.99 178 91.99 179 1.99 177 91.99 109 18.28 1177 91.99 109 18.28 107 74.20 50 67.744 107 74.90 70 74.90 70	121 baselina 601 baselina 2210 baselina 22110 baselina 22120 baselina 22120 baselina 22120 baselina 22120 baselina 22120 baselina 22121 baselina 22121 baselina 22120 baselina 22121 baselina 2225 baselina 2225 baselina 2226 baselina 2237 baselina 2327 baselina 2327 baselina 2327 baselina 2327 baselina 2330 baselina 2331 baselina 2332 baselina 2333 baselina 2340 ballowup 7140 ballowup 2340 ballowup 2340 ballowup 2340 ballowup 2340<	000 000	$\begin{array}{c} -0.22 \left[-1.26, \ 0.02 \right] \\ -0.20 \left[-0.20, \left(-0.27, 0.07 \right) \right] \\ -0.21 \left[-0.55, 0.01 \right] \\ -0.21 \left[-0.55, 0.01 \right] \\ -0.21 \left[-0.55, 0.01 \right] \\ -0.21 \left[-0.25, 0.01 \right] \\ -0.22 \left[-0.25, 0.02 \right] \\ -0.22 \left[-0.25, 0.01 \right] \\ -0.22 \left[-0.25, 0.02 \right] \\ -0.22 \left[-0.25, 0.02 \right] \\ -0.22 \left[-0.25, 0.02 \right] \\ -0.21 \left[-0.25, 0.25 \right$
Auroe Walczak, A. et al., 2017 Chen, et al., 2017 Fan, C. P. et al., 2027 Fan, C. P. et al., 2027 Fan, C. P. et al., 2021 Mick Lablian, A. et al., 2011 Dirksen, S. et al., 2017 Win, SH, et al., 2017 Win, SH, et al., 2011 Dirksen, S. et al., 2017 Win, Y. et al., 2012 Dirksen, S. et al., 2017 Dirksen, S. et al., 2017 Dirksen, S. et al., 2017 Mick, SH, et al., 2012 Mick, SH, et al., 2017 Walczak, A. et al., 2021 Mick, SH, et al., 2021 Dirksen, SH, et al., 2017 Chen, et al., 2017 Chen, et al., 2017 Chen, et al., 2021 Dirksen, SH, et al., 2020 Dirksen, SH,		49 22,71 65 58,60 60 44,94 100 13,67 154 42,60 101 13,67 154 42,60 101 13,67 155 52,60 113 58,60 114 58,60 115 58,60 113 58,60 113 58,60 113 58,60 113 56,60 113 55,10 113 55,10 113 55,10 113 55,10 113 55,10 113 55,10 113 55,10 113 55,10 113 55,02 113 53,82 114 53,82 115 58,02 113 53,82 114 53,82 115 58,02 115 58,02 113	4.99 baseline 6.00 baueline 6.01 baueline 6.02 baueline 6.02 baueline 6.03 baueline 6.03 baueline 1.07 baueline 2.21 baueline 2.21 baueline 2.21 baueline 2.20 baueline 2.21 baueline 2.23 baueline 2.24 baueline 2.25 baueline 2.26 baueline 2.26 baueline 2.27 baueline 2.20 baueline 2.21 b	0.00 0.00	$\begin{array}{c} -0.33 \ (-0.71, \ 0.05] \\ -0.33 \ (-0.71, \ 0.05] \\ -0.31 \ (-0.45, \ 0.23] \\ -0.31 \ (-0.45, \ 0.23] \\ -0.31 \ (-0.45, \ 0.23] \\ -0.31 \ (-0.45, \ 0.23] \\ -0.31 \ (-0.42, \ 0.23] \\ -0.31 \ (-0.42, \ 0.23] \\ -0.31 \ (-0.43, \ 0.37] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.32 \ (-0.42, \ 0.24] \\ -0.31 \ (-0.42, \ 0.44] \\ -0.31 \ (-0.42, \ 0.44] \\ -0.31 \ (-0.42, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0.44, \ 0.44] \\ -0.31 \ (-0$
Random effect Prediction interval	10085	10536		4 .2 0 2 In favor of control group In favor of inf	0.21 [-0.11; 0.54]

Figure S13.4.. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the provider subgroups as predicted at week 48 (postintervention). SMD - Standardized mean difference, CI - confidence interval

S14.Subgroup analysis of Social QoL: Environment

Figure S14.1.T0

Experimental

Control

Study	Patient N	Mean	SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
face to face Rodríguez Vega, B, et al., 2010	39	3.31	3.32	33	6.08	3.62	baseline	0.00		-0.79 [-1.27; -0.31]
Ferguson, RJ, et al., 2012 Serfaty M, et al., 2018	19 20	6.26 16.40	2.05 6.10	21 22	7.31 18.10	1.21 7.80	baseline baseline	0.00 0.00		-0.62 [-1.26; 0.02] -0.24 [-0.84; 0.37]
Qiu, H, et al., 2018 II. Chen, et al., 2017	98 58	17.84 58.30	5.10 6.20	196 65	18.85 59.60	4.22 6.90	baseline baseline	0.00 0.00		-0.22 [-0.47; 0.02] -0.20 [-0.55; 0.16]
Berglund, G. et al. 2007 Qiu, H, et al., 2018 I.	39 98	80.30 18.13	22.60 5.70	150 196	84.00 18.85	22.10 4.22	baseline baseline	0.00 0.00	1	-0.17 [-0.52; 0.19] -0.15 [-0.39; 0.09]
Ruiz-Vozmediano, J, et al.,2020 Fang, P, et al.,2020	31 60	69.40 48.50	29.80 4.11	32 60	73.40 49.08	28.40 5.01	baseline baseline	0.00		-0.14 [-0.63; 0.36] -0.13 [-0.48; 0.23]
Seliniotaki, T, et al., 2021 Antoni, MH, et al., 2006	27 92	74.40 877.61	29.90 158.55	26 107	77.70 891.17	29.30 152.16	baseline baseline	0.00		-0.11 [-0.65; 0.43] -0.09 [-0.37; 0.19]
Hernandez, EG, et al. 2018 McLachlan, SA, et al., 2001	28 296	17.11 41.20	6.05 22.60	28 154	17.56 42.80	5.46 18.70	baseline	0.00		-0.08 [-0.60; 0.45] -0.07 [-0.27; 0.12]
Liu, 1, et al., 2019 Li, X, et al., 2017	49 102	13.58	24.95	108	13.67	23.71	baseline	0.00		-0.06 [-0.45; 0.33] -0.04 [-0.31; 0.23]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	54.76 84.94	60.02 21.44	75 144	56.28 85.46	54.76 22.52	baseline	0.00	Ē	-0.03 [-0.34; 0.29] -0.02 [-0.26; 0.21]
Schofield, P, et al., 2013	55	70.90	26.77	53	70.75	26.72	baseline	0.00		0.00 [-0.29, 0.29]
Qin, X, et al., 2017	50	77.68	15.31	50	77.26	16.04	baseline	0.00	畫	0.02 [-0.23, 0.26] 0.03 [-0.37; 0.42]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke, M et al., 2012	15	2.00	1.20	15	1.90	0.90	baseline	0.00		0.09 [-0.62; 0.81]
Zhao,X, et al. 2015 Guo, Z, et al. 2013	62	7.01	2.18	62	6.76	2.39	baseline	0.00	畫	0.11 [-0.24; 0.46]
Arving, C, et al., 2007 Rahmani, S, et al. 2015	47	78.00	27.00	38 12	75.00	19.00	baseline	0.00		0.13 [-0.30; 0.55] 0.13 [-0.67: 0.93]
Rodrigez, B, et al., 2014 Powell, CB, et al., 2008	8	95.83 22.20	11.79 5.40	7 43	90.48 19.70	25.20 6.00	baseline baseline	0.00		0.26 [-0.76; 1.28]
Trask, PC, et al. 2003 Elvasi, F. et al. 2021 II.	25 20	71.50	22.00	23 20	58.20 1.90	29.25 0.90	baseline baseline	0.00		0.51 [-0.07; 1.08]
Lu, Z, et al., 201 Zhao, X, et al., 2021	203 52	75.30 58.02	4.00 3.41	103 51	71.30 54.01	6.50 4.12	baseline baseline	0.00	-	0.80 [0.56; 1.05]
Antoni, MH, et al., 2006 Ferguson, RJ, et al., 2012	92 19	788.15 6.75	133.08 1.78	107 21	855.60 7.47	126.82 1.59	followup followup	48.00 8.00		-0.52 [-0.80; -0.23] -0.42 [-1.05; 0.21]
Antoni, MH, et al., 2006 Berglund, G. et al. 2007	92 39	832.88 77.00	119.31 23.70	107 150	873.38 83.50	114.05 23.70	followup followup	24.00 48.00	-	-0.35 [-0.63; -0.07] -0.27 [-0.63; 0.08]
McLachlan, SA, et al., 2001 Schofield, P, et al., 2013	296 55	42.00 65.03	23.70 28.36	154 53	47.50 71.29	17.90 28.69	followup followup	24.00 12.00	-	-0.25 [-0.45; -0.06] -0.22 [-0.60; 0.16]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.19 65.58	54.76 54.76	75 75	87.23 75.11	54.76 54.76	followup followup	72.00 24.00		-0.20 [-0.52; 0.12] -0.17 [-0.49; 0.14]
Chan, et al. 2005 Chan, et al. 2005	80 80	76.62 61.47	54.76 54.76	75 75	85.06 69.26	54.76 54.76	followup	60.00 12.00	1	-0.15 [-0.47; 0.16] -0.14 [-0.46; 0.17]
Serfaty M, et al., 2018 Schofield, P, et al., 2013	20 55	18.70 68.28	5.30 26.22	22 53	19.40 70.58	6.20 26.38	followup followup	12.00 8.00		-0.12 [-0.72; 0.49] -0.09 [-0.46; 0.29]
Klinkhammer-Schalke, M et al., 2012 Rodrigez, B, et al., 2014	100 8	78.90 93.33	27.54 14.91	100 7	81.14 94.44	24.07 9.62	followup followup	48.00 2.00	_	-0.09 [-0.36; 0.19] -0.08 [-1.10; 0.93]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	80.52 86.99	54.76 20.73	75 144	83.77 87.55	54.76 19.10	followup followup	48.00 48.00	-	-0.06 [-0.37; 0.26] -0.03 [-0.26; 0.21]
Klinkhammer-Schalke, M et al., 2012 Klafke, N, et al., 2019	100 120	66.00 54.50	33.00 29.60	100 113	66.74 55.10	31.76 29.50	followup followup	12.00 24.00		-0.02 [-0.30; 0.25] -0.02 [-0.28; 0.24]
Elyasi, F, et al., 2021 I. Qiu, H, et al., 2018 II.	15 98	1.80 17.98	0.90 8.92	15 196	1.80 17.98	0.90 8.52	followup followup	24.00 4.00		0.00 [-0.72; 0.72] 0.00 [-0.24; 0.24]
Rahmani, S, et al. 2015 Seliniotaki, T, et al., 2021	12 27	12.00 74.60	54.16 35.90	12 26	12.00 74.60	34.72 29.30	followup followup	16.00 8.00		0.00 [-0.80; 0.80] 0.00 [-0.54; 0.54]
Qiu, H, et al., 2018 II. Klinkhammer-Schalke, M et al., 2012	98 100	18.97 72.20	8.92 28.78	196 100	18.75 71.46	9.46 29.03	followup followup	24.00 24.00		0.02 [-0.22; 0.27] 0.03 [-0.25; 0.30]
Qin, X, et al., 2017 Arving, C, et al., 2007	50 47	80.24 76.00	13.46 25.00	50 38	79.67 75.00	13.13 19.00	followup followup	2.00 12.00	훞	0.04 [-0.35; 0.43] 0.04 [-0.38; 0.47]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	80.95 83.46	54.76 23.57	75 144	77.92 81.81	54.76 22.37	followup followup	36.00 12.00	富	0.06 [-0.26; 0.37] 0.07 [-0.16; 0.31]
Qiu, H, et al., 2018 II. Klafke, N, et al., 2019	98 120	18.77 62.10	8.03 29.40	196 113	18.25 59.70	5.05 27.60	followup followup	12.00 12.00		0.08 [-0.16; 0.33] 0.08 [-0.17; 0.34]
Arving, C, et al., 2007 Zhao, X, et al., 2021	47 52	81.00 58.62	22.00 6.31	38 51	79.00 58.02	25.00 3.21	followup	4.00	Ē	0.08 [-0.34; 0.51] 0.12 [-0.27; 0.51]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	4/	83.00 77.91	21.00 27.05	38 100	80.00 73.69	26.00 30.77	followup	24.00 36.00	Ē	0.13 [-0.30; 0.56] 0.15 [-0.13; 0.42]
Ruiz-Vozmediano, J, et al.,2020 Klafke, N, et al., 2019	31 120	83.30 69.10	24.70	32 113	78.70 63.60	28.50	followup	24.00 48.00	Ē	0.17 [-0.32; 0.67] 0.20 [-0.06; 0.46]
Qiu, H, et al., 2018 I. Serfaty M, et al., 2018	98 20	20.01 21.20	9.15 4.30	196 22	17.98	8.52 6.70	followup	4.00 18.00		0.23 [-0.01; 0.47] 0.26 [-0.35; 0.87]
Guo, Z, et al., 2013	89	95.83 74.35	10.67	89	90.48 71.33	11.88	followup	2.00		0.26 [-0.76, 1.28] 0.27 [-0.03; 0.56]
Li, X, et al., 2017	102	15.45	23.50	108	14.52	3.28	followup	12.00	Ē	0.31 [0.04; 0.58]
Qiu, H, et al., 2018 I. Hernandez, EG, et al. 2018	98	21.75	8.70 5.70	196	18.75	9.46	followup	24.00	E	0.32 [-0.21, 0.84]
Serfaty M, et al., 2018 Hernandez, EG, et al. 2018	20	19.50	7.20	22	16.00	7.60	followup	24.00		0.46 [-0.15; 1.08]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	21.39	8.03 18.49	196 53	18.25 56.11	5.05 17.08	followup	12.00	E	0.50 [0.26; 0.75]
Zhou, J, et al., 2020 Trask, PC, et al. 2003	59 25	72.34 85.90	11.43 24.00	59 23	65.87 70.10	10.26 27.34	followup	2.00		0.59 [0.22; 0.96]
Zhao,X, et al. 2015 Elyasi, F, et al., 2021 II.	62 20	8.19 2.40	2.10 1.00	62 20	6.87 1.80	2.21 0.90	followup followup	0.30 24.00		0.61 [0.25; 0.97] 0.62 [-0.02; 1.25]
Chen, et al., 2017 Chen, et al., 2017	58 58	47.60 46.80	7.50 7.60	65 65	42.60 41.50	7.20 7.50	followup	8.00 24.00		0.68 [0.31; 1.04] 0.70 [0.33; 1.06]
Liu, T, et al., 2019 Lu, Z, et al., 201	49 203	74.35 76.10	17.68 5.20	53 103	62.05 71.10	14.34 8.20	followup followup	12.00 9.00	-	0.76 [0.36; 1.16] 0.78 [0.54; 1.03]
van der Meulen, IC, et al., 2013 Baoyindeligeer, L.Z. et al. 2020	88 65	88.50 88.33	3.20 12.38	91 65	85.10 71.36	3.00 13.84	followup followup	48.00 2.00		1.09 [0.78; 1.41] 1.28 [0.91; 1.66]
Rahmani, S, et al. 2015 Fang, P, et al.,2020	12 60	51.38 65.47	11.14 6.98	12 60	29.16 49.45	16.09 5.65	followup followup	8.00 4.00		1.55 [0.62; 2.48] 2.51 [2.03; 2.99]
Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010	39 39	49.04 61.86	3.32 3.32	33 33	29.42 34.47	3.62 3.62	followup followup	12.00 24.00		> 5.61 [4.56; 6.66] > 7.83 [6.44; 9.22]
Random effect Prediction interval	6635			7199						0.32 [0.10; 0.54] [-1.11; 1.76]
telephone	~~	F 00	0.00		F 00	4.00		0.00		045 1001 055
Kim, SH, et al., 2003 Kim, SH, et al., 2021	33 47	5.60	2.00 81.90	33 47	5.90 75.50	22.00	baseline	0.00	重	-0.15 [-0.64; 0.33] -0.03 [-0.43; 0.37]
Girgis, A, et al., 2009 II.	120	80.80	25.60	38 117 70	79.50	25.10	baseline	0.00		-0.02 [-0.48, 0.44] 0.05 [-0.20; 0.31]
Thomas, ML, et al., 2012	64	21.10	5.40	88	19.00	6.30	baseline	0.00		
Heiney, SP, et al., 2003 Circles A et al., 2009	33	5.80	2.00	33	5.90	1.90	followup	6.00	-	-0.05 [-0.53; 0.43]
Kim, SH, et al., 2009 II. Girgis A et al. 2009 II	47	80.30	17.60	47	80.40	18.50	followup	20.00	-	-0.04 [-0.25, 0.22] -0.01 [-0.41; 0.40] 0.00 [-0.25; 0.25]
Thomas, ML, et al., 2012 Yun et al., 2017	64 134	20.50	6.10	88 72	19.00	6.40	followup	12.00	1	0.24 [-0.09; 0.56]
Kim, SH, et al., 2021 Dirksen, S. et al. 2007	47	81.90 23.30	15.20	47	74.60	23.00	followup	8.00		0.37 [-0.04; 0.78]
Random effect Prediction interval	1064			987						0.17 [-0.19; 0.53] [-1.50; 1.84]
online										
Peng, L, et al., 2022 Wu, Q, et al., 2021	28 43	76.79 53.77	15.27 5.51	29 43	81.61 54.34	16.87 5.53	baseline baseline	0.00		-0.30 [-0.82; 0.23] -0.10 [-0.53; 0.32]
Cengiz, HO, et al., 2023 Penedo, FJ, et al., 2020	32 95	20.16	5.97 4.09	33 97	19.13 -21.16	5.49 4.24	baseline	0.00	_ Ē	0.18 [-0.31; 0.66] 0.31 [0.03; 0.60]
Beatty, L. et al. 2015 Peng, L, et al., 2022	30 28	57.26 80.36	5.49 20.09	30 29	66.56 82.18	5.41 19.38	followup	6.00 0.10		-1.68 [-2.28; -1.09] -0.09 [-0.61; 0.43]
Peng, L, et al., 2022 Cengiz, HO, et al., 2023	28 32	79.17 20.36	16.49 5.38	29 33	79.89 19.06	5.74	followup	4.00	흔	-0.04 [-0.56; 0.48] 0.23 [-0.26; 0.72]
Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020 Reatty L, et al. 2015	95 95	-20.74	4.29	97 97	-22.05 -21.91	4.43	followup	48.00 24.00		0.30 [0.01; 0.58] 0.30 [0.02; 0.59]
Beatty, L. et al. 2015 Wu O, et al. 2021	30 30 42	87.98	4.02	30 30 42	73.08 83.84 72.24	4.01	followup	26.07 12.00	E	0.00 [0.08; 1.11] 0.91 [0.37; 1.44]
Random effect Prediction interval	+3 609	01.00	0.30	43 620	12.30	7.01	ronowup	12.00		0.25 [-0.28; 0.78]
Random effect	8308			8806					ļ.	0.29 [0.07: 0.52]
Prediction interval								r		[-1.12; 1.71]
								-4 In favor of	-2 0 2 control group In favor of inte	4 ervention group

Figure S14.1. Forest plot represents the difference between the intervention vs. control group in the Social QOL domain with the environment subgroups as predicted at week 0 (post-intervention). SMD -Standardized mean difference, CI -confidence interval 98

Figure S14.2.T12

Study	E) Patient N	cperimen I Mean	tal SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
face to face Rodríguez Vega, B, et al., 2010	39	3.31	3.32	33	6.08	3.62	baseline	0.00	-	-0.79 [-1.27; -0.31]
Ferguson, RJ, et al., 2012 Serfaty M, et al., 2018	19 20	6.26 16.40	2.05 6.10	21 22	7.31 18.10	1.21 7.80	baseline baseline	0.00		-0.62 [-1.26; 0.02] -0.24 [-0.84; 0.37]
Qiu, H, et al., 2018 II. Chen, et al., 2017	98 58	17.84 58.30	5.10 6.20	196 65	18.85 59.60	4.22 6.90	baseline baseline	0.00		-0.22 [-0.47; 0.02] -0.20 [-0.55; 0.16]
Berglund, G. et al. 2007 Qiu, H, et al., 2018 I.	39 98	80.30 18.13	22.60 5.70	150 196	84.00 18.85	22.10 4.22	baseline baseline	0.00	콜	-0.17 [-0.52; 0.19] -0.15 [-0.39; 0.09]
Ruiz-Vozmediano, J, et al.,2020 Fang, P, et al.,2020	31 60	69.40 48.50	29.80 4.11	32 60	73.40 49.08	28.40 5.01	baseline baseline	0.00		-0.14 [-0.63; 0.36] -0.13 [-0.48; 0.23]
Seliniotaki, T, et al., 2021 Antoni, MH, et al., 2006	27 92	74.40 877.61	29.90 158.55	26 107	77.70 891.17	29.30 152.16	baseline baseline	0.00	-	-0.11 [-0.65; 0.43] -0.09 [-0.37; 0.19]
Hernandez, EG, et al. 2018 McLachlan, SA, et al., 2001	28 296	17.11 41.20	6.05 22.60	28 154	17.56 42.80	5.46 18.70	baseline baseline	0.00 0.00		-0.08 [-0.60; 0.45] -0.07 [-0.27; 0.12]
Liu, T, et al., 2019 Li, X, et al., 2017	49 102	63.77 13.58	24.95 2.23	53 108	65.22 13.67	23.71 2.21	baseline baseline	0.00	-	-0.06 [-0.45; 0.33] -0.04 [-0.31; 0.23]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	54.76 84.94	60.02 21.44	75 144	56.28 85.46	54.76 22.52	baseline	0.00	-	-0.03 [-0.34; 0.29] -0.02 [-0.26; 0.21]
Schofield, P, et al., 2013 Klofke, N, et al., 2010	55 120	70.90	26.77	53	70.75	26.72	baseline	0.00	-	0.00 [-0.29, 0.29]
Qin, X, et al., 2017 Baovindeligeer I, Z, et al. 2020	50	77.68	15.31	50	77.26	16.04 15.24	baseline	0.00		0.03 [-0.37; 0.42]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke M et al. 2012	15 100	2.00	1.20	15 100	1.90 67.99	0.90	baseline baseline	0.00		0.09 [-0.62; 0.81]
Zhao,X, et al. 2015 Guo, Z, et al., 2013	62 89	7.01 75.00	2.18 13.82	62 89	6.76 73.43	2.39 12.31	baseline baseline	0.00	불	0.11 [-0.24; 0.46] 0.12 [-0.17; 0.41]
Arving, C, et al., 2007 Rahmani, S, et al. 2015	47 12	78.00 34.72	27.00 13.22	38 12	75.00 33.33	19.00 7.11	baseline baseline	0.00		0.13 [-0.30; 0.55] 0.13 [-0.67; 0.93]
Rodrigez, B, et al., 2014 Powell, CB, et al., 2008	8 21	95.83 22.20	11.79 5.40	7 43	90.48 19.70	25.20 6.00	baseline baseline	0.00		0.26 [-0.76; 1.28] 0.42 [-0.10; 0.95]
Trask, PC, et al. 2003 Elyasi, F, et al., 2021 II.	25 20	71.50 2.50	22.00	23 20	58.20 1.90	29.25 0.90	baseline	0.00	<u> </u>	0.51 [-0.07; 1.08] 0.59 [-0.05; 1.22]
Lu, Z, et al., 201 Zhao, X, et al., 2021 Antoni, Mill, et al., 2006	203 52	75.30 58.02	4.00	103 51	71.30 54.01	6.50 4.12	baseline	0.00	_ =	0.80 [0.56; 1.05] 1.05 [0.64; 1.47]
Ferguson, RJ, et al., 2006 Antoni, MH, et al., 2012	92 19	6.75	133.08	21	7.47	120.82	followup	48.00 8.00	콜	-0.52 [-0.80; -0.23] -0.42 [-1.05; 0.21]
Berglund, G. et al. 2007 Mel achian SA et al. 2007	39	77.00	23.70	150	83.50	23.70	followup	48.00		-0.27 [-0.63; 0.08]
Schofield, P, et al., 2001 Chap, et al., 2013	55	65.03 76.10	28.36	53	71.29	28.69	followup	12.00	률	-0.22 [-0.60; 0.16]
Chan, et al. 2005 Chan, et al. 2005	80 80	65.58 76.62	54.76 54.76	75 75	75.11	54.76 54.76	followup	24.00	클	-0.17 [-0.49; 0.14]
Chan, et al. 2005 Serfaty M. et al., 2018	80 20	61.47 18.70	54.76 5.30	75 22	69.26 19.40	54.76 6.20	followup	12.00 12.00		-0.14 [-0.46; 0.17] -0.12 [-0.72; 0.49]
Schofield, P, et al., 2013 Klinkhammer-Schalke, M et al., 2012	55 100	68.28 78.90	26.22 27.54	53 100	70.58 81.14	26.38 24.07	followup followup	8.00 48.00	書	-0.09 [-0.46; 0.29] -0.09 [-0.36; 0.19]
Rodrigez, B, et al., 2014 Chan, et al. 2005	8 80	93.33 80.52	14.91 54.76	7 75	94.44 83.77	9.62 54.76	followup followup	2.00 48.00		-0.08 [-1.10; 0.93] -0.06 [-0.37; 0.26]
Braeken APB, et al. 2013 Klinkhammer-Schalke, M et al., 2012	136 100	86.99 66.00	20.73 33.00	144 100	87.55 66.74	19.10 31.76	followup followup	48.00 12.00	*	-0.03 [-0.26; 0.21] -0.02 [-0.30; 0.25]
Klafke, N, et al., 2019 Elyasi, F, et al., 2021 I.	120 15	54.50 1.80	29.60 0.90	113 15	55.10 1.80	29.50 0.90	followup followup	24.00 24.00		-0.02 [-0.28; 0.24] 0.00 [-0.72; 0.72]
Qiu, H, et al., 2018 II. Rahmani, S, et al. 2015	98 12	17.98 12.00	8.92 54.16	196 12	17.98 12.00	8.52 34.72	followup	4.00 16.00		0.00 [-0.24; 0.24] 0.00 [-0.80; 0.80]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II.	27 98	74.60	35.90 8.92	26 196	74.60	29.30 9.46	followup	8.00 24.00	1	0.00 [-0.54; 0.54] 0.02 [-0.22; 0.27]
Qin, X, et al., 2017 Aning C et al., 2007	50	80.24	13.46	50	79.67	13.13	followup	2.00	-	0.04 [-0.35; 0.43]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	80.95 83.46	54.76 23.57	75 144	77.92	54.76	followup	36.00		0.06 [-0.26; 0.37]
Qiu, H, et al., 2018 II. Klafke, N, et al., 2019	98 120	18.77 62.10	8.03 29.40	196 113	18.25 59.70	5.05 27.60	followup	12.00 12.00		0.08 [-0.16; 0.33]
Arving, C, et al., 2007 Zhao, X, et al., 2021	47 52	81.00 58.62	22.00 6.31	38 51	79.00 58.02	25.00 3.21	followup followup	4.00 12.00		0.08 [-0.34; 0.51] 0.12 [-0.27; 0.51]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	83.00 77.91	21.00 27.05	38 100	80.00 73.69	26.00 30.77	followup followup	24.00 36.00	童	0.13 [-0.30; 0.56] 0.15 [-0.13; 0.42]
Ruiz-Vozmediano, J, et al.,2020 Klafke, N, et al., 2019	31 120	83.30 69.10	24.70 27.90	32 113	78.70 63.60	28.50 26.60	followup followup	24.00 48.00	言	0.17 [-0.32; 0.67] 0.20 [-0.06; 0.46]
Qiu, H, et al., 2018 I. Serfaty M, et al., 2018	98 20	20.01 21.20	9.15 4.30	196 22	17.98 19.70	8.52 6.70	followup followup	4.00 18.00	튣	0.23 [-0.01; 0.47] 0.26 [-0.35; 0.87]
Rodrigez, B, et al., 2014 Guo, Z, et al., 2013	8 89	95.83 74.35	11.79	89	90.48 71.33	25.20	followup	0.10		0.26 [-0.76; 1.28] 0.27 [-0.03; 0.56]
Li, X, et al., 2017	25 102	86.10 15.45	23.50	23 108	79.40 14.52	3.28	followup	24.00 12.00		0.30 [-0.27; 0.87] 0.31 [0.04; 0.58]
Qiu, H, et al., 2018 I. Hernandez EG, et al. 2018	98	21.75	8.70 5.79	196	18.75	9.46	followup	24.00	-	0.32 [0.08; 0.57]
Serfaty M, et al., 2018 Hernandez, EG, et al. 2018	20 28	19.50 19.23	7.20	22	16.00	7.60	followup	24.00	1	0.46 [-0.15; 1.08]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	21.39 65.81	8.03 18.49	196 53	18.25 56.11	5.05 17.08	followup followup	12.00 9.00	토	0.50 [0.26; 0.75] 0.54 [0.15; 0.94]
Zhou, J, et al., 2020 Trask, PC, et al. 2003	59 25	72.34 85.90	11.43 24.00	59 23	65.87 70.10	10.26 27.34	followup followup	2.00 8.00	-	0.59 [0.22; 0.96] 0.61 [0.03; 1.19]
Zhao,X, et al. 2015 Elyasi, F, et al., 2021 II.	62 20	8.19 2.40	2.10 1.00	62 20	6.87 1.80	2.21 0.90	followup followup	0.30 24.00	l e	0.61 [0.25; 0.97] 0.62 [-0.02; 1.25]
Chen, et al., 2017 Chen, et al., 2017	58 58	47.60	7.50	65 65	42.60	7.20	followup	8.00 24.00	Ē	0.68 [0.31; 1.04] 0.70 [0.33; 1.06]
Lu, I, et al., 2019 Lu, Z, et al., 201	49 203	76.10	5.20	53 103	62.05 71.10	14.34 8.20	followup	9.00		0.76 [0.36; 1.16] 0.78 [0.54; 1.03]
Baoyindeligeer, L.Z. et al. 2020 Rahmani S. et al. 2015	65 12	88.33	12.38	65	71.36	13.84 16.09	followup	2.00	-	1.09 [0.78, 1.41] 1.28 [0.91; 1.66] 1.55 [0.62; 2.49]
Fang, P, et al.,2020 Rodríguez Vega B et al. 2010	60 39	65.47 49.04	6.98 3.32	60 33	49.45	5.65	followup	4.00	-	2.51 [2.03; 2.99]
Rodríguez Vega, B, et al., 2010 Random effect	39 6635	61.86	3.32	33 7199	34.47	3.62	followup	24.00	\$	> 7.83 [6.44; 9.22] 0.41 [0.11; 0.72]
Prediction interval										[-1.03; 1.85]
telephone Heiney, SP, et al., 2003	33	5.60	2.00	33	5.90	1.90	baseline	0.00	4	-0.15 [-0.64; 0.33]
Kim, SH, et al., 2021 Dirksen, S. et al, 2007	47 34	73.70 22.10	4.90	38	75.50 22.20	6.10	baseline	0.00		-0.03 [-0.43; 0.37] -0.02 [-0.48; 0.44]
Yun et al., 2017 Themas Mil. et al. 2012	134	75.80	25.00	72	79.50	23.40	baseline	0.00	툍	0.05 [-0.20, 0.31] 0.10 [-0.18; 0.39]
Heiney, SP, et al., 2003 Heiney, SP, et al., 2003	33	5.80	2.00	33	6.55	1.80	followup	16.00	-	-0.39 [-0.88; 0.10]
Girgis, A, et al., 2009 II. Kim, SH, et al., 2021	120 47	89.20 80.30	20.30	117 47	89.90 80.40	17.00	followup	12.00	Ē.	-0.04 [-0.29; 0.22]
Girgis, A, et al., 2009 II. Thomas, ML, et al., 2012	120 64	91.90 20.50	17.60 6.10	117 88	91.90 19.00	17.40 6.40	followup	24.00 12.00	1	0.00 [-0.25; 0.25] 0.24 [-0.09; 0.56]
Yun et al., 2017 Kim, SH, et al., 2021	134 47	85.30 81.90	19.50 15.20	72 47	78.20 74.60	22.40 23.00	followup followup	48.00 8.00	-	0.34 [0.06; 0.63] 0.37 [-0.04; 0.78]
Dirksen, S. et al, 2007 Random effect	34 1064	23.30	3.90	38 987	21.40	5.90	followup	10.00	+ \$	0.37 [-0.10; 0.84] 0.26 [-0.02; 0.55]
Prediction interval										[-1.49; 2.02]
Peng, L, et al., 2022	28	76.79	15.27	29	81.61	16.87	baseline	0.00	-	-0.30 [-0.82; 0.23]
Cengiz, HO, et al., 2023 Reporte El, et al., 2023	32	20.16	5.97	33	19.13	5.49	baseline	0.00	놑	0.18 [-0.31; 0.66]
Beatty, L. et al. 2015 Peng L. et al. 2022	30 28	57.26	5.49	30	66.56	5.41	followup	6.00		-1.68 [-2.28; -1.09]
Peng, L, et al., 2022 Cengiz, HO, et al., 2023	28 32	79.17 20.36	16.49 5.38	29 33	79.89 19.06	20.11	followup	4.00		-0.04 [-0.56; 0.48] 0.23 [-0.26; 0.72]
Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020	95 95	-20.74 -20.61	4.29 4.19	97 97	-22.05 -21.91	4.43 4.33	followup	48.00 24.00		0.30 [0.01; 0.58] 0.30 [0.02; 0.59]
Beatty, L. et al. 2015 Beatty, L. et al. 2015	30 30	77.87 87.98	4.62 4.26	30 30	75.08 83.84	4.61 4.75	followup followup	13.03 26.07		0.60 [0.08; 1.11] 0.91 [0.37; 1.44]
wu, Q, et al., 2021 Random effect	43 609	81.65	8.30	43 620	72.36	7.51	followup	12.00	_ *	1.16 [0.70; 1.62] 0.34 [-0.07; 0.76]
Prediction Interval	8200			0000						[-1.64; 2.32]
Prediction interval	8069			9008				r		[-1.01; 1.78]
								-4 In favor of	4 -2 0 2 f control group In favor of inte	4 ervention group

Figure S14.2. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the environment subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S14.3.T24

Experimental

Control

Study	Patient N	kperimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
face to face Rodríguez Vega B, et al. 2010	39	3 31 3 32	33	6.08	3.62	haseline	0.00	-	-0.79 [-1.27: -0.31]
Ferguson, RJ, et al., 2012	19	6.26 2.05	21	7.31	1.21	baseline	0.00		-0.62 [-1.26; 0.02]
Qiu, H, et al., 2018 II. Chap et al., 2017	98	17.84 5.10	196	18.85	4.22	baseline	0.00		-0.22 [-0.47; 0.02]
Berglund, G. et al. 2007	39	80.30 22.60	150	84.00	22.10	baseline	0.00	3	-0.17 [-0.52; 0.19]
Ruiz-Vozmediano, J, et al.,2020	98 31	18.13 5.70 69.40 29.80	32	18.85 73.40	4.22 28.40	baseline	0.00		-0.15 [-0.39; 0.09] -0.14 [-0.63; 0.36]
Fang, P, et al.,2020 Seliniotaki, T, et al., 2021	60 27	48.50 4.11 74.40 29.90	60 26	49.08 77.70	5.01 29.30	baseline	0.00		-0.13 [-0.48; 0.23] -0.11 [-0.65; 0.43]
Antoni, MH, et al., 2006 Hernandez, EG, et al. 2018	92 28	877.61 158.55 17.11 6.05	107 28	891.17 17.56	152.16 5.46	baseline baseline	0.00		-0.09 [-0.37; 0.19] -0.08 [-0.60; 0.45]
McLachlan, SA, et al., 2001 Liu, T, et al., 2019	296 49	41.20 22.60 63.77 24.95	154 53	42.80 65.22	18.70 23.71	baseline baseline	0.00	-	-0.07 [-0.27; 0.12] -0.06 [-0.45; 0.33]
Li, X, et al., 2017 Chan, et al. 2005	102 80	13.58 2.23 54.76 60.02	108 75	13.67 56.28	2.21 54.76	baseline baseline	0.00	-	-0.04 [-0.31; 0.23] -0.03 [-0.34; 0.29]
Braeken APB, et al. 2013 van der Meulen, IC, et al., 2013	136 88	84.94 21.44 83.10 2.50	144 91	85.46 83.10	22.52 2.50	baseline baseline	0.00		-0.02 [-0.26; 0.21] 0.00 [-0.29; 0.29]
Schofield, P, et al., 2013 Klafke, N, et al., 2019	55 120	70.90 26.77 59.30 31.30	53 113	70.75 58.60	26.72 29.60	baseline baseline	0.00	畫	0.01 [-0.37; 0.38] 0.02 [-0.23; 0.28]
Qin, X, et al., 2017 Baoyindeligeer, L.Z. et al. 2020	50 65	77.68 15.31 66.59 14.95	50 65	77.26 65.59	16.04 15.24	baseline baseline	0.00	書	0.03 [-0.37; 0.42] 0.07 [-0.28; 0.41]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke, M et al., 2012	15 100	2.00 1.20 71.21 33.50	15 100	1.90 67.99	0.90 34.25	baseline baseline	0.00		0.09 [-0.62; 0.81] 0.09 [-0.18; 0.37]
Zhao,X, et al. 2015 Guo, Z, et al., 2013	62 89	7.01 2.18 75.00 13.82	62 89	6.76 73.43	2.39 12.31	baseline baseline	0.00	書	0.11 [-0.24; 0.46] 0.12 [-0.17; 0.41]
Arving, C, et al., 2007 Rahmani, S, et al. 2015	47 12	78.00 27.00 34.72 13.22	38 12	75.00 33.33	19.00 7.11	baseline baseline	0.00		0.13 [-0.30; 0.55] 0.13 [-0.67; 0.93]
Rodrigez, B, et al., 2014 Powell, CB, et al., 2008	8 21	95.83 11.79 22.20 5.40	7 43	90.48 19.70	25.20 6.00	baseline baseline	0.00		0.26 [-0.76; 1.28] 0.42 [-0.10; 0.95]
Trask, PC, et al. 2003 Elyasi, F, et al., 2021 II.	25 20	71.50 22.00 2.50 1.10	23 20	58.20 1.90	29.25 0.90	baseline baseline	0.00	1 <u>8</u>	0.51 [-0.07; 1.08] 0.59 [-0.05; 1.22]
Lu, Z, et al., 201 Zhao, X, et al., 2021	203 52	75.30 4.00 58.02 3.41	103 51	71.30 54.01	6.50 4.12	baseline baseline	0.00		0.80 [0.56; 1.05] 1.05 [0.64; 1.47]
Antoni, MH, et al., 2006 Ferguson, RJ, et al., 2012	92 19	788.15 133.08 6.75 1.78	107 21	855.60 7.47	126.82	followup followup	48.00 8.00		-0.52 [-0.80; -0.23] -0.42 [-1.05; 0.21]
Antoni, MH, et al., 2006 Berglund, G. et al. 2007	92 39	832.88 119.31 77.00 23.70	107 150	873.38 83.50	114.05 23.70	followup followup	24.00 48.00	-	-0.35 [-0.63; -0.07] -0.27 [-0.63; 0.08]
McLachlan, SA, et al., 2001 Schofield P et al. 2013	296 55	42.00 23.70 65.03 28.36	154 53	47.50	17.90	followup	24.00 12.00		-0.25 [-0.45; -0.06]
Chan, et al. 2005 Chan, et al. 2005	80	76.19 54.76	75	87.23	54.76	followup	72.00		-0.20 [-0.52; 0.12]
Chan, et al. 2005 Chan, et al. 2005	80	76.62 54.76	75	85.06	54.76	followup	60.00		-0.15 [-0.47; 0.16]
Serfaty M, et al., 2018	20	18.70 5.30	22	19.40	6.20	followup	12.00		-0.12 [-0.72; 0.49]
Klinkhammer-Schalke, M et al., 2012 Redriner R. et al., 2014	100	78.90 27.54	100	81.14	20.30	followup	48.00		-0.09 [-0.46, 0.29]
Chan, et al. 2005	80	80.52 54.76	75	94.44 83.77	9.02 54.76	followup	48.00	-	-0.08 [-1.10, 0.93] -0.06 [-0.37; 0.26]
Klinkhammer-Schalke, M et al., 2012	136	66.00 33.00	144	87.55 66.74	19.10 31.76	followup	48.00		-0.03 [-0.26; 0.21] -0.02 [-0.30; 0.25]
Klafke, N, et al., 2019 Elyasi, F, et al., 2021 I.	120	54.50 29.60 1.80 0.90	113	55.10 1.80	29.50 0.90	followup	24.00		-0.02 [-0.28; 0.24] 0.00 [-0.72; 0.72]
Qiu, H, et al., 2018 II. Rahmani, S, et al. 2015	98 12	17.98 8.92 12.00 54.16	196 12	17.98 12.00	8.52 34.72	followup	4.00 16.00		0.00 [-0.24; 0.24] 0.00 [-0.80; 0.80]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II.	27 98	74.60 35.90 18.97 8.92	26 196	74.60 18.75	29.30 9.46	followup followup	8.00 24.00	1	0.00 [-0.54; 0.54] 0.02 [-0.22; 0.27]
Klinkhammer-Schalke, M et al., 2012 Qin, X, et al., 2017	100 50	72.20 28.78 80.24 13.46	100 50	71.46 79.67	29.03 13.13	followup followup	24.00 2.00		0.03 [-0.25; 0.30] 0.04 [-0.35; 0.43]
Arving, C, et al., 2007 Chan, et al. 2005	47 80	76.00 25.00 80.95 54.76	38 75	75.00 77.92	19.00 54.76	followup followup	12.00 36.00	重	0.04 [-0.38; 0.47] 0.06 [-0.26; 0.37]
Braeken APB, et al. 2013 Qiu, H, et al., 2018 II.	136 98	83.46 23.57 18.77 8.03	144 196	81.81 18.25	22.37 5.05	followup followup	12.00 12.00	「「「「」	0.07 [-0.16; 0.31] 0.08 [-0.16; 0.33]
Klafke, N, et al., 2019 Arving, C, et al., 2007	120 47	62.10 29.40 81.00 22.00	113 38	59.70 79.00	27.60 25.00	followup followup	12.00 4.00		0.08 [-0.17; 0.34] 0.08 [-0.34; 0.51]
Zhao, X, et al., 2021 Arving, C, et al., 2007	52 47	58.62 6.31 83.00 21.00	51 38	58.02 80.00	3.21 26.00	followup followup	12.00 24.00	害	0.12 [-0.27; 0.51] 0.13 [-0.30; 0.56]
Klinkhammer-Schalke, M et al., 2012 Ruiz-Vozmediano, J, et al., 2020	100 31	77.91 27.05 83.30 24.70	100 32	73.69 78.70	30.77 28.50	followup followup	36.00 24.00		0.15 [-0.13; 0.42] 0.17 [-0.32; 0.67]
Klafke, N, et al., 2019 Qiu, H, et al., 2018 I.	120 98	69.10 27.90 20.01 9.15	113 196	63.60 17.98	26.60 8.52	followup	48.00 4.00		0.20 [-0.06; 0.46] 0.23 [-0.01; 0.47]
Serfaty M, et al., 2018 Rodrigez, B, et al., 2014	20 8	21.20 4.30 95.83 11.79	22 7	19.70 90.48	6.70 25.20	followup followup	18.00 0.10	-	0.26 [-0.35; 0.87] 0.26 [-0.76; 1.28]
Guo, Z, et al., 2013 Trask, PC, et al. 2003	89 25	74.35 10.67 86.10 23.50	89 23	71.33 79.40	11.88 20.62	followup followup	2.00 24.00		0.27 [-0.03; 0.56] 0.30 [-0.27; 0.87]
Li, X, et al., 2017 Powell, CB, et al., 2008	102 21	15.45 2.67 21.30 5.60	108 43	14.52 19.10	3.28 7.30	followup	12.00 12.00	<u> </u>	0.31 [0.04; 0.58] 0.32 [-0.21; 0.84]
Qiu, H, et al., 2018 I. Hernandez, EG, et al. 2018	98 28	21.75 8.70 18.82 5.79	196 28	18.75 16.40	9.46 5.07	followup	24.00 24.00	100 H	0.32 [0.08; 0.57]
Serfaty M, et al., 2018 Hernandez, EG, et al. 2018	20 28	19.50 7.20 19.23 5.51	22 28	16.00 16.60	7.60 5.39	followup	24.00 8.00	1	0.46 [-0.15; 1.08]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	21.39 8.03 65.81 18.49	196 53	18.25 56.11	5.05 17.08	followup	12.00 9.00	토	0.50 [0.26; 0.75] 0.54 [0.15; 0.94]
Zhou, J, et al., 2020 Trask, PC, et al. 2003	59 25	72.34 11.43 85.90 24.00	59 23	65.87 70.10	10.26 27.34	followup	2.00 8.00	<u>+</u>	0.59 [0.22; 0.96] 0.61 [0.03; 1.19]
Zhao,X, et al. 2015 Elvasi, F. et al., 2021 II.	62 20	8.19 2.10 2.40 1.00	62 20	6.87 1.80	2.21 0.90	followup	0.30 24.00	1	0.61 [0.25; 0.97]
Chen, et al., 2017 Chen, et al., 2017	58 58	47.60 7.50 46.80 7.60	65 65	42.60 41.50	7.20	followup	8.00 24.00		0.68 [0.31; 1.04]
Liu, T, et al., 2019 Lu, Z, et al. 201	49 203	74.35 17.68	53 103	62.05 71.10	14.34	followup	12.00		0.76 [0.36; 1.16]
van der Meulen, IC, et al., 2013 Baovindeligeer I, Z, et al. 2020	88	88.50 3.20 88.33 12.38	91 65	85.10 71.36	3.00	followup	48.00		1.09 [0.78; 1.41]
Rahmani, S, et al. 2015 Fang P et al. 2020	12 60	51.38 11.14 65.47 6.98	12 60	29.16 49.45	16.09 5.65	followup	8.00		1.55 [0.62; 2.48]
Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010	39 39	49.04 3.32 61.86 3.32	33	29.42	3.62	followup	12.00	_	> 5.61 [4.56; 6.66] > 7.83 [6.44: 9.22]
Random effect Prediction interval	6635	0.02	7199		0.02	lenenap	21.00	<u> </u>	0.42 [-0.01; 0.86]
telephone									·
Heiney, SP, et al., 2003 Kim, SH, et al., 2021	33 47	5.60 2.00 73.70 81.90	33 47	5.90 75.50	1.90	baseline baseline	0.00	雪	-0.15 [-0.64; 0.33] -0.03 [-0.43; 0.37]
Dirksen, S. et al, 2007 Girgis A et al, 2009 II	34 120	22.10 4.90 80.80 25.60	38 117	22.20 79.50	6.10 25.10	baseline baseline	0.00	-	-0.02 [-0.48; 0.44] 0.05 [-0.20; 0.31]
Yun et al., 2017 Thomas ML et al. 2012	134 64	75.80 26.80 21.10 5.40	72 88	73.10 19.00	23.40 6.30	baseline baseline	0.00		0.10 [-0.18; 0.39]
Heiney, SP, et al., 2003 Heiney, SP, et al., 2003	33 33	5.80 2.00 5.80 2.00	33 33	6.55 5.90	1.80	followup	16.00	-	-0.39 [-0.88; 0.10] -0.05 [-0.53; 0.43]
Girgis, A, et al., 2009 II. Kim, SH, et al., 2021	120 47	89.20 20.30 80.30 17.60	117	89.90 80.40	17.00	followup	12.00	-	-0.04 [-0.29; 0.22]
Girgis, A, et al., 2009 II. Thomas ML et al. 2012	120	91.90 17.60	117	91.90 19.00	17.40	followup	24.00	륗	0.00 [-0.25; 0.25]
Yun et al., 2017 Kim SH et al. 2021	134 47	85.30 19.50 81.90 15.20	72 47	78.20	22.40	followup	48.00		0.34 [0.06; 0.63]
Dirksen, S. et al, 2007 Random effect	34	23.30 3.90	38	21.40	5.90	followup	10.00	<u> </u>	0.37 [-0.10; 0.84]
Prediction interval	1001		001						[-1.42; 1.96]
online Peng Letal 2022	28	7679 1527	29	81.61	16 87	baseline	0.00	-	-0.30 [-0.82: 0.23]
Wu, Q, et al., 2021 Cengiz, HO, et al., 2023	43 32	53.77 5.51 20.16 5.97	43 33	54.34 19.13	5.53 5.49	baseline baseline	0.00		-0.10 [-0.53; 0.32] 0.18 [-0.31; 0.66]
Penedo, FJ, et al., 2020 Beatty L. et al. 2015	95 30	-19.85 4.09 57.26 5.49	97 30	-21.16	4.24	baseline followup	0.00		0.31 [0.03; 0.60]
Peng, L, et al., 2022 Peng, L, et al., 2022	28	80.36 20.09	29	82.18	19.38	followup	0.10	- <u>-</u>	-0.09 [-0.61; 0.43]
Cengiz, HO, et al., 2023 Penedo, FJ, et al., 2020	32 95	20.36 5.38	33 97	19.06	5.74 4.43	followup	8.00 48.00	1	0.23 [-0.26; 0.72]
Penedo, FJ, et al., 2020 Beatty, L, et al. 2015	95 30	-20.61 4.19 77.87 4.62	97 30	-21.91 75.08	4.33 4.61	followup	24.00 13.03		0.30 [0.02; 0.59]
Beatty, L. et al. 2015 Wu. Q. et al. 2021	30 43	87.98 4.26	30 43	83.84	4.75	followup	26.07		0.91 [0.37; 1.44]
Random effect Prediction interval	609	0.00	620	. 2.00					0.35 [-0.10; 0.81]
Random effect	8308		8806					La construction of the second	0.39 [0.01: 0.78]
Prediction interval							г		[-1.04; 1.82]
							-4 In favor of	-2 0 2 control group In favor of inte	4 ervention group

Figure S14.3. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the environment subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, C1confidence interval.

Figure S14.4.T48

Experimental

Control

Study	Patient I	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
face to face Rodríguez Vega, B. et al., 2010	39	3.31 3.32	33	6.08	3.62	baseline	0.00	-	-0.79 [-1.27: -0.31]
Ferguson, RJ, et al., 2012 Serfaty M, et al., 2018	19 20	6.26 2.05 16.40 6.10	21 22	7.31 18.10	1.21 7.80	baseline baseline	0.00 0.00		-0.62 [-1.26; 0.02] -0.24 [-0.84; 0.37]
Qiu, H, et al., 2018 II. Chen, et al., 2017	98 58	17.84 5.10 58.30 6.20	196 65	18.85 59.60	4.22 6.90	baseline baseline	0.00 0.00	=	-0.22 [-0.47; 0.02] -0.20 [-0.55; 0.16]
Berglund, G. et al. 2007 Qiu, H, et al., 2018 I.	39 98	80.30 22.60 18.13 5.70	150 196	84.00 18.85	22.10 4.22	baseline baseline	0.00		-0.17 [-0.52; 0.19] -0.15 [-0.39; 0.09]
Ruiz-Vozmediano, J, et al.,2020 Fang, P, et al.,2020	31 60	69.40 29.80 48.50 4.11	32 60	73.40	28.40 5.01	baseline	0.00		-0.14 [-0.63; 0.36] -0.13 [-0.48; 0.23]
Antoni, MH, et al., 2006	92	74.40 29.90 877.61 158.55	26 5 107	891.17	29.30	baseline	0.00		-0.09 [-0.37; 0.19]
Hernandez, EG, et al. 2018 McLachlan, SA, et al., 2001	28 296	17.11 6.05 41.20 22.60	28 154	17.56 42.80	5.46	baseline	0.00	Ē	-0.08 [-0.60; 0.45] -0.07 [-0.27; 0.12]
Liu, 1, et al., 2019 Li, X, et al., 2017 Chen. et al. 2005	49 102	13.58 2.23	53 108 75	13.67	23.71	baseline	0.00	Ē	-0.06 [-0.45; 0.33] -0.04 [-0.31; 0.23]
Braeken APB, et al. 2013	136	84.94 21.44 82.10 2.50	75 144	50.28 85.46 92.10	22.52	baseline	0.00	1	-0.03 [-0.34, 0.29] -0.02 [-0.26; 0.21]
Schofield, P, et al., 2013 Klafke N, et al. 2019	55 120	70.90 26.77	53	70.75	26.72	baseline	0.00	÷	0.01 [-0.37; 0.38]
Qin, X, et al., 2017 Baovindeligeer, L.Z. et al. 2020	50 65	77.68 15.31 66.59 14.95	50 65	77.26	16.04 15.24	baseline	0.00		0.03 [-0.37; 0.42]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke, M et al., 2012	15 100	2.00 1.20 71.21 33.50	15 100	1.90 67.99	0.90 34.25	baseline baseline	0.00		0.09 [-0.62; 0.81] 0.09 [-0.18; 0.37]
Zhao,X, et al. 2015 Guo, Z, et al., 2013	62 89	7.01 2.18 75.00 13.82	62 89	6.76 73.43	2.39 12.31	baseline baseline	0.00 0.00	*	0.11 [-0.24; 0.46] 0.12 [-0.17; 0.41]
Arving, C, et al., 2007 Rahmani, S, et al. 2015	47 12	78.00 27.00 34.72 13.22	38 12	75.00 33.33	19.00 7.11	baseline baseline	0.00 0.00		0.13 [-0.30; 0.55] 0.13 [-0.67; 0.93]
Rodrigez, B, et al., 2014 Powell, CB, et al., 2008	8 21	95.83 11.79 22.20 5.40	7 43	90.48 19.70	25.20 6.00	baseline baseline	0.00		0.26 [-0.76; 1.28] 0.42 [-0.10; 0.95]
Trask, PC, et al. 2003 Elyasi, F, et al., 2021 II.	25 20	71.50 22.00 2.50 1.10	23 20	58.20 1.90	29.25 0.90	baseline	0.00		0.51 [-0.07; 1.08] 0.59 [-0.05; 1.22]
Lu, Z, et al., 201 Zhao, X, et al., 2021	203 52	58.02 3.41	51	54.01	4.12	baseline	0.00		0.80 [0.56, 1.05]
Ferguson, RJ, et al., 2006 Antoni, MH, et al., 2012	19	6.75 1.78	21	7.47	1.59	followup	8.00		-0.42 [-1.05; 0.21]
Berglund, G. et al. 2007 Mcl.achian. Sá. et al. 2001	39	77.00 23.70	150	83.50	23.70	followup	48.00	-	-0.27 [-0.63; 0.08] -0.25 [-0.45; -0.06]
Schofield, P, et al., 2013 Chan et al. 2005	55 80	65.03 28.36 76.19 54.76	53	71.29	28.69	followup	12.00	THE SECOND	-0.22 [-0.43, -0.00] -0.22 [-0.60; 0.16] -0.20 [-0.52; 0.12]
Chan, et al. 2005 Chan, et al. 2005	80 80	65.58 54.76 76.62 54.76	75 75	75.11 85.06	54.76 54.76	followup	24.00	1	-0.17 [-0.49; 0.14] -0.15 [-0.47; 0.16]
Chan, et al. 2005 Serfaty M, et al., 2018	80 20	61.47 54.76 18.70 5.30	75 22	69.26 19.40	54.76 6.20	followup followup	12.00 12.00		-0.14 [-0.46; 0.17] -0.12 [-0.72; 0.49]
Schofield, P, et al., 2013 Klinkhammer-Schalke, M et al., 2012	55 100	68.28 26.22 78.90 27.54	53 100	70.58 81.14	26.38 24.07	followup followup	8.00 48.00		-0.09 [-0.46; 0.29] -0.09 [-0.36; 0.19]
Rodrigez, B, et al., 2014 Chan, et al. 2005	8 80	93.33 14.91 80.52 54.76	7 75	94.44 83.77	9.62 54.76	followup followup	2.00 48.00		-0.08 [-1.10; 0.93] -0.06 [-0.37; 0.26]
Braeken APB, et al. 2013 Klinkhammer-Schalke, M et al., 2012	136 100	86.99 20.73 66.00 33.00	144 100	87.55 66.74	19.10 31.76	followup followup	48.00 12.00	-	-0.03 [-0.26; 0.21] -0.02 [-0.30; 0.25]
Klafke, N, et al., 2019 Elyasi, F, et al., 2021 I.	120 15	54.50 29.60 1.80 0.90	113 15	55.10 1.80	29.50 0.90	followup followup	24.00 24.00	<u> </u>	-0.02 [-0.28; 0.24] 0.00 [-0.72; 0.72]
Qiu, H, et al., 2018 II. Rahmani, S, et al. 2015	98 12	17.98 8.92 12.00 54.16	196 12	17.98 12.00	8.52 34.72	followup followup	4.00 16.00		0.00 [-0.24; 0.24] 0.00 [-0.80; 0.80]
Seliniotaki, T, et al., 2021 Qiu, H, et al., 2018 II. Kijakharana Ozbalka, M et al., 0040	27 98	74.60 35.90 18.97 8.92	26 196	74.60	29.30 9.46	followup	8.00 24.00	Ť	0.00 [-0.54; 0.54] 0.02 [-0.22; 0.27]
Qin, X, et al., 2017 Anipa, C, et al., 2007	50	80.24 13.46	50	79.67	29.03	followup	24.00		0.03 [-0.25, 0.30] 0.04 [-0.35; 0.43]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	80.95 54.76	75	77.92	54.76	followup	36.00	튶	0.06 [-0.26; 0.37]
Qiu, H, et al., 2018 II. Klafke N, et al. 2019	98 120	18.77 8.03	196	18.25	5.05	followup	12.00	÷.	0.08 [-0.16; 0.33]
Arving, C, et al., 2007 Zhao, X, et al., 2021	47	81.00 22.00 58.62 6.31	38 51	79.00 58.02	25.00 3.21	followup	4.00		0.08 [-0.34; 0.51] 0.12 [-0.27; 0.51]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	83.00 21.00 77.91 27.05	38 100	80.00 73.69	26.00 30.77	followup followup	24.00 36.00	畫	0.13 [-0.30; 0.56] 0.15 [-0.13; 0.42]
Ruiz-Vozmediano, J, et al.,2020 Klafke, N, et al., 2019	31 120	83.30 24.70 69.10 27.90	32 113	78.70 63.60	28.50 26.60	followup followup	24.00 48.00		0.17 [-0.32; 0.67] 0.20 [-0.06; 0.46]
Qiu, H, et al., 2018 I. Serfaty M, et al., 2018	98 20	20.01 9.15 21.20 4.30	196 22	17.98 19.70	8.52 6.70	followup followup	4.00 18.00	- 2	0.23 [-0.01; 0.47] 0.26 [-0.35; 0.87]
Guo, Z, et al., 2013	8 89	95.83 11.79 74.35 10.67	89	90.48 71.33	25.20 11.88	followup	2.00		0.26 [-0.76; 1.28] 0.27 [-0.03; 0.56]
Li, X, et al., 2017	102	15.45 2.67	108	14.52	3.28	followup	12.00		0.31 [0.04; 0.58]
Qiu, H, et al., 2018 I. Hernandez EC, et al. 2018	98	21.75 8.70	196	18.75	9.46	followup	24.00	E.	0.32 [0.08; 0.57]
Serfaty M, et al., 2018 Hernandez, EG, et al. 2018	20	19.50 7.20 19.23 5.51	22 28	16.00	7.60	followup	24.00		0.46 [-0.15; 1.08]
Qiu, H, et al., 2018 I. Liu, T, et al., 2019	98 49	21.39 8.03 65.81 18.49	196 53	18.25 56.11	5.05 17.08	followup followup	12.00 9.00		0.50 [0.26; 0.75] 0.54 [0.15; 0.94]
Zhou, J, et al., 2020 Trask, PC, et al. 2003	59 25	72.34 11.43 85.90 24.00	59 23	65.87 70.10	10.26 27.34	followup followup	2.00 8.00		0.59 [0.22; 0.96] 0.61 [0.03; 1.19]
Zhao,X, et al. 2015 Elyasi, F, et al., 2021 II.	62 20	8.19 2.10 2.40 1.00	62 20	6.87 1.80	2.21 0.90	followup followup	0.30 24.00		0.61 [0.25; 0.97] 0.62 [-0.02; 1.25]
Chen, et al., 2017 Chen, et al., 2017	58 58	47.60 7.50 46.80 7.60	65 65	42.60 41.50	7.20 7.50	followup followup	8.00 24.00	-	0.68 [0.31; 1.04] 0.70 [0.33; 1.06]
Liu, I, et al., 2019 Lu, Z, et al., 201	49 203	74.35 17.68	53 103	62.05 71.10	14.34 8.20	followup	9.00		0.76 [0.36; 1.16] 0.78 [0.54; 1.03]
Van der Meulen, IC, et al., 2013 Baoyindeligeer, L.Z. et al. 2020 Bahmani, O. et al. 2045	88 65	88.50 3.20 88.33 12.38	91 65	85.10 71.36	3.00 13.84	followup	48.00	-	1.09 [0.78; 1.41] 1.28 [0.91; 1.66]
Fang, P, et al., 2020 Bedrigues Vega, P, et al., 2020	60	65.47 6.98	60	29.10 49.45 20.42	5.65	followup	4.00		2.51 [2.03; 2.99]
Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010 Random effect	39 6635	61.86 3.32	33 7199	34.47	3.62	followup	24.00		7.83 [6.44; 9.22] 0.20 [-0.18; 0.58]
Prediction interval									[-1.56; 1.95]
telephone Heiney, SP, et al., 2003	33	5.60 2.00	33	5.90	1.90	baseline	0.00	-	-0.15 [-0.64; 0.33]
Kim, SH, et al., 2021 Dirksen, S. et al, 2007	47 34	73.70 81.90 22.10 4.90	47 38	75.50 22.20	22.00 6.10	baseline baseline	0.00	÷.	-0.03 [-0.43; 0.37] -0.02 [-0.48; 0.44]
Girgis, A, et al., 2009 II. Yun et al., 2017	120 134	80.80 25.60 75.80 26.80	117 72	79.50 73.10	25.10 23.40	baseline baseline	0.00	툍	0.05 [-0.20; 0.31] 0.10 [-0.18; 0.39]
Thomas, ML, et al., 2012 Heiney, SP, et al., 2003	64 33	21.10 5.40 5.80 2.00	88 33	19.00 6.55	6.30 1.80	baseline followup	0.00 16.00		0.35 [0.03; 0.68] -0.39 [-0.88; 0.10]
Heiney, SP, et al., 2003 Girgis, A, et al., 2009 II.	33 120	5.80 2.00 89.20 20.30	33	5.90 89.90	1.90	followup	6.00 12.00	-	-0.05 [-0.53; 0.43] -0.04 [-0.29; 0.22]
Girgis, A, et al., 2021 Theman ML at al., 2012	120	91.90 17.60	117	91.90	17.40	followup	24.00	Ē.	0.00 [-0.25; 0.25]
Yun et al., 2017 Kim SH et al. 2021	134 47	85.30 19.50	72 47	78.20	22.40	followup	48.00		0.34 [0.06; 0.63]
Dirksen, S. et al, 2007 Random effect	34 1064	23.30 3.90	38 987	21.40	5.90	followup	10.00	l = t	0.37 [-0.10; 0.84]
Prediction interval									[-1.56; 1.66]
online Peng, L, et al., 2022	28	76.79 15.27	29	81.61	16.87	baseline	0.00	-	-0.30 [-0.82; 0.23]
Wu, Q, et al., 2021 Cengiz, HO, et al., 2023	43 32	53.77 5.51 20.16 5.97	43	54.34 19.13	5.53 5.49	baseline	0.00	놑	-0.10 [-0.53; 0.32] 0.18 [-0.31; 0.66]
Penedo, FJ, et al., 2020 Beatty, L. et al. 2015	95 30	-19.85 4.09 57.26 5.49	97 30	-21.16	4.24 5.41	followup	0.00 6.00	-+ [0.31 [0.03; 0.60] -1.68 [-2.28; -1.09]
Peng, L, et al., 2022 Peng, L, et al., 2022 Capazz, HO, et al., 2022	28	79.17 16.49	29	82.18 79.89	20.11	followup	4.00	王	-0.09 [-0.01, 0.43] -0.04 [-0.56; 0.48]
Penedo, FJ, et al., 2020 Penedo, FJ, et al., 2020	95 95	-20.74 4.29 -20.61 4 19	97 97	-22.05	4.43	followup	48.00 24.00		0.30 [0.01; 0.58] 0.30 [0.02; 0.59]
Beatty, L. et al. 2015 Beatty, L. et al. 2015	30 30	77.87 4.62 87.98 4.26	30 30	75.08 83.84	4.61	followup	13.03 26.07	-	0.60 [0.08; 1.11] 0.91 [0.37 1.44]
Wu, Q, et al., 2021 Random effect	43 609	81.65 8.30	43 620	72.36	7.51	followup	12.00	↓ =	1.16 [0.70; 1.62] 0.13 [-0.24; 0.50]
Prediction interval	0000		0000						[-1.63; 1.88]
Random effect Prediction interval	8308		8806				г		0.17 [-0.16; 0.51] [-1.56; 1.90]
							-4 In favor of	-2 0 2 control group In favor of inte	4 ervention group

Figure S14.4. Forest plot represents the difference between the intervention vs. control group in the Social QOL domain with the environment subgroups as predicted at week 48 (post-intervention). SMD - Standardized mean difference, C1 confidence interval. S15.Subgroup analysis of Social QoL: Type

Study	Experimental Patient N Mean SD	Control Patient N Mean S	SD follow-up Follow-up time	SMD of interested event	SMD 95%-CI
Company and a set of the set of t	18.40 18.40 <th< td=""><td>1 1</td><td>and and and and and</td><td></td><td>-2.2 (-)</td></th<>	1 1	and and and		-2.2 (-)
Pengi, L. et al. (2022 Benglund, C. et al., 2007 Hellen, S.P., et al., 2003 Anton, M.H. et al., 2008 Hermanker, C., et al., 2019 Liut, T., et al., 2019 Liut, T., et al., 2019 Ramman, S. et al., 2025 Gengu, HO, et al., 2020 Anton, MH, et al., 2006 Hermer, S.P., et al., 2000 Anton, MH, et al., 2006 Hermer, S.P., et al., 2000 Hermer, S.P., et al., 2000 Hermer, S.P., et al., 2000 Pengu, L. et al., 2020 Ramman, S. et al., 2021 Hermer, S.P., et al., 2000 Pengu, L. et al., 2020 Cengu, HO, et al., 2020 Cengu, HO, et al., 2020 Cengu, HO, et al., 2020 Pengu, L. et al., 2020 Hermander, E.G., et al., 2030 Hermander, E.G., et al., 2030 Hermander, E.G., et al., 2018 Hermander, E.G., et al., 2018 Hermander, E.G., et al., 2018 Hermander, S.P., et al., 2019 Liut, T., et al.,	28 76.79 10.2 9 00.30 22.4 33 500 20.0 24 67.40 20.1 25 87.61 34.0 40 67.07 21.1 40 67.07 21.1 50 20.1 71.4 51 76.41 21.2 52 27.11 5.0 50 20.16 5.0 50 -10.85 4.0 52 20.16 5.0 53 540 20.2 53 540 20.2 53 540 20.2 53 540 20.2 53 540 20.2 541 21.2 20.2 533 540 20.2 541 20.2 20.3 541 84.2 57.7 541 84.2 57.7 541 84.2 57.7 541 84.4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	187 Description 0.00 187 baseline 0.00 10 baseline 0.00 140 baseline 0.00 216 baseline 0.00 216 baseline 0.00 216 baseline 0.00 216 baseline 0.00 44 baseline 0.00 42 baseline 0.00 424 baseline 0.00 435 bilinoup 24.00 53 bilinoup 0.00 545 bilinoup 24.00 50 bilinoup 24.00 510 bilinoup 24.00 510 bilinoup 24.00 510 bilinoup 24.00 510 bilinoup 24.00 <t< td=""><td>■ (素准学校)</td><td>$\begin{array}{c} -330 \\ -307 \\ -3$</td></t<>	■ (素准学校)	$\begin{array}{c} -330 \\ -307 \\ -3$
kell help Talano, T., et al., 2021 Haufman, A. et al., 2020 Willems, R. et al., 2010 Talano, T. et al., 2021 Haufman, A. et al., 2020 Haufman, A. et al., 2020 Talano, T. et al., 2020 Talano, T. et al., 2020 Weinen, R. et al., 2016 Haufman, A. et al., 2016 Haufman, A. et al., 2016 Haufman, A. et al., 2016	31 76.40 20.5 124 58.00 29.0 188 83.20 27 31 71.70 20.1 124 59.00 280 124 59.00 280 124 59.00 280 124 50.00 260 31 75.60 20.4 424 70.00 260 188 93.00 3.1 10000 200 3.1	3 38 84.70 16 0 121 60.00 29 0 221 82.90 2 0 38 72.40 26 0 121 58.00 30 121 67.00 27 0 121 68.00 28 9 36 73.20 20 0 121 68.00 28 9 36 73.20 20 0 124 66.00 28 1 221 84.60 3 1161 164 164 164	1.56 baseline 0.00 00 baseline 0.00 01 baseline 0.00 01 baseline 0.00 01 baseline 0.00 100 baseline 10.00 100 baseline 10.00 10 baseline 24.00	H RANKER REF	-0.42 [-0.90] 0.06] -0.07 [0.32] 0.18] -0.03 [-0.50, 0.45] -0.03 [-0.50, 0.45] 0.03 [-0.22] 0.28] 0.04 [-0.21, 0.29] 0.07 [-0.18, 0.37] 0.18 [-0.07, 0.44] 1.51 [-0.90] 1.50] [-0.35 [-0.90] 1.50] [-0.35 [-0.90] 1.50]

10882

Random effect Prediction interval

11386

Figure S15.1.T0

Figure S15.1. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the type subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, C1 - confidence interval.

-4 -2 0 2 In favor of control group In favor of Init

0.32 [0.13; 0.51] [-0.89; 1.53]

4 tervention group

Figure S15.2.T12

Study	Patient	xperimental 4 Mean SD	Patient	Control N Mean SD	follow-up F	ollow-up time	SMD of interested event	SMD 95%-CI
mdwddual Rodriguez Vega, B, et al., 2010 Ferguson, RJ, et al., 2012	39 19	3.31 3.32 6.26 2.05	33 21	6.08 3.62 7.31 1.21	baseline baseline	0.00 0.00	*	-0.79 [-1.27; -0.31] -0.62 [-1.26; 0.02]
Walczak, A. et al. 2017 Serfaty M, et al., 2018	61 20	21,16 4.48 16.40 6.10	49 22	22.71 4.99 18.10 7.80	baseline baseline	0.00	푛	-0.33 [-0.71, 0.05] -0.24 [-0.84, 0.37]
Chu, H, et al., 2018 II. Chen, et al., 2017 Chu, H, et al., 2018 I	98 58	17.84 5.10 58.30 6.20 19.13 5.70	65	18.85 4.22 59.60 6.90 19.65 4.22	baseline	0.00		-0.22 [-0.47; 0.02] -0.20 [-0.55; 0.16] -0.15 [-0.39; 0.09]
Fang, P, et al. 2020 Seliniotaki, T, et al. 2021	60 27	48.50 4.11	60 26	49.06 5.01	baseline	0.00	-	-0.13 [-0.48; 0.23] -0.11 [-0.85; 0.43]
Wu, G. et al., 2021 McLachian, SA, et al., 2001	43 296	53.77 5.51 41.20 22.60	43 154	64.34 5.53 42.80 18.70	baseline baseline	0.00	1	-0.10 [-0.53; 0.32] -0.07 [-0.27; 0.12]
LI, X, et al. 2017 Kim, SH, et al. 2021	102	13.58 2.23 73.70 81.90	108	13.67 2.21 75.50 22.00	baseline	0.00		-0.04 [-0.31; 0.23] -0.03 [-0.43; 0.37]
Braeken APB, et al. 2013 Dirksen S. et al. 2013	136	84.94 21.44 22.10 4.90	144	85.46 22.52 22.20 6.10	baseline	0.00	1	-0.03 [-0.34, 0.29] -0.02 [-0.26; 0.21] -0.02 [-0.48, 0.44]
van der Meulen, IC, et al., 2013 Schoteld, P, et al., 2013	88 55	83.10 2.50 70.90 25.77	91 53	83.10 2.50 70.75 26.72	baseline	0.00	-	0.00 [-0.29, 0.29] 0.01 [-0.37; 0.38]
Klafke, N. et al., 2019 Qin, X, et al., 2017	120 50	59.30 31.30 77.68 15.31	113 50	58.60 29.60 77.26 16.04	baseline baseline	0.00		0 02 [-0.23: 0 28] 0 03 [-0.37: 0 42]
Girgis, A, et al., 2009 II. Bacyindeligeer, L.Z. et al. 2020 Internance, B. et al. 2008	120	80.80 25.60 66.59 14.95	117	79.50 25.10 65.59 15.24 93.00 25.00	baseline	0.00	훞	0.05 [-0.20; 0.31] 0.07 [-0.28; 0.41] 0.09 [-0.28; 0.41]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke, M et al., 2012	15	2.00 1.20	15	1.90 0.90	baseline	0.00		0.09 [-0.62, 0.81] 0.09 [-0.18; 0.37]
Yun et al., 2017 Girgis, A, et al., 20091.	134 110	75.80 26.80 82.10 24.00	72	73.10 23.40 79.50 25.10	baseline baseline	0.00		0.10 [-0.18, 0.39] 0.11 [-0.16, 0.37]
Zhao X, et al. 2015 Arving, C, et al. 2007	62	7.01 2.18	52 38	6.75 2.39 75.00 19.00	baseline	0.00		0.11 [-0.24; 0.46] 0.13 [-0.30; 0.55]
Rodrigez, B, et al., 2014 Thomas ML et al., 2012	8	95.83 11.79 21.10 5.40	7 88	90.48 25.20	baseline	0.00		0.15 [-0.76; 1.26] 0.35 [-0.76; 1.26]
Powell, CB, et al., 2008 Kim, YH, et al., 2017	21 30	22.20 5.40 72.80 25.30	43 30	19.70 6.00 62.80 20.80	baseline baseline	0.00	-	0.42 [-0.10, 0.95] 0.43 [-0.09, 0.94]
Trask, PC, et al. 2002 Trask, PC, et al. 2003	25	71.50 22.00	23 23	10.16 2.26 58.20 29.25	baseline	0.00	-	0.49 [-0.03; 1.01] 0.51 [-0.07; 1.08] 0.59 [-0.05; 1.23]
Lu.Z. et al., 201 Zhao, X. et al., 2021	203	75.30 4.00	103	71.30 6.50	baseline	0.00	-	0.80 [0.56: 1.05] 1.05 [0.64 1.47]
Beatty, L. et al. 2015 Ferguson, RJ, et al., 2012	30 19	57.26 5.49 6.75 1.78	30 21	66.56 5.41 7.47 1.59	followup followup	6.00 6.00		-1.68 [-2.28; -1.09] -0.42 [-1.05; 0.21]
McLachian, SA, et al., 2001 Schotleid, P, et al., 2013	296 55	42.00 23.70 65.03 28.36 75.10 54.75	154 53	47.50 17.90 71.29 28.69	followup	24.00 12.00	-	-0.25 [-0.45: -0.05] -0.22 [-0.60; 0.16]
Chan, et al. 2005 Chan, et al. 2005 Chan, et al. 2005	80 80	65.58 54.76 76.62 54.76	75 75	75.11 54.76	followup	24.00		-0.17 [-0.49, 0.14] -0.15 [-0.47, 0.16]
Chan, et al. 2005 Serfaty M, et al., 2018	80 20	61.47 54.76 18.70 5.30	75	69.26 54.76 19.40 6.20	followup	12.00		-0.14 [-0.46, 0.17] -0.12 [-0.72; 0.49]
Walczak, A. et al., 2009 I. Cargis, A. et al., 2009 I.	61 110	20.94 5.40 88.20 19.30	49	21.43 4.47 89.90 17.00	followup	4.00		-0.10 [-0.47, 0.28] -0.09 [-0.35, 0.17]
Schoterd, P, et al., 2013 Klinkhammer-Schalke, M et al., 2012 Radrinez, B, et al., 2014	100	78.90 27.54 93.33 14.91	100	70.58 25.38 81.14 24.07 94.44 9.52	followup	48.00		-0.09 [-0.46; 0.29] -0.09 [-0.36; 0.19] -0.09 1-1 10; 0.931
Chan, et al. 2005 Girgis, A, et al., 2009 II.	00 120	00.52 54.76 89.20 20.30	75	93.77 54.76 89.90 17.00	followup	48.00	-	-0.06 [-0.37, 0.26] -0.04 [-0.29, 0.22]
Brasken APB, et al. 2013 Klinkhammer-Schaike, N et al., 2012	136 100	86.99 20.73 66.00 33.00	144	87.55 19.10 66.74 31.76	followup followup	48.00 12.00		-0.03 [-0.26; 0.21] -0.02 [-0.30; 0.25]
Klafke, N. et al., 2019 Kim, SH. et al., 2021	120 47	54.50 29.60 80.30 17.60	113	55.10 29.50 89.40 18.50	followup	24.00 20.00	-	-0.02 [-0.28: 0.24] -0.01 [-0.41: 0.40]
Diu, H. et al., 2018 II. Diu, H. et al., 2018 II. Direis A at al. 2009 II.	98	17.98 8.92	195	17.98 8.52	followup	4,00		0.00 [-0.24; 0.24] 0.00 [-0.24; 0.24]
Seliniotaxi, T, et al., 2021 Girgis, A, et al., 20091.	27 110	74.60 35.90 92.20 15.00	26 117	74.60 29.30 91.90 17.40	followup	8.00 24.00		0.00 [-0.54, 0.54] 0.02 [-0.24, 0.28]
Qiu, H, et al., 2018 II. Klinkhammer-Schalke, M et al., 2013	98	18.97 8.92 72.20 28.78	196 100	18.75 9.46 71.46 29.03	followup	24.00 24.00		0.02 [-0.22, 0.27] 0.03 [-0.25, 0.30]
Din, X, et al., 2017 Awing, C, et al., 2007	50	80.24 13.46 76.00 25.00	50 38	79.67 13.13 75.00 19.00	followup followup	2.00	199	0.04 [-0.35, 0.43] 0.04 [-0.38; 0.47] 0.05 [-0.38; 0.47]
Chan, et al. 2005 Johansson, B. et al. 2006	80	80.95 5476	75	77.92 5476	followup	36.00	1	0.05 [-0.26; 0.30] 0.06 [-0.26; 0.37] 0.05 [-0.18; 0.31]
Braeken APB, et al. 2013 Qiu, H, et al., 2018 II.	136 98	83.46 23.57 18.77 8.03	144	81.81 22.37 18.25 5.05	tollowup	12.00 12.00		0.07 [-0.16: 0.31] 0.08 [-0.16: 0.33]
Klafke, N, et al., 2019 Avving, C, et al., 2007	120	62.10 29.40 81.00 22.00	113 38	59.70 27.60 79.00 25.00	followup	12.00	롶	0.08 [-0.17, 0.34] 0.08 [-0.34, 0.51]
Awing, C, et al., 2007 Klinkhammer, Schalke, M et al., 2012	47	98.62 0.31 93.00 21.00 77.91 27.05	38	58.02 3.21 89.00 26.00 73.69 30.77	followup	24.00	쿺	0.12 [-0.27, 0.51] 0.13 [-0.30, 0.56] 0.15 [-0.13, 0.42]
Klafke, N, et al., 2019 Johansson, B, et al., 2008	120	69.10 27.90 90.00 17.00	113	63.60 26.60 86.00 22.00	followup	48.00 24.00	業	0.20 [-0.06, 0.46] 0.20 [-0.05, 0.46]
Johansson, B, et al., 2008 Olu, H, et al., 2018 I	128 98	87.00 20.00 20.01 9.15	116 196	82.00 24.00 17.96 8.52	followup	12.00	箧	0.23 [-0.03, 0.48] 0.23 [-0.01; 0.47]
Thomas, ML, et al., 2012 Serfaty M, et al., 2018	64 20	20.50 6.10 21.20 4.30	88	19.00 6.40 19.70 6.70	followup	12.00	-	0.24 [-0.09, 0.56] 0.26 [-0.35, 0.87]
Rodrigez, B, et al., 2014 Trask, PC, et al. 2003	25 102	95.83 11.79 86.10 23.50 15.45 2.67	23	99.48 25.20 79.40 20.82 14.52 3.28	followup	24.00	-	0.26 [-0.76, 1.28] 0.30 [-0.27, 0.87] 0.31 [-0.04 0.58]
Powell, CB, et al., 2008 Qiu, H, et al., 2018 I	21 98	21.30 5.60 21.75 8.70	43	19.10 7.30 18.75 9.46	followup	12 00 24 00	E.	0.32 [-0.21: 0.84] 0.32 [-0.08: 0.57]
Yun et al., 2017 Kim, SH, et al., 2021	134 47	85.30 19.50 81.90 15.20	72 47	78.20 22.40 74.60 23.00	followup	48.00	推翻	0.34 [0.06; 0.63] 0.37 [-0.04; 0.78]
Dirksen, S. et al. 2007 Sandsund, C. et al., 2017 Sandsund, ct al., 2019	34 72	23.30 3.90 85.00 21.40	38	21.40 5.90 74.90 29.80	followup	10.00		0.37 [-0.10; 0.84] 0.39 [0.06; 0.72]
Sandsund, C. et al., 2017 Diu, H. et al., 2018 I	72	85.00 18.90 21.39 8.03	70	74.20 28.90	followup	24.00		0.48 [0.15, 0.82] 0.50 [0.26, 0.75]
Zhou, J, et.al., 2020 Beatty, L. et.al., 2015	59 30	72.34 11.43 77.87 4.52	59 30	65.87 10.26 75.06 4.61	followup followup	2 00 13.03	*	0.59 0.22, 0.96] 0.50 0.06; 1.11]
Trask, PC, et al. 2003 Zhao,X, et al. 2015	25 62	85.90 24.00 8.19 2.10	23 62	70.10 27.34 6.87 2.21	followup	8 00 0 30	*	0.61 [0.03, 1 19] 0.61 [0.25, 0.97]
Kim, YH, et al., 2021 n. Kim, YH, et al., 2017 Chen, et al., 2017	30	75.60 25.20 47.60 7.50	30	58.30 27.20	followup	6.00 8.00	E	0.62 [-0.02, 1.25] 0.64 [0.12; 1.16] 0.68 [0.31, 1.04]
Chen, et al., 2017 Cheung YL, et al. 2002	58	46.80 7.60 10.55 0.50	65 30	41.50 7.50 8.64 1.56	followup	24.00 5.00	-	0.70 [0.33, 1.06] 0.77 [0.24, 1.30]
Lu, Z, et al., 201 Kim, YH, et al., 2017	203 30	76.10 5.20 75.00 23.10	103 30	71.10 8.20 54.40 28.00	followup	9.00 9.00		0.78 [0.54, 1.03] 0.79 [0.27, 1.32]
Cheung YL, et al. 2002 Beatty, L. et al. 2015 von der Neulen IC, et al. 2013	29 30 28	10.37 0.49 87.98 4.26 88.50 3.20	30	9.47 1.43 83.84 4.75 85.10 3.00	followup	10.00 26.07 48.00	-	0.83 [0.29; 1.36] 0.91 [0.37; 1.44] 1.00 [0.78 1.44]
Wu, Q, et al., 2021 Baovindeligeer, L.Z. et al. 2020	43	81.65 8.30 88.33 12.38	43 65	72.36 7.51	followup	12.00	1 1 1 1	1.16 [0.70, 1.62]
Fang, P, et al. 2020 Rodríguez Vega, B, et al., 2010	60 39	65.47 6.98 49.04 3.32	60 33	49.45 5.65 29.42 3.62	followup	4 00 12 00	*	2.51 [2.03; 2.99] • 5.61 [4.56; 6.66]
Rodríguez Vega, B, et al., 2010 Raisdom affect	39 8400	61.86 3.32	33 8540	34.47 3.62	followup	24.00	4	> 7.83 [6.44, 9.22] 0.38 [0.18; 0.59]
-vencion afferval								[-0.83; 1 .59]
Peng, L. et al., 2022 Berglund, G. et al. 2007	28 39	76.79 15.27 80.30 22.60	29 150	81.61 16.87 84.00 22.10	baseline baseline	0.00		-0.30 [-0.82, 0.23] -0.17 [-0.52, 0.19]
Helney, SP, et al., 2003 Ruiz-Vozmediano, J, et al., 2020	33 31	5.60 2.00 69.40 29.80	33 32	5.90 1.90 73.40 28.40	baseline	0.00		-0.15 [-0.64; 0.33] -0.14 [-0.63; 0.36]
Hemandez, EG, et al. 2008	28	17.11 6.05	28	17.56 5.46	baseline	0.00		-0.08 [-0.57, 0.19] -0.08 [-0.60, 0.45]
Guo, Z, et al., 2013 Rahmani, S, et al. 2015	89	75.00 13.82 34.72 13.22	89 12	73.43 12.31 33.33 7.11	baseline	0.00		0.12 [-0.17, 0.41] 0.13 [-0.67; 0.93]
Cengiz, HO, et al., 2023 Periodo, FJ, et al., 2020	32 95	20.15 5.97 -19.85 4.09	33 97	19.13 5.49 -21.16 4.24	baseline baseline	0.00	_ #	0 18 [-0.31, 0.66] 0 31 [0.03, 0.60]
Antoni, MH, et al., 2006 Helney, SP, et al., 2003 Antoni, MH, et al., 2008	92 33	788.15 133.08	107	855.60 126.8 6.55 1.80	2 followup followup	48.00		-0.52 [-0.80, -0.23] -0.39 [-0.88; 0.10]
Berglund, G. et al. 2007 Peng, L. et al. 2022	39	77.00 23.70 80.36 20.09	150	83.50 23.70	followup	48.00	-	-0.27 [-0.63, 0.08] -0.09 [-0.61, 0.43]
Heiney, SP, et al., 2003 Peng, L, et al., 2022	33 28	5.80 2.00 79.17 16.49	33 29	5.90 1.90 79.89 20.11	followup followup	6.00 4.00	書	-0.05 [-0.53; 0.43] -0.04 [-0.56; 0.48]
Rahmani, S, et al. 2015 Rutz-Vozmediano, J, et al. 2020 Congre HO, et al. 2023	12 31 22	12.00 54.16 83.30 24.70 20.36 5.39	12 32	12.00 34.72 78.70 28.50 19.06 5.74	followup followup	16.00 24.00 9.00	豊	0.00 [-0.60; 0.60] 0.17 [-0.32; 0.67] 0.23 [-0.26; 0.72]
Guo, Z, et al., 2013 Penedo, FJ, et al., 2020	69 95	74.35 10.67	89 97	71.33 11.88	followup	2.00	5 <u>4</u>	0.27 [-0.03, 0.56] 0.30 [0.01; 0.58]
Penedo, FJ, et al., 2020 Hemandez, EG, et al. 2018	95 28	-20.61 4.19 18.82 5.79	97 28	-21.91 4.33 16.40 5.07	followup	24.00 24.00		0.30 [0.02; 0.59] 0.44 [-0.09; 0.97]
Hemandez, EG, et al. 2018 Liu, T, et al., 2019	28	19.23 5.51 65.81 18.49	28 53	16.60 5.39 56.11 17.08	followup	8.00 9.00	唐	0.48 [-0.06; 1.01] 0.54 [0.15; 0.94]
Rahmani, 3, et al. 2015 Rahmani, 3, et al. 2015	12	74.35 17.58 51.38 11.14	12 1685	29.16 16.09	tollowup	8.00		0.70 [0.30; 1.10] 1.55 [0.62; 2.48] 0.20 [-0.02; 0.43]
Prediction interval								[-1.13; 1.53]
self help Takano, T, et al., 2021 Hauffmon A et al. 2020	31	76.40 20.93	38	84.70 18.68	baseline	0.00	- -	-0.42 [-0.90, 0.06]
Willems, R, et al., 2016 Takano, T, et al., 2021	188	83.20 2.70 71.70 20.10	221	82.90 2.60 72.40 26.60	baseline followup	0.00	THE OWNER OF THE OWNER	0.11 [-0.08, 0.31] -0.03 [-0.50, 0.45]
Hauffman, A. et al., 2020 Hauffman, A. et al., 2020	124 124	59.00 28.00 68.00 25.00	121 121	58.00 30.00 67.00 27.00	followup	1 00 4.00		0.03 [-0.22, 0.28] 0.04 [-0.21, 0.29]
Hauffman, A. et al. 2020 Takano, T. et al. 2021 Hauffman, A. et al. 2021	124	70.00 25.00 75.60 20.49	121	68.00 28.00 73.20 26.75	followup	7.00		0.07 [-0.18; 0.32] 0.10 [-0.38; 0.57]
Willems, R. et al., 2020 Willems, R. et al., 2016 Random effect	124 188 1089	70.00 26.00 89.30 3.10	121 221	65.00 28.00 84.60 3.10	tollowup	24.00	<u> </u>	0.16 [-0.07; 0.44] 1.51 [1.29; 1.73] 0.30 [-1.02; 1.79]
Prediction interval	and the second		1000					[-2.50; 3.26]
Random effect Prediction interval	10882		11386			T	×	0.35 [0.17; 0.52] [-0.84; 1.53]
						-4 In favor d	-2 0 2 control group In favor of int	4 ervention group

Figure S15.2. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the type subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S15.3.T24

Study	Ex Patient N	perimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
mdividual Rodríguez Vega, B, et al., 2010 Farmusez R1 stal. 2020	39	3.31 3.32	33	6.08	3.62	baseline	0.00	*	-0.79	[-1.27, -0.31]
Ferguson, RJ, et al., 2012 Walczak, A, et al., 2017 Derford M. et al., 2019	19 61	6.26 2.05 21.16 4.48	49	7.31	1.29	baseine	0.00	-	-0.62	[-1.26; 0.02] [-0.71; 0.05]
Ciu, H, et al., 2018 II. Chen. et al., 2017	98	17.84 5.10	196	18.85	4.22	baseline	0.00		-0.22	-0.47; 0.02]
Qiu, H. et al., 2018 I. Fang, P. et al.,2020	98 60	18.13 5.70 48.50 4.11	196	18.85 49.08	4 22	baseine baseine	0.00 0.00	100 B	-0.15 -0.13	-0.39, 0.09] -0.48, 0.23]
Soliniotaki, T, et al., 2021 Wu, Q, et al., 2021	27 43	74.40 29.90 53.77 5.51	26 43	77.70 54.34	29.30 5.53	baseine	0.00	*	-0.11	0.65, 0.43]
MoLaonian, SA, et al., 2001 Li, X, et al., 2017 Kim, SH, et al., 2021	102	41.20 22.60 13.58 2.23 73.70 81.90	108	42.80	221	baseine	0.00	1	-0.07	-0.27: 0.12] -0.31: 0.23]
Chan, et al. 2005 Braeken APB, et al. 2013	80 136	54,76 60.02 84,94 21.44	75	56.28 85.40	54.76 22.52	baseline	0 00	-	-0.03	0.34; 0.29]
Dirksen, S. et al, 2007 van der Meulen, IC, et al., 2013	34 88	22.10 4.90 83.10 2.50	38 91	22.20 83.10	6.10 2.50	baseline baseline	0.00 0.00	*	-0.02 0.00	[-0.48, 0.44] [-0.29; 0.29]
Schoffield, P. et al., 2013 Klafke, N. et al., 2019	55 120	70.90 26.77 59.30 31.30	53 113	70.75	26.72 29.60	baseline baseline	0.00	Ē	0.01	(-0.37, 0.38) (-0.23, 0.28)
Girgis, A. et al., 2009 II. Baovindeligeer, L.Z. et al. 2020	120	80.80 25.60	117	79.50	25.10	baseine	0.00		0.05	0.20 0.31
Johansson, B. et al., 2008 Elyasi, F. et al., 2021 I.	128 15	84.00 24.00 2.00 1.20	116 15	82.00 1.90	25.00	baseline baseline	0 00 0 00		80.0 0.09	-0 17, 0 33] -0.62; 0.81]
Klinkhammer-Schalke, M et al., 2012 Yun et al., 2017	100	71.21 33.50 75.80 26.80	100	67.99 73.10	34.25 23.40	baseline	0.00	1	0.09	[-0.18: 0.37] [-0.18: 0.39]
Zhao,X. et al. 20091. Zhao,X. et al. 2015 Antion, C. et al. 2007	62	7.01 2.18	62	6.76	239	baseine	0.00	5	0.11	-0.16, 0.37] [-0.24, 0.46] L0.30, 0.551
Sandsund, C. et al., 2017 Rodrigez, B. et al., 2014	72	74.10 26.70	70	70.00	29.00	baseline	0 00 0.00		0.15	-0.18: 0.48] -0.76: 1.28]
Thomas, ML, et al., 2012 Powell, CB, et al., 2008	54 21	21.10 5.40 22.20 5.40	88 43	19.00 19.70	6.30 6.00	baseine	0.00	· · · · · · · · · · · · · · · · · · ·	0.35	[0.03; 0.68] [-0.10; 0.95]
Kim, YH, et al. 2017 Cheung YL, et al. 2002	30 29	72.80 25.30	30	62.90 10.16	20.80	baseline	0.00		0.43	-0.09; 0.94] [-0.03; 1.01]
Elyasi, F. etal. 2021 II. Lu Z. etal. 201	20 203	2.50 1.10	20	1.90	0.90	baseine	0.00	-	0.59	0.05 1.22
Zhao, X, et al., 2021 Beatly, L. et al. 2015	52 30	58.02 3.41 57.26 5.49	51 30	54.01 66.56	4.12	baseline followup	0.00 6.00	*	1.05	[0.64, 1.47] [-2.28, -1.09]
Ferguson, RJ, et al., 2012 McLachlan, SA, et al., 2001	19 298	6.75 1.78 42.00 23.70	21	7.47	1.59	followup	8 00 24 00	5	-0.42	-1.05; 0.21] [-0.45; -0.06]
Chan, et al. 2005 Chan, et al. 2005	55 80 80	76.19 54.76	75	71.28 87.23 75.11	28.69	tollowup	72.00	3	-0.22	-0.50; 0.16] [-0.52; 0.12] L0.49; 0.141
Chan, et al. 2005 Chan, et al. 2005	80 80	76.62 54.76 61.47 54.76	75 75	85.06 69.26	54.76	followup	60.00 12.00		-0.15	-0.47, 0.16]
Seifat) M, et al., 2018 Walczak, A, et al.,2017	20 61	18.70 5.30 20.94 5.40	22 49	19.40 21.43	6.20 4.47	tollowup tollowup	12.00 4.00		-0.12 -0.10	0.72; 0.49] [-0.47; 0.28]
Girgis, A. et al., 2009 I. Schofield, P., et al., 2013 Vilaitammar Scholin, U. et al., 2012	110 55	68.20 19.30 68.28 26.22 79.00 27.54	117 53	89.90 70.58	17.00 26.38	followup followup	12.00		-0.09	[-0.35; 0.17] [-0.46; 0.29]
Rodrigez, B. et al., 2014 Chan, et al., 2005	8	93.33 14.91 80.52 54.76	7	94.44 93.77	9.62	followup	2.00		-0.05	-1.10; 0.93] L0.37; 0.96]
Girgis, A. et al., 2009 II. Brasken APB, et al. 2013	120 136	89.20 20.30 85.99 20.73	117	89.90 87.55	17.00	followup	12 00 48 00	-	-0.04	0.29 0.22
Klinkhammer-Schalke, II et al., 2012 Klafke, N. et al., 2019	100 120	66.00 33.00 54.50 29.60	100 113	66.74 55.10	31.76 29.50	followup followup	12.00 24.00		-0.02	0.30 0.25 -0.28, 0.24]
Kim, SH, et al., 2021 Elvasi, F, et al., 2021 I.	47	80.30 17.60 1.80 0.90	47	80.40 1.80	18 50	tollowup tollowup	20.00	-	-0.01	[-0.41; 0.40] [-0.72; 0.72]
Girgis, A. et al., 2018 II. Girgis, A. et al., 2009 II. Saliolotavi, T. et al., 2021	98 120 27	17.98 8.92 91.90 17.60 74.60 35.90	196	17.98 91.90 74.60	8.52 17.40 29.30	tollowup tollowup	4.00 24.00 24.00		0.00	[-0.24, 0.24] [-0.25; 0.25]
Girgis, A. et al., 2009 I. Girgis, H. et al., 2018 II.	110 98	92.20 15.00 18.97 8.92	117	91.90	17.40	followup followup	24.00		0.02	0.24, 0.28
Kinkhammer-Schalke, Miet al., 2012 Qin, X. el al., 2017	100 50	72.20 28.78 80.24 13.46	100 50	71.46 79.67	29 03 13 13	followup followup	24.00 2.00	*	0.03	-0.25, 0.30] -0.35, 0.43]
Arving, C. et al., 2007 Johansson, B. et al., 2008	47	75.00 25.00 91.00 18.00	38 116	75.00 90.00	19.00 20.00	followup	12.00 96.00	重	0.04	-0.38, 0.47] -0.20, 0.30]
Charl, et al. 2005 Johanason, B, et al., 2008 Proster APR, et al., 2012	80 128	80.95 54.76 92.00 15.00 93.46 93.57	116	77.92 91.00	54.78	followup followup	36.00 48.00	憲	0.06	[-0.26; 0.37] [-0.19; 0.31] [-0.48; 0.34]
Qiu, H, et al., 2018 II. Klatka N, et al., 2019	98	18.77 8.03 62.10 29.40	196	18.25	5.05	followup followup	12.00	100	0.08	-0.16, 0.33] [-0.16, 0.33]
Arving, C. et al., 2007 Zhao, X. et al., 2021	47	81.00 22.00 58.62 6.31	38 51	79.00 58.02	25.00	tollowup tollowup	4.00		0.08	-0.34 0.51] -0.27, 0.51]
Arving, C. et al., 2007 Klinkhammer-Schalke, M et al., 2012	47 100	83.00 21.00 77.91 27.05	38 100	80.00 73.69	26.00	tollowup tollowup	24 00 36 00	蓋	0.13	[-0.30; 0.56] [-0.13, 0.42]
Klafke, N, et al., 2019 Johansson, B, et al., 2008 Johansson, B, et al., 2009	120	69.10 27.90 90.00 17.00 97.00 20.00	113	63.60 86.00	26.60	followup followup	48.00 24.00		0.20	[-0.06; 0.46] [-0.05; 0.46] [-0.03; 0.49]
Diu, H. et al., 2018 I Thomas MI, et al. 2012	98	20.01 9.15	196	17.98	8.52	followup	4 00		0.23	-0.01; 0.47] -0.09; 0.47]
Serfaty N, et al., 2918 Rodrigez, B, et al., 2014	20 8	21.20 4.30 95.83 11.79	22 7	19.70 90.48	6.70 25.20	followup followup	18.00 0.10		0.26	0.35 0.87
Trask, PC, et al. 2003 Li, X, et al., 2017	25 102	86.10 23.50 15.45 2.67	23	79.40	20.62	tollowup	24.00		0.30	[0.27: 0.87] [0.04: 0.58]
Powell, CB, et al., 2006 Glu, H, et al., 2018 I Yup et al., 2017	21 98 134	21.30 5.60 21.75 8.70 85.30 19.50	43 196 72	19,10	9.46	tollowup tollowup	24.00		0.32	[0.08; 0.57] [0.08; 0.57]
Kim, SH, et al., 2021 Dirksen, S. et al. 2007	47	81.90 15.20 23.30 3.90	47	74.60	23.00	followup	8.00	-	0.37	[-0.04; 0.78] [-0.10; 0.84]
Sandsund, C, et al., 2017 Senfaty W, et al., 2018	72 20	85.00 21.40 19.50 7.20	70 22	74.90 16.00	29.80 7.60	tollowup tollowup	12.00 24.00		0.39 0.46	[0.06; 0.72] [-0.15; 1.09]
Sandsund, C, et al., 2017 Diu, H, et al., 2018 I.	72	85.00 18.90 21.39 8.03	70 196	74.20	28.90	followup	24.00		0.48	[0.15; 0.82] [0.28; 0.75]
Zhou, J. et al. 2020 Beatty L. et al. 2015 Track PC. et al. 2003	30 26	77.87 4.62	30 23	75.08	4.61	tollowup followup	13.03		0.59	[0.22, 0.96] [0.08, 1.11] [0.03, 1.19]
Zhao,X. et al. 2015 Elyasi, F. et al. 2021 II	62 20	8.19 2.10 2.40 1.00	62 20	6.87 1.80	2.21	followup followup	0.30 24.00	-	0.61	0.25 0.97]
Kim, YH, et al. 2017 Chen, et al. 2017	30 58	75.60 26.20 47.60 7.50	30 65	58.30 42.60	27.20	followup followup	6.00 8.00	「「「」	0.64	[0.12; 1.16] [0.31; 1.04]
Chen, et al. 2017 Cheung YL, et al. 2002	58	46.80 7.60 19.55 0.50	65 30	41.50 9.64	7.50	followup followup	24.00		0.70	[0.33; 1.06] [0.24; 1.30]
Km, YH, et al. 2017 Cheung YL, et al. 2017	30 29	75.00 23.10	30	54.40	28.00	tollowup	9.00		0.79	[0.27; 1.32]
Beatty, L. et al. 2015 van der Meulen, IC, et al., 2013	30 88	87.98 4.26 88.50 3.20	30 91	83.94 85.10	4.75	tollowup tollowup	26.07 48.00	*	0.91	[0.37, 1.44] [0.78; 1.41]
Wu, Q. et al., 2021 Baoyindeligeer, L.Z. et al. 2020	43 65	81.65 8.30 88.33 12.38	43 65	72.36 71.36	7.51	followup followup	12.00 2.00	*	1.16	[0.70; 1.62] [0.91; 1.66]
Fang, P, et al.,2020 Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010	60 39	05.47 0.98 49.04 3.32	33	49.45	3.62	followup	4 00 12 00 24 00	-	> 5.81	[2.03, 2.99] [4.56; 6.66] [6.44, 9.22]
Random effect Production interval	8400	01.60 3.32	#540	34.41	0.02	Dinowup	24.00	*	0.38	[0.09; 0.67] [0.86; 1.62]
proup.										
Peng, L, et al., 2022 Berglund, G. et al. 2007	28	76.79 15.27 80.30 22.60	29	81.51 84.00	16.87	baseline baseline	0.00		-0.30	-0.82: 0.23 -0.52: 0.19
Ruiz-Vozmediano, J. et al. 2020 Antoni MH, et al. 2006	31	69.40 29.80 877.61 159.55	32	73.40	28.40	baseine	0.00		-0.14	[-0.63, 0.36] [-0.63, 0.36]
Hemandez, EG, et al. 2018 Liu, T, et al., 2019	28 49	17.11 5.05 63.77 24.95	28 53	17.56	5.46 23.71	baseline baseline	0.00		-0.08	-0.60; 0.45] -0.45; 0.33]
Guo, Z, et al., 2013 Rahmani, S, et al. 2015	89 12	75.00 13.82 34.72 13.22	89 12	73.43 33.33	12.31	baseine baseine	0.00 0.00	- <u>₹</u> -	0.12	[-0.17, 0.41] [-0.67, 0.93]
Congiz, HO, et al., 2023 Penedo, FJ, et al., 2020	32 95	20.16 5.97	33 97	19.13	5.49 4.24	baseine	0.00		0.18	[-0.31; 0.66] [.0.03; 0.60]
Heiney SP, et al., 2003 Antoni NH, et al., 2003	33	5.80 2.00	33	6.55	1.80	followup	16.00	-	-0.39	-0.88; 0.10] -0.63; -0.071
Berglund, G. et al. 2007 Peng. L., et al., 2022	39 28	77.00 23.70 80.36 20.09	150 29	83.50 82.18	23.70 19.38	tollowup tollowup	48.00 0.10	-	-0.27	0.63 0.08]
Heiney, SP, et al., 2003 Peng. L., et al., 2022	33 28	5.80 2.00 79.17 16.49	33 29	5.90 79.89	1.90 20.11	followup followup	6.00 4.00	書	-0.05 -0.04	-0.53, 0.43] -0.56; 0.48]
Ratimani, S. et al. 2015 Rulz-Vozmediano, J. et al. 2020 Casela, HD, et al.	12 31	12.00 54.16 93.30 24.70	12 32	12:00	34.72 28.50	tollowup tollowup	16.00		0.00	[-0.80, 0.80] [-0.32, 0.67]
Guo, Z, et al., 2013 Penedo E Let al., 2020	89	74.35 10.67	89 97	71.33	11.88	followup	2.00		0.25	-0.03, 0.56] [-0.01, 0.56]
Penedo, FJ, et al., 2020 Hernandez, EG, et al. 2018	95 28	-20.61 4.19 18.82 5.79	97 28	-21.91 16.40	4.33	followup	24.00 24.00		0.30	0.02 0.59
Hemandez, EG, et al. 2018 Llu, T, et al. 2019	28 49	19.23 5.51 65.81 18.49	28 53	16.60 56.11	5.39 17.08	followup followup	8.00 9.00	-	0.48 0.54	(-0.06, 1.01) [.0.15; 0.94]
Liu, T, et al. 2019 Rahmani, S, et al. 2015	49 12	74.35 17.68 51.36 11.14	53 12	82.05 29.16	14.34	followup followup	12.00 8.00	- 	0.76	[0.36, 1.16] [0.62, 2.48]
Handom emect Prediction interval	4.989		1085						0.29	[-1.12; 1.52]
self nelp Takano, T, et al., 2021	31	76.40 20.93	38	84.70	18.68	baseline	0.00	-	-0.42	-0.90; 0.06]
Hauffman, A, et al., 2020 Willems, R, et al., 2016	124 188	58.00 29.00 83.20 2.70	121 221	60.00 82.90	29.00	baseline baseline	0.00		-0.07 0.11	0.32, 0.19 0.08; 0.31
raxano, I, et al., 2821 Hauffman, A, et al., 2020 Hauffman, A, et al., 2020	31 124	71.70 20.10 59.00 28.00	38 121	72.40 58.00	26 69	tollowup followup	24.00		-0.03	0.50 0.45
Hauffman, A, et al., 2020 Takano, T, et al., 2021	124	70.00 26.00	121	68.00 73.20	28.00 26.75	followup	7.00	100 A	0.04	0.18, 0.32
Hauffman, A. et al., 2020 Willems, R. et al., 2016	124 188	70.00 26.00 89.30 3.10	121 221	55,00 84.60	28.00	followup	10.00 24.00		0.18	0.07; 0.44]
Raildom effect Prodiction Interval	1089		1161			and the file			0.38	0.98; 1.74] [-2.31; 3.07]
Random effect Prediction Interval	10882		11386					•	0.34	0.08; 0.60]
CONCOUNT INCOME							Г 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-2 0 2	4	Const root
							In favor of	control group in favor of infe	ervention	group

Figure S15.3. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the type subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure	S15.4.T48
--------	-----------

Figure S15.4. Forest plot represents the difference between the intervention vs control group in the Social QoL domain with the type subgroups as predicted at week 48 (post-intervention). SMD -Standardized mean difference, CI confidence interval.

-4 -2 0 2 4 In favor of control group In favor of intervention group

S16.Subgroup analysis of Social QoL: Cancer stage
Figure S16.1.T0

	E	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
oarly								:		
Rodríguez Vega, B. et al., 2010	39	3.31 3.32	33	6.08	3.62	baseline	0.00		-0.79	[-1.27: -0.31]
Ferguson, RJ, et al., 2012	19	6.26 2.05	21	7.31	1.21	baseline	0.00	-	-0.62	[-1.26; 0.02]
Takano, T, et al., 2021	31	76.40 20.93	38	84.70	18.68	baseline	0.00		-0.42	[-0.90; 0.06]
Ruiz-Vozmediano, J, et al.,2020	31	69.40 29.80	32	/3.40	28.40	baseline	0.00		-0.14	[-0.63; 0.36]
Fang, P, et al., 2020	60	48.50 4.11	60	49.08	5.01	baseline	0.00		-0.13	[-0.48; 0.23]
liu Tetal 2019	43	63 77 24 95	43	65.22	23.71	baseline	0.00		-0.06	[-0.45: 0.32]
Yun et al 2017	134	75.80 26.80	72	73 10	23 40	baseline	0.00		0.10	[-0.18: 0.39]
Zhao,X, et al. 2015	62	7.01 2.18	62	6.76	2.39	baseline	0.00	÷.	0.11	[-0.24; 0.46]
Willems, R, et al., 2016	188	83.20 2.70	221	82.90	2.60	baseline	0.00	<u>.</u>	0.11	[-0.08; 0.31]
Cengiz, HO, et al., 2023	32	20.16 5.97	33	19.13	5.49	baseline	0.00	는 문	0.18	[-0.31; 0.66]
Rodrigez, B, et al., 2014	8	95.83 11.79		90.48	25.20	baseline	0.00		0.26	[-0.76; 1.28]
Reatty L et al 2015	30	57 26 5 49	30	54.01 66.56	4.1Z	followup	6.00		-1.68	[0.04, 1.47] [-2.28 ⁻ -1.09]
Ferguson RJ et al 2012	19	675 178	21	7 47	1.59	followup	8.00		-0.42	[-1.05: 0.21]
Rodrigez, B, et al., 2014	8	93.33 14.91	7	94.44	9.62	followup	2.00		-0.08	[-1.10; 0.93]
Takano, T, et al., 2021	31	71.70 20.10	38	72.40	26.69	followup	24.00	世	-0.03	[-0.50; 0.45]
Takano, T, et al., 2021	31	75.60 20.49	38	73.20	26.75	followup	12.00	<u>+</u>	0.10	[-0.38; 0.57]
Guan, S, et al., 2019 Zhoo, X, et al., 2021	50	69.05 7.24 50.60 6.01	50	68.19	8.05	followup	8.00	王	0.11	[-0.28; 0.50]
Ruiz-Vozmediano Letal 2020	31	83 30 24 70	32	78 70	28.50	followup	24.00		0.12	[-0.27, 0.51] [-0.32: 0.67]
Cengiz, HO, et al., 2023	32	20.36 5.38	33	19.06	5.74	followup	8.00		0.23	[-0.26: 0.72]
Rodrigez, B, et al., 2014	8	95.83 11.79	7	90.48	25.20	followup	0.10		0.26	[-0.76; 1.28]
Yun et al., 2017	134	85.30 19.50	72	78.20	22.40	followup	48.00	-	0.34	[0.06; 0.63]
Liu, T, et al., 2019	49	65.81 18.49	53	56.11	17.08	followup	9.00	1 <u></u>	0.54	[0.15; 0.94]
Beatty, L. et al. 2015 Zhoo X, et al. 2015	30	//.8/ 4.62	30	/5.08	4.61	followup	13.03	<u> </u>	0.60	[0.08; 1.11]
Liu T et al 2010	/02	7/35 17.68	53	62.05	1/ 3/	followup	12.00		0.01	[0.25, 0.97]
Beatty, L. et al. 2015	30	87.98 4.26	30	83.84	4.75	followup	26.07		0.91	[0.37: 1.44]
Wu, Q, et al., 2021	43	81.65 8.30	43	72.36	7.51	followup	12.00		1.16	[0.70; 1.62]
Willems, R, et al., 2016	188	89.30 3.10	221	84.60	3.10	followup	24.00	-	1.51	[1.29; 1.73]
Fang, P, et al.,2020	60	65.47 6.98	60	49.45	5.65	followup	4.00		2.51	[2.03; 2.99]
Rodriguez Vega, B, et al., 2010	39	49.04 3.32	33	29.42	3.62	followup	12.00		> 5.61	[4.56; 6.66]
Rodriguez vega, B, et al., 2010 Random offect	1763	01.00 3.32	1723	34.47	3.02	lollowup	24.00		0.29	[0.44, 9.22]
Prediction interval	1705		1125						0.20	[-2.01; 2.58]
advanced										
Walczak, A. et al., 2017	61	21.16 4.48	49	22.71	4.99	baseline	0.00		-0.33	[-0.71: 0.05]
Serfaty M, et al., 2018	20	16.40 6.10	22	18.10	7.80	baseline	0.00		-0.24	[-0.84; 0.37]
Heiney, SP, et al., 2003	33	5.60 2.00	33	5.90	1.90	baseline	0.00	<u>+</u>	-0.15	[-0.64; 0.33]
Schofield, P, et al., 2013	55	70.90 26.77	53	70.75	26.72	baseline	0.00		0.01	[-0.37; 0.38]
Penedo, FJ, et al., 2020	203	-19.85 4.09	97	-21.10	4.24	baseline	0.00	-	0.31	[0.03; 0.60]
Heinev SP et al 2003	203	5.80 2.00	33	6.55	1.80	followup	16.00		-0.39	[-0.88: 0.10]
Schofield, P, et al., 2013	55	65.03 28.36	53	71.29	28.69	followup	12.00		-0.22	[-0.60; 0.16]
Serfaty M, et al., 2018	20	18.70 5.30	22	19.40	6.20	followup	12.00		-0.12	[-0.72; 0.49]
Walczak, A, et al.,2017	61	20.94 5.40	49	21.43	4.47	followup	4.00	<u>+</u>	-0.10	[-0.47; 0.28]
Schotield, P, et al., 2013	55	68.28 26.22	53	70.58	26.38	followup	8.00	-	-0.09	[-0.46; 0.29]
Serfaty M et al. 2003	20	21 20 4 30	22	19.70	6.70	followup	18.00		-0.05	[-0.35; 0.43]
Penedo, FJ, et al., 2020	95	-20.74 4.29	97	-22.05	4.43	followup	48.00		0.30	[0.01: 0.58]
Penedo, FJ, et al., 2020	95	-20.61 4.19	97	-21.91	4.33	followup	24.00	*	0.30	[0.02; 0.59]
Serfaty M, et al., 2018	20	19.50 7.20	22	16.00	7.60	followup	24.00		0.46	[-0.15; 1.08]
Lu, Z, et al., 201	203	76.10 5.20	103	71.10	8.20	followup	9.00	=	0.78	[0.54; 1.03]
Random effect	1157		941						-0.11	[-0.74; 0.53]
Prediction interval										[-2.14, 2.55]
SURVIVOR Rong L of al. 2022	20	76 70 15 27	20	01.61	16 07	bacolino	0.00		0.20	1002-0221
Qiu H et al 2018 II	98	17.84 5.10	196	18.85	4 22	baseline	0.00		-0.22	[-0.82, 0.23] [-0.47: 0.02]
Chen. et al., 2017	58	58.30 6.20	65	59.60	6.90	baseline	0.00		-0.20	[-0.55: 0.16]
Qiu, H, et al., 2018 I.	98	18.13 5.70	196	18.85	4.22	baseline	0.00		-0.15	[-0.39; 0.09]
Kim, SH, et al., 2021	47	73.70 81.90	47	75.50	22.00	baseline	0.00	<u>+</u>	-0.03	[-0.43; 0.37]
Peng, L, et al., 2022	28	80.36 20.09	29	82.18	19.38	followup	0.10		-0.09	[-0.61; 0.43]
Kim SH at al. 2022	28	79.17 10.49 90.20 17.60	29	79.89	10 50	followup	4.00		-0.04	[-0.56; 0.48]
Qiu H et al 2018 II	98	17.98 8.92	196	17.98	8.52	followup	4 00		0.00	[-0.24: 0.24]
Qiu, H, et al., 2018 II.	98	18.97 8.92	196	18.75	9.46	followup	24.00	÷.	0.02	[-0.22; 0.27]
Qiu, H, et al., 2018 II.	98	18.77 8.03	196	18.25	5.05	followup	12.00	÷.	0.08	[-0.16; 0.33]
Qiu, H, et al., 2018 I.	98	20.01 9.15	196	17.98	8.52	followup	4.00	흔	0.23	[-0.01; 0.47]
VIU, H, et al., 2018 I. Kim, OLL at al., 2021	98	21.75 8.70	196	18.75	9.46	tollowup	24.00		0.32	[0.08; 0.57]
Oiu H et al 2019	47	21.30 15.20	47	18 25	23.00	followup	6.00 12.00		0.37	[-0.04, 0.78]
Chen. et al., 2017	58	47.60 7.50	65	42.60	7,20	followup	8.00		0.68	[0.31; 1.04]
Chen, et al., 2017	58	46.80 7.60	65	41.50	7.50	followup	24.00	-	0.70	0.33; 1.06]
Random effect	1183		1991					\$	-0.21	[-0.88; 0.47]
Prediction interval										[-3.01; 2.60]
Random effect	4103		4655					\$	0.10	[-0.21; 0.40]
Prediction interval							Г		-	[-2.15; 2.34]
							-4	-2 0 2	4	
							In favor of	control group In favor of inte	ervention	group

Figure S16.1. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer stage subgroups as predicted at week 0 (postintervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S16.2.T12

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early										
Rodríguez Vega, B, et al., 2010	39	3.31 3.32	33	6.08	3.62	baseline	0.00		-0.79	[-1.27; -0.31]
Ferguson, RJ, et al., 2012	19	6.26 2.05	21	7.31	1.21	baseline	0.00		-0.62	[-1.26; 0.02]
Takano, T, et al., 2021	31	76.40 20.93	38	84.70	18.68	baseline	0.00		-0.42	[-0.90; 0.06]
Ruiz-Vozmediano, J, et al.,2020	31	69.40 29.80	32	73.40	28.40	baseline	0.00		-0.14	[-0.63; 0.36]
Fang, P, et al.,2020	60	48.50 4.11	60	49.08	5.01	baseline	0.00		-0.13	[-0.48; 0.23]
Wu, Q, et al., 2021	43	53.77 5.51	43	54.34	5.53	baseline	0.00		-0.10	[-0.53; 0.32]
Liu, T, et al., 2019	49	63.77 24.95	53	65.22	23.71	baseline	0.00	÷.	-0.06	[-0.45; 0.33]
Yun et al., 2017	134	75.80 26.80	72	73.10	23.40	baseline	0.00	-	0.10	[-0.18: 0.39]
Zhao,X, et al. 2015	62	7.01 2.18	62	6.76	2.39	baseline	0.00	-	0.11	[-0.24; 0.46]
Willems, R. et al., 2016	188	83.20 2.70	221	82.90	2.60	baseline	0.00	+	0.11	I-0.08: 0.311
Cengiz, HO, et al., 2023	32	20.16 5.97	33	19.13	5.49	baseline	0.00		0.18	[-0.31; 0.66]
Rodrigez, B. et al., 2014	8	95.83 11.79	7	90.48	25.20	baseline	0.00		0.26	[-0.76; 1.28]
Zhao, X. et al., 2021	52	58.02 3.41	51	54.01	4.12	baseline	0.00		1.05	[0.64: 1.47]
Beatty, L. et al. 2015	30	57.26 5.49	30	66.56	5.41	followup	6.00		-1.68	[-2.28: -1.09]
Ferguson RJ et al. 2012	19	675 178	21	7 47	1.59	followup	8 00		-0.42	I-1 05 0 211
Rodrigez B et al 2014	8	93.33 14.91	7	94 44	9.62	followup	2 00		-0.08	[-1 10 0 93]
Takano T et al 2021	31	71 70 20 10	38	72 40	26 69	followup	24 00		-0.03	[-0.50 0.45]
Takano T et al. 2021	31	75.60 20.49	38	73.20	26.75	followup	12.00		0.10	I-0 38 0 571
Guan S et al. 2019	50	69.05 7.24	50	68 19	8.05	followup	8.00		0.11	[-0.28: 0.50]
Zhao X et al. 2021	52	58.62 6.31	51	58.02	3.21	followup	12.00		0.12	[-0.27: 0.51]
Ruiz-Vozmediano I et al 2020	31	83 30 24 70	32	78 70	28.50	followup	24.00		0.12	[-0.22] 0.67]
Candiz HO at al. 2023	32	20.36 5.38	32	10.06	574	followup	24.00	<u> </u>	0.23	[-0.32, 0.07]
Pedrigez P et al. 2023	0	05 02 11 70	7	00.40	25.20	followup	0.00		0.20	[0.26; 1.20]
Yup at al. 2017	124	95.05 11.79	70	70.40	20.20	followup	49.00		0.20	[-0.70, 1.20]
Lin T at al. 2010	40	65.00 19.00	F2	FG 11	17.00	followup	40.00		0.54	[0.00, 0.03]
Deathy L at al. 2019	49	77 07 4 60	20	75.00	4.61	followup	12.02		0.04	[0.15, 0.94]
Zhoo X at al. 2015	50	0.10 0.10	50	6.07	4.01	followup	0.20	-	0.00	[0.06, 1.11]
Zila0, A, et al. 2015	02	0.19 2.10	62	0.07	2.21	followup	0.50	1.2	0.01	[0.25, 0.97]
LIU, 1, et al., 2019	49	/4.35 1/.68	53	62.05	14.34	followup	12.00		0.76	[0.36; 1.16]
Beatty, L. et al. 2015	30	87.98 4.26	30	83.84	4.75	tollowup	26.07		0.91	[0.37; 1.44]
Wu, Q, et al., 2021	43	81.65 8.30	43	72.36	7.51	followup	12.00		1.16	[0.70; 1.62]
Willems, R, et al., 2016	188	89.30 3.10	221	84.60	3.10	followup	24.00		1.51	[1.29; 1.73]
Fang, P, et al.,2020	60	65.47 6.98	60	49.45	5.65	followup	4.00		2.51	[2.03; 2.99]
Rodriguez Vega, B, et al., 2010	39	49.04 3.32	33	29.42	3.62	followup	12.00		> 5.61	[4.56; 6.66]
Rodriguez Vega, B, et al., 2010	39	61.86 3.32	33	34.47	3.62	followup	24.00		> 7.83	[6.44; 9.22]
Random effect	1763		1723					<u> </u>	0.84	[-0.06; 1.74]
Prediction interval										[-1.61; 3.30]
advanced										
Walczak, A, et al.,2017	61	21.16 4.48	49	22.71	4.99	baseline	0.00		-0.33	[-0.71; 0.05]
Serfaty M, et al., 2018	20	16.40 6.10	22	18.10	7.80	baseline	0.00		-0.24	[-0.84; 0.37]
Heiney, SP, et al., 2003	33	5.60 2.00	33	5.90	1.90	baseline	0.00		-0.15	[-0.64; 0.33]
Schofield, P, et al., 2013	55	70.90 26.77	53	70.75	26.72	baseline	0.00		0.01	[-0.37; 0.38]
Penedo, FJ, et al., 2020	95	-19.85 4.09	97	-21.16	4.24	baseline	0.00		0.31	[0.03; 0.60]
Lu, Z, et al., 201	203	75.30 4.00	103	71.30	6.50	baseline	0.00		0.80	[0.56; 1.05]
Heiney, SP, et al., 2003	33	5.80 2.00	33	6.55	1.80	followup	16.00		-0.39	[-0.88; 0.10]
Schofield, P, et al., 2013	55	65.03 28.36	53	71.29	28.69	followup	12.00		-0.22	[-0.60; 0.16]
Serfaty M, et al., 2018	20	18.70 5.30	22	19.40	6.20	followup	12.00		-0.12	[-0.72; 0.49]
Walczak, A, et al., 2017	61	20.94 5.40	49	21.43	4.47	followup	4.00		-0.10	[-0.47; 0.28]
Schofield, P, et al., 2013	55	68.28 26.22	53	70.58	26.38	followup	8.00		-0.09	[-0.46; 0.29]
Heiney, SP, et al., 2003	33	5.80 2.00	33	5.90	1.90	followup	6.00		-0.05	[-0.53: 0.43]
Serfaty M. et al., 2018	20	21.20 4.30	22	19.70	6.70	followup	18.00		0.26	I-0.35: 0.871
Penedo, FJ, et al., 2020	95	-20.74 4.29	97	-22.05	4.43	followup	48.00		0.30	[0.01; 0.58]
Penedo, FJ, et al., 2020	95	-20.61 4.19	97	-21.91	4.33	followup	24.00		0.30	[0.02: 0.59]
Serfaty M. et al., 2018	20	19.50 7.20	22	16.00	7.60	followup	24.00		0.46	[-0.15; 1.08]
Lu, Z, et al., 201	203	76.10 5.20	103	71.10	8.20	followup	9.00		0.78	[0.54: 1.03]
Random effect	1157		941		0.20	renemap	0.00	-	0.45	[-0.11: 1.02]
Prediction interval										[-2.26: 3.16]
										- ,
survivor										
Peng, L, et al., 2022	28	76.79 15.27	29	81.61	16.87	baseline	0.00		-0.30	[-0.82; 0.23]
Qiu, H. et al., 2018 II.	98	17.84 5.10	196	18.85	4.22	baseline	0.00	-	-0.22	[-0.47: 0.02]
Chen. et al., 2017	58	58.30 6.20	65	59.60	6.90	baseline	0.00		-0.20	[-0.55: 0.16]
Qiu H et al 2018 I	98	18 13 5 70	196	18 85	4 22	baseline	0.00		-0.15	[-0.39:0.09]
Kim SH et al. 2021	47	73 70 81 90	47	75 50	22 00	baseline	0.00		-0.03	[-0.43: 0.37]
Peng L et al 2022	28	80.36 20.09	29	82 18	19 38	followup	0.10		-0.09	[-0.61: 0.43]
Peng L et al. 2022	28	79 17 16 49	20	79.89	20.11	followup	4.00		-0.04	[-0.56: 0.48]
Kim SH et al. 2021	47	80 30 17 60	47	80.40	18 50	followup	20.00		-0.01	[-0.41: 0.40]
Oiu H at al 2019 II	00	17 09 9 02	106	17.09	9.52	followup	4.00		0.00	[0.41, 0.40]
Oiu H at al. 2010 II.	00	10 07 0 02	106	19.75	0.02	followup	24.00	÷ .	0.00	[-0.24, 0.24]
	00	18 77 0.02	106	18.25	5.05	followup	12.00		0.02	[-0.16: 0.22]
Oiu H atal 2010 II.	00	20.01 0.15	106	17 00	8.60	followur	4.00		0.00	[-0.10, 0.33]
Oiu H atal 2010 I	00	20.01 9.10	106	18 75	0.02	followup	24.00		0.23	[0.08: 0.67]
kim CH at al. 20101.	30	21.70 0.70	190	74 60	3,40	following	24.00		0.52	[0.00, 0.07]
Nin, OF, etal., 2021	4/	01.90 15.20	4/	10.05	20.00	following	0.00		0.37	[-0.04, 0.78]
Giu, FI, et al., 2018 I.	98	21.39 8.03	190	10.20	0.00	followup	12.00	15	0.50	[0.20, 0.75]
Chen at al. 2017	28	47.00 7.50	00	42.00	7.20	followup	0.00	二三	0.08	[0.31, 1.04]
Griefi, et al., 2017 Pandom offect	38	40.00 7.00	1004	41.50	1.00	ronowup	24.00		0.70	[0.33, 1.00]
Random enect	1183		1991					M	0.35	[-0.04; 0.75]
Prediction InterVal										[-2.60; 3.31]
Pandom offect	4402		AGEE					L <u>i</u>	0.64	10.02: 4.263
Rediction interval	4103		4055						0.64	[1.02; 1.25]
Frediction interval								r		[-1.00, Z.93]
								4 2 0 2		

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S16.2. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer stage subgroups as predicted at week 12 (postintervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S16.3.T24

	Ex	perimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
								1		
early		0.04 0.00				han a Bara		_	0.70	14.07.0.041
Rodriguez Vega, B, et al., 2010	39	3.31 3.32	33	6.08	3.62	baseline	0.00		-0.79	[-1.27; -0.31]
Telepas T. stal. 0004	19	0.20 2.05	21	7.31	1.21	baseline	0.00		-0.62	[-1.20, 0.02]
Puiz Vermediane Let al 2020	31	70.40 20.93	38	84.70	18.08	baseline	0.00		-0.42	[-0.90, 0.00]
Fond P et al 2020	60	40 50 4 11	52	10.40	20.40	baseline	0.00	二 三 三	-0.14	[-0.03, 0.30]
Wu O at al 2021	42	40.00 4.11 52.77 5.51	42	49.00 54.24	5.52	baseline	0.00		-0.13	[-0.46, 0.23]
Liu Total 2010	40	63 77 24 95	53	65.22	23 71	haseline	0.00		-0.06	[-0.45: 0.33]
Yun et al 2017	134	75.80 26.80	72	73 10	23.40	haseline	0.00		0.10	[-0.18: 0.39]
Zhao X et al 2015	62	7 01 2 18	62	676	2 39	baseline	0.00		0.11	[-0.24: 0.46]
Willems R et al 2016	188	83.20 2.70	221	82.90	2 60	baseline	0.00	÷	0.11	[-0.08: 0.31]
Cengiz HO et al. 2023	32	20.16 5.97	33	19.13	5.49	baseline	0.00		0.18	[-0.31: 0.66]
Rodrigez, B, et al., 2014	8	95.83 11.79	7	90.48	25.20	baseline	0.00		0.26	[-0.76; 1.28]
Zhao, X, et al., 2021	52	58.02 3.41	51	54.01	4.12	baseline	0.00		1.05	[0.64; 1.47]
Beatty, L. et al. 2015	30	57.26 5.49	30	66.56	5.41	followup	6.00		-1.68	[-2.28; -1.09]
Ferguson, RJ, et al., 2012	19	6.75 1.78	21	7.47	1.59	followup	8.00		-0.42	[-1.05; 0.21]
Rodrigez, B, et al., 2014	8	93.33 14.91	7	94.44	9.62	followup	2.00		-0.08	[-1.10; 0.93]
Takano, T, et al., 2021	31	71.70 20.10	38	72.40	26.69	followup	24.00	분	-0.03	[-0.50; 0.45]
Takano, T, et al., 2021	31	75.60 20.49	38	73.20	26.75	followup	12.00		0.10	[-0.38; 0.57]
Guan, S, et al., 2019	50	69.05 7.24	50	68.19	8.05	followup	8.00	一世!	0.11	[-0.28; 0.50]
Zhao, X, et al., 2021	52	58.62 6.31	51	58.02	3.21	followup	12.00	- 一 一 世 !	0.12	[-0.27; 0.51]
Ruiz-Vozmediano, J, et al.,2020	31	83.30 24.70	32	78.70	28.50	followup	24.00		0.17	[-0.32; 0.67]
Cengiz, HO, et al., 2023	32	20.36 5.38	33	19.06	5.74	followup	8.00		0.23	[-0.26; 0.72]
Rodrigez, B, et al., 2014	8	95.83 11.79	-	90.48	25.20	followup	0.10		0.26	[-0.76; 1.28]
fun et al., 2017	134	85.30 19.50	12	78.20	47.00	followup	48.00		0.34	[0.06, 0.63]
Liu, I, et al., 2019 Deathr L. at al. 2015	49	77.07 4.60	23	20.11	17.08	followup	9.00		0.54	[0.15, 0.94]
Zhao X at al. 2015	50	0 10 2 10	50	6 07	4.01	followup	0.20	-	0.60	[0.06, 1.11]
Liu T at al 2010	40	74 25 17 69	52	62.05	1/ 2/	followup	12.00	12	0.01	[0.25, 0.97]
Reatty L et al 2015	49	97.09 / 26	20	02.00	4.34	followup	26.07		0.70	[0.30, 1.10]
Wu O et al 2021	43	81.65 8.30	43	72.36	7.51	followup	12.00		1 16	[0.70: 1.62]
Willems R et al 2016	188	89 30 3 10	221	84.60	3 10	followup	24.00		1.51	[129:173]
Fang P et al 2020	60	65.47 6.98	60	49 45	5.65	followup	4 00		2.51	[203 299]
Rodríguez Vega B et al 2010	39	49.04 3.32	33	29.42	3.62	followup	12 00		> 5.61	[4.56: 6.66]
Rodríguez Vega, B. et al., 2010	39	61.86 3.32	33	34.47	3.62	followup	24.00		> 7.83	[6.44: 9.22]
Random effect	1763		1723						1.09	[-0.09: 2.27]
Prediction interval										[-1.48: 3.65]
advanced										
Walczak, A, et al.,2017	61	21.16 4.48	49	22.71	4.99	baseline	0.00		-0.33	[-0.71; 0.05]
Serfaty M, et al., 2018	20	16.40 6.10	22	18.10	7.80	baseline	0.00	- <u></u>	-0.24	[-0.84; 0.37]
Heiney, SP, et al., 2003	33	5.60 2.00	33	5.90	1.90	baseline	0.00	一世日	-0.15	[-0.64; 0.33]
Schofield, P, et al., 2013	55	70.90 26.77	53	70.75	26.72	baseline	0.00		0.01	[-0.37; 0.38]
Penedo, FJ, et al., 2020	95	-19.85 4.09	97	-21.16	4.24	baseline	0.00		0.31	[0.03; 0.60]
Lu, Z, et al., 201	203	75.30 4.00	103	71.30	6.50	baseline	0.00	_ =	0.80	[0.56; 1.05]
Heiney, SP, et al., 2003	33	5.80 2.00	33	6.55	1.80	followup	16.00		-0.39	[-0.88; 0.10]
Schotield, P, et al., 2013	55	65.03 28.36	53	/1.29	28.69	followup	12.00	言言	-0.22	[-0.60; 0.16]
Serialy M, et al., 2018	20	18.70 5.30	22	19.40	0.20	followup	12.00		-0.12	[-0.72, 0.49]
Walczak, A, et al., 2017 Sebefield R. et al. 2012	01	20.94 5.40	49	21.43	4.47	followup	4.00	王	-0.10	[-0.47, 0.28]
Hoiney SP et al. 2013	22	5 00 20.22	22	F 00	1 00	followup	6.00		-0.09	[-0.40, 0.29]
Sorfaty M at al. 2003	20	21.20 4.20	22	10 70	6.70	followup	19.00		-0.05	[-0.35, 0.43]
Penedo El et al 2020	95	-20 74 4 29	97	-22.05	4 43	followup	48.00	i i i i i i i i i i i i i i i i i i i	0.20	[0.01: 0.58]
Penedo El et al. 2020	95	-20.61 / 19	97	-21.03	1 33	followup	24.00		0.30	[0.02: 0.50]
Serfaty M et al. 2018	20	19.50 7.20	22	16.00	7 60	followup	24.00		0.46	[-0.15] 1.08]
Lu Z et al 201	203	76 10 5 20	103	71 10	8 20	followup	9.00		0.78	[0.54: 1.03]
Random effect	1157	10.10 0.20	941		0.20	lononap	0.00		0.70	[-0.12: 1.51]
Prediction interval										[-1.99; 3.39]
survivor										
Peng, L, et al., 2022	28	76.79 15.27	29	81.61	16.87	baseline	0.00		-0.30	[-0.82; 0.23]
Qiu, H, et al., 2018 II.	98	17.84 5.10	196	18.85	4.22	baseline	0.00	=	-0.22	[-0.47; 0.02]
Chen, et al., 2017	58	58.30 6.20	65	59.60	6.90	baseline	0.00	豊臣	-0.20	[-0.55; 0.16]
Qiu, H, et al., 2018 I.	98	18.13 5.70	196	18.85	4.22	baseline	0.00	토	-0.15	[-0.39; 0.09]
KIM, SH, et al., 2021	4/	/3./0 81.90	4/	75.50	22.00	baseline	0.00		-0.03	[-0.43; 0.37]
Peng, L, et al., 2022	28	80.36 20.09	29	82.18	19.38	followup	0.10		-0.09	[-0.61; 0.43]
Peng, L, et al., 2022 Kim SH et al. 2021	28	/9.1/ 10.49	29	79.89	10 50	followup	4.00		-0.04	[-0.56; 0.48]
	47	17.00 0.00	4/	17.00	0.50	followrup	20.00		-0.01	[-0.41, 0.40]
	90	10 07 0 02	106	10.75	0.02	followup	24.00		0.00	[-0.24, 0.24]
Oiu H et al 2018 II	0.9	18 77 9.02	106	18.25	5.05	followure	12.00	富!	0.02	[-0.16: 0.22]
Qiu. H. et al., 2018 I	98	20.01 9.15	196	17.98	8.52	followup	4.00	<u> </u>	0.23	[-0.01: 0.47]
Qiu. H. et al., 2018 I	98	21.75 8.70	196	18 75	9.46	followup	24 00		0.32	[0.08: 0.57]
Kim SH et al 2021	47	81.90 15.20	47	74 60	23.00	followup	8.00		0.37	[-0.04: 0.78]
Qiu, H. et al., 2018 I.	98	21.39 8.03	196	18.25	5.05	followup	12.00		0.50	[0.26: 0.75]
Chen, et al., 2017	58	47.60 7.50	65	42.60	7.20	followup	8.00		0.68	[0.31; 1.04]
Chen, et al., 2017	58	46.80 7.60	65	41.50	7.50	followup	24.00	1	0.70	[0.33; 1.06]
Random effect	1183		1991	-					0.60	[-0.11; 1.31]
Prediction interval										[-2.25; 3.44]
										-
Random effect	4103		4655						0.87	[-0.04; 1.78]
Prediction interval									-	[-1.55; 3.29]
									1	

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S16.3. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer stage subgroups as predicted at week 24 (postintervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S16.4.T48

	Ex	periment	al		Control						
Study	Patient N	Mean	SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
oarly											
Rodríguez Vega, B. et al., 2010	39	3.31	3.32	33	6.08	3.62	baseline	0.00		-0.79	[-1.27: -0.31]
Ferguson, RJ, et al., 2012	19	6.26	2.05	21	7.31	1.21	baseline	0.00		-0.62	[-1.26; 0.02]
Takano, T, et al., 2021	31	76.40 2	20.93	38	84.70	18.68	baseline	0.00		-0.42	[-0.90; 0.06]
Ruiz-Vozmediano, J, et al.,2020	31	69.40 2	29.80	32	73.40	28.40	baseline	0.00		-0.14	[-0.63; 0.36]
Wu O etal 2021	43	48.50	4.11 5.51	43	49.08	5.01	baseline	0.00		-0.13	[-0.48, 0.23]
Liu, T, et al., 2019	49	63.77 2	24.95	53	65.22	23.71	baseline	0.00		-0.06	[-0.45; 0.33]
Yun et al., 2017	134	75.80 2	26.80	72	73.10	23.40	baseline	0.00	三日日日	0.10	[-0.18; 0.39]
Zhao,X, et al. 2015	62	7.01	2.18	62	6.76	2.39	baseline	0.00	= =	0.11	[-0.24; 0.46]
Candiz HO et al., 2015	188	83.20	2.70	221	82.90	2.60	baseline	0.00		0.11	[-0.08; 0.31]
Rodrigez, B, et al., 2014	8	95.83 1	11.79	7	90.48	25.20	baseline	0.00	- 	0.26	[-0.76; 1.28]
Zhao, X, et al., 2021	52	58.02	3.41	51	54.01	4.12	baseline	0.00	-	1.05	[0.64; 1.47]
Beatty, L. et al. 2015	30	57.26	5.49	30	66.56	5.41	followup	6.00		-1.68	[-2.28; -1.09]
Ferguson, RJ, et al., 2012 Redriger, R. et al., 2014	19	6.75	1.78	21	7.47	1.59	followup	8.00		-0.42	[-1.05; 0.21]
Takano, T. et al., 2021	31	71.70 2	20.10	38	72.40	26.69	followup	24.00		-0.03	[-0.50: 0.45]
Takano, T, et al., 2021	31	75.60 2	20.49	38	73.20	26.75	followup	12.00		0.10	[-0.38; 0.57]
Guan, S, et al., 2019	50	69.05	7.24	50	68.19	8.05	followup	8.00		0.11	[-0.28; 0.50]
Zhao, X, et al., 2021	52	58.62	6.31	51	58.02	3.21	followup	12.00	吉	0.12	[-0.27; 0.51]
Candiz HO et al. 2023	31	83.30 2	24.70 5.20	32	10.06	28.50	followup	24.00	重	0.17	[-0.32; 0.67]
Rodrigez B et al. 2014	8	95.83 1	11 79	7	90.48	25 20	followup	0.00		0.25	[-0.76' 1.28]
Yun et al., 2017	134	85.30 1	19.50	72	78.20	22.40	followup	48.00		0.34	[0.06; 0.63]
Liu, T, et al., 2019	49	65.81 1	18.49	53	56.11	17.08	followup	9.00	돈	0.54	[0.15; 0.94]
Beatty, L. et al. 2015	30	77.87	4.62	30	75.08	4.61	followup	13.03		0.60	[0.08; 1.11]
Znao, X, et al. 2015 Liu T et al. 2019	62	8.19	2.10	62 53	0.87	2.21	followup	0.30		0.61	[0.25; 0.97]
Beatty, L. et al. 2015	30	87.98	4.26	30	83.84	4.75	followup	26.07		0.91	[0.37; 1.44]
Wu, Q, et al., 2021	43	81.65	8.30	43	72.36	7.51	followup	12.00		1.16	[0.70; 1.62]
Willems, R, et al., 2016	188	89.30	3.10	221	84.60	3.10	followup	24.00		1.51	[1.29; 1.73]
Fang, P, et al.,2020 Redriguez Vego, R, et al., 2010	60	65.47	6.98	60	49.45	5.65	followup	4.00		2.51	[2.03; 2.99]
Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010	39	49.04	3.32	33	29.42	3.62	followup	24.00		> 7.83	[4.50, 0.00]
Random effect	1763	01.00	0.02	1723	54.47	0.02	lonowap	24.00		0.62	[-1.08; 2.32]
Prediction interval											[-5.33; 6.57]
advanced Walczak A at al 2017	61	21.16	4 40	40	22.74	4 00	bacolino	0.00		0.22	1071:0051
Serfatv M et al. 2018	20	16.40	6 10	22	18 10	7 80	baseline	0.00		-0.33	[-0.84: 0.37]
Heiney, SP, et al., 2003	33	5.60	2.00	33	5.90	1.90	baseline	0.00		-0.15	[-0.64; 0.33]
Schofield, P, et al., 2013	55	70.90 2	26.77	53	70.75	26.72	baseline	0.00	毛	0.01	[-0.37; 0.38]
Penedo, FJ, et al., 2020	95	-19.85	4.09	97	-21.16	4.24	baseline	0.00		0.31	[0.03; 0.60]
Lu, Z, et al., 201 Heinev SP et al. 2003	203	5.80	2 00	33	6.55	1.80	followup	16.00		-0.30	[0.56, 1.05]
Schofield, P, et al., 2013	55	65.03 2	28.36	53	71.29	28.69	followup	12.00	-	-0.22	[-0.60; 0.16]
Serfaty M, et al., 2018	20	18.70	5.30	22	19.40	6.20	followup	12.00		-0.12	[-0.72; 0.49]
Walczak, A, et al.,2017	61	20.94	5.40	49	21.43	4.47	followup	4.00	*	-0.10	[-0.47; 0.28]
Schotleid, P, et al., 2013 Heiney SP et al. 2003	22	5.28 2	20.22	23	70.58	20.38	followup	8.00		-0.09	[-0.46; 0.29]
Serfaty M. et al., 2003	20	21.20	4.30	22	19.70	6.70	followup	18.00		0.26	[-0.35; 0.43]
Penedo, FJ, et al., 2020	95	-20.74	4.29	97	-22.05	4.43	followup	48.00	*	0.30	[0.01; 0.58]
Penedo, FJ, et al., 2020	95	-20.61	4.19	97	-21.91	4.33	followup	24.00	1. State 1.	0.30	[0.02; 0.59]
Serfaty M, et al., 2018	20	19.50	7.20	22	16.00	7.60	followup	24.00	1	0.46	[-0.15; 1.08]
Random effect	203	70.10	5.20	941	71.10	8.20	lollowup	9.00		0.78	[0.54, 1.03]
Prediction interval										012.0	[-5.50; 5.96]
SURVIVOR Rong L at al. 2022	20	76 70 1	15 27	20	01 61	16 07	bacolino	0.00		0.20	1002-0221
Oiu Hetal 2018 II	20	17.84	5 10	29	18.85	4 22	baseline	0.00		-0.30	[-0.82, 0.23] [-0.47: 0.02]
Chen, et al., 2017	58	58.30	6.20	65	59.60	6.90	baseline	0.00	<u>-</u>	-0.20	[-0.55; 0.16]
Qiu, H, et al., 2018 I.	98	18.13	5.70	196	18.85	4.22	baseline	0.00	<u>.</u>	-0.15	[-0.39; 0.09]
Kim, SH, et al., 2021	47	73.70 8	31.90	47	75.50	22.00	baseline	0.00		-0.03	[-0.43; 0.37]
Peng, L, et al., 2022 Peng, L, et al. 2022	28	70 17 1	16 / 0	29	82.18 70.90	19.38	followup	0.10		-0.09	[-0.61; 0.43]
Kim, SH, et al., 2021	47	80.30 1	17.60	47	80.40	18.50	followup	20.00		-0.01	[-0.41; 0.40]
Qiu, H, et al., 2018 II.	98	17.98	8.92	196	17.98	8.52	followup	4.00	*	0.00	[-0.24; 0.24]
Qiu, H, et al., 2018 II.	98	18.97	8.92	196	18.75	9.46	followup	24.00	*	0.02	[-0.22; 0.27]
Qiu, H, et al., 2018 II.	98	18.77	8.03	196	18.25	5.05	followup	12.00	「「「」」	0.08	[-0.16; 0.33]
Qiu, H, et al., 2018 I	98	21.75	8 70	196	18 75	9.46	followup	24.00		0.23	[0.08: 0.57]
Kim, SH, et al., 2021	47	81.90 1	15.20	47	74.60	23.00	followup	8.00		0.37	[-0.04; 0.78]
Qiu, H, et al., 2018 I.	98	21.39	8.03	196	18.25	5.05	followup	12.00	电	0.50	[0.26; 0.75]
Chen, et al., 2017	58	47.60	7.50	65	42.60	7.20	followup	8.00	「三	0.68	[0.31; 1.04]
Grien, et al., 2017 Random effect	58 1193	40.80	1.60	1001	41.50	7.50	ionowup	24.00		0.70	[0.33; 1.06] [-0.81: 1.07]
Prediction interval	1105			1331					T	0.13	[-3.74; 4.00]
Random effect	4103			4655						0.43	[-0.65; 1.50]
										Г	[-0.30, 7.21]

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S16.4. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer stage subgroups as predicted at week 48 (postintervention). SMD - Standardized mean difference, CI - confidence interval. S17.Subgroup analysis of Social QoL: Cancer type

	E	xperimen	ital		Control						
Study	Patient N	Mean	SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD 95%-CI	
breast											
Ferguson, RJ, et al., 2012	19	6.26	2.05	21	7.31	1.21	baseline	0.00		-0.62 [-1.26; 0.02	2]
Peng, L, et al., 2022 Oiu H, et al., 2019	28	17 04	15.27	29	81.61	16.87	baseline	0.00		-0.30 [-0.82, 0.23	3]
Hoffman, CJ, et al., 2012	102	17.59	5.91	109	18.78	6.01	baseline	0.00		-0.20 [-0.47; 0.07	ź,
Heiney, SP, et al., 2003	33	5.60	2.00	33	5.90	1.90	baseline	0.00		-0.15 [-0.64; 0.33	3]
Qiu, H, et al., 2018 I. Ruiz-Vozmediano , L et al. 2020	98 31	18.13	5.70 29.80	196	18.85 73.40	4.22 28.40	baseline	0.00		-0.15 [-0.39; 0.09	月 51
Seliniotaki, T, et al., 2021	27	74.40	29.90	26	77.70	29.30	baseline	0.00		-0.11 [-0.65; 0.43	3]
Wu, Q, et al., 2021	43	53.77	5.51	43	54.34	5.53	baseline	0.00	雪	-0.10 [-0.53; 0.32	2]
Antoni, MH, et al., 2006 Hernandez EG, et al. 2018	92	877.61	158.55	107	891.17 17.56	152.16 5.46	baseline	0.00		-0.09 [-0.37; 0.19	刃 51
Kim, SH, et al., 2021	47	73.70	81.90	47	75.50	22.00	baseline	0.00		-0.03 [-0.43; 0.37	ŋ.
Dirksen, S. et al, 2007	34	22.10	4.90	38	22.20	6.10	baseline	0.00		-0.02 [-0.48; 0.44	4]
Elvasi, F. et al., 2021 I.	120	2.00	31.30	113	58.60	29.60	baseline	0.00		0.02 [-0.23; 0.28	3] 11
Klinkhammer-Schalke, M et al., 2012	100	71.21	33.50	100	67.99	34.25	baseline	0.00	善	0.09 [-0.18; 0.37	ŋ.
Arving, C, et al., 2007	47	78.00	27.00	38	75.00	19.00	baseline	0.00	古	0.13 [-0.30; 0.55	5]
Cengiz, HO, et al., 2013	32	20.16	5.97	33	19.13	5.49	baseline	0.00		0.18 [-0.31; 0.66	21 51
Kim, YH, et al., 2017	30	72.80	25.30	30	62.80	20.80	baseline	0.00	1 <u></u>	0.43 [-0.09; 0.94	4j
Elyasi, F, et al., 2021 II. Antoni, MH, et al., 2006	20	2.50	1.10	20	1.90	0.90	baseline	0.00	=	0.59 [-0.05; 1.22	2]
Ferguson, RJ, et al., 2000	19	6.75	1.78	21	7.47	1.59	followup	8.00		-0.42 [-1.05; 0.21	1
Heiney, SP, et al., 2003	33	5.80	2.00	33	6.55	1.80	followup	16.00		-0.39 [-0.88; 0.10	Ŋ
Antoni, MH, et al., 2006 Reng L et al. 2022	92	832.88	119.31	107	873.38	114.05	followup	24.00		-0.35 [-0.63; -0.07	7]
Klinkhammer-Schalke, M et al., 2012	100	78.90	27.54	100	81.14	24.07	followup	48.00	4	-0.09 [-0.36; 0.19	ð
Heiney, SP, et al., 2003	33	5.80	2.00	33	5.90	1.90	followup	6.00	一般	-0.05 [-0.53; 0.43	3]
Peng, L, et al., 2022 Hoffman, C, L et al. 2012	28 102	79.17 18.09	16.49	29 109	79.89 18 30	20.11	followup	4.00		-0.04 [-0.56; 0.48	3] 21
Klinkhammer-Schalke, M et al., 2012	100	66.00	33.00	100	66.74	31.76	followup	12.00		-0.02 [-0.30; 0.25	5]
Klafke, N, et al., 2019	120	54.50	29.60	113	55.10	29.50	followup	24.00		-0.02 [-0.28; 0.24	4]
Kim, SH, et al., 2021 Elvasi E et al. 2021	47	80.30	17.60	47	80.40	18.50	followup	20.00		-0.01 [-0.41; 0.40)] 21
Qiu, H, et al., 2018 II.	98	17.98	8.92	196	17.98	8.52	followup	4.00		0.00 [-0.24; 0.24	4j
Rahmani, S, et al. 2015	12	12.00	54.16	12	12.00	34.72	followup	16.00	<u></u>	0.00 [-0.80; 0.80)]
Seliniotaki, I, et al., 2021 Hoffman, C Let al., 2012	27	74.60 18.36	35.90	26	18 26	29.30	followup	8.00		0.00 [-0.54; 0.54	4] 01
Qiu, H, et al., 2018 II.	98	18.97	8.92	196	18.75	9.46	followup	24.00		0.02 [-0.22; 0.27	'n.
Klinkhammer-Schalke, M et al., 2012	100	72.20	28.78	100	71.46	29.03	followup	24.00		0.03 [-0.25; 0.30)]
Arving, C, et al., 2007 Oiu H et al. 2018 II	47	76.00 18.77	25.00	38	75.00 18.25	19.00	followup	12.00	重	0.04 [-0.38; 0.47	/] 31
Klafke, N, et al., 2019	120	62.10	29.40	113	59.70	27.60	followup	12.00	王	0.08 [-0.17; 0.34	4]
Arving, C, et al., 2007	47	81.00	22.00	38	79.00	25.00	followup	4.00	물	0.08 [-0.34; 0.51	[]
Klinkhammer-Schalke Metal 2012	47	83.00 77.91	27.00	38 100	80.00 73.69	20.00	followup	24.00	重	0.13 [-0.30; 0.50	2] 2]
Ruiz-Vozmediano, J, et al.,2020	31	83.30	24.70	32	78.70	28.50	followup	24.00		0.17 [-0.32; 0.67	ŋ.
Klafke, N, et al., 2019	120	69.10	27.90	113	63.60	26.60	followup	48.00		0.20 [-0.06; 0.46	j]
Cengiz, HO, et al., 2023 Qiu, H, et al., 2018 I	32 98	20.36	5.38 9.15	33 196	19.06	5.74	followup	8.00	<u> </u>	0.23 [-0.26; 0.72	4] 71
Qiu, H, et al., 2018 I.	98	21.75	8.70	196	18.75	9.46	followup	24.00	Ē	0.32 [0.08; 0.57	ń
Kim, SH, et al., 2021	47	81.90	15.20	47	74.60	23.00	followup	8.00	T	0.37 [-0.04; 0.78	3]
Hernandez, EG, et al. 2018	28	18.82	5.79	28	16.40	5.90	followup	24.00	÷.	0.44 [-0.09; 0.97	71
Hernandez, EG, et al. 2018	28	19.23	5.51	28	16.60	5.39	followup	8.00	<u>E</u>	0.48 [-0.06; 1.01	ij
Qiu, H, et al., 2018 I.	98	21.39	8.03	196	18.25	5.05	followup	12.00		0.50 [0.26; 0.75	5]
Kim, YH, et al., 2021 II.	30	75.60	26.20	30	58.30	27.20	followup	6.00	-	0.64 [0.12: 1.16	クリ 31
Kim, YH, et al., 2017	30	75.00	23.10	30	54.40	28.00	followup	9.00	-	0.79 [0.27; 1.32	2]
Wu, Q, et al., 2021 Rahmani, S, et al. 2015	43	81.65	8.30	43	72.36	16.00	followup	12.00		1.16 [0.70; 1.62	2] 21
Random effect	3510	51.50	11.14	4313	23.10	10.05	lonowup	0.00	•	0.26 [0.04; 0.48	3]
Prediction interval									+ +-	[-0.30; 0.82	2]
gastroenterological											
Qin, X, et al., 2017	50	77.68	15.31	50	77.26	16.04	baseline	0.00		0.03 [-0.37; 0.42	2]
Baoyindeligeer, L.Z. et al. 2020	65	66.59	14.95	65	65.59	15.24	baseline	0.00	「「「」「」	0.07 [-0.28; 0.41	1]
Cheung YL, et al. 2002 Qin X, et al. 2017	29 50	80.24	0.70	30 50	10.16	13.13	followup	2.00		0.49 [-0.03; 1.01	1] 31
Cheung YL, et al. 2002	29	10.55	0.50	30	9.64	1.56	followup	5.00		0.77 [0.24; 1.30	j
Cheung YL, et al. 2002	29	10.37	0.49	30	9.47	1.43	followup	10.00		0.83 [0.29; 1.36	5]
Random effect	317	00.33	12.30	320	/ 1.30	13.04	lollowup	2.00		0.61 [-0.29; 1.50	2] 01
Prediction interval										[-0.67; 1.88	3]
gunaccological											
Chan, et al. 2005	80	54.76	60.02	75	56.28	54.76	baseline	0.00	-	-0.03 [-0.34; 0.29	91
Sandsund, C, et al., 2017	72	74.10	26.70	70	70.00	29.00	baseline	0.00	善	0.15 [-0.18; 0.48	3]
Powell, CB, et al., 2008 Chap, et al. 2005	21	22.20	5.40	43	19.70	6.00 54.76	baseline	0.00		0.42 [-0.10; 0.95	5] 21
Chan, et al. 2005	80	65.58	54.76	75	75.11	54.76	followup	24.00	-	-0.17 [-0.49; 0.14	41
Chan, et al. 2005	80	76.62	54.76	75	85.06	54.76	followup	60.00	<u></u>	-0.15 [-0.47; 0.16	5 <u>j</u>
Chan, et al. 2005 Chan, et al. 2005	80	61.47	54.76	75	69.26	54.76	followup	12.00	1	-0.14 [-0.46; 0.17	7] 81
Chan, et al. 2005	80	80.95	54.76	75	77.92	54.76	followup	36.00		0.06 [-0.26; 0.37	'n
Powell, CB, et al., 2008	21	21.30	5.60	43	19.10	7.30	followup	12.00	<u>+</u>	0.32 [-0.21; 0.84	4j
Sandsund, C, et al., 2017	72	85.00	21.40	70	74.90	29.80	followup	12.00	ここと	0.39 [0.06; 0.72	2]
Random effect	818	60.00	10.90	821	74.20	20.90	lollowup	24.00	÷	0.37 [-0.20; 0.94	4]
Prediction interval										[-0.59; 1.33	۶Ĩ
prostate											
Berglund, G. et al. 2007	39	80.30	22.60	150	84.00	22.10	baseline	0.00	+	-0.17 [-0.52; 0.19	9]
Penedo, FJ, et al., 2020	95	-19.85	4.09	97	-21.16	4.24	baseline	0.00		0.31 [0.03; 0.60)]
Penedo, FJ, et al., 2007	39 95	-20.74	4.29	97	-22.05	4.43	followup	48.00	···· T :	0.30 [0.01: 0.59	ィリ 31
Penedo, FJ, et al., 2020	95	-20.61	4.19	97	-21.91	4.33	followup	24.00	唐	0.30 [0.02; 0.59	ij
Random effect	363			591						0.33 [-1.12; 1.77	1
r reurcuoir interval										[-1.04; Z.Z.	제
Random effect	5008			6045					<u> </u>	0.33 [0.07; 0.58	J]
Previction Interval								I			u.
								 In favor o	4 -2 0 2 f control group In favor of inte	4 rvention aroup	
Berglund, G. et al. 2007 Penedo, F.J. et al., 2020 Berglund, G. et al. 2007 Penedo, F.J. et al., 2020 Penedo, F.J. et al., 2020 Random effect Prediction interval Random effect Prediction interval	39 95 39 95 363 5008	80.30 -19.85 77.00 -20.74 -20.61	22.60 4.09 23.70 4.29 4.19	150 97 150 97 97 591 6045	84.00 -21.16 83.50 -22.05 -21.91	22.10 4.24 23.70 4.43 4.33	baseline baseline followup followup followup	0.00 0.00 48.00 48.00 24.00 	4 -2 0 2 f control group In favor of inte	-0.17 [-0. 0.31 [0. -0.27 [-0. 0.30 [0. 0.30 [0. 0.33 [-1. [-1. 0.33 [0.] 4 rvention gro	52; 0.19 03; 0.60 63; 0.08 01; 0.58 02; 0.59 12; 1.77 64; 2.29 07; 0.58 26; 0.91

Figure S17.1. Subgroup analysis of the Social QoL. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer type subgroups as predicted at week 0 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S17.2.T12

Study	E)	kperimen	tal	Dationt N	Control	60	follow	Follow up time	SMD of interacted event	CMD	05% CI
Study	Pauein	Wean	30	Patienti	Weall	30	ionow-up	rollow-up unle	SWD OF Interested event	SIND	95%-01
breast	10	6.06	2.05	21	7.24	1.01	basalina	0.00		0.60	1 26: 0.021
Peng, L, et al., 2022	28	0.20 76.79	2.05	29	81.61	16.87	baseline	0.00		-0.62	[-0.82; 0.23]
Qiu, H, et al., 2018 II.	98	17.84	5.10	196	18.85	4.22	baseline	0.00	-	-0.22	[-0.47; 0.02]
Hoffman, CJ, et al., 2012 Heiney SP, et al., 2003	102	17.59 5.60	5.91 2.00	109	18.78 5.90	6.01 1.90	baseline	0.00		-0.20	[-0.47; 0.07] [-0.64: 0.33]
Qiu, H, et al., 2018 I.	98	18.13	5.70	196	18.85	4.22	baseline	0.00		-0.15	[-0.39; 0.09]
Ruiz-Vozmediano, J, et al.,2020	31	69.40	29.80	32	73.40	28.40	baseline	0.00	1	-0.14	[-0.63; 0.36]
Wu, Q, et al., 2021	43	53.77	5.51	43	54.34	5.53	baseline	0.00		-0.10	[-0.53; 0.43]
Antoni, MH, et al., 2006	92	877.61	158.55	107	891.17	152.16	baseline	0.00		-0.09	[-0.37; 0.19]
Kim, SH, et al., 2021	28	73.70	6.05 81.90	28	75.50	5.40 22.00	baseline	0.00		-0.08	[-0.60; 0.45] [-0.43; 0.37]
Dirksen, S. et al, 2007	34	22.10	4.90	38	22.20	6.10	baseline	0.00	畫	-0.02	[-0.48; 0.44]
Klafke, N, et al., 2019 Elvasi, F, et al., 2021 I	120	59.30 2.00	31.30	113	58.60	29.60	baseline	0.00		0.02	[-0.23; 0.28] [-0.62; 0.81]
Klinkhammer-Schalke, M et al., 2012	100	71.21	33.50	100	67.99	34.25	baseline	0.00		0.09	[-0.18; 0.37]
Arving, C, et al., 2007	47	78.00	27.00	38	75.00	19.00	baseline	0.00	<u> </u>	0.13	[-0.30; 0.55]
Cengiz, HO, et al., 2023	32	20.16	5.97	33	33.33 19.13	5.49	baseline	0.00		0.13	[-0.87, 0.93]
Kim, YH, et al., 2017	30	72.80	25.30	30	62.80	20.80	baseline	0.00	1 <u>1</u>	0.43	[-0.09; 0.94]
Elyasi, F, et al., 2021 II. Antoni, MH, et al., 2006	20 92	2.50	1.10	20	1.90	0.90	followup	48.00	- I	-0.59	[-0.05; 1.22] [-0.80; -0.23]
Ferguson, RJ, et al., 2012	19	6.75	1.78	21	7.47	1.59	followup	8.00		-0.42	[-1.05; 0.21]
Heiney, SP, et al., 2003	33	5.80	2.00	33	6.55	1.80	followup	16.00		-0.39	[-0.88; 0.10]
Peng, L, et al., 2022	28	80.36	20.09	29	82.18	19.38	followup	0.10		-0.09	[-0.61; 0.43]
Klinkhammer-Schalke, M et al., 2012	100	78.90	27.54	100	81.14	24.07	followup	48.00		-0.09	[-0.36; 0.19]
Peng, L. et al., 2003	33 28	5.80 79.17	2.00	33 29	5.90 79.89	20.11	followup	6.00 4.00		-0.05	[-0.53; 0.43] [-0.56; 0.48]
Hoffman, CJ, et al., 2012	102	18.09	5.81	109	18.30	5.75	followup	12.00	<u></u>	-0.04	[-0.31; 0.23]
Klinkhammer-Schalke, M et al., 2012	100	66.00 54.50	33.00	100	66.74 55.10	31.76	followup	12.00	÷	-0.02	[-0.30; 0.25] [-0.28: 0.24]
Kim, SH, et al., 2021	47	80.30	17.60	47	80.40	18.50	followup	20.00		-0.02	[-0.23, 0.24]
Elyasi, F, et al., 2021 I.	15	1.80	0.90	15	1.80	0.90	followup	24.00		0.00	[-0.72; 0.72]
QIU, H, et al., 2018 II. Rahmani S et al. 2015	98 12	17.98	8.92 54 16	196	17.98	8.52 34.72	followup	4.00		0.00	[-0.24; 0.24] [-0.80: 0.80]
Seliniotaki, T, et al., 2021	27	74.60	35.90	26	74.60	29.30	followup	8.00	<u><u></u></u>	0.00	[-0.54; 0.54]
Hoffman, CJ, et al., 2012	102	18.36	5.65	109	18.26	5.88	followup	8.00	±	0.02	[-0.25; 0.29]
Klinkhammer-Schalke, M et al., 2012	100	72.20	28.78	100	71.46	29.03	followup	24.00		0.02	[-0.22; 0.27]
Arving, C, et al., 2007	47	76.00	25.00	38	75.00	19.00	followup	12.00	±	0.04	[-0.38; 0.47]
Qiu, H, et al., 2018 II. Klafke N, et al., 2019	98 120	18.77	8.03	196	18.25	5.05	followup	12.00	÷	0.08	[-0.16; 0.33] [-0.17: 0.34]
Arving, C, et al., 2007	47	81.00	22.00	38	79.00	25.00	followup	4.00	- 문	0.08	[-0.34; 0.51]
Arving, C, et al., 2007 Klinkhammer, Schalke, M et al., 2012	47	83.00	21.00	38	80.00	26.00	followup	24.00	重	0.13	[-0.30; 0.56]
Ruiz-Vozmediano, J, et al., 2012	31	83.30	24.70	32	78.70	28.50	followup	24.00		0.15	[-0.13, 0.42] [-0.32; 0.67]
Klafke, N, et al., 2019	120	69.10	27.90	113	63.60	26.60	followup	48.00	÷	0.20	[-0.06; 0.46]
Cengiz, HO, et al., 2023 Oiu H et al. 2018 I	32	20.36	5.38 9.15	33 196	19.06 17.98	5.74 8.52	followup	8.00		0.23	[-0.26; 0.72] [-0.01: 0.47]
Qiu, H, et al., 2018 I.	98	21.75	8.70	196	18.75	9.46	followup	24.00	Ē	0.32	[0.08; 0.57]
Kim, SH, et al., 2021	47	81.90	15.20	47	74.60	23.00	followup	8.00	<u>1</u>	0.37	[-0.04; 0.78]
Hernandez, EG, et al. 2018	28	18.82	5.79	28	16.40	5.90	followup	24.00		0.37	[-0.10, 0.84]
Hernandez, EG, et al. 2018	28	19.23	5.51	28	16.60	5.39	followup	8.00	<u>e</u>	0.48	[-0.06; 1.01]
Qiu, H, et al., 2018 I. Elvasi, E, et al., 2021 II	98 20	21.39	8.03	196 20	18.25	5.05	followup	12.00	<u></u>	0.50	[0.26; 0.75] [-0.02: 1.25]
Kim, YH, et al., 2017	30	75.60	26.20	30	58.30	27.20	followup	6.00	÷.	0.64	[0.12; 1.16]
Kim, YH, et al., 2017	30	75.00	23.10	30	54.40	28.00	followup	9.00		0.79	[0.27; 1.32]
Rahmani, S, et al. 2015	12	51.38	11.14	12	29.16	16.09	followup	8.00		1.55	[0.62; 2.48]
Random effect	3510			4313					Ý	0.18	[0.04; 0.32]
Prediction interval									1		[-0.34; 0.70]
gastroenterological											
Qin, X, et al., 2017 Baovindeligeer I, Z, et al. 2020	50 65	77.68	15.31	50 65	77.26	16.04	baseline	0.00	重	0.03	[-0.37; 0.42] [-0.28: 0.41]
Cheung YL, et al. 2002	29	11.00	0.70	30	10.16	2.26	baseline	0.00	- Fee	0.49	[-0.23; 0.41]
Qin, X, et al., 2017	50	80.24	13.46	50	79.67	13.13	followup	2.00	÷	0.04	[-0.35; 0.43]
Cheung YL, et al. 2002 Cheung YL et al. 2002	29	10.55	0.50	30	9.64	1.50	followup	5.00		0.77	[0.24; 1.30]
Baoyindeligeer, L.Z. et al. 2020	65	88.33	12.38	65	71.36	13.84	followup	2.00	-	1.28	[0.91; 1.66]
Random effect	317			320					<u></u>	0.52	[-0.31; 1.36]
Prediction Interval											[-0.75, 1.60]
gynaecological		5470	~~~~~	75	50.00	5470	h V			0.00	
Chan, et al. 2005 Sandsund C. et al. 2017	80	54.76 74.10	60.02 26.70	75 70	56.28	29.00	baseline	0.00	<u> </u>	-0.03	[-0.34; 0.29] [-0.18: 0.48]
Powell, CB, et al., 2008	21	22.20	5.40	43	19.70	6.00	baseline	0.00	<u> </u>	0.42	[-0.10; 0.95]
Chan, et al. 2005 Chan, et al. 2005	80	76.19	54.76	75	87.23	54.76	followup	72.00	1	-0.20	[-0.52; 0.12]
Chan, et al. 2005	80	76.62	54.76	75	85.06	54.76	followup	60.00	-	-0.17	[-0.49, 0.14]
Chan, et al. 2005	80	61.47	54.76	75	69.26	54.76	followup	12.00		-0.14	[-0.46; 0.17]
Chan, et al. 2005 Chan, et al. 2005	80 80	80.52	54.76 54.76	75 75	83.77	54.76	followup	48.00	1	-0.06	[-0.37; 0.26] [-0.26: 0.37]
Powell, CB, et al., 2008	21	21.30	5.60	43	19.10	7.30	followup	12.00	- E	0.32	[-0.21; 0.84]
Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	72	85.00	21.40	70	74.90	29.80	followup	12.00	토	0.39	[0.06; 0.72]
Random effect	818	80.00	10.90	821	74.20	20.90	lollowup	24.00		0.40	[-0.38; 0.96]
Prediction interval											[-0.92; 1.50]
prostate											
Berglund, G. et al. 2007	39	80.30	22.60	150	84.00	22.10	baseline	0.00		-0.17	[-0.52; 0.19]
Penedo, FJ, et al., 2020 Berglund C, et al. 2007	95	-19.85	4.09	97 150	-21.16	4.24	baseline	0.00		0.31	[0.03; 0.60]
Penedo, FJ, et al., 2020	95	-20.74	4.29	97	-22.05	4.43	followup	48.00		0.30	[0.01; 0.58]
Penedo, FJ, et al., 2020	95	-20.61	4.19	97	-21.91	4.33	followup	24.00		0.30	[0.02; 0.59]
Prediction interval	202			091						0.20	[-2.00; 2.57] [-3.03; 3.52]
Dandom offect	5000			60.45						0.22	10.00.0.27
Prediction interval	5008			0045					*	0.23	[-0.30; 0.37] [-0.30; 0.76]
								I		Г	
								 In favor o	↓ -2 0 2 f control group In favor of inte	4 rvention	group

Figure S17.2. Subgroup analysis of the Social QoL. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer type subgroups as predicted at week 12 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S17.3.T24

Ctudu	E)	kperimen	tal	Detient N	Control	60	follow up		CND of interacted event	CMD	
Study	Patienti	wean	50	Patient N	wean	50	ionow-up	Follow-up ume	SWID OF Interested event	SIND	90%-CI
breast	10	6.06	2.05	21	7.24	1.01	basalina	0.00		0.62	1 26: 0.021
Peng, L, et al., 2022	28	0.20 76.79	2.05	29	81.61	16.87	baseline	0.00	-	-0.62	[-1.26, 0.02] [-0.82; 0.23]
Qiu, H, et al., 2018 II.	98	17.84	5.10	196	18.85	4.22	baseline	0.00	+	-0.22	[-0.47; 0.02]
Hoffman, CJ, et al., 2012 Heinev SP et al. 2003	102	17.59	5.91 2.00	109	18.78	6.01 1.90	baseline	0.00		-0.20	[-0.47; 0.07] [-0.64: 0.33]
Qiu, H, et al., 2018 I.	98	18.13	5.70	196	18.85	4.22	baseline	0.00	<u> </u>	-0.15	[-0.39; 0.09]
Ruiz-Vozmediano, J, et al., 2020	31	69.40	29.80	32	73.40	28.40	baseline	0.00	重	-0.14	[-0.63; 0.36]
Wu, Q, et al., 2021	43	53.77	5.51	43	54.34	5.53	baseline	0.00		-0.10	[-0.53; 0.43]
Antoni, MH, et al., 2006	92	877.61	158.55	107	891.17	152.16	baseline	0.00	-	-0.09	[-0.37; 0.19]
Kim, SH, et al., 2021	28	73.70	6.05 81.90	28	17.56	5.46 22.00	baseline	0.00		-0.08	[-0.60; 0.45] [-0.43; 0.37]
Dirksen, S. et al, 2007	34	22.10	4.90	38	22.20	6.10	baseline	0.00	-	-0.02	[-0.48; 0.44]
Klafke, N, et al., 2019 Elvasi E et al. 2021 I	120 15	59.30 2.00	31.30	113 15	58.60 1.90	29.60	baseline	0.00		0.02	[-0.23; 0.28] [-0.62; 0.81]
Klinkhammer-Schalke, M et al., 2012	100	71.21	33.50	100	67.99	34.25	baseline	0.00	÷	0.09	[-0.18; 0.37]
Arving, C, et al., 2007 Rehmani, S, et al. 2015	47	78.00	27.00	38	75.00	19.00	baseline	0.00	<u> </u>	0.13	[-0.30; 0.55]
Cengiz, HO, et al., 2023	32	20.16	5.97	33	19.13	5.49	baseline	0.00	-	0.13	[-0.31; 0.66]
Kim, YH, et al., 2017	30	72.80	25.30	30	62.80	20.80	baseline	0.00		0.43	[-0.09; 0.94]
Antoni, MH, et al., 2006	92	788.15	133.08	107	855.60	126.82	followup	48.00	- i	-0.52	[-0.80; -0.23]
Ferguson, RJ, et al., 2012	19	6.75	1.78	21	7.47	1.59	followup	8.00		-0.42	[-1.05; 0.21]
Antoni, MH, et al., 2003	33 92	5.80	2.00	33	6.55 873.38	1.80	followup	24.00	-	-0.39	[-0.88; 0.10] [-0.63: -0.07]
Peng, L, et al., 2022	28	80.36	20.09	29	82.18	19.38	followup	0.10	-	-0.09	[-0.61; 0.43]
Klinkhammer-Schalke, M et al., 2012 Heiney SP et al. 2003	100	78.90	27.54	100	81.14 5.90	24.07	followup	48.00		-0.09	[-0.36; 0.19] [-0.53; 0.43]
Peng, L, et al., 2022	28	79.17	16.49	29	79.89	20.11	followup	4.00		-0.03	[-0.56; 0.48]
Hoffman, CJ, et al., 2012	102	18.09	5.81	109	18.30	5.75	followup	12.00		-0.04	[-0.31; 0.23]
Klafke, N, et al., 2019	120	54.50	29.60	113	55.10	29.50	followup	24.00		-0.02	[-0.30, 0.25]
Kim, SH, et al., 2021	47	80.30	17.60	47	80.40	18.50	followup	20.00	+	-0.01	[-0.41; 0.40]
Elyasi, F, et al., 2021 I. Qiu H et al. 2018 II	15 98	1.80 17.98	0.90	15 196	1.80 17.98	0.90	followup	24.00 4.00		0.00	[-0.72; 0.72] [-0.24: 0.24]
Rahmani, S, et al. 2015	12	12.00	54.16	12	12.00	34.72	followup	16.00	<u> </u>	0.00	[-0.80; 0.80]
Seliniotaki, T, et al., 2021	27	74.60	35.90	26	74.60	29.30	followup	8.00	1	0.00	[-0.54; 0.54]
Qiu, H, et al., 2018 II.	98	18.97	8.92	196	18.75	9.46	followup	24.00	÷	0.02	[-0.22; 0.23]
Klinkhammer-Schalke, M et al., 2012	100	72.20	28.78	100	71.46	29.03	followup	24.00		0.03	[-0.25; 0.30]
Qiu, H, et al., 2018 II.	47 98	18.77	25.00	38 196	18.25	5.05	followup	12.00		0.04	[-0.38; 0.47] [-0.16; 0.33]
Klafke, N, et al., 2019	120	62.10	29.40	113	59.70	27.60	followup	12.00		0.08	[-0.17; 0.34]
Arving, C, et al., 2007 Arving, C, et al. 2007	47 47	81.00 83.00	22.00	38 38	79.00	25.00	followup	4.00 24.00	-	0.08	[-0.34; 0.51] [-0.30; 0.56]
Klinkhammer-Schalke, M et al., 2012	100	77.91	27.05	100	73.69	30.77	followup	36.00		0.15	[-0.13; 0.42]
Ruiz-Vozmediano, J, et al.,2020	31	83.30	24.70	32	78.70	28.50	followup	24.00		0.17	[-0.32; 0.67]
Cengiz, HO, et al., 2013	32	20.36	5.38	33	19.06	5.74	followup	8.00		0.20	[-0.26; 0.40]
Qiu, H, et al., 2018 I.	98	20.01	9.15	196	17.98	8.52	followup	4.00	÷+-	0.23	[-0.01; 0.47]
Kim, SH, et al., 2018 I.	98 47	21.75 81.90	8.70	47	74.60	9.46 23.00	followup	24.00		0.32	[-0.04; 0.57]
Dirksen, S. et al, 2007	34	23.30	3.90	38	21.40	5.90	followup	10.00	-	0.37	[-0.10; 0.84]
Hernandez, EG, et al. 2018 Hernandez, EG, et al. 2018	28	18.82	5.79	28	16.40 16.60	5.07	followup	24.00		0.44	[-0.09; 0.97] [-0.06; 1.01]
Qiu, H, et al., 2018 I.	98	21.39	8.03	196	18.25	5.05	followup	12.00	-	0.50	[0.26; 0.75]
Elyasi, F, et al., 2021 II.	20	2.40	1.00	20	1.80	0.90	followup	24.00		0.62	[-0.02; 1.25]
Kim, YH, et al., 2017 Kim, YH, et al., 2017	30	75.00	23.10	30	54.40	28.00	followup	9.00		0.04	[0.12, 1.10]
Wu, Q, et al., 2021	43	81.65	8.30	43	72.36	7.51	followup	12.00	-	1.16	[0.70; 1.62]
Ranmani, S, et al. 2015 Random effect	3510	51.38	11.14	12 4313	29.16	16.09	tollowup	8.00		1.55 0.11	[0.62; 2.48]
Prediction interval											[-0.42; 0.64]
nastroenterological											
Qin, X, et al., 2017	50	77.68	15.31	50	77.26	16.04	baseline	0.00	+	0.03	[-0.37; 0.42]
Baoyindeligeer, L.Z. et al. 2020	65	66.59	14.95	65	65.59	15.24	baseline	0.00		0.07	[-0.28; 0.41]
Qin, X, et al., 2017	29 50	80.24	13.46	30 50	79.67	13.13	followup	2.00		0.49	[-0.03, 1.01] [-0.35; 0.43]
Cheung YL, et al. 2002	29	10.55	0.50	30	9.64	1.56	followup	5.00		0.77	[0.24; 1.30]
Baovindeligeer, L.Z. et al. 2020	29 65	10.37	0.49	30 65	9.47	1.43	followup	2.00		0.83	[0.29; 1.36]
Random effect	317			320					-	0.45	[-0.23; 1.13]
Prediction interval											[-0.62; 1.53]
gynaecological											
Chan, et al. 2005	80	54.76	60.02	75	56.28	54.76	baseline	0.00	重	-0.03	[-0.34; 0.29]
Powell, CB, et al., 2008	21	22.20	5.40	43	19.70	6.00	baseline	0.00	 -	0.42	[-0.10; 0.46]
Chan, et al. 2005	80	76.19	54.76	75	87.23	54.76	followup	72.00	-	-0.20	[-0.52; 0.12]
Chan, et al. 2005 Chan, et al. 2005	80	76.62	54.76	75	85.06	54.76	followup	60.00		-0.17	[-0.49, 0.14]
Chan, et al. 2005	80	61.47	54.76	75	69.26	54.76	followup	12.00	훞	-0.14	[-0.46; 0.17]
Chan, et al. 2005 Chan, et al. 2005	80 80	80.52	54.76 54.76	75 75	83.77	54.76	followup	48.00		-0.06	[-0.37; 0.26] [-0.26; 0.37]
Powell, CB, et al., 2008	21	21.30	5.60	43	19.10	7.30	followup	12.00	T <u>e</u>	0.32	[-0.21; 0.84]
Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	72	85.00	21.40	70	74.90	29.80	followup	12.00		0.39	[0.06; 0.72]
Random effect	818	80.00	10.90	821	74.20	20.90	lonowup	24.00		0.40	[-0.44; 0.88]
Prediction interval											[-0.99; 1.43]
prostate											
Berglund, G. et al. 2007	39	80.30	22.60	150	84.00	22.10	baseline	0.00		-0.17	[-0.52; 0.19]
Penedo, FJ, et al., 2020 Berglund, G. et al. 2007	95 39	-19.85 77.00	4.09 23.70	97 150	-21.16 83.50	4.24 23.70	followup	48.00		0.31	[0.03; 0.60] [-0.63: 0.081
Penedo, FJ, et al., 2020	95	-20.74	4.29	97	-22.05	4.43	followup	48.00	· · · · · · · · · · · · · · · · · · ·	0.30	[0.01; 0.58]
Penedo, FJ, et al., 2020 Random effect	95 363	-20.61	4.19	97 591	-21.91	4.33	tollowup	24.00		0.30	[0.02; 0.59] [-2.36; 2.71]
Prediction interval	000			001					:		[-3.43; 3.77]
Random effect	5008			6045					6	0.15	[0.01: 0.29]
Prediction interval	5000			0040				-	Ť		[-0.39; 0.69]
								ا م	-2 0 2	4	
								In favor of	control group In favor of inte	rvention	group

Figure S17.1. Subgroup analysis of the Social QoL. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer type subgroups as predicted at week 0 (postintervention). SMD – Standardized mean difference, CI - confidence interval.

Figure S17.4.T48

Study	E	kperimen	tal	Dationt N	Control	60	follow up	Follow up time	SMD of interacted event	CMD (
Study	Paueintr	Weall	30	Pauentin	Weall	30	ionow-up	rollow-up unie	SWID OF Interested event	SWID	95%-CI
breast											
Ferguson, RJ, et al., 2012 Peng L et al. 2022	19 28	6.26	2.05	21	7.31	1.21	baseline	0.00		-0.62 [-1.	.26; 0.02]
Qiu, H, et al., 2018 II.	98	17.84	5.10	196	18.85	4.22	baseline	0.00	+	-0.22 [-0.	.47; 0.02]
Hoffman, CJ, et al., 2012	102	17.59	5.91	109	18.78	6.01	baseline	0.00		-0.20 [-0.	.47; 0.07]
Heiney, SP, et al., 2003	33	5.60	2.00	33	5.90	1.90	baseline	0.00		-0.15 [-0.	.64; 0.33]
Ruiz-Vozmediano, J. et al., 2020	31	69.40	29.80	32	73.40	28.40	baseline	0.00		-0.15 [-0.	.63; 0.36]
Seliniotaki, T, et al., 2021	27	74.40	29.90	26	77.70	29.30	baseline	0.00	<u>+</u>	-0.11 [-0.	.65; 0.43]
Wu, Q, et al., 2021	43	53.77	5.51	43	54.34	5.53	baseline	0.00	<u>-</u>	-0.10 [-0.	.53; 0.32]
Hernandez EG et al 2018	28	17 11	6.05	28	17.56	5 46	baseline	0.00		-0.09 [-0.	60 0 451
Kim, SH, et al., 2021	47	73.70	81.90	47	75.50	22.00	baseline	0.00	+	-0.03 [-0.	.43; 0.37]
Dirksen, S. et al, 2007	34	22.10	4.90	38	22.20	6.10	baseline	0.00	±	-0.02 [-0.	.48; 0.44]
Flyasi E et al. 2021	120	2 00	31.30	113	58.60	29.60	baseline	0.00		0.02 [-0.	62:0.81
Klinkhammer-Schalke, M et al., 2012	100	71.21	33.50	100	67.99	34.25	baseline	0.00	÷	0.09 [-0.	.18; 0.37]
Arving, C, et al., 2007	47	78.00	27.00	38	75.00	19.00	baseline	0.00	÷	0.13 [-0.	.30; 0.55]
Rahmani, S, et al. 2015 Cengiz HO, et al. 2023	12	34.72	13.22	12	33.33	7.11	baseline	0.00		0.13 [-0.	.67; 0.93]
Kim, YH, et al., 2017	30	72.80	25.30	30	62.80	20.80	baseline	0.00		0.43 [-0.	.09; 0.94]
Elyasi, F, et al., 2021 II.	20	2.50	1.10	20	1.90	0.90	baseline	0.00		0.59 [-0.	.05; 1.22]
Antoni, MH, et al., 2006	92	788.15	133.08	107	855.60	126.82	followup	48.00	-	-0.52 [-0.	.80; -0.23]
Heinev, SP, et al., 2003	33	5.80	2.00	33	6.55	1.80	followup	16.00	-	-0.42 [-1.	.88: 0.101
Antoni, MH, et al., 2006	92	832.88	119.31	107	873.38	114.05	followup	24.00	+	-0.35 [-0.	.63; -0.07]
Peng, L, et al., 2022	28	80.36	20.09	29	82.18	19.38	followup	0.10	<u>±</u>	-0.09 [-0.	.61; 0.43]
Klinknammer-Schaike, M et al., 2012 Heinev SP et al. 2003	100	78.90	27.54	100	81.14 5.90	24.07	followup	48.00		-0.09 [-0.	53:0.43
Peng, L, et al., 2022	28	79.17	16.49	29	79.89	20.11	followup	4.00	- 	-0.04 [-0.	.56; 0.48]
Hoffman, CJ, et al., 2012	102	18.09	5.81	109	18.30	5.75	followup	12.00	*	-0.04 [-0.	.31; 0.23]
Klinkhammer-Schalke, M et al., 2012	100	66.00 54.50	33.00	100	66.74 55.10	31.76	followup	12.00	2	-0.02 [-0.	.30; 0.25]
Kim, SH, et al., 2019	47	80.30	17.60	47	80.40	18.50	followup	20.00	÷	-0.02 [-0.	.41: 0.40]
Elyasi, F, et al., 2021 I.	15	1.80	0.90	15	1.80	0.90	followup	24.00	- <u>+</u> -	0.00 [-0.	72; 0.72]
Qiu, H, et al., 2018 II.	98	17.98	8.92	196	17.98	8.52	followup	4.00	T	0.00 [-0.	.24; 0.24]
Ranmani, S, et al. 2015 Seliniotaki T et al. 2021	12	74.60	35.90	12	74.60	34.72	followup	16.00		0.00 [-0.	.80; 0.80] 54: 0.541
Hoffman, CJ, et al., 2012	102	18.36	5.65	109	18.26	5.88	followup	8.00	÷	0.02 [-0.	.25; 0.29]
Qiu, H, et al., 2018 II.	98	18.97	8.92	196	18.75	9.46	followup	24.00	±	0.02 [-0.	.22; 0.27]
Klinkhammer-Schalke, M et al., 2012	100	72.20	28.78	100	71.46	29.03	followup	24.00	二 二 二	0.03 [-0.	.25; 0.30]
Qiu. H. et al., 2018 II.	47 98	18.77	25.00	- 38 196	18.25	5.05	followup	12.00		0.04 [-0.	.16: 0.331
Klafke, N, et al., 2019	120	62.10	29.40	113	59.70	27.60	followup	12.00		0.08 [-0.	.17; 0.34]
Arving, C, et al., 2007	47	81.00	22.00	38	79.00	25.00	followup	4.00		0.08 [-0.	.34; 0.51]
Arving, C, et al., 2007 Klinkhammer-Schalke, M et al., 2012	4/	83.00	21.00	38	80.00 73.69	26.00	followup	24.00		0.13 [-0.	.30; 0.56]
Ruiz-Vozmediano, J, et al., 2012	31	83.30	24.70	32	78.70	28.50	followup	24.00	- -	0.17 [-0.	.32; 0.67]
Klafke, N, et al., 2019	120	69.10	27.90	113	63.60	26.60	followup	48.00	논	0.20 [-0.	.06; 0.46]
Cengiz, HO, et al., 2023	32	20.36	5.38	33	19.06	5.74	followup	8.00	<u> </u>	0.23 [-0.	.26; 0.72]
Qiu, H. et al., 2018 I.	98	21.75	8.70	196	18.75	9.46	followup	24.00	+	0.32 [0.	.08: 0.571
Kim, SH, et al., 2021	47	81.90	15.20	47	74.60	23.00	followup	8.00	-	0.37 [-0.	.04; 0.78]
Dirksen, S. et al, 2007	34	23.30	3.90	38	21.40	5.90	followup	10.00	-	0.37 [-0.	.10; 0.84]
Hernandez, EG, et al. 2018 Hernandez, EG, et al. 2018	28	18.82	5.79	28	16.40	5.07	followup	24.00	-	0.44 [-0.	06: 1.011
Qiu, H, et al., 2018 I.	98	21.39	8.03	196	18.25	5.05	followup	12.00	-	0.50 [0.	.26; 0.75]
Elyasi, F, et al., 2021 II.	20	2.40	1.00	20	1.80	0.90	followup	24.00	-	0.62 [-0.	.02; 1.25]
Kim, YH, et al., 2017 Kim, YH, et al., 2017	30	75.60	26.20	30	58.30	27.20	followup	6.00		0.64 [0.	.12; 1.16]
Wu, Q, et al., 2021	43	81.65	8.30	43	72.36	7.51	followup	12.00	-	1.16 [0.	.70; 1.62]
Rahmani, S, et al. 2015	12	51.38	11.14	12	29.16	16.09	followup	8.00		1.55 [0.	.62; 2.48]
Random effect	3510			4313					\$	-0.02 [-0.	.21; 0.18]
Prediction Interval										[-U.	.59; 0.56]
gastroenterological											
Qin, X, et al., 2017	50	77.68	15.31	50	77.26	16.04	baseline	0.00	*	0.03 [-0.	.37; 0.42]
Cheung VI et al. 2002	65 20	11 00	14.95	65 30	65.59 10.16	2.26	baseline	0.00		0.07 [-0.	.28; 0.41]
Qin, X, et al., 2017	50	80.24	13.46	50	79.67	13.13	followup	2.00	+	0.04 [-0.	.35; 0.43]
Cheung YL, et al. 2002	29	10.55	0.50	30	9.64	1.56	followup	5.00	-	0.77 [0.	.24; 1.30]
Cheung YL, et al. 2002	29	10.37	0.49	30	9.47	1.43	followup	10.00		0.83 [0.	.29; 1.36]
Random effect	317	00.33	12.30	320	71.50	13.04	lonowup	2.00	-	0.33 [-0.	28: 0.941
Prediction interval				020						[-0.	.63; 1.29]
gynaecological Chan et al 2005	80	54 76	60.02	75	56 29	54 76	haseline	0.00	<u>+</u>	-0.03 60	34. 0.201
Sandsund, C. et al., 2017	72	74.10	26.70	70	70.00	29.00	baseline	0.00		0.15 [-0.	.18: 0.481
Powell, CB, et al., 2008	21	22.20	5.40	43	19.70	6.00	baseline	0.00	-	0.42 [-0.	10; 0.95]
Chan, et al. 2005	80	76.19	54.76	75	87.23	54.76	followup	72.00		-0.20 [-0.	.52; 0.12]
Chan, et al. 2005 Chan, et al. 2005	80	76.62	54.76	75 75	75.11 85.06	54.76	followup	24.00		-0.17 [-0.	49; 0.14]
Chan, et al. 2005	80	61.47	54.76	75	69.26	54.76	followup	12.00	三日	-0.14 [-0.	.46; 0.17]
Chan, et al. 2005	80	80.52	54.76	75	83.77	54.76	followup	48.00		-0.06 [-0.	.37; 0.26]
Chan, et al. 2005 Rowell CR et al. 2009	21	80.95	54.75	/5	10.10	54./6	followup	36.00	<u> </u>	0.06 [-0.	26; 0.37]
Sandsund, C, et al., 2000	72	85.00	21.40	70	74.90	29.80	followup	12.00	-	0.32 [0.	.06; 0.72]
Sandsund, C, et al., 2017	72	86.00	18.90	70	74.20	28.90	followup	24.00	-	0.48 [0.	.15; 0.82]
Random effect	818			821					<u> </u>	0.10 [-0.	.50; 0.69]
Frediction mtervar										[-1.	.vJ, 1.ZJ]
prostate											
Berglund, G. et al. 2007	39	80.30	22.60	150	84.00	22.10	baseline	0.00		-0.17 [-0.	.52; 0.19]
Penedo, FJ, et al., 2020 Berglund G, et al. 2007	30	-19.85	4.09	97	-21.10	4.24	followup	48.00		-0.27 [-0	63: 0.081
Penedo, FJ, et al., 2020	95	-20.74	4.29	97	-22.05	4.43	followup	48.00		0.30 [0.	.01; 0.58]
Penedo, FJ, et al., 2020	95	-20.61	4.19	97	-21.91	4.33	followup	24.00		0.30 [0.	.02; 0.59]
Random effect	363			591						0.05 [-2.	47; 2.57]
reaction interval										[-3.	0, J.J8]
Random effect	5008			6045					4	0.03 [-0.	.15; 0.21]
Prediction interval								I		٦ [-0.	.57; 0.63]
								-4	-2 0 2	4	
								In favor o	f control group In favor of inte	rvention gro	oup

Figure S17.4. Subgroup analysis of the Social QoL. Forest plot represents the difference between the intervention vs. control group in the Social QoL domain with the cancer type subgroups as predicted at week 48 (postintervention). SMD -Standardized mean difference, CI - confidence interval.

S18. Subgroup analysis of Physical QoL: Provider

Figure S18.1.T0

Internet 201 P130	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁴ 号章 東京省本学校寺中寺本学校永安大学大学寺中寺 寺	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hemmanks, E. G. H. 2018 II. 201 81. 20	$ \begin{array}{c} 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 $	· · · · · · · · · · · · · · · · · · ·	
Bergener, G., et al. 2007 39 73.00 150 Chung YL, et al. 2012 39 73.00 150 Datases AF al. 2013 39 75.00 150 Datases AF al. 2013 39 75.00 150 Datases AF al. 2012 34 77.40 150 157 Datases AF al. 2012 34 77.40 150 150 Dordreen F. 41 2011 100 21.80 17.80 20.00 Hoffman, C. 41.81 2012 110 77.80 20.00 100 100 Datases of C. 41.81 2017 110 77.80 20.00 100 100 100 100 100 100 100 100 100 100 100 </td <td>4460 13.00 Data Bine 0.00 17.10 12.00 Data Bine 0.00 17.10 13.00 Data Bine 0.00 17.10 13.00 Data Bine 0.00 17.00 13.00 Data Bine 0.00</td> <td>1-1</td> <td></td>	4460 13.00 Data Bine 0.00 17.10 12.00 Data Bine 0.00 17.10 13.00 Data Bine 0.00 17.10 13.00 Data Bine 0.00 17.00 13.00 Data Bine 0.00	1-1	
num num <td>91:00 20:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 <td< td=""><td>○ 今 今日本書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書</td><td>100 1.52 0.51 110 1.52 0.51 0.55 0.54 0.52 0.55 0.55 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 <t< td=""></t<></td></td<></td>	91:00 20:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 20:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 11:00 12:00 12:00 <td< td=""><td>○ 今 今日本書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書</td><td>100 1.52 0.51 110 1.52 0.51 0.55 0.54 0.52 0.55 0.55 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 <t< td=""></t<></td></td<>	○ 今 今日本書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書書	100 1.52 0.51 110 1.52 0.51 0.55 0.54 0.52 0.55 0.55 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.55 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.55 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 <t< td=""></t<>

Figure S18.1. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the provider subgroups as predicted at week 0 (post-intervention). SMD -Standardized mean difference, CI - confidence interval.

Figure S18.2.T12

	Patient N Mean SD	Patient N Mea	in SD follow-up	Follow-up time	SMD of interested event	SMD 95%-CI
Lu Z, et al., 2019 Lu Z, et al., 2019 Enterth M, et al., 2019 Entert	203 1130 150 1130 150 150 12 6,56 1150 13 15,65 1150 14 25,75 1150 15 15,65 1150 16 15,77 1218 17 15,76 1157 18 15,77 1218 19 14,77 1218 10 17,77 1218 10 17,77 1218 10 17,77 1218 10 17,77 1218 10 17,77 1218 10 17,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 11 14,77 1218 12	1012 14 4 4 14 15 15 15 15 15 15 15 15 15 15 15 15 15	0 0.5 Description 0 1.6 Description <td< td=""><td></td><td></td><td></td></td<>			
Tergence C et al. 2007 Cherno (T, et al. 2007) Cherno (T, et al. 2007) Cherno (T, et al. 2007) Cherno (T, et al. 2007) Freguesco, RJ, et al. 2007 Freguesco, RJ, et al. 2007 Freguesco, RJ, et al. 2007 Freguesco, RJ, et al. 2007 Freguesco, RJ, et al. 2007 Hoffman, CJ, e	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\$	190 0 477 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 47 77 7	0 15.0 Description 1 Description Description		★ # # # # # # # # # # # # # # # # # # #	
инте мола I, et al. 2013 сова I, et al. 2013 сова I, et al. 2017 сова I, et al. 2017 со	B 44.40 21.34 102 11.54 21.64 11.54 21.64 21.64 25.5 22.65 21.65 26.6 21.64 21.64 26.7 21.65 21.65 27.6 11.64 21.64 28.6 22.77 18.66 28.7 21.66 21.38 28.6 22.77 18.66 28.7 21.66 22.34 28.6 24.67 21.95 28.6 24.68 27.77 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.6 28.77 21.95 28.7 28.	81 97.7 304 41.4 41.5 63.5 31.6 21.5 31.7 21.5 31.7 21.7 31.7	0 1.0 Database 0 1.17 Database 0 1.0 Database	$\begin{array}{c} 0.60\\ 0.60\\ 0.00\\$	→ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	-1.9 (142, 0.44) -1.9 (142, 0.44) -5.6 (0.47, 0.47) -5.6 (0.47, 0.4

Figure S18.2. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the provider subgroups as predicted at week 12 (post-intervention). SMD -Standardized mean difference, CI - confidence interval

Figure S18.3.T24

Study	Experimental Patient N Mean SD Pat	Control tient N Mean SD follow-up Follow-up	time SMD of interested event	SMD 95%-CI
Li L. 2 Hi. 201 Stand M. et al. 201 Response of the stand M. et al. 201 Response of the stand M. et al. 2010 Response of the stand M.	233 1133 1540 1 125 1543 1 125 1543 1 126 1543 1 126 1543 1 126 1543 1 126 1543 1 126 1543 1 126 1543 139 3030 2.644 121 1213 1560 121 1213 1560 121 1213 1560 121 1217 1540 121 1217 1540 121 1217 1540 121 1217 130 122 1218 1218 123 1208 1209 123 1208 1200 123 1208 1203 123 1208 1203 123 1208 1203 123 1203 1203 123 1203	101 1.00	■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Perguna C of all 2007 Changing L and 2007 Program C of all 2007 P	39 7.3.0 23.0.0 39 7.5.7.1 7.5.0 30 7.5.7.1 7.5.0 30 7.5.7.1 7.5.0 31 6.7.5.1 7.5.0 31 6.7.5.1 7.5.0 31 7.5.0 7.5.0 31 7.5.0 7.5.0 31 7.5.0 7.5.0 31 7.5.0 7.5.0 31 7.5.0 7.5.0 31 7.5.0 7.5.0 32 4.2.6.0 7.5.0 32 4.2.6.0 7.5.0 32 4.2.6.0 7.5.0 32 4.2.6.0 7.5.0 32 4.2.6.1 7.5.0 32 4.2.6.1 7.5.0 32 4.2.6.1 7.5.0 34 7.5.0 7.5.0 35 5.5.0 7.7.7.1 36 7.7.7.1 7.7.0 37 7.6.0 7.7.0 38 7.7.7.1	159 46 1.30 Description 0.00 1750 3.60 3.00 2.00 0.00 0.00 1750 3.60 3.00 2.00 0	部項 수영에 분위하는 한국 문화	
иште ин след на съста са са 2013 раз на съста са са 2013 раз на съста са са 2013 раз на съста съста са 2013 раз на съста със	BB Attal State State 102 1154 216 1 102 1154 216 1 102 1154 216 1 103 1154 216 1 104 1154 216 1 105 1153 516 1 104 1154 216 1 105 1150 1160 1 104 1164 116 1 105 1160 1 1 1 106 1170 1100 1 1 107 1100 100 100 1 1 108 4404 100 1 <t< td=""><td>1 1 1 1 Sector 1 1 1 2 Sector 1 <td< td=""><td>◆ ◆ ◆ ◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</td><td>$\begin{array}{c} 1.37 \\ 1.5 \\ 2.5 \\ 3.5$</td></td<></td></t<>	1 1 1 1 Sector 1 1 1 2 Sector 1 <td< td=""><td>◆ ◆ ◆ ◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●</td><td>$\begin{array}{c} 1.37 \\ 1.5 \\ 2.5 \\ 3.5$</td></td<>	◆ ◆ ◆ ◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	$\begin{array}{c} 1.37 \\ 1.5 \\ 2.5 \\ 3.5 $
		In	-4 -2 0 2 avor of control group In favor of inter	+ vention group

Figure S18.3. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the provider subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI - confidence interval

Figure S18.4.T48

Norm No No No No No<	Study	Experimental Patient N Mean SD Pati	Control ient N Mean SD follow-up Follow-up ti	ne SMD of interested event SMD 95%-CI i:
	Li, Z. et al., 201 bits of the second secon		03 0.30 0.30 0.36 0.36 0.36 0.31 0.30 0.36 0.36 0.36 0.36 1.2 0.50 0.25 0.38 0.36 0.35 1.2 0.50 0.25 0.38 0.36 0.35 1.3 0.14 0.34 0.34 0.34 0.34 0.35 0.14 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.34 0.34 0.34 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 <	# -0.5 -0.77 -0.58 -0.55 -0.57 -0.58 -0.57 -0.55 -0.57 -0.58 -0.58 -0.55 -0.57 -0.58 -0.58 -0.55 -0.57 -0.58 -0.58 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.58 -0.66 -0.57 -0.58 -0.66 -0.57 -0.57 -0.58 -0.66 -0.57 -0.57 -0.58 -0.66 -0.57 -0.57 -0.58 -0.66 -0.57 -0.57 -0.57 -0.58 -0.57 -0.57 -0.57 -0.58 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 </td
Nume Num Nume Nume	Department of the source of th	39 7.30 2.30 7.30 2.30 80 7.57 9.16.7 9.16.7 9.16.7 80.5 7.75 9.16.7 9.16.7 9.16.7 80.5 7.75 9.16.7 9.16.7 9.16.7 81.5 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.75 9.16.7 9.16.7 9.16.7 81.6 7.76.7 9.16.7 9.16.7 9.16.7 81.7 7.76.7 9.16.7 9.16.7 9.16.7 82.7 7.76.7 9.16.7 9.17.7 9.17.7 82	50 4.64 13.0 byselve 0.00 0 7.76 1.50 baselve 0.00 0 7.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.78 1.50 baselve 0.00 1.76 1.76 baselve 0.00 1.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.76 1.76 baselve 0.00 1.77 1.77 baselve 0.00 1.77 1.77 baselve 0.00 1.76 1.75	*** -05 1-04 -20 *** -05 1-04 -20 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00 1-00 1-00 *** -00
	инте ин лася на нася на С. с. в. а. 2013 раз. с. на. 2013 раз. с. на. 2013 раз. с. на. 2014 раз. с. на. 2017 раз.	Bit Add 2.3 1 702 11.5 2.6 1 102 11.5 2.6 1 102 11.5 2.6 1 102 11.5 2.6 1 104 2.6 1.5 2.6 105 1.5 2.6 1.5 2.6 10 1.6 1.6 1.6 1.6 1.6 10 1.6 <td>1 7.00 2.10 baseline 0.00 0 1.00 2.00 baseline 0.00 0 1.00 1.00 baseline 0.00 1 1.00 0.00 baseline<!--</td--><td>**************************************</td></td>	1 7.00 2.10 baseline 0.00 0 1.00 2.00 baseline 0.00 0 1.00 1.00 baseline 0.00 1 1.00 0.00 baseline </td <td>**************************************</td>	**************************************

Figure S18.4. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the provider subgroups as predicted at week 48 (post-intervention). SMD -Standardized mean difference, CI - confidence interval

S19. Subgroup analysis of Physical QoL: Environment

Figure S19.1.T0

Study	Ex Patient N	perimental Mean SD P	ationt N	Control I Mean SD follow-up F	ollow-up time	SMD of interested event	SMD 95%-CI
LU, 2. 44., 201 Encland, 3. 64., 2007 LJ, K. 44., 201 Encland, 3. 64., 2007 D, J. K. 44., 201 Encland, 3. 64., 201		a) 10 3.500 a) 13 2.500 a) 13 2.500 a) 13 2.500 a) 11 12 a) 12 2.500 a) 12 2.510 a) 12 2.500 a) 12 1.500 a) 12		82.90 2.90 2.90 82.90 2.94 2.90 2.94 11.91 2.90 2.94 2.90 11.91 2.90 2.94 2.90 11.91 2.90 2.94 2.90 11.91 2.90 2.90 2.90 2.90 11.90 2.90 2.70 2.84 2.90 2.70 2.84 11.90 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.84 2.90 2.70 2.90 2.71 2.90 2.90 2.71 1.90 2.85 2.71 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90 2.90	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		
Hanner, SP Hat. 2003 Dirkesh, E ett. 2007 Dirkesh, E ett. 2007 I Dirks, Hanner, St. 19, 2007 I Grass, A. ett. 2007 I Honnas, Hu. 19, 2007 I Honnas, Hu. 44, 2012 Hanner, SP Hat. 2009 Dirksen, E. ett. 42, 2007 Dirksen, E. ett. 44, 2007 Dirksen, 24, 2007 Dirkse	33 34 120 134 121 64 33 34 120 121 64 120 121 64 134 120 1213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 38 117 72 124 88 33 30 3117 124 88 36 72 117 1170	7 10 170 besetine 23.10 410 besetine 59.10 470 backine 59.80 13.80 baseline 77.30 11.10 baseline 12.40 530 baseline 24.40 38 20 biolway 24.30 380 followay 24.30 380 followay 21.50 470 followay 21.50 470 followay 23.50 570 followay 23.50 570 followay 58.50 followay	000 000 000 000 000 000 000 1600 1200 1200 1400 1000 1000 2400 2400 2400	Darminessee ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	-0.27 +0.78, 0.21 -0.22 0.68, 0.24 0.03 1.945, 0.46 0.04, 0.21 0.05, 0.46 0.04, 0.21 0.05, 0.46 0.05, 0.46 0.05, 0.46 0.05, 0.46 0.05, 0.46 0.25, 0.05 0.25, 0.05 0.25, 0.05 0.27, -0.05, 0.37 0.37, 0.16, 0.47 0.27, 0.05 0.27, 0.05
colline Peng, 104, 2020 Peng, 104, 21, 41, 2020 Beeter, W., 41, 2020 Beeter, W., 41, 2017 Compon, F. et al. 2019 Peng, 104, 214, 2020 Beeter, W., 41, 2020 Beeter, W., 41, 2020 Peng, 104, 41, 2020 Peng, 104, 41, 2020 Peng, 104, 2020	28 55 150 2 45 32 46 00 55 28 55 58 45 15 42 30 00 00 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	297 28 773 374 430 97 729 97 729 97 729 97 729 97 729 97 729 97 729 97 729 97 729 97 729 729	TG ID TOL4 catalities <20.19	0 00 0 00		$\begin{array}{c} -0.06 & -0.66 & 0.468 \\ -0.04 & -0.33 & 0.24 \\ 0.01 & -0.44 & 0.53 & 0.24 \\ 0.01 & -0.44 & 0.54 \\ 0.01 & -0.24 & 0.57 \\ 0.04 & -0.24 & 0.37 \\ 0.04 & -0.24 & 0.37 \\ 0.04 & -0.24 & 0.37 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.33 & 0.24 \\ 0.04 & -0.24 & 0.33 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 & -0.24 & 0.34 \\ 0.04 $
Random effect Prediction interval	10386		10824		r		0.29 [0.00; 0.58] [-1.51; 2.10]

Figure S19.1. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the environment subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

2 4

Figure S19.2.T12

Study	E Patient I	xperimental (Mean SD)	Patient M	Control Mean SD follow-up F	ollow-up time	SMD of interested event	SMD	95%-CI
Bacquint, G. B. al. 2007 Sunday, M. J. al. 2013 Sunday, M. J. al. 2013 Alexanomi, S. G. al. 2013 Nations, et al. 2013 Nations, et al. 2013 Nations, et al. 2013 Display, A. J. al. 2010 Give, J. et al. 2010 Display, K. et al. 2020 Pressen, P. et al. 2010 Display, K. et al. 2020 Display, K. et al. 2020 Display, K. et al. 2020 Display, K. et al. 2020 Display, K. et al. 2020 Compared F. et al. 2010 Display, K. et al. 2020 Display, K. et al. 2020		71:30 2:300 71	10002712万百分2月3月前方的2月44年末期34回他的方面的方方为3114分发出的方力加速加到12715月1日122月0027125万元为用1011111111111111111111111111111111111	44.0 1.3.3 Solarity 1.4.0 1.3.3 Solarity 1.4.0 1.4.3 Solarity 1.4.0 1.4.4 Solarity 1.4.0 1.4.4 Solarity 1.4.0 1.4.4 Solarity 1.4.1 1.4.4 Solarity 1.4.1 1.4.4 Solarity 1.4.1 1.4.4 Solarity 1.4.1 1.4.1 Solarity 1.4.1 1.4.1 Solarity 1.4.1 1.4.1 Solarity 1.4.1 1.4.1 Solarity 1.4.1 Solarity Solarity	0 000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Hearing, Off, et al., 2000 Unises, 3: 4: 4: 2007 I. Grigis, A., et al., 2007 I. Grigis, A., et al., 2007 I. Harris, J., et al., 2007 I. Henres, GP, et al., 2007 I. Henres, GP, et al., 2007 I. Henres, GP, et al., 2007 I. McCaster, J. et al., 2007 I. McCaster, J. et al., 2007 I. Henras, ML, et al.	33 34 120 134 121 64 33 34 120 121 64 34 120 121 64 34 120 123	6.60 1.30 22.100 5.50 19.10 4.00 86.40 14.70 78.50 12.50 41.60 9.00 14.10 6.10 6.40 1.40 9.40 1.30 24.60 3.30 90.10 1.43 42.50 9.80 14.40 5.40 22.70 4.23 92.10 9.95	33 38 36 117 72 124 86 33 36 117 124 88 33 36 117 124 88 38 72 71 1170	7 10 170 baseline 221 b 416 baseline 19 10 470 baseline 850 13.59 baseline 470 820 baseline 470 baseline 47	0 00 0 00 0 00 0 00 0 00 0 00 0 00 15 00 15 00 15 00 15 00 12 00 24 00 12 00 24 00 24 00 24 00	- <u></u>	-0.27 -0.22 0.00 0.04 0.05 0.09 0.30 -0.44 -0.25 0.23 0.25 0.27 0.26 0.36 0.37 0.32	$\begin{array}{c} 40.76 & 0.21\\ -0.56 & 0.24\\ -0.46 & 0.46\\ -0.21 & 0.30\\ -0.21 & 0.30\\ -0.23 & 0.34\\ -0.02 & 0.36\\ -0.02 & 0.52\\ -0.74 & 0.23\\ -0.75 & 0.06\\ -0.74 & 0.23\\ -0.75 & 0.60\\ -0.75 & 0$
Institute Persys, L. strill, 2022 Personal, 27, et al., 20201 Personal, 27, et al., 20201 Personal, 2021 Personal, 2021	285 350 45 345 345 345 345 345 345 328 45 545 323 45 345 320 300 300 300	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29 97 28 76 43 97 33 44 30 97 97 97 97 97 98 28 28 44 30 97 52 8 28 44 30 30 28 28 43 30 30 28 28 28 52 52 52 52 52 53 54 52 52 52 52 53 54 52 52 54 54 52 54 54 52 54 52 54 52 54 52 54 52 54 52 54 52 54 52 52 54 52 54 52 54 54 52 54 54 52 54 54 52 54 54 52 54 54 54 54 54 54 54 54 54 54 54 54 54	720.00 10.04 baseline 21.22 21.44 baseline baseline 21.22 21.45 baseline baseline 45.40 24.24 baseline baseline 45.40 24.24 baseline baseline 45.40 24.24 baseline baseline 45.40 24.24 baseline baseline 45.25 24.04 baseline baseline 45.26 24.04 baseline baseline 45.27 24.04 baseline baseline 45.27 24.04 baseline baseline 45.27 24.04 baseline baseline 45.27 24.04 baseline baseline 46.27 24.04 baseline baseline 46.27 24.04 baseline baseline 46.27 24.04 24.04 baseline 46.27 24.04 24.04 baseline 46.27 24.04 24.04	0 000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 00000 0 00000	+ *****************	0.06 0.01 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04	$\begin{array}{c} 6.56! & 0.45! \\ 0.33! & 0.24 \\ 0.48! & 0.50! \\ 0.48! & 0.33! \\ 0.48! & 0.34! \\ 0.38! & 0.47! \\ 0.28! & 0.34! \\ 0.38! & 0.47! \\ 0.48! & 0.47! \\ 0.48! & 0.47! \\ 0.48! & 0.47! \\ 0.48! & 0.47! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.22! \\ 0.47! & 0.24! \\ 0.45! & 0.55! \\ 0.46! & 0.55! \\ 0.46! & 0.55! \\ 0.46! & 0.55! \\ 0.46! & 0.56! \\ 0.47! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & 0.56! \\ 0.45! & $
Random effect Prediction interval	10386		10824		۲ -4 In favor of	-2 0 2 control group In favor of inf	0.53 7 4 51/6000	(0.2%; 0.80] [1.24; 2.27] group

Figure S19.2. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the environment subgroups as predicted at week 12 (post-intervention). SMD -Standardized mean difference, CI confidence interval.

Figure S19.3.T24

Study	Experimental Patient N Mean SD	Control Patient N Mean SD follow-up Fol	lkw-up time SMD of interested event	5MD 95%-CI
Lin, Z. et al., 201 Berglund, G. et al. 2007 Li, N. et al., 2017 Resolution, S. et al. 2018 Rootingue, H. et al., 2014 Ramman, S. et al. 2015 Rootingue, H. et al., 2014 Ramman, S. et al. 2015 Rootingue, N. et al., 2016 Rootingue, Y. et al., 2017 Rue, Vourmentano, J. et al., 2020 M. et al., 2018 Dirak, F. et al., 2020 J. et al.,	2003 81:35 30:3 21:0 30:3 7:13 30:3 21:0 10:3 11:3 21:0 11:3 21:0 10:4 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 11:0 </td <td>100 3200 3200 3200 3200 100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 32</td> <td></td> <td>-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</td>	100 3200 3200 3200 3200 100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 3200 3200 3200 3200 3200 1100 32		-0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Ditision 5 in 41 20071 Ditision 6 in 41 20071 Grups A, et al. 20091 Time 61, 2007 Time 61, 2007 Thomas, 61, 454, 2007 Henns, 50, 461, 2007 Henns, 50, 461, 2007 Henns, 50, 461, 2007 Henns, 50, 461, 2007 Thomas, 81, 41, 20071 Ditision 5 et al. 20071 Billion 5 et al. 20071 Ditision 5 e	34 2200 800 34 19:10 400 100 86:40 107 104 86:40 107 124 78:60 280 54 124 41:60 53 6:40 1:40 33 6:40 1:40 34 24:40 3:00 54 24:40 3:00 54 1:44 6:40 54 2:29 3:00 54 2:29 3:10 54 2:29 3:10 54 2:29 3:10 54 2:29 3:10 54 2:29 3:10 54 2:29 3:10 54 2:29 3:10 52 1:20 9:10	38 2310 410 baseline 38 1910 A70 baseline 117 85.00 3140 baseline 127 85.00 3140 baseline 138 19.10 baseline baseline 138 12.40 5.30 baseline 138 12.40 5.30 baseline 130 2.20 10.10 baseline 130 2.20 2.10 filowap 147 2.73 7.00 bilowap 149 2.10 5.70 bilowap 140 15.10 10.10 bilowap 140 15.00 10.10 bilowap 141 15.00 10.10 bilowap 141 15.00 10.10 bilowap 141 15.00 10.10 bilowap 141 15.00 10.10 bilowap 1417 18.80 13.40 bilowap 1417 14.80	2009 T	$\begin{array}{c} -2.22 \\ -2.22 \\ -0.02 \\ -0.01 \\$
unitary Peng L, et al., 2022 Penceb, F, J, et al., 2021. Eosler FW, et al., 20171. Company F, et al., 20171. Company F, et al., 20171. Company F, et al., 20171. Company F, et al., 2020. Company F, et al., 2020. Penceb, F, H, et al., 2020. Penceb, F, H, et al., 2020. Penceb, F, et al., 2020.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 29 79.03 10.64 Destine 97 -23.09 341 Destine 98 45.00 1.94 Satal Med 97 20.44 45.00 1.94 Satal Med 97 20.44 45.00 1.94 Satal Med 97 20.44 45.00 Data Satal Med Satal Med 33 73.05 6.20 Data Satal Med Satal Med 97 20.44 45.00 Data Satal Med Satal Med 34 45.00 Data Satal Med Med Satal Med 97 20.42 Ath Mitohyang Satal Med Med 97 20.43 Ath Mitohyang Satal Med Med 97 20.29 Ath Mitohyang Satal Sata Med <tr< td=""><td>0.09 0.09 0.99 0</td><td>$\begin{array}{c} -0.06 \\ -0.06 \\ 0.03 \\ 0.07 \\$</td></tr<>	0.09 0.09 0.99 0	$\begin{array}{c} -0.06 \\ -0.06 \\ 0.03 \\ 0.07 \\ $
Random effect Prediction Interval	10385	10824	-4 -2 0 2 in taxor of control group in favor of in	0.61 [0.26; 0.97] [1.15; 2.38] 4 tervention group

Figure S19.3. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the environment subgroups as predicted at week 24 (post-intervention). SMD -Standardized mean difference, CI -confidence interval. 125

Figure S19.4.T48

Study	Experimental Patient N Mean SD	Control Patient N Mean SD	follow-up Follow-up time	SMD of interested event	SMD 95%-CI
Benging C. Price 2007 Section M. et al. 2019 Section M. et al. 2019 Research C. Price 2019 Researc	17 18 17 18 17 18 17 18 17 18 18 17 18 <th18< th=""> 18 18 18<!--</td--><td>160 160 233 160 160 234 22 160 236 23 160 237 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1230 1230 1740 2130 1240 2100 1740 2130 223 1130 224 1740 2130 224 1130 224 230 1740 2100 2100 2100 2100 2100 1740 2100 2100 2100<!--</td--><td>baseline 100 baseline 100 <td></td><td>Image Image <thimage< th=""> Image <thi< td=""></thi<></thimage<></td></td></td></th18<>	160 160 233 160 160 234 22 160 236 23 160 237 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 175 1610 230 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1740 2130 1230 1230 1740 2130 1240 2100 1740 2130 223 1130 224 1740 2130 224 1130 224 230 1740 2100 2100 2100 2100 2100 1740 2100 2100 2100 </td <td>baseline 100 baseline 100 <td></td><td>Image Image <thimage< th=""> Image <thi< td=""></thi<></thimage<></td></td>	baseline 100 baseline 100 <td></td> <td>Image Image <thimage< th=""> Image <thi< td=""></thi<></thimage<></td>		Image Image <thimage< th=""> Image <thi< td=""></thi<></thimage<>
Heimer, BP, et al. 2003 Dimisers & stat 2007 I. Christen & stat 2007 I. Dimisers & stat 2007 I. Themas Risk and 2007 I. McCusters J. et al. 2007 Heimers & stat 2007 I. Griges A, et al. 2009 I. Dimisers & stat 2007 I. Christen & stat 2007 I. Dimiser & stat 2007 I. Dimiser & stat 2007 I. Christen & stat 2007 I.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	baseline D D0 baseline 0.00 baseline 0.00 baseline 0.00 baseline 0.00 baseline 0.00 baseline 0.00 followap 16.00 followap 16.00 followap 24.00 followap 10.00 followap 10.00 followap 24.00 followap 24.00 followap 24.00		$\begin{array}{c} -0.27 +0.75 & 0.21 \\ 0.22 +0.06 & 0.24 \\ 0.00 +1.04 & 0.48 \\ 0.00 +1.02 & 0.00 \\ 0.00 +1.02 & 0.01 \\ 0.00 +1.01 & 0.01 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.05 \\ 0.00 +1.01 & 0.07 \\ 0.05 +1.00 & 0.073 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.73 \\ 0.05 & 0.00 & 0.50 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\ 0.05 & 0.00 & 0.00 \\$
exiliais Peng L. 19, 2000 Peng L. 19, 2000 Bearle FW, et al. 2000 Bearle FW, et al. 2007 Company F, et al. 2017 Bearle FW, et al. 2020 Bearle FW, et al. 2020 Bearle FW, et al. 2020 Bearle FW, et al. 2020 Peng L. et al. 2021 Dealer FW, et al. 2021 Cengupt HO, et al. 2015 Bearle FW, et a	78.33 137.0 55 45.08 13.10 56 45.08 11.11 90 45.02 10.21 57 45.08 11.11 90 45.02 10.21 50 45.02 10.21 50 7.81.1 3.60 57 7.81.1 5.00 58 -30.06 4.77 59 -30.06 4.77 59 -30.06 4.77 50 -50.06 4.77 50 -50.06 4.77 50 -50.06 4.77 50 -50.06 4.77 51 10.50 5.57 51 15.76 10.00 51 15.77 11.04 52 10.01 12.53 51 15.77 11.04 52 10.05 5.56 53 5.56 3.56 53 5.56 3.56 51	76.00 10.01 10.01 27 23.09 3.84 28 46.20 20.01 29 46.20 20.01 20 20.02 20.01 27 21.02 20.01 28 40.02 20.01 29 20.02 20.01 20 20.02 20.01 20 20.02 20.01 20 20.02 20.01 20 20.02 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.03 40.01 20 20.04 40.01 20 20.04 40.01 20 20.04 40.01	Statemen 0.0 Datarine 0.0 Informanty 4.0 Informanty 1.0 Informanty<		0.6 1.8.92 0.65 0.7 0.3.4 0.24 0.7 0.3.4 0.24 0.7 0.3.4 0.24 0.6 0.3.2 0.34 0.6 0.3.2 0.34 0.7 0.3.2 0.34 0.6 0.3.2 0.44 0.7 0.3.2 0.34 0.7 0.3.2 0.31 0.7 0.3.2 0.31 0.7 0.3.2 0.44 0.7 0.3.2 0.44 0.64 0.3.2 0.44 0.64 0.3.2 0.44 0.64 0.3.2 0.44 0.64 0.3.2 0.44 0.7 0.3.2 0.44 0.7 0.44 0.35 0.7 0.44 0.55 0.7 0.15 1.51 0.7 0.15 1.51 1.44 1.64 1.52 1.44 0.45 1.51
Random effect Prediction interval	10385	10824	r	_	0.32 [0.03; 0.60] [-1.69; 2.32]

-4 -2 0 2 4 In favor of control group

Figure S19.4. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the environment subgroups as predicted at week 48 (post-intervention). SMD -Standardized mean difference, C1 confidence interval.

S20. Subgroup analysis of Physical QoL: Type

Figure S20.1.T0

Figure S20.1. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the type subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S20.2.T12

Figure S20.2. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the type subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S20.3.T24

Figure S20.3. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the type subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S20.4.T48

Study	Experimental Patient N Mean SD P	Control Patient N Mean SE	follow-up Follow-up tim	e SMD of interested event	SMD 95%-CI
individual van der Meulen, IC, et al., 2013 Zhou, L, et al., 2020 Lu, Z, et al., 201 Cheung YL, et al. 2002 LJ, X, et al., 2017 Sectate M, et al. 2019	88 84.40 2.20 37 13.65 1.84 203 81.30 3.50 29 15.75 1.75 102 11.54 2.16 20 19.60	91 87.00 2.1 36 14.85 1.4 103 83.60 3.9 30 17.50 3.8 108 13.06 3.2 22 44.70 C	0 baseline 0.00 7 baseline 0.00 0 baseline 0.00 3 baseline 0.00 0 baseline 0.00 0 baseline 0.00	***	-1.20 [-1.52; -0.89] -0.71 [-1.19; -0.24] -0.53 [-0.87; -0.39] -0.55 [-0.82; -0.27] -0.35 [-0.27, 0.27] -0.36 [-0.27, 0.25]
Rodrigez, B. et al., 2014	8 62.50 12.82	7 71.43 36.2	25 baseline 0.00		-0.32 [-1.34; 0.70]
Nápoles AM, et al. 2015	76 15.29 5.78	75 16.76 5.0	2 baseline 0.00		-0.27 [-0.59; 0.05]
Chen, et al., 2017	58 61.20 7.50	65 63.10 7.3	0 baseline 0.00		-0.26 [-0.61; 0.10]
McLachlan, SA, et al., 2001 Rodriguez Vega, B, et al., 2010 Parker, PA, et al., 2009 I.	296 42.10 19.70 39 30.96 2.58 39 51.32 6.74	38 23.10 4.1 154 46.90 27.6 33 31.49 2.8 36 52.29 5.8	0 baseline 0.00 1 baseline 0.00 8 baseline 0.00		-0.21 [-0.41; -0.02] -0.20 [-0.66; 0.27] -0.15 [-0.60; 0.30]
Qiu, H, et al., 2018 II.	98 7.72 5.28	196 8.58 5.9	2 baseline 0.00		-0.15 [-0.39; 0.09]
Trask, PC, et al. 2003	25 67.50 31.50	23 71.40 21.1	10 baseline 0.00		-0.14 [-0.71; 0.43]
Walczak, A, et al., 2017	61 16.39 5.50	49 16.96 6.2	4 baseline 0.00		-0.10 [-0.47; 0.28]
Braeken APB, et al. 2013	136 83.36 17.84	144 85.07 19.5	59 baseline 0.00		-0.09 [-0.33; 0.14]
Powell, CB, et al., 2008 I. Ding, K, et al. 2020 Ferguson, RJ, et al., 2012 Vice Viel, et al., 2012	21 21.60 5.80 34 72.76 6.03 19 7.68 1.95 20 76.00 14.20	43 22.10 7.4 40 73.17 5.5 21 7.79 1.2 20 76.40 15 5	0 baseline 0.00 2 baseline 0.00 7 baseline 0.00	-	-0.07 [-0.59; 0.45] -0.07 [-0.53; 0.39] -0.07 [-0.69; 0.55]
Zaman, ACGNM, et al., 2017 Dirksen, S. et al. 2007 II. Qin, X. et al., 2017	42 46.60 10.00 34 19.10 4.00 50 78.56 8.38	46 46.70 9.9 38 19.10 4.7 50 78.53 11.5	0 baseline 0.00 0 baseline 0.00 0 baseline 0.00 59 baseline 0.00		-0.03 [-0.53, 0.46] -0.01 [-0.43, 0.41] 0.00 [-0.46, 0.46] 0.00 [-0.39, 0.39]
Boele FW, et al., 2017 II.	35 46.88 11.10	28 46.82 9.5	0 baseline 0.00		0.01 [-0.49; 0.50]
Glu, H, et al., 2018 I.	98 8.71 5.89	196 8.58 5.9	2 baseline 0.00		0.02 [-0.22; 0.26]
Compen F, et al. 2018 II.	90 45.62 10.25	78 45.40 8.2	4 baseline 0.00		0.02 [-0.28; 0.33]
Baovindeligeer, L.Z. et al. 2020	65 62.75 13.46	65 62.35 12.2	28 baseline 0.00		0.03 [-0.31; 0.37]
Girgis, A, et al., 2009 II.	120 86.40 14.70	117 85.80 13.8	30 baseline 0.00		0.04 [-0.21; 0.30]
Wu, Q, et al., 2021	43 52.17 5.09	43 51.95 5.1	2 baseline 0.00		0.04 [-0.38; 0.47]
Girgis, A, et al., 2009 I.	110 86.40 13.40	117 85.80 13.8	30 baseline 0.00		0.04 [-0.22; 0.30]
Chan, et al. 2005	80 65.81 61.89	75 52.85 58	50 baseline 0.00		0.05 [-0.27; 0.35]
Yun et al., 2017	134 78.60 13.50	72 77.90 11.1	10 baseline 0.00		0.05 [-0.23; 0.34]
Klinkhammer-Schalke, M et al., 2012	100 78.68 26.40	100 76.65 27.1	16 baseline 0.00		0.08 [-0.20; 0.35]
Sandsund, C, et al., 2017	72 77.20 20.20	70 75.50 22.3	30 baseline 0.00		0.08 [-0.25; 0.41]
Parker, PA et al., 2009 II	20 53.79 6.12	26 52.29 5.9	2 baseline 0.00		0.08 [-0.25; 0.64]
Johansson, B., et al., 2008	128 83.00 22.00	116 81.00 25.0	0 baseline 0.00		0.08 [-0.17; 0.34]
Schoffeld, P. et al., 2013	55 67.08 25.66	53 64.68 25.9	2 baseline 0.00		0.09 [-0.29; 0.47]
McCusker, J. et al., 2021	121 41.60 9.80	124 40.70 9.2	0 baseline 0.00		0.09 [-0.16; 0.35]
Klafke, N, et al., 2019	120 85.10 19.30	113 82.60 20.2	20 baseline 0.00	*	0.13 [-0.13; 0.38]
Powell, CB, et al., 2008 II.	21 18.90 6.20	43 18.00 6.0	0 baseline 0.00		0.15 [-0.38; 0.67]
Boele FW, et al., 2017 I.	45 47.63 10.90	44 45.55 9.1	0 baseline 0.00		0.21 [-0.21; 0.62]
Arving, C, et al., 2007	47 81.00 17.00	38 77.00 18.0	00 baseline 0.00		0.23 [-0.20; 0.66]
Zhao, X, et al., 2021	52 58.01 2.12	51 57.03 4.3	2 baseline 0.00	100	0.29 [-0.10; 0.68]
Thomas, NL, et al., 2012	64 14.10 6.10	88 12.40 5.3	0 baseline 0.00		0.30 [-0.02; 0.62]
Elyasi, F, et al., 2021 IV.	20 11.60 2.90	20 10.50 3.9	0 baseline 0.00		0.31 [-0.31; 0.94]
Elyasi, F, et al., 2021 IV.	20 21.00 4.60	20 18.90 6.4	0 baseline 0.00		0.37 [-0.26; 0.99]
Elyasi, F, et al., 2021 II.	15 11.90 3.20	15 10.50 3.9	0 baseline 0.00		0.38 [-0.34; 1.10]
Armes, J. et al. 2007	26 62.70 19.50	27 55.40 16.2	20 baseline 0.00		0.40 [-0.14; 0.95]
Elyasi, F, et al., 2021 I.	15 21.00 1.40	15 18.90 6.4	0 baseline 0.00		0.44 [-0.28; 1.17]
Korken RV et al., 2021	16 58.60 3.10	19 55.80 5.4	0 baseline 0.00		0.61 [-0.07; 1.29]
Serfary M, et al., 2018	20 12.20 8.00	22 17.50 4.5	0 followup 12.00	-	-0.81 [-1.44; -0.18]
Ferguson, RJ, et al., 2012	19 7.04 1.79	21 7.91 1.1	0 followup 8.00		-0.58 [-1.22; 0.05]
Trask, PC, et al. 2003	25 74.50 26.00	23 82.80 21.1	10 followup 24.00		-0.34 [-0.91; 0.23]
Rodnigez, B. et al., 2014	8 62.50 12.82	7 71.43 36.2	25 followup 0.10		-0.32 [-1.34; 0.70]
Beatty, L. et al. 2015	30 78.11 3.66	30 79.16 3.6	3 followup 6.00		-0.28 [-0.79; 0.22]
Chan, et al. 2005	80 56.52 61.89	75 72.73 75.3	34 followup 12.00		-0.23 [-0.55; 0.08]
Elyasi, F. et al., 2021 III.	20 17.60 2.70	20 18.70 6.2	0 followup 24.00		-0.23 [-0.85; 0.40]
Chan, et al. 2005	80 78.26 99.01	75 92.89 37.6	57 followup 72.00		-0.19 [-0.51; 0.12]
Chan, et al. 2005	80 67.00 67.17	75 78.06 58.2	20 followup 24.00		-0.17 [-0.49; 0.14]
Braeken APB, et al. 2013	136 81.99 18.06	144 85.00 17.7	76 followup 48.00		-0.17 [-0.40; 0.07]
Schofield, P. et al. 2013	55 57.21 24.88	53 60.20 25.4	40 followup 8.00		-0.12 [-0.50; 0.26]
Braeken APB, et al. 2013	136 79.63 21.02	144 81.78 17.8	33 followup 12.00		-0.11 [-0.34; 0.12]
Johansson, B, et al., 2008	128 84.00 22.00	116 86.00 19.0	00 followup 48.00		-0.10 [-0.35; 0.15]
Trask, PC, et al., 2003	25 76.40 29.50	23 78.70 19.1	18 followup 8.00		-0.09 [-0.66; 0.48]
Chan, et al. 2005 Karlsen RV et al., 2021 Chan, et al. 2005	100 77.91 23.85 80 81.23 81.30 16 53.20 9.40 80 82.61 67.17	75 86.76 65.0 19 53.80 6.6 75 86.96 54.7	55 followup 12.00 04 followup 60.00 0 followup 32.00 73 followup 48.00		-0.08 [-0.36; 0.20] -0.07 [-0.39; 0.24] -0.07 [-0.74; 0.59] -0.07 [-0.39; 0.24]
Northhouse, LL, et al., 2007	107 43.30 6.60	121 43.60 6.5	0 followup 32.00		-0.05 [-0.31; 0.21]
Girgis, A, et al., 2009 L	110 88.40 14.40	117 88.80 13.3	30 followup 24.00		-0.03 [-0.29; 0.23]
Northhouse, LL, et al., 2007	112 48.60 6.70	123 48.70 6.5	0 followup 16.00		-0.02 [-0.27; 0.24]
Chan, et al. 2005	80 83.00 63.59	75 83.60 59.5	33 followup 36.00		-0.01 [-0.32; 0.31]
Elyasi, F, et al., 2021 IV. Johansson, B, et al., 2008 Johansson, B, et al., 2008	20 10.50 2.10 128 84.00 19.00 128 85.00 21.00	20 10.50 3.7 116 84.00 21.0 116 85.00 22.0	0 followup 24.00 00 followup 12.00 00 followup 96.00 4 followup 90.00	÷.	0.00 [-0.62; 0.62] 0.00 [-0.25; 0.25] 0.00 [-0.25; 0.25]
Northbouse, LL, et al., 2007 Serfaty M, et al., 2018 Parker, PA, et al., 2009 I.	104 42.70 6.50 20 15.70 7.30 38 48.86 8.88	114 42.50 6.4 22 15.50 4.9 32 48.51 9.5	0 followup 48.00 0 followup 18.00 0 followup 18.00 0 followup 24.00		0.03 [-0.23; 0.30] 0.03 [-0.23; 0.30] 0.03 [-0.57; 0.64] 0.04 [-0.43; 0.51]
Johansson, B, et al., 2008	128 84.00 20.00	116 83.00 21.0	00 followup 24.00		0.05 [-0.20; 0.30]
Sandsund, C, et al., 2017	72 80.10 21.40	70 79.00 20.0	00 followup 12.00		0.05 [-0.28; 0.38]
Arving, C, et al., 2007	47 79.00 20.00	38 78.00 17.0	00 followup 12.00		0.05 [-0.37; 0.48]
Girois, A, et al., 2009 L	110 87.90 12.80	117 87.10 14.1	10 followup 12.00		0.06 [-0.20; 0.32]
Klafke, N, et al., 2019	120 68.70 23.50	113 67.30 22.6	30 followup 24.00		0.06 [-0.20] 0.32]
Boele FW, et al., 2017 II.	35 48.16 9.90	28 47.43 11.5	50 followup 12.00		0.07 [-0.43] 0.56]
Klinkhammer-Schalke, M et al., 2012	100 80.20 20.30	100 78.42 22.0	57 followup 24.00		0.08 [-0.19] 0.36]
Md action Schale, at al. 2011	298 42.30 19.60	154 39.90 28.7	20 followup 24.00		0.10 [-0.09] 0.30]
Arving, C. et al., 2007	47 80.00 19.00	38 78.00 17.0	00 followup 4.00	100	0.11 [-0.32; 0.54]
Boele FW, et al., 2017 I.	45 48.57 9.80	44 47.25 10.7	70 followup 12.00		0.13 [-0.29; 0.54]
Sandsund, C. et al., 2017	72 81.70 18.10	70 79.20 19.5	70 followup 24.00		0.13 [-0.20; 0.46]
Dirksen, S. et al. 2007 I. Arving, C. et al. 2007 Klafke, N. et al. 2019	100 63.25 22.34 34 24.80 3.30 47 82.00 19.00 120 80.90 21.60	38 24.30 3.8 38 79.00 18.0 113 77.00 21.4	0 followup 10.00 00 followup 24.00 10 followup 48.00		0.14 [-0.14, 0.42] 0.14 [-0.32, 0.60] 0.16 [-0.27, 0.59] 0.18 [-0.08, 0.44]
Chen, et al., 2017	58 48.40 9.10	65 46.80 8.5	0 followup 24.00		0.18 [-0.17; 0.54]
Schoffeld, P. et al., 2013	55 63.49 22.99	53 59.09 23.3	37 followup 12.00		0.19 [-0.19; 0.57]
Chen, et al., 2017	58 48.60 7.40	65 47.10 7.7	0 followup 8.00		0.20 [-0.16; 0.55]
Glu, H. et al., 2018 II.	98 9.83 9.73	195 8.01 8.8	5 followup 4.00		0.20 [-0.04; 0.44]
Glu, H, et al., 2018 II.	98 14.04 11.82	195 11.52 12.7	78 followup 24.00		0.20 [-0.04; 0.45]
Klafke, N, et al., 2019	120 75.30 20.20	113 70.70 21.7	70 followup 12.00		0.22 [-0.04; 0.48]
Nápoles AM, et al. 2015	76 19.44 4.25	75 18.44 4.5	8 followup 24.00		0.23 [-0.10; 0.55]
Sertatv M et al. 2018	20 15.30 8.80	22 14.50 5.5	0 followup 24.00		0.23 [-0.38; 0.84]
Boele FW, et al., 2017 II.	35 51.07 11.70	28 48.47 10.5	50 followup 6.00		0.23 [-0.27; 0.73]
Girgis, A, et al., 2009 II.	120 90.10 11.80	117 87.10 14.1	10 followup 12.00		0.23 [-0.03; 0.49]
Giu, H, et al., 2018 II.	98 12.99 11.82	196 10.18 11.8	30 followup 12.00		0.24 [-0.01; 0.48]
Elyası, F, et al., 2021 I.	15 20.00 3.90	15 18.70 6.2	0 followup 24.00		0.24 [-0.47; 0.96]
McCusker, J, et al., 2021	121 43.90 9.80	124 41.40 10.1	10 followup 24.00		0.25 [-0.00; 0.50]
Klinkhammer-Schalke, M et al., 2012	100 84.26 19.79	100 78.68 23.3	35 followup 36.00		0.26 [-0.02; 0.54]
Thomas, ML, et al., 2012	64 14.40 6.40	88 12.80 5.7	0 followup 12.00		0.27 [-0.06; 0.59]
Dirksen, S. et al, 2007 II.	34 22.70 4.20	38 21.50 4.7	0 followup 10.00		0.27 [-0.20; 0.73]
Elyasi, F. et al, 2021 II.	15 11.40 2.60	15 10.50 3.7	0 followup 24.00		0.27 [-0.45; 0.99]
Zaman, ACGNM, et al., 2021	42 47.70 9.50	46 44.80 11.1	10 followup 48.00		0.28 [-0.14; 0.70]
Parker PA et al. 2009 I	39 47.28 9.18	36 44.63 9.1	2 followup 6.00		0.29 [-0.17; 0.74]
Walczak, A. et al., 2017 Parker, PA, et al., 2009 II. Zaman, ACGNM, et al., 2021 Zaman, ACGNM, et al., 2021	61 18.44 6.04 38 51.36 9.18 42 46.90 8.30 42 44.90 10.70	49 16.76 5.5 32 48.51 9.5 46 43.60 10.5	0 followup 4.00 0 followup 24.00 30 followup 36.00 90 followup 36.00		0.29 [-0.09; 0.67] 0.30 [-0.17; 0.78] 0.34 [-0.09; 0.76]
Zaman, ACGANA, et al., 2021	42 44.80 10.70	46 40.80 12.0	10 followup 24.00		0.35 [-0.07; 0.77]
Yun et al., 2017	134 82.90 13.10	72 78.20 12.4	10 followup 48.00		0.36 [0.08; 0.65]
Girgis, A. et al., 2009 II.	120 93.10 9.95	117 88.80 13.3	30 followup 24.00		0.37 [0.11; 0.62]
Kim, YH, et al., 2017	30 75.10 14.20	30 68.90 18.1	10 followup 6.00		0.38 [-0.13; 0.89]
Boele FW, et al., 2017 I.	45 51.17 11.40	44 46.95 10.1	10 followup 6.00	-	0.39 [-0.03; 0.81]
Kim, YH, et al., 2017	30 75.60 17.40	30 68.40 18.1	10 followup 9.00		0.40 [-0.11; 0.91]
Zaman, ACGNM, et al., 2021	42 44.60 11.20	46 40.20 9.9	0 followup 12.00		0.41 [-0.01; 0.84]
Powell, CB, et al., 2008 I.	21 25.40 3.30	43 22.60 6.1	0 followup 12.00		0.52 [-0.01; 1.05]
Parker, PA, et al., 2009 II. Qlu, H, et al., 2018 I. LI, X, et al., 2017 Armon, L, et al., 2007	39 49.58 9.74 98 12.92 9.73 102 15.65 2.24 26 69.70 16.90	35 44.63 9.1 195 8.01 8.8 108 14.35 2.5 27 50.90 14.6	2 followup 6.00 5 followup 4.00 4 followup 12.00 5 followup 10.00		0.52 [0.06; 0.98] 0.54 [0.29; 0.78] 0.54 [0.26; 0.82]
Glu, H, et al., 2018 I. Parker, PA, et al., 2009 I. Glu, H, et al., 2018 I.	98 16.92 11.12 37 50.22 8.46 98 18.95 10.43	195 10.18 11.8 32 45.12 8.8 195 11.52 12.7	30 followup 12.00 8 followup 48.00 78 followup 24.00		0.58 [0.33; 0.83] 0.58 [0.10; 1.07] 0.62 [0.37; 0.86]
Parker, PA, et al., 2009 II. Porker, CB, et al., 2008 II. van der Meulen, IC, et al., 2013	37 51.76 10.16 21 22.60 5.80 88 82.40 2.50	32 45.12 8.8 43 17.40 7.4 91 80.50 2.4	8 followup 48.00 0 followup 12.00 0 followup 48.00	14 14	0.68 [0.20; 1.17] 0.74 [0.20; 1.28] 0.77 [0.47; 1.08]
Armes, J. et al. 2007 Baoyindeligeer, L.Z. et al. 2020 Lu, Z, et al., 201 Zhou, L, et al., 2020	25 79.20 17.30 65 84.04 12.72 203 82.60 4.50 37 45.12 5.62	27 62.10 24.8 65 72.65 13.2 103 77.60 6.3 36 38.94 5.1	25 followup 2.00 0 followup 9.00 9 followup 12.00		0.79 [0.22; 1.35] 0.87 [0.51; 1.23] 0.96 [0.71; 1.21] 1.13 [0.63; 1.63]
Armes, J. et al. 2007 Wu, Q. et al., 2021 Zhou, J. et al., 2020 Zhao, X. et al., 2021	26 77.00 14.40 43 80.45 8.21 59 78.20 10.26 52 65.12 6.01	27 57.30 19.3 43 71.45 7.4 59 66.80 8.9 51 57.51 3.2	30 followup 4.00 6 followup 12.00 0 followup 2.00 4 followup 12.00	-	1.14 [0.55; 1.72] 1.14 [0.68; 1.59] 1.18 [0.79; 1.57] 1.56 [1.12 2.00]
Compen F. et al. 2018 II.	90 47.60 1.20	78 45.40 1.2	1 followup 8.00	1	1.82 [1.46] 2.18]
Beatty, L. et al. 2015	30 90.41 3.39	30 83.67 3.3	6 followup 26.07		1.97 [1.35] 2.59]
Cheung YL, et al. 2002	29 26.58 1.45	30 22.60 2.1	4 followup 10.00		2.14 [1.49] 2.79]
Cheung YI, et al. 2002	29 24.96 1.22	30 20.96 1.7	5 followup 5.00		2.60 (1.90 3.21]
Beatty, L. et al. 2015	30 85.63 3.50	30 75.66 3.4	7 followup 13.03	-	2.82 (2.10; 3.55)
Ding, K. et al. 2020	34 104.47 7.43	40 82.38 5.4	2 followup 4.00		→ 3.40 (2.68; 4.13)
Rodriguez Vega, B. et al. 2010	39 56.60 2.58	33 41.79 2.8	1 followup 12.00		→ 5.45 (4.43; 6.48)
Roonguez vega, B, et al., 2010 Random effect Prediction interval	39 66.52 2.58 10140	33 39.77 2.8 10331	1 Tollowup 24.00	-	* 9.85 [8.13, 11.56] 0.38 [0.06; 0.69] [-1.26; 2.01]
group Berglund, G. et al. 2007 Rahmani, S. et al. 2015 Heiney, SP, et al. 2003	39 73.30 23.00 12 61.66 8.59 33 6.60 1.90	150 84.60 18.3 12 65.00 12.7 33 7.10 1.7	30 baseline 0.00 75 baseline 0.00 0 baseline 0.00	+	-0.58 [-0.94; -0.22] -0.30 [-1.10; 0.51] -0.27 [-0.76; 0.21]
Ruiz-Vozmediano, J, et al. 2020	31 75.40 19.50	32 79.20 15.7	70 baseline 0.00		-0.21 [-0.71; 0.28]
Guo, Z, et al., 2013	89 77.23 10.19	89 78.91 10.8	31 baseline 0.00		-0.16 [-0.45; 0.14]
Peng, L, et al., 2022	28 78.33 12.78	29 79.08 10.0	34 baseline 0.00		-0.05 [-0.58; 0.45]
Penedo, FJ, et al., 2020 I.	95 -23.26 3.80	97 -23.09 3.8	4 baseline 0.00		-0.04 [-0.33; 0.24]
Zhang, LMM, et al., 2021 Jelvehzadeh, F, et al., 2022 Penedo, FJ, et al., 2020 II. Eillion I. et al., 2020	80 58.64 16.46 24 3.15 1.52 95 -20.27 4.68 44 40.49 9.50	80 59.25 16.4 24 3.21 2.0 97 -20.48 4.6 42 40.00 9.4	46 baseline 0.00 8 baseline 0.00 3 baseline 0.00 2 baseline 0.00		-0.04 [-0.35; 0.27] -0.03 [-0.60; 0.53] 0.04 [-0.24; 0.33] 0.05 [-0.27]
Penedo, FJ, et al., 2007	41 -23.98 28.88	30 -25.67 14.8	4 baseline 0.00		0.07 [-0.40; 0.54]
Compen F, et al., 2018 I.	77 46.06 8.88	78 45.40 8.2	4 baseline 0.00		0.08 [-0.24; 0.39]
Cengiz, HO, et al., 2023	32 14.15 7.56	33 13.03 6.8	2 baseline 0.00		0.15 [-0.33; 0.64]
Hemandez, EG, et al. 2018 I.	28 18.93 5.70	28 17.57 5.9	6 baseline 0.00	÷.	0.23 [-0.30] 0.76]
Liu, T, et al., 2019	49 76.27 18.94	53 72.14 15.1	11 baseline 0.00		0.24 [-0.15] 0.63]
Hemandez, EG, et al. 2018 II.	28 15.75 6.10	28 13.82 5.6	8 baseline 0.00		0.32 [-0.20] 0.85]
Von Ah, D, et al., 2012 II.	27 44.69 4.40	29 43.18 4.7	2 baseline 0.00		0.33 [-0.20] 0.85]
Von Ah, D, et al., 2012 I.	26 45.71 5.98	29 43.18 4.7	2 baseline 0.00	-	0.47 [-0.07; 1.00]
Huri M, et al., 2015	19 36.68 8.73	15 -36.26 7.9	3 baseline 0.00		* 8.49 [6.25; 10.73]
Berglund, G. et al. 2007	39 78.20 22.50	150 87.80 16.9	90 followup 48.00		-0.53 [-0.88; -0.17]
Heiney, SP, et al., 2003	33 6.40 1.40	33 7.20 2.1	0 followup 16.00		-0.44 [-0.93; 0.05]
Heiney, SP, et al., 2003	33 6.40 1.80	33 6.90 2.1	0 followup 6.00		-0.25 [-0.74; 0.23]
Penedo, FJ, et al., 2007	41 -25.51 13.16	30 -23.83 21.3	36 followup 12.00		-0.10 [-0.57; 0.37]
Penedo, FJ, et al., 2020 I.	95 -23.29 4.00	97 -23.11 4.0	4 followup 48.00		-0.04 [-0.33; 0.24]
Penedo, FJ, et al., 2020 I.	95 -23.16 3.90	97 -22.99 3.9	4 followup 24.00		-0.04 [-0.33; 0.24]
Zhang, LMM, et al., 2021 Rahmani, S, et al. 2015 Peng, L, et al., 2022 Reporte EL et al., 2020 II	80 62.34 16.46 12 12.00 69.44 28 78.33 12.52 96 20.08 4.97	80 62.75 15.0 12 12.00 58.3 29 78.16 10.6 97 20.29 4.9	02 followup 12.00 33 followup 16.00 30 followup 0.10 3 followup 48.00	-	-0.03 [-0.34; 0.28] 0.00 [-0.80; 0.80] 0.01 [-0.50; 0.53]
Penedo, FJ, et al., 2020 II.	95 -20.49 4.78	97 -20.70 4.7	3 followup 24.00		0.04 [-0.24; 0.33]
Von Ah, D, et al., 2012 II.	26 45.03 6.17	29 44.49 4.8	1 followup 8.00		0.10 [-0.43; 0.63]
Von Ah, D, et al., 2012 II.	27 45.00 4.48	29 44.49 4.8	1 followup 8.00		0.11 [-0.42; 0.63]
Fillion, L., et al., 2022	20 03.10 12.03	20 01.30 14.5	25 followup 4.00		0.12 [-0.40, 0.65]
Fillion, L., et al. 2008	44 46.76 9.24	43 44.64 11.0	25 followup 12.00		0.21 [-0.21; 0.63]
Zhang, LMM, et al., 2021	80 67.90 15.85	80 64.81 13.1	17 followup 24.00		0.21 [-0.10; 0.52]
Zhang, LMM, et al., 2021	80 72.01 14.81	80 68.72 12.3	35 followup 36.00		0.24 [-0.07; 0.55]
Zhang, LMM, et al., 2021	80 74.27 15.02	80 70.16 13.5	58 followup 48.00		0.29 [-0.03; 0.60]
Fillion, L., et al. 2008	44 45.10 10.42	43 41.76 9.7	6 followup 4.00		0.33 [-0.10; 0.75]
Ruiz-Vozmediano, J., et al., 2020	31 85.00 14.10	32 78.30 18.9	90 followup 24.00		0.40 [-0.10; 0.89]
Hernandez, EG, et al. 2018 II.	28 17.64 4.61	28 15.56 4.8	1 followup 24.00		0.44 [-0.10; 0.97]
Guo, Z, et al., 2013 Liu, T, et al., 2019 Hernandez, EG, et al. 2018 II.	89 79.70 9.80 49 74.61 18.94 28 17.54 3.20 49 95.72 12.20	89 75.36 9.7 53 67.34 11.6 28 15.40 4.3 53 77.09 16 1	1 followup 2.00 35 followup 9.00 9 followup 8.00		0.44 [0.15; 0.74] 0.46 [0.07; 0.86] 0.55 [0.02; 1.08] 0.59 [0.20; 0.99]
Cengiz, HO, et al., 2023 Hernandez, EG, et al. 2018 I. Hernandez, EG, et al. 2018 I. Dobrani, D. et al. 2018 I.	32 16.75 6.33 28 21.50 3.39 28 21.27 4.09 29 21.27 4.09	33 12.33 7.0 28 17.68 6.1 28 17.52 5.3	0 followup 8.00 6 followup 8.00 4 followup 24.00		0.85 [0.15; 1.15] 0.76 [0.21; 1.30] 0.78 [0.23; 1.32]
Jelvehzadeh, F, et al., 2022 Jelvehzadeh, F, et al., 2022 Compen F, et al., 2018 I.	24 5.64 1.73 24 5.64 1.73 24 5.64 1.73 77 48.43 1.11	24 3.70 1.6 24 3.43 1.7 78 45.40 1.2	8 followup 12.00 5 followup 8.00 1 followup 8.00		1.12 [0.51; 1.73] 1.25 [0.63; 1.87] 2.60 [2.17; 3.03]
Random effect Prediction interval	19 0.57 5.38 2470	15 -41.73 6.1 2701	→ ronowup 12.00	-	- 7.21 [0.27] 8.15] 0.46 [0.01; 0.90] [-1.18; 2.09]
self-help Willems, R, et al., 2016 Hauffman, A, et al., 2020 Takano, T, et al., 2021	188 85.08 2.10 124 77.00 21.00 31 84.80 15.98	221 86.70 3.0 121 80.00 18.0 38 84.00 17.0	0 baseline 0.00 00 baseline 0.00 01 baseline 0.00		-0.62 [-0.82; -0.42] -0.15 [-0.40; 0.10] 0.05 [-0.43; 0.52]
Takano, T, et al., 2021	31 75.30 9.85	38 76.40 24.1	16 followup 24.00		-0.06 [-0.53; 0.42]
Hauffman, A, et al., 2020	124 80.00 19.00	121 81.00 19.0	00 followup 7.00		-0.05 [-0.30; 0.20]
Hauffman, A, et al., 2020	124 74.00 20.00	121 75.00 21.0	00 followup 1.00		-0.05 [-0.30; 0.20]
Hauffman, A, et al., 2020	124 80.00 18.00	121 80.00 19.0	00 followup 4.00		0.00 [-0.25; 0.24]
Hauffman, A, et al., 2020 Takano, T, et al., 2021 Willems, R, et al., 2016 Random official	124 82.00 20.00 31 83.40 19.82 188 83.70 2.60	121 81.00 19.0 38 81.60 19.0 221 80.10 2.2	00 followup 10.00 00 followup 12.00 0 followup 24.00	<u> </u>	0.05 [-0.20; 0.30] 0.09 [-0.38; 0.57] 1.50 [1.28; 1.72]
Random effect	13699	14193		-	0.38 [0.09; 0.67]
Prediction interval			In favo	-4 -2 0 2 rof control group In favor of int	[-1.22; 1.98] 4 envention group

Figure S20.4. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the type subgroups as predicted at week 48 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

S21. Subgroup analysis of Physical QoL: Cancer stage

Figure S21.1.T0

	E	operimental		Control						
Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
early								_		
Willems, R, et al., 2016 Rodrigez B, et al. 2014	188	85.08 2.10	221	86.70	3.00	baseline	0.00	-	-0.62	[-0.82; -0.42]
Ruiz-Vozmediano, J, et al., 2020	31	75.40 19.50	32	79.20	15.70	baseline	0.00		-0.21	[-0.71; 0.28]
Rodríguez Vega, B, et al., 2010	39	30.96 2.58	33	31.49	2.81	baseline	0.00	1	-0.20	[-0.66; 0.27]
Ferguson, RJ, et al., 2009 I.	39 19	7.68 1.95	21	7.79	1.27	baseline	0.00		-0.15	[-0.69; 0.55]
Zhang, LMM, et al., 2021	80	58.64 16.46	80	59.25	16.46	baseline	0.00	±	-0.04	[-0.35; 0.27]
Wu, Q, et al., 2021 Takano T et al. 2021	43	52.17 5.09 84.80 15.98	43	51.95 84.00	5.12	baseline	0.00		0.04	[-0.38; 0.47]
Fillion, L, et al. 2008	44	40.49 9.50	43	40.00	9.43	baseline	0.00		0.05	[-0.37; 0.47]
Yun et al., 2017 Derker, DA, et al., 2000 II	134	78.60 13.50	72	77.90	11.10	baseline	0.00	<u>-</u>	0.05	[-0.23; 0.34]
Cengiz, HO, et al., 2009 II.	39	14.15 7.56	30	13.03	5.88 6.82	baseline	0.00		0.08	[-0.37, 0.54]
Liu, T, et al., 2019	49	76.27 18.94	53	72.14	15.11	baseline	0.00	世	0.24	[-0.15; 0.63]
Zhao, X, et al., 2021 Ferguson R.Let al. 2012	52 19	58.01 2.12	51 21	57.03	4.32	followup	0.00		0.29	[-0.10; 0.68]
Rodrigez, B, et al., 2014	8	62.50 12.82	7	71.43	36.25	followup	0.10		-0.32	[-1.34; 0.70]
Beatty, L. et al. 2015 Takano T. et al. 2021	30	78.11 3.66	30	79.16	3.63	followup	6.00		-0.28	[-0.79; 0.22]
Zhang, LMM, et al., 2021	80	62.34 16.46	80	62.75	15.02	followup	12.00	辛	-0.03	[-0.34; 0.28]
Parker, PA, et al., 2009 I.	38	48.86 8.88	32	48.51	9.50	followup	24.00	重	0.04	[-0.43; 0.51]
Fillion, L, et al. 2008	44	46.76 9.24	43	44.64	11.05	followup	12.00	<u>+</u>	0.09	[-0.21; 0.63]
Zhang, LMM, et al., 2021	80	67.90 15.85	80	64.81	13.17	followup	24.00	÷	0.21	[-0.10; 0.52]
Znang, LMM, et al., 2021 Zhang, LMM, et al., 2021	80	72.01 14.81 74.27 15.02	80 80	68.72 70.16	12.35	followup	36.00	<u> </u>	0.24	[-0.07; 0.55]
Parker, PA, et al., 2009 I.	39	47.28 9.18	36	44.63	9.12	followup	6.00		0.29	[-0.17; 0.74]
Parker, PA, et al., 2009 II. Fillion Let al. 2008	38	51.36 9.18	32	48.51	9.50	followup	24.00		0.30	[-0.17; 0.78] [-0.10; 0.75]
Yun et al., 2017	134	82.90 13.10	72	78.20	12.40	followup	48.00	-	0.36	[0.08; 0.65]
Ruiz-Vozmediano, J, et al.,2020	31	85.00 14.10	32	78.30	18.90	followup	24.00	臣	0.40	[-0.10; 0.89]
Parker, PA, et al., 2019	49 39	49.58 9.74	36	44.63	9.12	followup	6.00		0.46	[0.07, 0.86]
Parker, PA, et al., 2009 I.	37	50.22 8.46	32	45.12	8.88	followup	48.00		0.58	[0.10; 1.07]
Liu, T, et al., 2019 Cengiz HO et al. 2023	49	85.72 12.30	53	77.09	16.10	followup	12.00		0.59	[0.20; 0.99]
Parker, PA, et al., 2009 II.	37	51.76 10.16	32	45.12	8.88	followup	48.00	-	0.68	[0.20; 1.17]
Wu, Q, et al., 2021	43	80.45 8.21	43	71.45	7.46	followup	12.00		1.14	[0.68; 1.59]
Zhao, X, et al., 2021	52	65.12 6.01	51	57.51	3.24	followup	12.00	-	1.50	[1.12; 2.00]
Guan, S, et al., 2019	50	69.11 8.27	50	55.93	5.80	followup	8.00		1.83	[1.36; 2.30]
Beatty, L. et al. 2015 Beatty I. et al. 2015	30 30	90.41 3.39 85.63 3.50	30 30	83.67 75.66	3.36	followup	26.07 13.03		1.97	[1.35; 2.59]
Rodríguez Vega, B, et al., 2010	39	56.60 2.58	33	41.79	2.81	followup	12.00		> 5.45	[4.43; 6.48]
Rodríguez Vega, B, et al., 2010	39	66.52 2.58	33	39.77	2.81	followup	24.00		> 9.85	[8.13; 11.56]
Prediction interval	₹349		2213					<u> </u>	0.30	[-2.50; 3.10]
- duran d										
auvanceu Lu. Z. et al., 201	203	81.30 3.50	103	83.60	3.90	baseline	0.00	-	-0.63	[-0.87: -0.39]
Serfaty M, et al., 2018	20	12.60 4.80	22	14.70	6.40	baseline	0.00	-	-0.36	[-0.97; 0.25]
Heiney, SP, et al., 2003 Walczak, A. et al. 2017	33	6.60 1.90 16.30 5.50	33	7.10	1.70	baseline	0.00		-0.27	[-0.76; 0.21]
Penedo, FJ, et al., 2020 I.	95	-23.26 3.80	97	-23.09	3.84	baseline	0.00		-0.04	[-0.33; 0.24]
Boele FW, et al., 2017 II. Benede, El. et al. 2020 II	35	46.88 11.10	28	46.82	9.50	baseline	0.00	<u></u>	0.01	[-0.49; 0.50]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2007	41	-23.98 28.88	30	-20.46	4.03	baseline	0.00		0.04	[-0.24, 0.33]
Schofield, P, et al., 2013	55	67.08 25.66	53	64.68	25.92	baseline	0.00	豊	0.09	[-0.29; 0.47]
Boele FW, et al., 2017 I. Huri M. et al. 2015	45 19	47.63 10.90	44 15	45.55	9.10	baseline	0.00	T	> 8.49	[-0.21; 0.62]
Serfaty M, et al., 2018	20	12.20 8.00	22	17.50	4.50	followup	12.00		-0.81	[-1.44; -0.18]
Heiney, SP, et al., 2003	33	6.40 1.40	33	7.20	2.10	followup	16.00	1	-0.44	[-0.93; 0.05]
Schofield, P, et al., 2013	55	57.21 24.88	53	60.20	25.40	followup	8.00	3	-0.12	[-0.50; 0.26]
Penedo, FJ, et al., 2007	41	-25.51 13.16	30	-23.83	21.36	followup	12.00		-0.10	[-0.57; 0.37]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95 95	-23.29 4.00	97	-23.11	4.04 3.94	followup	48.00 24.00	-	-0.04	[-0.33, 0.24]
Serfaty M, et al., 2018	20	15.70 7.30	22	15.50	4.90	followup	18.00	*	0.03	[-0.57; 0.64]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2020 II.	95	-20.08 4.87	97	-20.29	4.83	followup	48.00	÷	0.04	[-0.24; 0.33]
Boele FW, et al ., 2017 II.	35	48.16 9.90	28	47.43	11.50	followup	12.00		0.07	[-0.43; 0.56]
Boele FW, et al., 2017 I. Sorfaty M. et al., 2019	45	48.57 9.80	44	47.25	10.70	followup	12.00	<u>±</u>	0.13	[-0.29; 0.54]
Boele FW, et al., 2017 II.	35	51.07 11.70	28	48.47	10.50	followup	6.00		0.23	[-0.27; 0.73]
Walczak, A, et al.,2017	61	18.44 6.04	49	16.76	5.50	followup	4.00		0.29	[-0.09; 0.67]
Lu. Z. et al., 2017 I.	203	82.60 4.50	103	77.60	6.30	followup	9.00		0.96	[-0.03, 0.81]
Huri M, et al., 2015	19	0.57 5.38	15	-41.73	6.14	followup	12.00		> 7.21	[5.27; 9.15]
Random effect Prediction interval	1747		1485						0.27	[-0.94; 1.48] [-2.87: 3.41]
reaction merida										[-2.07, 5.41]
SURVIVOR Chan at al. 2017	58	61 20 7 50	65	63 10	7 30	hacolino	0.00	-	-0.26	L0 61: 0 101
Qiu, H, et al., 2018 II.	98	7.72 5.28	196	8.58	5.92	baseline	0.00	-	-0.20	[-0.39; 0.09]
Peng, L, et al., 2022	28	78.33 12.78	29	79.08	10.04	baseline	0.00		-0.06	[-0.58; 0.45]
Qiu. H. et al., 2022	24 98	3.15 1.52 8.71 5.89	24 196	3.21	2.08	baseline	0.00	-	-0.03	[-0.60; 0.53]
McCusker, J, et al., 2021	121	41.60 9.80	124	40.70	9.20	baseline	0.00		0.09	[-0.16; 0.35]
Von Ah, D, et al., 2012 II. Von Ah, D, et al., 2012 I	27	44.69 4.40	29	43.18	4.72	baseline	0.00		0.33	[-0.20; 0.85] [-0.07: 1.00]
Peng, L, et al., 2022	28	78.33 12.52	29	78.16	10.60	followup	0.10		0.01	[-0.50; 0.53]
Von Ah, D, et al., 2012 I.	26	45.03 6.17	29	44.49	4.81	followup	8.00		0.10	[-0.43; 0.63]
Peng, L, et al., 2022	28	83.10 12.63	29	81.38	4.01	followup	4.00		0.12	[-0.42, 0.65]
Chen, et al., 2017	58	48.40 9.10	65	46.80	8.50	followup	24.00		0.18	[-0.17; 0.54]
Grien, et al., 2017 Qiu, H, et al., 2018 II	58 98	48.00 /.40 9.83 9.73	05 196	47.10 8.01	7.70 8.85	followup	8.00 4.00		0.20	[-0.10; 0.55] [-0.04: 0.441
Qiu, H, et al., 2018 II.	98	14.04 11.82	196	11.52	12.78	followup	24.00	÷.	0.20	[-0.04; 0.45]
Qiu, H, et al., 2018 II. McCusker, Let al. 2021	98	12.99 11.82	196	10.18	11.80	followup	12.00		0.24	[-0.01; 0.48]
Qiu, H, et al., 2018 I.	98	43.90 9.80 12.92 9.73	124	8.01	8.85	followup	4.00]]==	0.25	[0.29; 0.78]
Qiu, H, et al., 2018 I.	98	16.92 11.12	196	10.18	11.80	followup	12.00	+	0.58	[0.33; 0.83]
uiu, H, et al., 2018 I. Jelvehzadeh, F, et al., 2022	98 24	18.96 10.43 5.64 1.73	24	3.70	12.78	followup	24.00		0.62	[0.37; 0.86]
Jelvehzadeh, F, et al., 2022	24	5.64 1.73	24	3.43	1.75	followup	8.00		1.25	[0.63; 1.87]
Random effect Prediction interval	1462		2285					<u> </u>	-0.05	[-0.43; 0.33] [-3.16; 3.06]
										[-3.10, 3.00]
Random effect	5558		6043					<u></u>	0.21	[-0.16; 0.58]
Freuction interval							Г			[-Z.47; Z.89]
							-4	-2 0 2	4	
							In favor of	control group In favor of int	erventior	i group

Figure S21.1. Forest plot represents the difference between the intervention vs. control group in the Physical QOL domain with the cancer stage subgroups as predicted at week 0 (post-intervention). SMD -Standardized mean difference, CI confidence interval.

Figure S21.2.T12

Study	Ex Dationt N	perimental Mean SD	Dationt N	Control Mean	SD	follow.up	Follow up time	SMD of interested event	SMD	95%-CI
Study	radenth	mean 30	radenth	mean	50	ionom-up	rollow-up allie		3110	55/1-61
early Willoms R et al. 2016	100	95.09 2.10	221	96 70	2.00	bacolino	0.00	-	0.62	10 92: 0 421
Rodrigez, B. et al., 2014	8	62.50 12.82	7	71.43	36.25	baseline	0.00		-0.02	[-0.82, -0.42]
Ruiz-Vozmediano, J, et al.,2020	31	75.40 19.50	32	79.20	15.70	baseline	0.00		-0.21	[-0.71; 0.28]
Rodriguez Vega, B, et al., 2010 Parker PA et al. 2009 I	39	30.96 2.58	33	31.49 52.20	2.81	baseline	0.00	1	-0.20	[-0.66; 0.27]
Ferguson, RJ, et al., 2012	19	7.68 1.95	21	7.79	1.27	baseline	0.00		-0.07	[-0.69; 0.55]
Zhang, LMM, et al., 2021	80	58.64 16.46	80	59.25	16.46	baseline	0.00		-0.04	[-0.35; 0.27]
Takano, T. et al., 2021	43	52.17 5.09 84.80 15.98	43 38	51.95	5.12 17.01	baseline	0.00		0.04	[-0.38; 0.47]
Fillion, L, et al. 2008	44	40.49 9.50	43	40.00	9.43	baseline	0.00		0.05	[-0.37; 0.47]
Yun et al., 2017 Parker, PA, et al., 2000 II	134	78.60 13.50	72	77.90	11.10	baseline	0.00	二二	0.05	[-0.23; 0.34]
Cengiz, HO, et al., 2003 II.	39	14.15 7.56	33	13.03	6.82	baseline	0.00	-	0.08	[-0.33; 0.64]
Liu, T, et al., 2019	49	76.27 18.94	53	72.14	15.11	baseline	0.00		0.24	[-0.15; 0.63]
Erguson RJ et al. 2012	52 19	7 04 1 79	51 21	57.03	4.32	followup	0.00		-0.58	[-0.10; 0.68]
Rodrigez, B, et al., 2014	8	62.50 12.82	7	71.43	36.25	followup	0.10		-0.32	[-1.34; 0.70]
Beatty, L. et al. 2015 Takana, T. et al. 2021	30	78.11 3.66	30	79.16	3.63	followup	6.00		-0.28	[-0.79; 0.22]
Zhang, LMM, et al., 2021	80	62.34 16.46	80	62.75	15.02	followup	12.00		-0.03	[-0.34; 0.28]
Parker, PA, et al., 2009 I.	38	48.86 8.88	32	48.51	9.50	followup	24.00		0.04	[-0.43; 0.51]
Fillion L et al. 2021	31 44	4676 924	38 43	81.60 44.64	18.00	followup	12.00	-	0.09	[-0.38; 0.57]
Zhang, LMM, et al., 2021	80	67.90 15.85	80	64.81	13.17	followup	24.00		0.21	[-0.10; 0.52]
Zhang, LMM, et al., 2021 Zhang, LMM, et al., 2021	80	72.01 14.81	80	68.72	12.35	followup	36.00	重	0.24	[-0.07; 0.55]
Parker, PA, et al., 2009 I.	39	47.28 9.18	36	44.63	9.12	followup	6.00	-	0.29	[-0.03, 0.60]
Parker, PA, et al., 2009 II.	38	51.36 9.18	32	48.51	9.50	followup	24.00	-	0.30	[-0.17; 0.78]
Fillion, L, et al. 2008 Yun et al. 2017	44	45.10 10.42	43	41.76	9.76	followup	4.00	T.	0.33	[-0.10; 0.75]
Ruiz-Vozmediano, J, et al.,2020	31	85.00 14.10	32	78.30	18.90	followup	24.00		0.40	[-0.10; 0.89]
Liu, T, et al., 2019	49	74.61 18.94	53	67.34	11.65	followup	9.00	-	0.46	[0.07; 0.86]
Parker, PA, et al., 2009 II. Parker PA et al. 2009 I	39	49.58 9.74	30	44.63	9.12	followup	48.00		0.52	[0.06; 0.98]
Liu, T, et al., 2019	49	85.72 12.30	53	77.09	16.10	followup	12.00	<u>록</u>	0.59	[0.20; 0.99]
Cengiz, HO, et al., 2023	32	16.75 6.33	33	12.33	7.00	followup	8.00	-	0.65	[0.15; 1.15]
Parker, PA, et al., 2009 II. Wu O et al. 2021	37 43	51.76 10.16	32 43	45.12	8.88 7.46	followup	48.00		0.68	[0.20; 1.17]
Willems, R, et al., 2016	188	83.70 2.60	221	80.10	2.20	followup	24.00	-	1.50	[1.28; 1.72]
Zhao, X, et al., 2021	52	65.12 6.01	51	57.51	3.24	followup	12.00	12	1.56	[1.12; 2.00]
Beatty, L. et al. 2015	30	90.41 3.39	30	55.93 83.67	3.36	followup	26.07		1.03	[1.30, 2.30]
Beatty, L. et al. 2015	30	85.63 3.50	30	75.66	3.47	followup	13.03		2.82	[2.10; 3.55]
Rodríguez Vega, B, et al., 2010	39	56.60 2.58	33	41.79	2.81	followup	12.00		> 5.45	[4.43; 6.48]
Random effect	2349	00.02 2.00	2273	39.11	2.01	lollowup	24.00		0.81	[0.17; 1.45]
Prediction interval										[-2.06; 3.68]
advanced										
Lu, Z, et al., 201	203	81.30 3.50	103	83.60	3.90	baseline	0.00	-	-0.63	[-0.87; -0.39]
Serfaty M, et al., 2018	20	12.60 4.80	22	14.70	6.40	baseline	0.00		-0.36	[-0.97; 0.25]
Walczak A et al. 2003	33	6.60 1.90 16.39 5.50	33 49	7.10	1.70	baseline	0.00		-0.27	[-0.76; 0.21]
Penedo, FJ, et al., 2020 I.	95	-23.26 3.80	97	-23.09	3.84	baseline	0.00		-0.04	[-0.33; 0.24]
Boele FW, et al., 2017 II.	35	46.88 11.10	28	46.82	9.50	baseline	0.00		0.01	[-0.49; 0.50]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2007	95 41	-20.27 4.68	30	-20.48	4.03	baseline	0.00		0.04	[-0.24, 0.33]
Schofield, P, et al., 2013	55	67.08 25.66	53	64.68	25.92	baseline	0.00		0.09	[-0.29; 0.47]
Boele FW, et al., 2017 I. Huri M. et al. 2015	45	47.63 10.90	44	45.55	9.10	baseline	0.00		0.21	[-0.21; 0.62]
Serfaty M, et al., 2018	20	12.20 8.00	22	17.50	4.50	followup	12.00		-0.81	[-1.44; -0.18]
Heiney, SP, et al., 2003	33	6.40 1.40	33	7.20	2.10	followup	16.00	-	-0.44	[-0.93; 0.05]
Schofield, P. et al., 2003	33 55	57.21 24.88	33 53	60.20	25.40	followup	8.00		-0.25	[-0.74; 0.23]
Penedo, FJ, et al., 2007	41	-25.51 13.16	30	-23.83	21.36	followup	12.00	<u>-</u>	-0.10	[-0.57; 0.37]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95	-23.29 4.00	97	-23.11	4.04	followup	48.00		-0.04	[-0.33; 0.24]
Serfaty M, et al., 2018	20	15.70 7.30	22	15.50	4.90	followup	18.00		0.04	[-0.53, 0.24]
Penedo, FJ, et al., 2020 II.	95	-20.08 4.87	97	-20.29	4.83	followup	48.00	±	0.04	[-0.24; 0.33]
Penedo, FJ, et al., 2020 II. Boele FW, et al., 2017 II.	95 35	-20.49 4.78	97 28	-20.70	4.73	followup	24.00		0.04	[-0.24; 0.33]
Boele FW, et al ., 2017 I.	45	48.57 9.80	44	47.25	10.70	followup	12.00		0.13	[-0.29; 0.54]
Serfaty M, et al., 2018	20	16.30 8.80	22	14.60	5.60	followup	24.00		0.23	[-0.38; 0.84]
Walczak A et al. 2017 II.	35 61	18 44 6.04	28 49	48.47	5.50	followup	4.00	-	0.23	[-0.27, 0.73]
Boele FW, et al ., 2017 I.	45	51.17 11.40	44	46.95	10.10	followup	6.00		0.39	[-0.03; 0.81]
Lu, Z, et al., 201 Huri M, et al., 2015	203	82.60 4.50	103	77.60	6.30	followup	9.00		0.96	[0.71; 1.21]
Random effect	1747	0.57 5.50	1485	-41.75	0.14	lollowup	12.00		0.78	[-0.44; 2.00]
Prediction interval									-	[-2.40; 3.95]
survivor										
Chen, et al., 2017	58	61.20 7.50	65	63.10	7.30	baseline	0.00	一番目	-0.26	[-0.61; 0.10]
Qiu, H, et al., 2018 II. Rong L, et al. 2022	98	7.72 5.28	196	8.58	5.92	baseline	0.00	<u> </u>	-0.15	[-0.39; 0.09]
Jelvehzadeh, F, et al., 2022	24	3.15 1.52	24	3.21	2.08	baseline	0.00	- 	-0.03	[-0.60; 0.53]
Qiu, H, et al., 2018 I.	98	8.71 5.89	196	8.58	5.92	baseline	0.00	生日	0.02	[-0.22; 0.26]
McCusker, J, et al., 2021	121	41.60 9.80	124	40.70	9.20	baseline	0.00		0.09	[-0.16; 0.35]
Von Ah, D, et al., 2012 I.	26	45.71 5.98	29	43.18	4.72	baseline	0.00		0.33	[-0.07; 1.00]
Peng, L, et al., 2022	28	78.33 12.52	29	78.16	10.60	followup	0.10		0.01	[-0.50; 0.53]
Von Ah, D, et al., 2012 I. Von Ah, D, et al., 2012 II.	26	45.03 6.17	29	44.49	4.81	followup	8.00		0.10	[-0.43; 0.63]
Peng, L, et al., 2022	28	83.10 12.63	28	81.38	14.52	followup	4.00	- 문	0.12	[-0.40; 0.65]
Chen, et al., 2017	58	48.40 9.10	65	46.80	8.50	followup	24.00	言語	0.18	[-0.17; 0.54]
Oiu H et al. 2018 II	58 98	983 973	196	47.10	8.85	followup	4 00	-	0.20	[-0.16, 0.55]
Qiu, H, et al., 2018 II.	98	14.04 11.82	196	11.52	12.78	followup	24.00		0.20	[-0.04; 0.45]
Qiu, H, et al., 2018 II.	98	12.99 11.82	196	10.18	11.80	followup	12.00		0.24	[-0.01; 0.48]
Qiu, H, et al., 2018 I.	98	43.90 9.80	124	8.01	8.85	followup	4.00		0.25	[0.29; 0.78]
Qiu, H, et al., 2018 I.	98	16.92 11.12	196	10.18	11.80	followup	12.00	1 1 1 1	0.58	[0.33; 0.83]
Qiu, H, et al., 2018 I. Jelvebradeb E et al. 2022	98 24	18.96 10.43	196 24	11.52	12.78	followup	24.00		0.62	[0.37; 0.86]
Jelvehzadeh, F, et al., 2022	24	5.64 1.73	24	3.43	1.75	followup	8.00		1.25	[0.63; 1.87]
Random effect	1462	-	2285			-		•	0.46	[0.15; 0.76]
Prediction interval										[-2.68; 3.59]
Random effect	5558		6043						0.71	[0.20; 1.23]
Prediction interval									Г	[-1.95; 3.38]

-4 -2 0 2 4 In favor of control group In favor of intervention group Figure S21.2. Forest plot represents the difference between the intervention vs. control group in the Physical QOL domain with the cancer stage subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S21.3.T24

Study	Ex Patient N	perimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested ev	vent s	SMD	95%-CI
oortu											
Willems, R, et al., 2016	188	85.08 2.10	221	86.70 3	3.00	baseline	0.00	=	-	0.62 [-(0.82; -0.42]
Rodrigez, B, et al., 2014 Ruiz-Vozmediano, J, et al. 2020	8 31	62.50 12.82 75.40 19.50	7 32	71.43 36	6.25 5.70	baseline baseline	0.00		-	0.32 [- [.] 0.21 [-(1.34; 0.70] 0.71: 0.28]
Rodríguez Vega, B, et al., 2010	39	30.96 2.58	33	31.49 2	2.81	baseline	0.00	<u></u>	-1	0.20 [-(0.66; 0.27]
Parker, PA, et al., 2009 I. Ferguson, RJ, et al., 2012	39 19	51.32 6.74 7.68 1.95	36 21	52.29 5 7.79 1	5.88 1.27	baseline baseline	0.00			0.15 [-(0.07 [-(0.60; 0.30] 0.69: 0.551
Zhang, LMM, et al., 2021	80	58.64 16.46	80	59.25 16	6.46	baseline	0.00		-1	0.04 [-	0.35; 0.27]
Wu, Q, et al., 2021 Takano, T, et al., 2021	43 31	52.17 5.09 84.80 15.98	43 38	51.95 5	0.12 7.01	baseline	0.00).04 [-().05 [-(0.38; 0.47] 0.43; 0.52]
Fillion, L, et al. 2008	44	40.49 9.50	43	40.00 9	.43	baseline	0.00		(0.05 [-(0.37; 0.47]
Yun et al., 2017 Parker, PA, et al., 2009 II.	134 39	78.60 13.50 52.79 6.12	72 36	52.29 5	1.10 5.88	baseline	0.00	-		0.05 [-1 0.08 [-1	0.23; 0.34]
Cengiz, HO, et al., 2023	32	14.15 7.56	33	13.03 6	.82	baseline	0.00	土	c c	0.15 [-(0.33; 0.64]
Zhao, X, et al., 2019 Zhao, X, et al., 2021	49 52	58.01 2.12	53 51	57.03 4	5. TT 1.32	baseline	0.00).24 [-1).29 [-1	0.15, 0.63
Ferguson, RJ, et al., 2012	19	7.04 1.79	21	7.91 1	.10	followup	8.00		-1	0.58 [-	1.22; 0.05]
Beatty, L. et al. 2015	30	78.11 3.66	30	79.16 3	6.25 3.63	followup	6.00		-	0.32 [- 0.28 [-(0.79; 0.22]
Takano, T, et al., 2021 Zhang I, MM, et al., 2021	31	75.30 9.85	38	76.40 24	4.16	followup	24.00	重日	-1	0.06 [-0	0.53; 0.42]
Parker, PA, et al., 2009 I.	38	48.86 8.88	32	48.51 9	0.50	followup	24.00		-	0.03 [-(0.43; 0.51]
Takano, T, et al., 2021 Fillion I, et al. 2008	31	83.40 19.82	38	81.60 18	8.00	followup	12.00	二二二	0	0.09 [-(0.38; 0.57]
Zhang, LMM, et al., 2021	80	67.90 15.85	80	64.81 13	3.17	followup	24.00	- E I	č	0.21 [-0	0.10; 0.52]
Zhang, LMM, et al., 2021 Zhang I MM, et al., 2021	80 80	72.01 14.81	80 80	68.72 12	2.35	followup	36.00	二二二	0	0.24 [-(0.29 [-(0.07; 0.55]
Parker, PA, et al., 2009 I.	39	47.28 9.18	36	44.63 9	0.12	followup	6.00	듣	C	0.29 [-(0.17; 0.74]
Parker, PA, et al., 2009 II. Fillion, L. et al. 2008	38 44	51.36 9.18 45.10 10.42	32 43	48.51 9	0.50 0.76	followup	24.00 4.00			0.30 [-(0.33 [-(0.17; 0.78] 0.10: 0.75]
Yun et al., 2017	134	82.90 13.10	72	78.20 12	2.40	followup	48.00		9	0.36 [0.08; 0.65]
Ruiz-vozmediano, J, et al.,2020 Liu. T. et al., 2019	31 49	85.00 14.10 74.61 18.94	32 53	67.34 1	8.90	followup	9.00			0.40 [-0 0.46 [(0.10; 0.89]
Parker, PA, et al., 2009 II.	39	49.58 9.74	36	44.63 9	0.12	followup	6.00		ġ	0.52	0.06; 0.98]
Parker, PA, et al., 2009 I. Liu. T. et al., 2019	37 49	50.22 8.46 85.72 12.30	32 53	45.12 8	6.10	followup	48.00).58 [().59 [(0.10; 1.07] 0.20: 0.991
Cengiz, HO, et al., 2023	32	16.75 6.33	33	12.33 7	.00	followup	8.00	물	0	0.65 į	0.15; 1.15]
Wu, Q, et al., 2009 II.	37 43	51.76 10.16 80.45 8.21	32 43	45.12 8	.88 7.46	followup	48.00		1	1.14 [(0.20; 1.17]
Willems, R, et al., 2016	188	83.70 2.60	221	80.10 2	2.20	followup	24.00	-	1	1.50 [1.28; 1.72]
Znao, X, et al., 2021 Guan, S, et al., 2019	52 50	65.12 6.01 69.11 8.27	51	57.51 3	5.24 5.80	followup	8.00		- 1	1.56 [*	1.12; 2.00]
Beatty, L. et al. 2015	30	90.41 3.39	30	83.67 3	3.36	followup	26.07		E j	1.97	1.35; 2.59]
Rodríguez Vega, B, et al., 2010	30	85.63 3.50 56.60 2.58	30	41.79 2	2.81 2.81	followup	13.03			2.82 [2 5.45 [4	2.10; 3.55] 4.43; 6.48]
Rodríguez Vega, B, et al., 2010	39	66.52 2.58	33	39.77 2	2.81	followup	24.00		> 9	9.85 [8	3.13; 11.56]
Prediction interval	₹349		2213							1.05 [1 '-]	1.86; 3.96]
advancod											
Lu, Z, et al., 201	203	81.30 3.50	103	83.60 3	8.90	baseline	0.00	=	-1	0.63 [-(0.87; -0.39]
Serfaty M, et al., 2018	20	12.60 4.80	22	14.70 6	6.40	baseline	0.00		-1	0.36 [-(0.97; 0.25]
Walczak, A, et al., 2003	61	16.39 5.50	49	16.96 6	5.24	baseline	0.00		-	0.27 [-1	0.47; 0.28]
Penedo, FJ, et al., 2020 I. Boolo FW, et al., 2017 II.	95	-23.26 3.80	97	-23.09 3	8.84	baseline	0.00		-1	0.04 [-(0.33; 0.24]
Penedo, FJ, et al., 2020 II.	95	-20.27 4.68	97	-20.48 4	1.63	baseline	0.00	三日日	č	0.04 [-(0.24; 0.33]
Penedo, FJ, et al., 2007 Schofield P et al. 2013	41 55	-23.98 28.88 67.08 25.66	30 53	-25.67 14	4.84	baseline baseline	0.00	二二二	0	0.07 [-(0.09 [-(0.40; 0.54]
Boele FW, et al ., 2017 I.	45	47.63 10.90	44	45.55 9	0.10	baseline	0.00	돌	č	0.21 [-(0.21; 0.62]
Huri M, et al., 2015 Serfaty M et al. 2018	19 20	36.68 8.73 12.20 8.00	15 22	-36.26 7 17.50 4	7.93 1.50	baseline followup	0.00		> 8 -	3.49 [6 0.81 [-*	5.25; 10.73] 1 44 [:] -0 18]
Heiney, SP, et al., 2003	33	6.40 1.40	33	7.20 2	2.10	followup	16.00	-	-1	0.44 [-(0.93; 0.05]
Heiney, SP, et al., 2003 Schofield, P. et al., 2013	33 55	6.40 1.80 57.21 24.88	33 53	6.90 2 60.20 25	2.10 5.40	followup	6.00 8.00		-	0.25 [- 0.12 [-	0.74; 0.23] 0.50: 0.261
Penedo, FJ, et al., 2007	41	-25.51 13.16	30	-23.83 2	1.36	followup	12.00		-	0.10 [-	0.57; 0.37]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95 95	-23.29 4.00	97	-23.11 4	1.04 3.94	followup	48.00	-	-	0.04 [-1 0.04 [-1	0.33; 0.24]
Serfaty M, et al., 2018	20	15.70 7.30	22	15.50 4	1.90	followup	18.00	<u>_</u>	9	0.03 [-0	0.57; 0.64]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2020 II.	95	-20.08 4.87	97	-20.29 4	1.73	followup	24.00).04 [-().04 [-(0.24, 0.33]
Boele FW, et al., 2017 II.	35	48.16 9.90	28	47.43 1	1.50	followup	12.00	豊臣	0	0.07 [-(0.43; 0.56]
Serfaty M, et al., 2018	20	16.30 8.80	22	14.60 5	5.60	followup	24.00			0.23 [-(0.38; 0.84]
Boele FW, et al., 2017 II. Walczak A. et al. 2017	35	51.07 11.70	28	48.47 10	0.50	followup	6.00	重	0).23 [-(0.27; 0.73]
Boele FW, et al., 2017 I.	45	51.17 11.40	49	46.95 10	0.10	followup	6.00		0	0.39 [-(0.03; 0.81]
Lu, Z, et al., 201 Huri M, et al., 2015	203	82.60 4.50	103	77.60 6	5.30 14	followup	9.00	=	> 7).96 [(0.71; 1.21]
Random effect	1747	0.07 0.00	1485	41.75 0		lonowap	12.00	+	- 1	1.02 [-(0.23; 2.27]
Prediction interval										[-3	2.13; 4.17]
SURVIVOR		64 60 TT	-	60.40		har - "	0.00			0.00	0.04. 0.10
Cnen, et al., 2017 Qiu, H, et al., 2018 II.	58 98	61.20 7.50 7.72 5.28	65 196	63.10 7 8.58 5	.30 5.92	baseline baseline	0.00	클	-	u.26 [-(0.15 [-(0.61; 0.10] 0.39; 0.091
Peng, L, et al., 2022	28	78.33 12.78	29	79.08 10	0.04	baseline	0.00		-1	0.06 [-	0.58; 0.45]
Jelvenzaden, F, et al., 2022 Qiu H et al. 2018 I	24 98	3.15 1.52 8.71 5.89	24 196	3.21 2	2.08 5.92	baseline	0.00		-1	0.03 [-(0.02 [-(0.60; 0.53]
McCusker, J, et al., 2021	121	41.60 9.80	124	40.70 9	.20	baseline	0.00	見り	C	0.09 [-0	0.16; 0.35]
Von An, D, et al., 2012 II. Von Ah, D, et al., 2012 I.	27	44.69 4.40 45.71 5.98	29	43.18 4	1.72	baseline	0.00).33 [-().47 [-(0.20; 0.85]
Peng, L, et al., 2022	28	78.33 12.52	29	78.16 10	0.60	followup	0.10		Ċ	0.01 [-(0.50; 0.53]
Von Ah, D, et al., 2012 I. Von Ah, D, et al., 2012 II.	26 27	45.03 6.17 45.00 4.48	29 29	44.49 4	.81 .81	followup	8.00).10 [-().11 [-(0.43; 0.63]
Peng, L, et al., 2022	28	83.10 12.63	28	81.38 14	4.52	followup	4.00		0	0.12 [-(0.40; 0.65]
Chen, et al., 2017 Chen, et al., 2017	58 58	48.40 9.10 48.60 7.40	65	40.80 8	5.50 7.70	followup	24.00 8.00	事	().18 [-().20 [-(0.17; 0.54] 0.16; 0.55]
Qiu, H, et al., 2018 II.	98	9.83 9.73	196	8.01 8	3.85	followup	4.00		ç	0.20 [-0	0.04; 0.44]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 98	12.99 11.82	196	10.18 1	2.78 1.80	followup	12.00		().20 [-().24 [-(0.04, 0.45] 0.01; 0.48]
McCusker, J, et al., 2021	121	43.90 9.80	124	41.40 10	0.10	followup	24.00		ç	0.25 [-(0.00; 0.50]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	98	16.92 9.73	196	0.01 8 10.18 11		followup	4.00	-	().54 [().58 [(0.29, 0.78j 0.33; 0.831
Qiu, H, et al., 2018 I.	98	18.96 10.43	196	11.52 12	2.78	followup	24.00	=	ġ	0.62	0.37; 0.86
Jelvehzadeh, F, et al., 2022	24	5.64 1.73	24	3.43 1	.75	followup	8.00		1	1.25 [(0.63; 1.87]
Random effect	1462		2285						(0.70	0.18; 1.23]
	_									L-A	2.39, 3.80]
Random effect Prediction interval	5558		6043).96 [(0.27; 1.65]
							Г			1-	
							-4 In favor of	-2 0 2 control group In favor	4 of interve	ntion a	roup

Figure S21.3. Forest plot represents the difference between the intervention vs. control group in the Physical QOL domain with the cancer stage subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI confidence interval.

Figure S21.4.T48

Study	Ex Patient N	kperimental Mean SD	Patient N	Control Mean	SD	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
oarty										
Willems, R, et al., 2016	188	85.08 2.10	221	86.70	3.00	baseline	0.00	=	-0.62	[-0.82; -0.42]
Rodrigez, B, et al., 2014 Ruiz-Vozmediano , L et al. 2020	8 31	62.50 12.82 75.40 19.50	7	71.43 79.20	36.25	baseline baseline	0.00		-0.32	[-1.34; 0.70] [-0.71: 0.28]
Rodríguez Vega, B, et al., 2010	39	30.96 2.58	33	31.49	2.81	baseline	0.00	물	-0.20	[-0.66; 0.27]
Parker, PA, et al., 2009 I. Ferguson, RJ, et al., 2012	39 19	51.32 6.74 7.68 1.95	36	52.29 7.79	5.88 1.27	baseline	0.00		-0.15	[-0.60; 0.30] [-0.69; 0.55]
Zhang, LMM, et al., 2021	80	58.64 16.46	80	59.25	16.46	baseline	0.00		-0.04	[-0.35; 0.27]
Takano, T, et al., 2021	43 31	52.17 5.09 84.80 15.98	43	51.95 84.00	5.12 17.01	baseline	0.00		0.04	[-0.38, 0.47] [-0.43; 0.52]
Fillion, L, et al. 2008	44	40.49 9.50	43	40.00	9.43	baseline	0.00	±	0.05	[-0.37; 0.47]
Parker, PA, et al., 2009 II.	39	52.79 6.12	36	52.29	5.88	baseline	0.00	-	0.03	[-0.23, 0.34]
Cengiz, HO, et al., 2023 Liu T et al. 2019	32 49	14.15 7.56 76.27 18.94	33 53	13.03 72 14	6.82	baseline	0.00		0.15	[-0.33; 0.64] [-0.15; 0.63]
Zhao, X, et al., 2021	52	58.01 2.12	51	57.03	4.32	baseline	0.00	_=	0.29	[-0.10; 0.68]
Ferguson, RJ, et al., 2012 Rodrigez B et al. 2014	19 8	7.04 1.79	21	7.91	1.10	followup	8.00		-0.58	[-1.22; 0.05] [-1.34: 0.70]
Beatty, L. et al. 2015	30	78.11 3.66	30	79.16	3.63	followup	6.00		-0.28	[-0.79; 0.22]
Zhang, LMM, et al., 2021	31 80	75.30 9.85 62.34 16.46	38	62.75	24.16	followup	12.00		-0.05	[-0.53; 0.42] [-0.34; 0.28]
Parker, PA, et al., 2009 I.	38	48.86 8.88	32	48.51	9.50	followup	24.00	畫	0.04	[-0.43; 0.51]
Fillion, L, et al. 2008	44	46.76 9.24	43	44.64	11.05	followup	12.00	-	0.09	[-0.21; 0.63]
Zhang, LMM, et al., 2021 Zhang, LMM, et al., 2021	80 80	67.90 15.85 72.01 14.81	80 80	64.81 68.72	13.17	followup	24.00	-	0.21	[-0.10; 0.52] [-0.07; 0.55]
Zhang, LMM, et al., 2021	80	74.27 15.02	80	70.16	13.58	followup	48.00		0.29	[-0.03; 0.60]
Parker, PA, et al., 2009 I. Parker PA et al. 2009 II	39 38	47.28 9.18 51.36 9.18	36 32	44.63 48.51	9.12 9.50	followup	6.00 24.00	「「「「」」	0.29	[-0.17; 0.74] [-0.17: 0.78]
Fillion, L, et al. 2008	44	45.10 10.42	43	41.76	9.76	followup	4.00		0.33	[-0.10; 0.75]
Yun et al., 2017 Ruiz-Vozmediano, J, et al., 2020	134 31	82.90 13.10 85.00 14.10	72 32	78.20 78.30	12.40 18.90	followup	48.00 24.00	.	0.36	[0.08; 0.65] [-0.10; 0.89]
Liu, T, et al., 2019	49	74.61 18.94	53	67.34	11.65	followup	9.00	-	0.46	[0.07; 0.86]
Parker, PA, et al., 2009 I.	37	50.22 8.46	32	44.03	8.88	followup	48.00	-	0.52	[0.10; 1.07]
Liu, T, et al., 2019 Cengiz HO, et al., 2023	49	85.72 12.30	53	77.09	16.10	followup	12.00	-	0.59	[0.20; 0.99]
Parker, PA, et al., 2009 II.	37	51.76 10.16	32	45.12	8.88	followup	48.00		0.68	[0.20; 1.17]
Wu, Q, et al., 2021 Willems R et al. 2016	43 188	80.45 8.21 83.70 2.60	43 221	71.45 80 10	7.46	followup	12.00 24.00		1.14 1.50	[0.68; 1.59] [1.28: 1.72]
Zhao, X, et al., 2021	52	65.12 6.01	51	57.51	3.24	followup	12.00	1 -	1.56	[1.12; 2.00]
Guan, S, et al., 2019 Beatty L et al. 2015	50 30	69.11 8.27 90.41 3.39	50 30	55.93 83.67	5.80	followup	8.00 26.07		1.83	[1.36; 2.30]
Beatty, L. et al. 2015	30	85.63 3.50	30	75.66	3.47	followup	13.03		2.82	[2.10; 3.55]
Rodríguez Vega, B, et al., 2010 Rodríguez Vega, B, et al., 2010	39	56.60 2.58 66.52 2.58	33	41.79 39.77	2.81	followup	24.00		> 5.45	[4.43; 6.48] [8.13; 11.56]
Random effect	2349		2273					÷	0.75	[0.06; 1.44]
Prediction Interval										[-2.44; 3.95]
advanced	203	81 30 3 50	103	83.60	3 90	haseline	0.00	-	-0.63	[-0.87: -0.39]
Serfaty M, et al., 2018	203	12.60 4.80	22	14.70	6.40	baseline	0.00		-0.36	[-0.97; 0.25]
Heiney, SP, et al., 2003 Walczak A et al. 2017	33	6.60 1.90 16.39 5.50	33	7.10	1.70	baseline	0.00	그는	-0.27	[-0.76; 0.21] [-0.47: 0.28]
Penedo, FJ, et al., 2020 I.	95	-23.26 3.80	97	-23.09	3.84	baseline	0.00		-0.04	[-0.33; 0.24]
Boele FW, et al ., 2017 II. Penedo, FJ, et al., 2020 II.	35 95	46.88 11.10	28 97	46.82	9.50 4.63	baseline baseline	0.00		0.01	[-0.49; 0.50] [-0.24; 0.33]
Penedo, FJ, et al., 2007	41	-23.98 28.88	30	-25.67	14.84	baseline	0.00	-	0.07	[-0.40; 0.54]
Schotield, P, et al., 2013 Boele FW, et al., 2017 I.	55 45	67.08 25.66 47.63 10.90	53 44	64.68 45.55	25.92 9.10	baseline	0.00		0.09	[-0.29; 0.47] [-0.21; 0.62]
Huri M, et al., 2015	19	36.68 8.73	15	-36.26	7.93	baseline	0.00		> 8.49	[6.25; 10.73]
Heiney, SP, et al., 2003	33	6.40 1.40	33	7.20	4.50 2.10	followup	16.00		-0.81	[-1.44, -0.18] [-0.93; 0.05]
Heiney, SP, et al., 2003 Schofield P, et al., 2013	33	6.40 1.80 57 21 24 88	33	6.90 60.20	2.10	followup	6.00		-0.25	[-0.74; 0.23] [-0.50; 0.26]
Penedo, FJ, et al., 2007	41	-25.51 13.16	30	-23.83	21.36	followup	12.00	-	-0.10	[-0.57; 0.37]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95 95	-23.29 4.00 -23.16 3.90	97 97	-23.11	4.04	followup	48.00 24.00		-0.04	[-0.33; 0.24] [-0.33; 0.24]
Serfaty M, et al., 2018	20	15.70 7.30	22	15.50	4.90	followup	18.00	-	0.03	[-0.57; 0.64]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2020 II.	95	-20.08 4.87	97	-20.29	4.83	followup	24.00	-	0.04	[-0.24, 0.33] [-0.24; 0.33]
Boele FW, et al., 2017 II. Boole FW, et al., 2017 II.	35	48.16 9.90	28	47.43	11.50	followup	12.00		0.07	[-0.43; 0.56]
Serfaty M, et al., 2018	20	16.30 8.80	22	14.60	5.60	followup	24.00		0.23	[-0.38; 0.84]
Boele FW, et al ., 2017 II. Walczak A et al 2017	35 61	51.07 11.70	28 49	48.47	10.50	followup	6.00 4.00		0.23	[-0.27; 0.73] [-0.09: 0.67]
Boele FW, et al ., 2017 I.	45	51.17 11.40	44	46.95	10.10	followup	6.00		0.39	[-0.03; 0.81]
Lu, Z, et al., 201 Huri M, et al., 2015	203 19	82.60 4.50 0.57 5.38	103 15	77.60 -41.73	6.30 6.14	followup	9.00 12.00		0.96 > 7.21	[0.71; 1.21] [5.27; 9.15]
Random effect	1747		1485					_	0.72	[-0.38; 1.82]
risalisation miterval										[-2:32, J:80]
survivor Chen, et al., 2017	58	61.20 7.50	65	63.10	7.30	baseline	0.00	4	-0.26	[-0.61: 0.10]
Qiu, H, et al., 2018 II.	98	7.72 5.28	196	8.58	5.92	baseline	0.00	<u></u>	-0.15	[-0.39; 0.09]
Peng, L, et al., 2022 Jelvehzadeh, F, et al., 2022	28 24	78.33 12.78 3.15 1.52	29 24	79.08 3.21	10.04	baseline baseline	0.00		-0.06 -0.03	[-0.58; 0.45] [-0.60; 0.53]
Qiu, H, et al., 2018 I.	98	8.71 5.89	196	8.58	5.92	baseline	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.02	[-0.22; 0.26]
Von Ah, D, et al., 2012 II.	27	41.60 9.80	29	40.70 43.18	9.20	baseline	0.00		0.09	[-0.16; 0.35] [-0.20; 0.85]
Von Ah, D, et al., 2012 I. Reng L, et al., 2022	26	45.71 5.98	29	43.18	4.72	baseline	0.00		0.47	[-0.07; 1.00] [-0.50; 0.53]
Von Ah, D, et al., 2022	26	45.03 6.17	29	44.49	4.81	followup	8.00		0.10	[-0.43; 0.63]
Von Ah, D, et al., 2012 II. Peng L et al. 2022	27	45.00 4.48	29 28	44.49 81 38	4.81	followup	8.00		0.11	[-0.42; 0.63] [-0.40; 0.65]
Chen, et al., 2017	58	48.40 9.10	65	46.80	8.50	followup	24.00	돌	0.18	[-0.17; 0.54]
Chen, et al., 2017 Qiu, H. et al., 2018 II	58 98	48.60 7.40 9.83 9.73	65 196	47.10 8.01	7.70	followup	8.00 4.00		0.20	[-0.16; 0.55] [-0.04; 0.441
Qiu, H, et al., 2018 II.	98	14.04 11.82	196	11.52	12.78	followup	24.00	*	0.20	[-0.04; 0.45]
uiu, H, et al., 2018 II. McCusker, J. et al., 2021	98 121	12.99 11.82 43.90 9.80	196 124	10.18 41.40	11.80	followup	12.00		0.24	[-0.01; 0.48] [-0.00; 0.501
Qiu, H, et al., 2018 I.	98	12.92 9.73	196	8.01	8.85	followup	4.00	Ē	0.54	[0.29; 0.78]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	98	18.96 10.43	196	11.52	12.78	followup	24.00	事	0.58	[0.33; 0.83] [0.37; 0.86]
Jelvehzadeh, F, et al., 2022	24	5.64 1.73	24	3.70	1.68 1.75	followup	12.00		1.12	[0.51; 1.73] [0.63: 1.97]
Random effect	1462	5.04 1.73	2285	3.43	1.70	ionowup	0.00		0.40	[-0.02; 0.83]
Prediction interval										[-2.51; 3.31]
Random effect	5558		6043					<u> </u>	0.68	[0.14; 1.21]
Prediction interval							ſ		-	[-2.49; 3.85]
							-4 In favor of	-2 0 2 control group In favor of inte	4 ervention	group

Figure S21.4. Forest plot represents the difference between the intervention vs. control group in the Physical QOL domain with the cancer stage subgroups as predicted at week 48 (post-intervention). SMD - Standardized mean difference, CI confidence interval. S22.Subgroup analysis of Physical QoL: Cancer type

Figure S22.1.T0

Study	E) Patient N	operimental I Mean SD	Patient N	Control Mean S	SD f	follow-up	Follow-up time	SMD of	f interested event	SMD	951	6-CI
breast Rahmani, S, et al. 2015	12	61.66 8.59	12	65.00 12	2.75	baseline	0.00		-	-0.30	[-1.10;	0.51]
Heiney, SP, et al., 2003 Nápoles AM, et al. 2015	33 76	6.60 1.90 15.29 5.78	33 75	7.10 1. 16.76 5.	.70 .02	baseline baseline	0.00		콜	-0.27 -0.27	[-0.76; [-0.59;	0.21] 0.05]
Dirksen, S. et al, 2007 I. Ruiz-Vozmediano, J, et al.,2020	34 31	22.00 5.60 75.40 19.50	38) 32	23.10 4. 79.20 15	.10	baseline baseline	0.00		<u> </u>	-0.22	[-0.69]	0.24]
Ding, K, et al. 2018 II. Ding, K, et al. 2020	98 34	72.76 6.03	40	8.58 5.	.52	baseline	0.00			-0.15	[-0.39]	0.09]
Peng, L, et al., 2022	28	78.33 12.78	3 29	79.08 10	0.04	baseline	0.00		÷.	-0.06	[-0.58]	0.45]
Kim, YH, et al., 2017 Hoffman, C.I. et al., 2012 I	30	76.00 14.30) 30 111	76.40 15	5.20	baseline	0.00		÷.	-0.03	[-0.53]	0.48]
Dirksen, S. et al, 2007 II.	34	19.10 4.00	38 196	19.10 4.	.70	baseline	0.00		Ŧ	0.00	[-0.46	0.46]
Hoffman, CJ, et al., 2012 II. Fillion, L. et al. 2008	102 44	17.83 5.03 40.49 9.50	110 43	17.65 5. 40.00 9	.83	baseline baseline	0.00		-	0.03	[-0.24	0.30]
Klinkhammer-Schalke, M et al., 2012 Klafke, N, et al., 2019	100 120	78.68 26.40 85.10 19.30) 100) 113	76.65 27 82.60 20	7.16 0.20	baseline baseline	0.00			0.08 0.13	(-0.20 (-0.13	0.35] 0.38]
Cengiz, HO, et al., 2023 Arving, C, et al., 2007	32 47	14.15 7.56 81.00 17.00	33) 38	13.03 6. 77.00 18	.82 3.00	baseline baseline	0.00		書	0.15 0.23	[-0.33; [-0.20;	0.64] 0.66]
Hernandez, EG, et al. 2018 I. Elyasi, F, et al., 2021 IV.	28 20	18.93 5.70 11.60 2.90	28 20	17.57 5. 10.50 3.	.96 .90	baseline baseline	0.00		Ē	0.23 0.31	[-0.30 [-0.31	0.76] 0.94]
Hernandez, EG, et al. 2018 II. Von Ah, D, et al., 2012 II.	28	15.75 6.10 44.69 4.40	28 29	13.82 5. 43.18 4.	.68	baseline baseline	0.00		E .	0.32	[-0.20]	0.85]
Elyasi, F, et al., 2021 III. Elyasi, F, et al., 2021 II. Elyasi, F, et al., 2021 I	15	21.00 4.60	15	18.90 6. 10.50 3.	.40	baseline	0.00			0.37	[-0.26,	1.10]
Von Ah, D, et al., 20211. Ferguson R L et al. 2012 I.	26	45.71 5.98	29	43.18 4.	.72	baseline	0.00		-	0.44	[-0.07;	1.00]
Heiney, SP, et al., 2003 Heiney SP, et al., 2003	33	6.40 1.40 6.40 1.80	33	7.20 2.	.10	followup	16.00		휳	-0.44	-0.93	0.05]
Elyasi, F, et al., 2021 III. Klinkhammer-Schalke, M et al., 2012	20 100	17.60 2.70 77.91 23.85	20 5 100	18.70 6. 79.69 20	.20 0.55	followup followup	24.00 12.00			-0.23 -0.08	(-0.85 (-0.36	0.40] 0.20]
Elyasi, F, et al., 2021 IV. Rahmani, S, et al. 2015	20 12	10.50 2.10 12.00 69.44	20 12	10.50 3. 12.00 58	.70	followup	24.00 16.00		-	0.00 0.00	[-0.62 [-0.80	0.62]
Peng, L, et al., 2022 Nápoles AM, et al. 2015	28 76	78.33 12.52 18.13 4.81	2 29 75	78.16 10 18.01 4.	.60 .44	followup followup	0.10 12.00			0.01 0.03	[-0.50; [-0.29;	0.53] 0.34]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 120	79.00 20.00 68.70 23.50) 38) 113	78.00 17 67.30 22	2.60	followup followup	12.00 24.00			0.05 0.06	[-0.37]	0.48] 0.32]
Klinkhammer-Schalke, M et al., 2012 Von Ah, D, et al., 2012 I.	26	45.03 6.17	29	78.42 22 44.49 4	.81	followup	24.00 8.00			0.08	[-0.19]	0.36]
Arving, C, et al., 2007 Pana, L, et al., 2007	47	40.00 4.40 80.00 19.00) 38	78.00 17	.01 7.00	followup	4.00		÷	0.11	[-0.42]	0.65]
Klinkhammer-Schalke, M et al., 2012 Dirksen, S. et al. 2007 I	100	83.25 22.34	100	80.20 21	.57	followup	48.00		Ē	0.12	[-0.14	0.42]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 120	82.00 19.00) 38) 113	79.00 18	3.00 1.40	followup	24.00		Ŧ	0.16	[-0.27 [-0.08	0.59]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 98	9.83 9.73 14.04 11.82	196 196	8.01 8. 11.52 12	.85 2.78	followup followup	4.00 24.00			0.20 0.20	[-0.04 [-0.04	0.44] 0.45]
Fillion, L, et al. 2008 Klafke, N, et al., 2019	44 120	46.76 9.24 75.30 20.20	43) 113	44.64 11 70.70 21	1.05 1.70	followup	12.00 12.00			0.21 0.22	[-0.21]	0.63]
Nápoles AM, et al. 2015 Hoffman, CJ, et al., 2012 I.	76 102	19.44 4.26 22.86 4.22	75 111	18.44 4. 21.84 4.	.58 .54	followup followup	24.00 8.00			0.23 0.23	[-0.10 [-0.04]	0.55] 0.50]
Qiu, H, et al., 2018 II. Elyasi, F, et al., 2021 I.	98 15	12.99 11.82 20.00 3.90	2 196 15	10.18 11 18.70 6.	.80 .20	followup followup	12.00 24.00		-	0.24 0.24	[-0.01; [-0.47;	0.48] 0.96]
Klinkhammer-Schalke, M et al., 2012 Dirksen, S. et al, 2007 II.	34	84.26 19.79 22.70 4.20	38	78.68 23 21.50 4	.35	followup	36.00		튤	0.26	[-0.02	0.54]
Hoffman, CJ, et al., 2021 II. Hoffman, CJ, et al., 2012 I.	102	22.97 4.34	111	21.67 4.	.70	followup	12.00			0.27	[0.01]	0.99]
Hoffman, CJ, et al., 2012 II. Hoffman, CJ, et al., 2012 II.	102	19.45 5.32	110 110	17.53 5.	.37	followup	12.00		÷	0.36	[0.09]	0.63
Kim, YH, et al., 2017 Ruiz-Vozmediano, J, et al.,2020	30 31	75.10 14.20 85.00 14.10) 30) 32	68.90 18 78.30 18	8.10 8.90	followup followup	6.00 24.00			0.38 0.40	[-0.13 [-0.10	0.89]
Kim, YH, et al., 2017 Hernandez, EG, et al. 2018 II.	30 28	75.60 17.40) 30 28	68.40 18 15.56 4.	8.10 .81	followup	9.00 24.00			0.40 0.44	[-0.11 [-0.10	0.91] 0.97]
Qiu, H, et al., 2018 I. Hemandez, EG, et al. 2018 II.	98 28	12.92 9.73 17.54 3.20	196 28	8.01 8. 15.40 4.	.85 .39	followup followup	4.00 8.00		*	0.54 0.55	[0.29]	0.78] 1.08]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	98 98	16.92 11.12 18.96 10.43	2 196 3 196	10.18 11 11.52 12	1.80 2.78	followup followup	12.00 24.00		÷	0.58 0.62	[0.33]	0.83] 0.86]
Cengiz, HO, et al., 2023 Hernandez, EG, et al. 2018 I.	32 28	16.75 6.33 21.50 3.39	33 28	12.33 7. 17.68 6.	.00	followup	8.00 8.00			0.65	[0.15;	1.15]
Rahmani, S, et al. 2015	28 12	72.77 3.43	28 12	17.52 5. 66.11 10	.34).81	followup	24.00 8.00			0.78	[-0.04]	1.32]
Jelvehzadeh, F, et al., 2022 Ding K, et al. 2020	24 24 34	5.64 1.73	24 24 40	3.43 1.	.75	followup	8.00		-	1.12	[0.63]	1.87]
Random effect Prediction interval	4087		4900						<u></u>	0.55	[0.20;	0.89] 1.72]
gastroenterological									_			
Cheung YL, et al. 2002 Zhang, LMM, et al., 2021	29 80	15.75 1.75 58.64 16.46	30 80	17.50 3. 59.25 16	.83 6.46	baseline baseline	0.00			-0.58	[-1.10]	-0.06]
Baoyindeligeer, L.Z. et al. 2020 Zhang I MM et al. 2021	65 80	62.75 13.46	5 65 5 80	62.35 12	2.28	baseline	0.00			0.03	[-0.31]	0.37]
Zhang, LMM, et al., 2021 Zhang, LMM, et al., 2021	80 80	67.90 15.8 72.01 14.8	5 80 80	64.81 13 68.72 12	8.17 2.35	followup	24.00			0.21	[-0.10]	0.52]
Zhang, LMM, et al., 2021 Qin, X, et al., 2017	80 50	74.27 15.02 89.42 12.35	2 80 5 50	70.16 13 80.37 14	.58 .32	followup followup	48.00 2.00			0.29	[-0.03	0.60]
Baoyindeligeer, L.Z. et al. 2020 Cheung YL, et al. 2002	65 29	84.04 12.72 26.58 1.45	2 65 30	72.65 13 22.60 2.	3.25 .14	followup followup	2.00 10.00			0.87 2.14	[0.51; [1.49;	1.23] 2.79]
Cheung YL, et al. 2002 Random effect	29 717	24.96 1.32	30 720	20.86 1.	.75 1	followup	5.00		~	2.60 0.81	[1.90 [-0.03	3.31] 1.64]
prediction interval											[-0.98;	2.60]
Zhou, L, et al., 2020 Powell, CB, et al., 2008 I.	37 21	13.65 1.84 21.60 5.80	36 43	14.85 1. 22.10 7.	.47	baseline baseline	0.00		*	-0.71 -0.07	[-1.19; [-0.59:	-0.24] 0.451
Chan, et al. 2005 Sandsund, C, et al., 2017	80 72	65.81 61.89 77.20 20.20) 75) 70	62.85 68 75.50 22	8.50 2.30	baseline baseline	0.00		-	0.05 0.08	[-0.27; [-0.25;	0.36] 0.41]
Powell, CB, et al., 2008 II. Chan, et al. 2005	21 80	18.90 6.20 56.52 61.89	43 75	18.00 6. 72.73 75	.00 I 5.34 1	baseline followup	0.00 12.00			0.15 -0.23	[-0.38 [-0.55]	0.67]
Chan, et al. 2005 Chan, et al. 2005	80 80	78.26 99.0 67.00 67.1	75 75	92.89 37 78.06 58	7.67 3.20	followup followup	72.00 24.00			-0.19 -0.17	[-0.51 [-0.49	0.12] 0.14]
Chan, et al. 2005 Chan, et al. 2005	80 80	81.23 81.30	75	86.76 65	5.04 1.73	followup	60.00 48.00		-	-0.07	[-0.39]	0.24]
Chan, et al. 2005 Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	80 72	83.00 63.59	75 70 70	83.60 59 79.00 20 70.20 10	0.00	followup	36.00			-0.01	[-0.32]	0.31]
Powell, CB, et al., 2008 I. Powell, CB, et al., 2008 I.	21	25.40 3.30	43	22.60 6.	.10	followup	12.00		1	0.13	[-0.20]	1.05]
Zhou, L, et al., 2020 Random effect	37 934	45.12 5.62	36 979	38.94 5.	.19	followup	12.00			1.13	[0.63	1.63]
Prediction interval											[-0.95;	1.95]
prostate Berglund, G. et al. 2007 Parker, PA, et al. 2008	39	73.30 23.00) 150	84.60 18	3.30	baseline	0.00		=	-0.58	[-0.94;	-0.22]
Parker, PA, et al., 2009 I. Penedo, FJ, et al., 2020 I. Panada FJ, et al., 2020 I.	39 95	-23.26 3.80	36 97	-23.09 3.	.88	baseline baseline	0.00			-0.15	[-0.60]	0.30]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2007 Perker, PA, et al., 2000 II.	95 41	-20.27 4.68	97 3 30 26	-20.48 4. -25.67 14	.03 1.84	baseline	0.00		Ŧ	0.04	[-0.24]	0.33]
Karlsen RV et al., 2021 Huri M. et al., 2015	16 19	58.60 3.10 36.68 8.73	19 15	55.80 5. -36.26 7	.40 1	baseline	0.00		T.	0.61	[-0.07;	1.29]
Berglund, G. et al. 2007 Penedo, FJ, et al., 2007	39 41	78.20 22.50) 150 5 30	87.80 16	.90 1.36	followup	48.00 12.00		-	-0.53	[-0.88	-0.17]
Karlsen RV et al., 2021 Northhouse, LL, et al., 2007	16 107	53.20 9.40 43.30 6.60	19 121	53.80 6. 43.60 6.	.60 .50	followup followup	32.00 32.00			-0.07 -0.05	[-0.74 [-0.31	0.59] 0.21]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95 95	-23.29 4.00 -23.16 3.90	97 97	-23.11 4. -22.99 3.	.04	followup	48.00 24.00			-0.04	[-0.33] [-0.33]	0.24]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007 Parker, PA, et al., 2008	112 104	48.60 6.70	123 114	48.70 6.	.50	followup	16.00 48.00			-0.02	[-0.27; [-0.23;	0.30]
Penedo, FJ, et al., 2009 I. Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2020 II.	38 95 05	48.86 8.88 -20.08 4.87 -20.40 4.70	32 97	48.51 9. -20.29 4.	.50 .83 73	followup	24.00 48.00 24.00			0.04	[-0.43 [-0.24]	0.33]
Parker, PA, et al., 2009 I. Parker, PA, et al., 2009 II	39 38	47.28 9.18	36	44.63 9.	.12	followup	6.00 24.00			0.29	[-0.17	0.74]
Parker, PA, et al., 2009 II. Parker, PA, et al., 2009 I.	39 37	49.58 9.74 50.22 8.46	36 32	44.63 9. 45.12 8	.12	followup	6.00 48.00		*	0.52 0.58	[0.06	0.98]
Parker, PA, et al., 2009 II. Huri M, et al., 2015	37 19	51.76 10.10 0.57 5.38	32 15	45.12 8. -41.73 6.	.88 .14	followup followup	48.00 12.00		-	0.68 > 7.21	[0.20 [5.27	1.17] 9.15]
Random effect Prediction interval	1429		1640							0.73	[-0.14; [-0.73;	1.60] 2.19]
Random effect Prediction interval	7167		8239							0.58	[0.22 [-0.41;	0.95] 1.57]
							In favor d	4 -2	0 2	4 Neption	arous	
							in lavor (cona or gi	say mayor or mile		group	

Figure S22.1. Subgroup analysis of the Physical QoL. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the cancer type subgroups as predicted at week 0 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S22.2.T12

Study	Experimental Patient N Mean SD	Control Patient N Mean	SD 1	follow-up	Follow-up time	SMD of interested event	SMD	95%-CI
breast Rahmani, S, et al. 2015 Heiney, SP, et al., 2003	12 61.66 8.59 33 6.60 1.90	12 65.00 33 7.10	12.75 1.70	baseline baseline	0.00		-0.30 -0.27	[-1.10; 0.51] [-0.76: 0.21]
Nápoles AM, et al. 2015 Dirksen, S. et al, 2007 I.	76 15.29 5.78 34 22.00 5.60	75 16.76 38 23.10	5.02 4.10	baseline baseline	0.00	룩	-0.27 -0.22	[-0.59; 0.05] [-0.69; 0.24]
Ruiz-Vozmediano, J, et al.,2020 Qiu, H, et al., 2018 II.	31 75.40 19.50 98 7.72 5.28	32 79.20 196 8.58	15.70 5.92	baseline baseline	0.00 0.00		-0.21 -0.15	[-0.71; 0.28] [-0.39; 0.09]
Ding, K, et al. 2020 Ferguson, RJ, et al., 2012	34 72.76 6.03 19 7.68 1.95	40 73.17 21 7.79	5.52 1.27	baseline baseline	0.00		-0.07 -0.07	[-0.53; 0.39] [-0.69; 0.55]
Jelvehzadeh, F, et al., 2022 Kim, XH, et al., 2017	28 78.33 12.78 24 3.15 1.52 20 76.00 14.20	29 79.08 24 3.21 20 76.40	2.08	baseline	0.00		-0.05	[-0.58; 0.45] [-0.60; 0.53]
Hoffman, CJ, et al., 2017 Dirksen, S. et al., 2012 I.	102 21.88 4.29 34 19.10 4.00	111 21.89 38 19.10	4.35	baseline	0.00		-0.00	[-0.27; 0.27] [-0.46: 0.46]
Qiu, H, et al., 2018 I. Hoffman, CJ, et al., 2012 II.	98 8.71 5.89 102 17.83 5.03	196 8.58 110 17.65	5.92 5.83	baseline	0.00	*	0.02	[-0.22; 0.26] [-0.24: 0.30]
Fillion, L, et al. 2008 Klinkhammer-Schalke, M et al., 2012	44 40.49 9.50 100 78.68 26.40	43 40.00 100 76.65	9.43 27.16	baseline baseline	0.00 0.00	불	0.05	[-0.37; 0.47] [-0.20; 0.35]
Klafke, N, et al., 2019 Cengiz, HO, et al., 2023	120 85.10 19.30 32 14.15 7.56	113 82.60 33 13.03	20.20 6.82	baseline baseline	0.00	톤	0.13 0.15	[-0.13; 0.38] [-0.33; 0.64]
Arving, C, et al., 2007 Hernandez, EG, et al. 2018 I. Elvaci, E, et al., 2021 IV	47 81.00 17.00 28 18.93 5.70 20 11.60 2.00	28 17.57 20 10.50	5.96	baseline	0.00	昰	0.23	[-0.20; 0.66] [-0.30; 0.76]
Hernandez, EG, et al. 2018 II. Von Ah. D. et al., 2012 II.	28 15.75 6.10 27 44.69 4.40	28 13.82 29 43.18	5.68 4.72	baseline	0.00		0.32	[-0.20; 0.85]
Elyasi, F, et al., 2021 III. Elyasi, F, et al., 2021 II.	20 21.00 4.60 15 11.90 3.20	20 18.90 15 10.50	6.40 3.90	baseline baseline	0.00 0.00	-	0.37	[-0.26; 0.99] [-0.34; 1.10]
Elyasi, F, et al., 2021 I. Von Ah, D, et al., 2012 I.	15 21.00 1.40 26 45.71 5.98	15 18.90 29 43.18	6.40 4.72	baseline baseline	0.00 0.00	_	0.44 0.47	[-0.28; 1.17] [-0.07; 1.00]
Ferguson, RJ, et al., 2012 Heiney, SP, et al., 2003 Heiney, SP, et al., 2003	19 7.04 1.79 33 6.40 1.40	21 7.91 33 7.20	1.10	followup	8.00 16.00	Ŧ	-0.58	[-1.22; 0.05] [-0.93; 0.05]
Elyasi, F, et al., 2021 III. Klinkhammer-Schalke, M et al., 2012	20 17.60 2.70	20 18.70	6.20 20.55	followup	24.00 12.00		-0.23	[-0.85; 0.40] [-0.36; 0.20]
Elyasi, F, et al., 2021 IV. Rahmani, S, et al. 2015	20 10.50 2.10 12 12.00 69.44	20 10.50 12 12.00	3.70 58.33	followup	24.00 16.00	-	0.00	[-0.62; 0.62] [-0.80; 0.80]
Peng, L, et al., 2022 Nápoles AM, et al. 2015	28 78.33 12.52 76 18.13 4.81	29 78.16 75 18.01	10.60 4.44	followup followup	0.10 12.00		0.01	[-0.50; 0.53] [-0.29; 0.34]
Arving, C, et al., 2007 Klafke, N, et al., 2019 Klinkhammar Scholka, Miatal, 2013	47 79.00 20.00 120 68.70 23.50	38 78.00 113 67.30	22.60	followup	24.00		0.05	[-0.37; 0.48] [-0.20; 0.32]
Von Ah, D, et al., 2012 I. Von Ah D et al. 2012 II	26 45.03 6.17 27 45.00 4.48	29 44.49	4.81	followup	8.00		0.10	[-0.43; 0.63] [-0.42; 0.63]
Arving, C, et al., 2007 Peng, L, et al., 2022	47 80.00 19.00 28 83.10 12.63	38 78.00 28 81.38	17.00 14.52	followup	4.00 4.00	~ ~ ~	0.11 0.12	[-0.32; 0.54] [-0.40; 0.65]
Klinkhammer-Schalke, M et al., 2012 Dirksen, S. et al, 2007 I.	100 83.25 22.34 34 24.80 3.30	100 80.20 38 24.30	21.57 3.80	followup	48.00 10.00		0.14 0.14	[-0.14; 0.42] [-0.32; 0.60]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 82.00 19.00 120 80.90 21.60	38 79.00 113 77.00	18.00 21.40	followup followup	24.00 48.00	重	0.16 0.18	[-0.27; 0.59] [-0.08; 0.44]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 9.83 9.73 98 14.04 11.82	196 8.01 196 11.52	8.85	followup	4.00 24.00	直	0.20	[-0.04; 0.44] [-0.04; 0.45]
Klafke, N, et al., 2008 Nápoles AM, et al., 2019	44 46.76 9.24 120 75.30 20.20 76 19.44 4.26	43 44.04 113 70.70 75 18.44	21.70	followup	12.00	Ē	0.21	[-0.21, 0.63] [-0.04; 0.48] [-0.10: 0.55]
Hoffman, CJ, et al., 2012 I. Qiu, H, et al., 2018 II.	102 22.86 4.22 98 12.99 11.82	111 21.84 196 10.18	4.54 11.80	followup	8.00 12.00	+	0.23	[-0.04; 0.50] [-0.01; 0.48]
Elyasi, F, et al., 2021 I. Klinkhammer-Schalke, M et al., 2012	15 20.00 3.90 100 84.26 19.79	15 18.70 100 78.68	6.20 23.35	followup followup	24.00 36.00		0.24 0.26	[-0.47; 0.96] [-0.02; 0.54]
Dirksen, S. et al, 2007 II. Elyasi, F, et al., 2021 II.	34 22.70 4.20 15 11.40 2.60	38 21.50 15 10.50	4.70 3.70	followup followup	10.00 24.00	- <u>E</u> -	0.27	[-0.20; 0.73] [-0.45; 0.99]
Hoffman, CJ, et al., 2012 I. Fillion, L, et al. 2008	102 22.97 4.34 44 45.10 10.42	111 21.67 43 41.76	4.87 9.76	followup	12.00 4.00	-	0.28	[0.01; 0.55] [-0.10; 0.75]
Hoffman, CJ, et al., 2012 II. Hoffman, CJ, et al., 2012 II. Kim VH et al. 2017	102 19.45 5.32 102 19.46 5.27 30 75.10 14.20	110 17.53	5.37 6.06	followup	8.00		0.36	[0.09; 0.63] [0.09; 0.63]
Ruiz-Vozmediano, J, et al.,2020 Kim, YH, et al., 2017	31 85.00 14.10 30 75.60 17.40	32 78.30 30 68.40	18.90 18.10	followup	24.00 9.00	-	0.40	[-0.10; 0.89] [-0.11; 0.91]
Hernandez, EG, et al. 2018 II. Qiu, H, et al., 2018 I.	28 17.64 4.61 98 12.92 9.73	28 15.56 196 8.01	4.81 8.85	followup followup	24.00 4.00	Ē	0.44 0.54	[-0.10; 0.97] [0.29; 0.78]
Hernandez, EG, et al. 2018 II. Qiu, H, et al., 2018 I.	28 17.54 3.20 98 16.92 11.12	28 15.40 196 10.18	4.39 11.80	followup followup	8.00 12.00		0.55 0.58	[0.02; 1.08] [0.33; 0.83]
Qiu, H, et al., 2018 I. Cengiz, HO, et al., 2023 Hemandez, EC, et al. 2018 I.	98 18.96 10.43 32 16.75 6.33 28 21.50 3.39	196 11.52 33 12.33 28 17.68	12.78 7.00 6.16	followup	24.00 8.00 8.00		0.62	[0.37; 0.86] [0.15; 1.15] [0.21: 1.30]
Hernandez, EG, et al. 2018 I. Rahmani, S, et al. 2015	28 21.27 4.09 12 72.77 3.43	28 17.52 12 66.11	5.34 10.81	followup	24.00 8.00		0.78	[0.23; 1.32] [-0.04; 1.64]
Jelvehzadeh, F, et al., 2022 Jelvehzadeh, F, et al., 2022	24 5.64 1.73 24 5.64 1.73	24 3.70 24 3.43	1.68 1.75	followup followup	12.00 8.00		1.12 1.25	[0.51; 1.73] [0.63; 1.87]
Ding, K, et al. 2020 Random effect	34 104.47 7.43 4087	40 82.38 4900	5.42	followup	4.00	•	→ 3.40 0.36 0.36	[2.68; 4.13] [0.19; 0.53]
prediction interval gastroenterological								[-U.//; 1.49]
Cheung YL, et al. 2002 Zhang, LMM, et al., 2021	29 15.75 1.75 80 58.64 16.46	30 17.50 80 59.25	3.83 16.46	baseline baseline	0.00 0.00		-0.58 -0.04	[-1.10; -0.06] [-0.35; 0.27]
Qin, X, et al., 2017 Baoyindeligeer, L.Z. et al. 2020	50 78.56 8.38 65 62.75 13.46	50 78.53 65 62.35	11.59 12.28	baseline baseline	0.00	-	0.00	[-0.39; 0.39] [-0.31; 0.37]
Zhang, LMM, et al., 2021 Zhang, LMM, et al., 2021 Zhang, LMM, et al., 2021	80 67.90 15.85 80 72.01 14.81	80 64.81	13.17	followup	24.00	1	0.21	[-0.34, 0.28] [-0.10; 0.52]
Zhang, LMM, et al., 2021 Qin, X, et al., 2017	80 74.27 15.02 50 89.42 12.35	80 70.16 50 80.37	13.58	followup	48.00		0.29	[-0.03; 0.60]
Baoyindeligeer, L.Z. et al. 2020 Cheung YL, et al. 2002	65 84.04 12.72 29 26.58 1.45	65 72.65 30 22.60	13.25 2.14	followup followup	2.00 10.00	*	0.87 2.14	[0.51; 1.23] [1.49; 2.79]
Cheung YL, et al. 2002 Random effect	29 24.96 1.32 717	30 20.86 720	1.75	followup	5.00		2.60 0.62	[1.90; 3.31] [-0.12; 1.36]
prediction interval gynaecological								[-1.24; 2.49]
Zhou, L, et al., 2020 Powell, CB, et al., 2008 I.	37 13.65 1.84 21 21.60 5.80	36 14.85 43 22.10	1.47 7.40	baseline baseline	0.00 0.00		-0.71 -0.07	[-1.19; -0.24] [-0.59; 0.45]
Chan, et al. 2005 Sandsund, C, et al., 2017	80 65.81 61.89 72 77.20 20.20	75 62.85 70 75.50	68.50 22.30	baseline baseline	0.00	軎	0.05	[-0.27; 0.36] [-0.25; 0.41]
Powell, CB, et al., 2008 II. Chan, et al. 2005 Chan, et al. 2005	21 18.90 6.20 80 56.52 61.89 90 79.26 90.01	43 18.00 75 72.73 75 02.90	6.00 75.34	followup	12.00		-0.23	[-0.38; 0.67] [-0.55; 0.08]
Chan, et al. 2005 Chan, et al. 2005	80 67.00 67.17 80 81.23 81.30	75 78.06	58.20 65.04	followup	24.00	퓔	-0.17	[-0.49; 0.14] [-0.39: 0.24]
Chan, et al. 2005 Chan, et al. 2005	80 82.61 67.17 80 83.00 63.59	75 86.96 75 83.60	54.73 59.93	followup followup	48.00 36.00	*	-0.07 -0.01	[-0.39; 0.24] [-0.32; 0.31]
Sandsund, C, et al., 2017 Sandsund, C, et al., 2017	72 80.10 21.40 72 81.70 18.10	70 79.00 70 79.20	20.00	followup	12.00 24.00	毛	0.05	[-0.28; 0.38] [-0.20; 0.46]
Powell, CB, et al., 2008 I. Powell, CB, et al., 2008 II. Zhou, L. et al., 2020	21 25.40 3.30 21 22.60 5.80 27 45.12 5.62	43 22.60 43 17.40 26 29.04	6.10 7.40	followup	12.00	-	0.52	[-0.01; 1.05] [0.20; 1.28]
Random effect Prediction interval	934 934	979	5.15	lonowup	12.00		0.31	[0.02; 0.61] [-1.21; 1.83]
prostate	20 72 20 02 00	450 04.00	40.00		0.00	_	0.50	10.04 0.00
Berglund, G. et al. 2007 Parker, PA, et al., 2009 I. Benede, E.L. et al., 2020 I.	39 73.30 23.00 39 51.32 6.74 95 23.26 2.80	150 84.60 36 52.29 07 23.00	18.30 5.88	baseline baseline	0.00	1	-0.58	[-0.94; -0.22] [-0.60; 0.30]
Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2020 II. Penedo, FJ, et al., 2007	95 -20.27 4.68 41 -23.98 28.88	97 -20.48 30 -25.67	4.63	baseline	0.00	1	0.04	[-0.24; 0.33] [-0.40: 0.54]
Parker, PA, et al., 2009 II. Karlsen RV et al., 2021	39 52.79 6.12 16 58.60 3.10	36 52.29 19 55.80	5.88 5.40	baseline baseline	0.00		0.08	[-0.37; 0.54] [-0.07; 1.29]
Huri M, et al., 2015 Berglund, G. et al. 2007	19 36.68 8.73 39 78.20 22.50	15 -36.26 150 87.80	7.93 16.90	baseline followup	0.00 48.00	=	* 8.49 -0.53	[6.25; 10.73] [-0.88; -0.17]
Penedo, FJ, et al., 2007 Karlsen RV et al., 2021	41 -25.51 13.16 16 53.20 9.40	30 -23.83 19 53.80	21.36 6.60	followup	12.00 32.00		-0.10	[-0.57; 0.37] [-0.74; 0.59]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I.	95 -23.29 4.00 95 -23.16 3.90	97 -23.11	4.04	followup	48.00		-0.05	[-0.33; 0.24] [-0.33; 0.24]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	112 48.60 6.70 104 42.70 6.50	123 48.70 114 42.50	6.50 6.40	followup	16.00 48.00	-	-0.02	[-0.27; 0.24]
Parker, PA, et al., 2009 I. Penedo, FJ, et al., 2020 II.	38 48.86 8.88 95 -20.08 4.87	32 48.51 97 -20.29	9.50 4.83	followup followup	24.00 48.00	*	0.04 0.04	[-0.43; 0.51] [-0.24; 0.33]
Penedo, FJ, et al., 2020 II. Parker, PA, et al., 2009 I. Parker, PA, et al., 2009 I.	95 -20.49 4.78 39 47.28 9.18	97 -20.70 36 44.63	4.73 9.12	followup	24.00 6.00		0.04	[-0.24; 0.33] [-0.17; 0.74]
Parker, PA, et al., 2009 II. Parker, PA, et al., 2009 II. Parker, PA, et al. 2009 I	39 49.58 9.74 37 50.22 8.46	36 44.63 32 45.12	9.50 9.12 8.88	followup	6.00 48.00		0.52	[0.06; 0.98] [0.10: 1.071
Parker, PA, et al., 2009 II. Huri M, et al., 2015	37 51.76 10.16 19 0.57 5.38	32 45.12 15 -41.73	8.88 6.14	followup	48.00 12.00	-	0.68	[0.20; 1.17] [5.27; 9.15]
Random effect Prediction interval	1429	1640				<u>+</u>	0.55	[-0.28; 1.37] [-0.95; 2.04]
Random effect Prediction interval	7167	8239				•	0.39	[0.21; 0.57] [-0.53; 1.31]
					-4	-2 0 2	4	grout
					in ravor of	control group in favor of inte	nvention	group

Figure S22.2. Subgroup analysis of the Physical QoL. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the cancer type subgroups as predicted at week 12 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Figure S22.3.T24

Study	Patient N	Mean SD	Patient N	Mean	SD	follow-up	Follow-up time	SMD of interested	event SM	D 95%-CI
breast Rahmani, S, et al. 2015	12	61.66 8.59	12	65.00 1	12.75	baseline	0.00		-0.3	0 [-1.10; 0.51]
Heiney, SP, et al., 2003 Nápoles AM, et al. 2015	33 76	6.60 1.90 15.29 5.78	33 75	7.10 16.76	1.70 5.02	baseline baseline	0.00	-	-0.2 -0.2	7 [-0.76; 0.21] 7 [-0.59; 0.05]
Dirksen, S. et al, 2007 I. Ruiz-Vozmediano, J. et al.,2020	34 31	22.00 5.60 75.40 19.50	38 32	23.10 79.20 1	4.10 15.70	baseline baseline	0.00	重	-0.2 -0.2	2 [-0.69; 0.24] 1 [-0.71; 0.28]
Qiu, H, et al., 2018 II. Ding, K, et al. 2020	98 34	7.72 5.28 72.76 6.03	196 40	8.58 73.17	5.92 5.52	baseline baseline	0.00		-0.1 -0.0	5 [-0.39; 0.09] 7 [-0.53; 0.39]
Ferguson, RJ, et al., 2012 Peng, L, et al., 2022	19 28	7.68 1.95 78.33 12.78	21 29	7.79 79.08 1	1.27 10.04	baseline baseline	0.00	*	-0.0 -0.0	7 [-0.69; 0.55] 6 [-0.58; 0.45]
Jelvehzadeh, F, et al., 2022 Kim, YH, et al., 2017	24 30	3.15 1.52 76.00 14.30	24 30	3.21 76.40 1	2.08 15.20	baseline baseline	0.00	*	-0.0 -0.0	3 [-0.60; 0.53] 3 [-0.53; 0.48]
Hoffman, CJ, et al., 2012 I. Dirksen, S. et al, 2007 II.	102 34	21.88 4.29 19.10 4.00	111 38	21.89 19.10	4.35 4.70	baseline baseline	0.00	-	-0.0 0.0	0 [-0.27; 0.27] 0 [-0.46; 0.46]
Qiu, H, et al., 2018 I. Hoffman, CJ, et al., 2012 II.	98 102	8.71 5.89 17.83 5.03	196 110	8.58 17.65	5.92 5.83	baseline baseline	0.00	\$	0.0	2 [-0.22; 0.26] 3 [-0.24; 0.30]
Fillion, L, et al. 2008 Klinkhammer-Schalke, M et al., 2012	44 100	40.49 9.50 78.68 26.40	43 100	40.00 76.65 2	9.43 27.16	baseline baseline	0.00	畫	0.0	5 [-0.37; 0.47] 8 [-0.20; 0.35]
Klafke, N, et al., 2019 Cengiz HO, et al., 2023	120 32	85.10 19.30 14.15 7.56	113 33	82.60 2 13.03	20.20	baseline baseline	0.00	<u> </u>	0.1	3 [-0.13; 0.38]
Arving, C, et al., 2007 Hernandez, EG, et al. 2018 I	47	81.00 17.00 18.93 5.70	38 28	77.00 1	18.00 5.96	baseline baseline	0.00	量	0.2	3 [-0.20; 0.66]
Elyasi, F, et al., 2021 IV. Hernandez, EG, et al. 2018 II.	20 28	11.60 2.90 15.75 6.10	20 28	10.50 13.82	3.90 5.68	baseline baseline	0.00	-	0.3	1 [-0.31; 0.94]
Von Ah, D, et al., 2012 II. Elvasi E et al. 2021 III.	27	44.69 4.40	29 20	43.18	4.72	baseline baseline	0.00	-	0.3	3 [-0.20; 0.85]
Elyasi, F, et al., 2021 II. Elyasi, F, et al., 2021 II.	15	11.90 3.20 21.00 1.40	15	10.50	3.90	baseline	0.00		0.3	B [-0.34; 1.10]
Von Ah, D, et al., 2012 I. Ferguson R L et al. 2012	26	45.71 5.98	29	43.18	4.72	baseline	0.00		0.4	7 [-0.07; 1.00]
Heiney, SP, et al., 2003	33	6.40 1.40	33	7.20	2.10	followup	16.00		-0.4	4 [-0.93; 0.05]
Elyasi, F, et al., 2021 III. Klinkhammer-Schalke, M et al., 2012	20	17.60 2.70	20	18.70	6.20	followup	24.00		-0.2	3 [-0.85; 0.40]
Elyasi, F, et al., 2021 IV.	20	10.50 2.10	20	10.50	3.70	followup	24.00	<u> </u>	0.0	0 [-0.62; 0.62]
Peng, L, et al., 2022	28	78.33 12.52	29	78.16 1	10.60	followup	0.10		0.0	1 [-0.50; 0.53]
Arving, C, et al., 2007	47	79.00 20.00	38	78.00 1	17.00	followup	12.00		0.0	5 [-0.29, 0.34]
Klarke, N, et al., 2019 Klinkhammer-Schalke, M et al., 2012	120	68.70 23.50 80.20 20.30	113	78.42 2	22.60	followup	24.00	훞	0.0	6 [-0.20; 0.32] 8 [-0.19; 0.36]
Von Ah, D, et al., 2012 I. Von Ah, D, et al., 2012 II.	26	45.03 6.17 45.00 4.48	29 29	44.49 44.49	4.81 4.81	followup	8.00	훞	0.1	0 [-0.43; 0.63] 1 [-0.42; 0.63]
Arving, C, et al., 2007 Peng, L, et al., 2022	47 28	80.00 19.00 83.10 12.63	38 28	78.00 1 81.38 1	17.00 14.52	followup	4.00	훞	0.1	1 [-0.32; 0.54] 2 [-0.40; 0.65]
Klinkhammer-Schalke, M et al., 2012 Dirksen, S. et al, 2007 I.	100 34	83.25 22.34 24.80 3.30	100 38	80.20 2 24.30	21.57 3.80	followup followup	48.00 10.00		0.1	4 [-0.14; 0.42] 4 [-0.32; 0.60]
Arving, C, et al., 2007 Klafke, N, et al., 2019	47 120	82.00 19.00 80.90 21.60	38 113	79.00 1 77.00 2	18.00 21.40	followup followup	24.00 48.00	Ē	0.1 0.1	6 [-0.27; 0.59] 8 [-0.08; 0.44]
Qiu, H, et al., 2018 II. Qiu, H, et al., 2018 II.	98 98	9.83 9.73 14.04 11.82	196 196	8.01 11.52 1	8.85 12.78	followup followup	4.00 24.00		0.2	0 [-0.04; 0.44] 0 [-0.04; 0.45]
Fillion, L, et al. 2008 Klafke, N, et al., 2019	44 120	46.76 9.24 75.30 20.20	43 113	44.64 1 70.70 2	11.05 21.70	followup followup	12.00 12.00		0.2	1 [-0.21; 0.63] 2 [-0.04; 0.48]
Nápoles AM, et al. 2015 Hoffman, C.J. et al., 2012 I.	76 102	19.44 4.26 22.86 4.22	75 111	18.44 21.84	4.58 4.54	followup	24.00 8.00	蓋	0.2	3 [-0.10; 0.55] 3 [-0.04; 0.50]
Qiu, H, et al., 2018 II. Elvasi, E, et al., 2021 I	98 15	12.99 11.82	196 15	10.18 1	11.80	followup	12.00	-	0.2	4 [-0.01; 0.48] 4 [-0.47: 0.96]
Klinkhammer-Schalke, M et al., 2012 Dirksen S. et al. 2007 II	100	84.26 19.79	100	78.68 2	23.35	followup	36.00		0.2	6 [-0.02; 0.54] 7 [-0.20: 0.73]
Elyasi, F, et al., 2021 II. Hoffman, C Let al. 2012 I	15	11.40 2.60	15	10.50	3.70	followup	24.00		0.2	7 [-0.45; 0.99]
Fillion, L, et al. 2008	44	45.10 10.42	43	41.76	9.76	followup	4.00	-	0.3	3 [-0.10; 0.75]
Holiman, CJ, et al., 2012 II. Hoffman, CJ, et al., 2012 II.	102	19.45 5.32	110	17.55	6.06	followup	8.00		0.3	6 [0.09; 0.63]
Ruiz-Vozmediano, J, et al.,2020	31	85.00 14.10	32	78.30 1	18.90	followup	24.00		0.3	0 [-0.10; 0.89]
Kim, YH, et al., 2017 Hernandez, EG, et al. 2018 II.	30 28	75.60 17.40 17.64 4.61	30 28	15.56	4.81	followup	9.00 24.00	E	0.4	4 [-0.11; 0.91] 4 [-0.10; 0.97]
Qiu, H, et al., 2018 I. Hernandez, EG, et al. 2018 II.	28	12.92 9.73 17.54 3.20	28	8.01	8.85 4.39	followup	4.00	-	0.5	4 [0.29; 0.78] 5 [0.02; 1.08]
Qiu, H, et al., 2018 I. Qiu, H, et al., 2018 I.	98 98	16.92 11.12 18.96 10.43	196 196	10.18 1	11.80 12.78	followup followup	12.00 24.00		0.5	B [0.33; 0.83] 2 [0.37; 0.86]
Cengiz, HO, et al., 2023 Hernandez, EG, et al. 2018 I.	32 28	16.75 6.33 21.50 3.39	33 28	12.33 17.68	7.00 6.16	followup followup	8.00 8.00	-	0.6	5 [0.15; 1.15] 6 [0.21; 1.30]
Hernandez, EG, et al. 2018 I. Rahmani, S, et al. 2015	28 12	21.27 4.09 72.77 3.43	28 12	17.52 66.11 1	5.34 10.81	followup followup	24.00 8.00		0.7	B [0.23; 1.32] D [-0.04; 1.64]
Jelvehzadeh, F, et al., 2022 Jelvehzadeh, F, et al., 2022	24 24	5.64 1.73 5.64 1.73	24 24	3.70 3.43	1.68 1.75	followup	12.00 8.00		- 1.1	2 [0.51; 1.73] 5 [0.63: 1.87]
Ding, K, et al. 2020 Random effect	34 4087	104.47 7.43	40 4900	82.38	5.42	followup	4.00	6	- III + 3.4 0.2	0 [2.68; 4.13]
Prediction interval										[-0.89; 1.35]
gastroenterological Cheung YL, et al. 2002	29	15.75 1.75	30	17.50	3.83	baseline	0.00		-0.5	8 [-1.10; -0.06]
Zhang, LMM, et al., 2021 Qin, X. et al., 2017	80 50	58.64 16.46 78.56 8.38	80 50	59.25 1 78.53 1	16.46 11.59	baseline baseline	0.00	-	-0.0 0.0	4 [-0.35; 0.27] 0 [-0.39; 0.39]
Baoyindeligeer, L.Z. et al. 2020 Zhang I MM et al. 2021	65 80	62.75 13.46 62.34 16.46	65 80	62.35 1 62.75 1	12.28	baseline followup	0.00	畫	0.0	3 [-0.31; 0.37]
Zhang, LMM, et al., 2021 Zhang LMM, et al., 2021	80 80	67.90 15.85 72.01 14.81	80 80	64.81 1 68.72 1	13.17	followup	24.00 36.00	Ē	0.2	1 [-0.10; 0.52] 4 [-0.07; 0.55]
Zhang, LMM, et al., 2021 Oin X et al. 2017	80 50	74.27 15.02	80 50	70.16 1	13.58	followup	48.00		0.2	9 [-0.03; 0.60]
Baoyindeligeer, L.Z. et al. 2020 Cheung YL et al. 2002	65 29	84.04 12.72	65 30	72.65 1	13.25	followup	2.00	=	0.8	7 [0.51; 1.23]
Cheung YL, et al. 2002 Random effect	29 717	24.96 1.32	30	20.86	1.75	followup	5.00		- 2.6	0 [1.90; 3.31]
Prediction interval			120						0.5	[-1.27; 2.26]
gynaecological Zhou L et al. 2020	37	13.65 1.84	36	14.85	1 47	haseline	0.00	-	-0.7	1 [-1 19: -0 24]
Powell, CB, et al., 2008 I. Chap, et al. 2005	21	21.60 5.80	43	22.10	7.40	baseline	0.00		-0.0	7 [-0.59; 0.45]
Sandsund, C, et al., 2017	72	77.20 20.20	70	75.50 2	22.30	baseline	0.00	풒	0.0	8 [-0.25; 0.41]
Chan, et al. 2005	80	56.52 61.89	43 75	72.73 7	75.34	followup	12.00		-0.2	3 [-0.55; 0.08]
Chan, et al. 2005 Chan, et al. 2005	80	67.00 67.17	75	78.06 5	58.20	followup	24.00	-	-0.1	7 [-0.49; 0.14]
Chan, et al. 2005 Chan, et al. 2005	80	81.23 81.30	75	86.96 5	54.73	followup	48.00		-0.0	7 [-0.39, 0.24]
Sandsund, C, et al., 2017	80 72	83.00 63.59	75	79.00 2	20.00	followup	36.00	훞	-0.0	1 [-0.32; 0.31] 5 [-0.28; 0.38]
Sandsund, C, et al., 2017 Powell, CB, et al., 2008 I.	72 21	81.70 18.10 25.40 3.30	70 43	79.20 22.60	6.10	followup	24.00 12.00	Ē	0.1	3 [-0.20; 0.46] 2 [-0.01; 1.05]
Powell, CB, et al., 2008 II. Zhou, L, et al., 2020	21 37	22.60 5.80 45.12 5.62	43 36	17.40 38.94	7.40 5.19	followup followup	12.00 12.00	-	0.7-	4 [0.20; 1.28] 3 [0.63; 1.63]
Random effect Prediction interval	934		979						0.1	9 [-0.06; 0.43] [-1.31; 1.68]
prostate	~	70.00		0	0.25		0.00	_		
Berglund, G. et al. 2007 Parker, PA, et al., 2009 I.	39 39	73.30 23.00 51.32 6.74	150 36	84.60 1 52.29	18.30 5.88	baseline baseline	0.00 0.00		-0.5 -0.1	8 [-0.94; -0.22] 5 [-0.60; 0.30]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 II.	95 95	-23.26 3.80 -20.27 4.68	97 97	-23.09 -20.48	3.84 4.63	baseline baseline	0.00 0.00		-0.0 0.0	4 [-0.33; 0.24] 4 [-0.24; 0.33]
Penedo, FJ, et al., 2007 Parker, PA, et al., 2009 II.	41 39	-23.98 28.88 52.79 6.12	30 36	-25.67 1 52.29	14.84 5.88	baseline baseline	0.00	~ ~	0.0	7 [-0.40; 0.54] 8 [-0.37; 0.54]
Karlsen RV et al., 2021 Huri M, et al., 2015	16 19	58.60 3.10 36.68 8.73	19 15	55.80 -36.26	5.40 7.93	baseline baseline	0.00	1	0.6 > 8.4	1 [-0.07; 1.29] 9 [6.25; 10.73]
Berglund, G. et al. 2007 Penedo, FJ, et al., 2007	39 41	78.20 22.50	150 30	87.80 1 -23.83 2	16.90 21.36	followup followup	48.00 12.00	*	-0.5 -0.1	3 [-0.88; -0.17] 0 [-0.57; 0.371
Karlsen RV et al., 2021 Northhouse, LL, et al., 2007	16 107	53.20 9.40 43.30 6.60	19 121	53.80 43.60	6.60 6.50	followup followup	32.00 32.00		-0.0 -0 0	7 [-0.74; 0.59] 5 [-0.31; 0.21]
Penedo, FJ, et al., 2020 I. Penedo, FJ, et al., 2020 I	95 95	-23.29 4.00	97 97	-23.11	4.04 3.94	followup	48.00 24.00		-0.0	4 [-0.33; 0.24] 4 [-0.33; 0.24]
Northhouse, LL, et al., 2007 Northhouse, LL, et al., 2007	112 104	48.60 6.70	123 114	48.70 42.50	6.50 6.40	followup	16.00 48.00		-0.0	2 [-0.27; 0.24]
Parker, PA, et al., 2009 I. Penedo E.L. et al. 2020 II	38	48.86 8.88	32	48.51	9.50	followup	24.00		0.0	4 [-0.43; 0.51]
Penedo, FJ, et al., 2020 II. Parker PA et al. 2000 I	95	-20.49 4.78	97 36	-20.70	4.73	followup	24.00		0.0	4 [-0.24; 0.33]
Parker, PA, et al., 2009 II. Parker PA, et al. 2009 II.	38	51.36 9.18	32	48.51	9.50	followup	24.00		0.3	0 [-0.17; 0.78]
Parker, PA, et al., 2009 I. Parker, PA, et al., 2009 I.	37	50.22 8.46	32	45.12	8.88	followup	48.00		0.5	B [0.10; 1.07] B [0.20; 4.17]
Huri M, et al., 2015 Random effect	19	0.57 5.38	15	-41.73	6.14	followup	12.00		> 7.2	1 [5.27; 9.15]
Prediction interval	1423		1040						-	[-1.06; 1.90]
Random effect Prediction interval	7167		8239					ò	0.2	6 [0.13; 0.40] [-0.66; 1.19]
							г -4	-2 0	2 4	
							In favor of	control group In fav	or of interventi	on group

Figure S22.3.Subgroup analysis of the Physical QoL. Forest plot represents the difference between the intervention vs. control group in the Physical QoL domain with the cancer type subgroups as predicted at week 24 (post-intervention). SMD - Standardized mean difference, CI - confidence interval.

Experimental Control Patient N Mean SD Patient N Mean SD follow-up Follow-up time SMD of interested event SMD 95%-CL Study humani Ammani S, et al. 2015 Heiney, SP, et al. 2003 Nikoloes AM, et al. 2015 Dinksen S, et al. 2015 Dinksen S, et al. 2012 Peng L, et al. 2022 Kim, YH, et al. 2012 Dinksen S, et al. 2012 Dinksen S, et al. 2012 Hoffman, CJ, et al. 2017 Hoffman, CJ, et al. 2018 Hoffman, CJ, et al. 2011 Hoffman, CJ, et al. 2011 Hoffman, CJ, et al. 2012 Hoffman, CJ, et al. 2011 Hoffman, CJ, et al. 2011 Hoffman, CJ, et al. 2012 Hoffman, CJ, et al. 2017 Hoffman, CJ, et al. 2018 Hoffman, CJ, et al. 2018 Hoffman, CJ, et al. 2018 Hoffman, CJ, et al. 2012 Hoffman, CJ, et al. 2018 Hoffman, CJ, et al. 2012 Hoffman, CJ, et al. 2012 Hoffman, CJ 12.75 1.70 5.02 4.10 15.70 0.30 1-110 0.51 0.27 1-576 0.211 0.27 1-576 0.211 0.27 1-576 0.211 0.22 1-056 0.241 0.21 1-071 0.280 0.05 1-056 0.531 0.06 1-056 0.531 0.07 1-055 0.331 0.08 1-057 0.231 0.01 1-0257 0.431 0.02 1-022 0.230 0.03 1-0257 0.431 0.04 1-0257 0.431 0.05 1-0237 0.431 0.05 1-0237 0.431 0.13 1-013 0.841 0.23 1-020 0.681 0.31 1-031 0.941 0.31 1-032 0.932 0.33 1-032 0.932 0.33 1-034 0.931 0.33 1-034 0.932 0.34 $\begin{array}{c} 6160 & 8.69 \\ 6400 & 1500 \\ 1529 & 5.76 \\ 22100 & 5.60 \\ 7.72 & 5.26 \\ 22100 & 5.60 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.72 & 5.26 \\ 7.74 & 5.26 \\ 7.75 & 5.26 \\ 7.75 & 5.26 \\ 7.75 & 5.26 \\ 7.75 & 5.26 \\ 7.75 & 5.26 \\ 7.75 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.50 & 7.44 \\ 7.51 & 7.44 \\ 7.51 & 7.44 \\ 7.51 & 7.34 \\ 7.54 & 4.77 \\ 7.35 & 4.47 \\ 7.35 \\ 7.44 & 7.45 \\ 7.44 & 7.45 \\$ 123763431883491284230020440002022478802827201515254933320002012287647420002627478800441207010281510244102022478802888888822828212444 65.00 7.10 12337583822184042122440 11113838810101431001133382820282922015151291213312000021292382800983811881081431357511188181003851511113323028188200881242440 baseline 15.76 23.10 79.20 0.00 baseline baseline 79.20 15.70 baseline 12.85 5.92 baseline 7.37 1.27 baseline 7.30 1.27 baseline 7.30 1.27 baseline 7.40 1.27 baseline 1.21 2.45 baseline 1.23 4.25 baseline 7.40 1.30 baseline 7.17 5.96 baseline 7.20 1.30 baseline 7.30 1.30 baseline 7.10 1.30 baseline 1.30 6.32 baseline 1.30 6.42 baseline 1.312 5.86 baseline 1.312 5.86 baseline 1.312 5.86 baseline 7.30 1.10 bilowin 82.38 5.42 4.00 , *** gastronalerological Cheuro Y., et al. 2002 Zhang, Li Mi, et al. 2002 Gin, X. et al. 2021 Gin, X. et al. 2021 Zhang, Li Mi, et al. 2020 Zhang, Li Mi, et al. 2021 Gin, X. et al. 2027 Babyindeligeer, L.Z. et al. 2020 Cheurg YL, et al. 2002 Cheurg YL, et al. 2002 Cheurg YL, et al. 2002 $\begin{array}{ccccccc} 15.75 & 1.75 \\ 58.64 & 16.46 \\ 78.56 & 8.38 \\ 62.75 & 13.46 \\ 62.34 & 16.46 \\ 67.90 & 15.85 \\ 72.01 & 14.81 \\ 74.27 & 15.02 \\ 89.42 & 12.35 \\ 84.04 & 12.72 \\ 26.58 & 1.45 \\ 24.96 & 1.32 \\ \end{array}$ 17.50 3.83 baseline 59.25 16.46 baseline 78.53 11.59 baseline 62.75 15.02 followup 64.81 13.17 followup 64.81 13.17 followup 64.81 13.17 followup 90.37 14.32 followup 90.37 14.32 followup 20.36 13.25 followup 20.86 1.75 followup -0.58 [-1.10; -0.06] -0.04 [-0.35; 0.27] 0.00 [-0.39; 0.39] 0.33 [-0.31; 0.37] -0.33 [-0.34; 0.28] 0.21 [-0.10; 0.52] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.24 [-0.07; 0.55] 0.25 [-0. 29 80 50 65 80 80 80 80 80 50 65 29 29 11 0.00 0.00 0.00 12.00 24.00 36.00 48.00 2.00 2.00 10.00 5.00 oynecclopical Zhou, L, et al., 2029 Powell, CR, et al., 2008 I. Chan, et al. 2005 Sandsund. C, et al., 2017 Powell, CB, et al., 2008 II. Chan, et al. 2005 13.65 1.84 21.60 5.80 65.81 51.89 77 20 20.20 18.90 6.20 56.52 61.89 78.26 99.01 67.00 67.17 81.23 81.30 62.51 67.17 83.00 63.59 60.10 21.40 61.70 18.10 25.40 3.30 22.60 5.60 45.12 5.62 14.95 1.47 basuline 2210 7.40 basuline 2215 63.50 basuline 75.50 22.30 basuline 75.50 22.30 basuline 72.73 75.34 followup 22.99 37.67 followup 85.66 55.04 followup 85.66 55.04 followup 95.00 50.05 followup 97.90 0.10 followup 22.90 3.10 followup 93.04 5.04 followup 23.94 5.19 followup 38.94 5.19 followup 0.00 0.00 0.00 12.00 72.00 24.00 60.00 48.00 36.00 12.00 12.00 12.00 36 43 75 70 43 75 75 75 75 75 75 75 75 75 75 70 43 43 36 979 Chan, et al. 2005 Chan, et al. 2005 Sandsund, C. et al., 2017 Sandsund, C. et al., 2017 Powell, CB, et al., 2008 I. Powell, CB, et al., 2008 II. Zhoi, L. et al., 2020 Random effect Prediction interval prostatic Berglund, C. et al. 2007 Parker, PA, et al., 2009 Penedo, FJ, et al., 20001 Penedo, FJ, et al., 20001 Penedo, FJ, et al., 20001 Penedo, FJ, et al., 2009 Katisen RV et al., 2007 Penedo, FJ, et al., 2007 Parker, PA, et al., 2009 Parker, PA, et al., 2009 Penedo, FJ, et al., 2000 Penedo, FJ, et al., 2000 Penedo, FJ, et al., 2009 Penedo, FJ 84.80 18.30 baseline 52.29 5.86 baseline 22.09 5.86 baseline 22.04 8.55 baseline 22.04 8.55 baseline 22.04 8.55 baseline 22.04 8.55 baseline 22.04 5.58 baseline 36.25 7.93 baseline 36.25 7.93 baseline 36.25 7.93 baseline 23.83 0.60 followup 43.50 6.50 followup 43.50 6.50 followup 43.50 followup 43.51 1.04 followup 44.51 9.50 followup 20.70 4.73 followup 20.70 4.73 followup 20.70 4.73 followup 45.51 2.8.88 followup 45.12 8.88 followup 45.12 8.88 followup 41.73 6.14 followup $\begin{array}{c} 0.58 \\ + 0.94, \ 0.22 \\ - 0.15 \\ + 0.66 \\ - 0.04 \\ + 0.34 \\ - 0.34 \\$ $\begin{array}{r} 39\\ 39\\ 95\\ 41\\ 39\\ 16\\ 19\\ 39\\ 10\\ 95\\ 112\\ 39\\ 59\\ 59\\ 39\\ 39\\ 39\\ 39\\ 37\\ 19\end{array}$ 150 36 97 97 30 36 19 150 30 121 97 123 14 32 97 7 36 22 36 32 22 15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 43.00 43.00 43.00 48.00 48.00 48.00 48.00 24.00 6.00 48.00 24.00 6.00 12.00 4 1429 0.35 [-0.40; 1.11] [-1.10; 1.80]

Figure S22.4.T48

Random effect Prediction interval 7167

8239

0.19 [-0.01; 0.40]

-4 -2 0 2 4 In favor of control group In favor of intervention group

S23. Table S.3. Risk of bias assessment

		ido mization process	viations from intended inter ssing outcome data	asurement of the outcome action of the reported result	srall	
Study ID Experimental Comparator	Outcome W	leight 🖉	Mil De	Sel	MO O	
Antoni et al. 2006 psychological inter usual care	quality of life	1 😶		9		🛃 Low risk
Aranda et al. 2006 psychological interusual care	quality of life	1 🥐	99	👱 🕐		Some concerns
Armes et al. 2007 psychological interusual care	quality of life	1 🙂		9		High risk
Arving et al. 2007 psychological interusual care	quality of life	1 💡				
Ashing et al. 2019 psychological interusual care	quality of life	1 🔫	99			
Baoyindeligeer et al. psychological interusual care	quality of life	1 ?	2 👱			
Beatty et al. 2015 psychological interusual care	quality of life	1 😶	2			
Beatty et al. 2015 psychological interusual care	quality of life	1	22			
Berglund et al. 2007 psychological interusual care	quality of life	1	<u><u>x</u> <u>x</u></u>			
Boele et al. 2017 psychological interusual care	quality of life	1 💆	22			
Boesen et al.2007 psychological inter usual care	recurrence free sur	1 😈	22	🙂 👱		
Braeken et al. 2013 psychological interusual care	quality of life	1 🛃		2		
Breitbart et al. 2018 psychological interusual care	quality of life	1 🛄				
Chan et al. 2005 psychological interusual care	quality of life	1 👥	99		U.	
Chen et al. 2017 psychological interusual care	quality of life	1 😶	99	- <u>-</u>		
Cheung et al. 2002 psychological interusual care	quality of life	1 🥐		📕 👱		
Chu et al. 2020 psychological interusual care	quality of life	1 👥	<u>a</u> a	29		
Compenet al. 2018 psychological interusual care	quality of life	1 👥				
Dieng et al. 2020 psychological interusual care	quality of life	1 👥	99	🥶 🤨		
Ding et al. 2020 psychological interusual care	quality of life	1 👱	99	2 7		
Dirksen et al. 2007 psychological interusual care	quality of life	1 🔴		9 2		
Dolbeault et al. 2008 psychological interusual care	quality of life	1 ?	99	🥶 🤨		
Dos santos et al.202(psychological interusual care	quality of life	1 🕛				
Edmondset al. 1999 psychological interusual care	quality of life	1	•	🥐 😁		
Eyasi et al. 2021 psychological interusual care	quality of life	1 🔴	<u> </u>	2 2	()	
Esplen et al. 2018 psychological interusual care	quality of life	1 ?				
Fang et al. 2020 psychological inter usual care	quality of life	1 7	2 😖	· 🕐 😁		
Fann et al. 2009 psychological interusual care	quality of life	1 ?		🥶 🤨	(1)	
Ferguson et al. 2012 psychological interusual care	quality of life	1 🔴		🥐 😶		
Fillion et al. 2008 psychological interusual care	quality of life	1 😶		9 3	(1)	
Gao et al. 2020 psychological interusual care	quality of life	1 😶		🥶 🤨		
Garssen et al. 2012 psychological interusual care	quality of life	1 🤨	1 1	9 0	()	
Gaston-Johansson et psychological interusual care	quality of life	1 🔴	99	9 9		
Giesler et al. 2005 psychological interusual care	quality of life	1 😶			• •	
Girgis et al. 2009 psychological interusual care	quality of life	1 🔴				
Guan et al. 2019 psychological interusual care	quality of life	1 🔛		🤨 🔫	()	
Guan et al. 2019 psychological interusual care	recurrence free sur	1 🔛			()	
Guo et al. 2013 psychological inter usual care	quality of life	1	•	<u>?</u>	()	
Guo et al. 2013 psychological inter usual care	overall survival	1 🔴	00			
Guo et al. 2013 psychological inter usual care	recurrence free sur	1 🔴	00			
Hall et al. 2011 psychological inter usual care	quality of life	1 😶	•			
Ham et al. 2019 psychological inter usual care	quality of life	1 +	00	😗 🤫	()	
Hauffman et al. 2020 psychological inter usual care	quality of life	1 🔴		9 3		
Hawkesetal. 2014 psychological interusual care	quality of lfe	1 😶	•			
Heiney et al. 2003 psychological interusual care Henderson et al. 201 psychological out cusual care Hoffman et al. 2012 psychological interusual care Hun et al. 2015 psychological interususal care Jelvehzadeh et al. 20 psychological inter usual care Jelvehzadeh et al. 20 psychological interusual care Johansson et al. 200 psychological interusual care Karlsen et al. 2021 psychological interusual care Kim et al. 2017 psychological interusual care Klafke et al. 2019 psychological interusual care Klinkhammer-Schalk psychological interusual care Lee et al. 2018 psychologiacal inti usual care Li et al. 2019 psychological interusual care Uu et al. 2019 psychological interusual care Lutgendorf et al. 201 psychological care usual care Marchioro et al. 199 psychological inter usual care McCaughan et al. 20 psychological inter usual care McLachlan et al. 200 psychological inter usual care Miaskowski et al. 20t psychological care usual care Mihuta et al. 2018 psychological interusual care Napoles et al. 2015 psychological interusual care Nikbakhshetal. 201: psychological interusual care Northouse et al. 200 psychological inter usual care Parker et al. 2009 psychological inter usual care Penedo et al. 2007 psychological interusual care Penedo et al. 2020 psychological interusual care Peoples et al. 2017 pcychological inte usual care Petersen et al. 2002 psychological interusual care Powell et al. 2008 psychological interusual care Rahmani et al. 2015 psychological interusual care Reese et al. 2021 psychological inter usual care Reich et al. 2016 psychological interusual care Rodin et al. 2019 psychological interusual care Rodriguezet al. 2014 psychological interusual care Rosen et al. 2018 psychological interusual care Ruiz-Vozmediano et i psychological inter usual care Sandsund et al. 2016 psichological inter usual care Savard et al. 2006 psychological interusual care Schellekens et al. 20: psychological inter usual care Schofield et al. 2016 psychological interusual care Serfaty et al. 2015 psychological inter usual care Takano et al. 2021 psychological interusual cate Takano et al. 2021 psychological interusual care Thomas et al. 2012 psychological interusual care Trask et al. 2003 psychological interusual care Turner et al. 2016 psychological inter usual care van de Wal et al. 201 psychological interusual care van den Berg et al. 20 psychological inter usual care Van Der Hout et al. 2 psychological interusual care Van der Meulen et al. psychological inter usual care

quality of life quality of life§ quality of life qualty of life quality of life overall survival quality of life quality of life

1

Vanbutsele et al. 201 psychological interusual care Vanbutsele et al. 201 psychological interusual care Von Ahlet al. 2012 psychological interusual care Walczak et al. 2017 psychological interusual care Walker et al. 1999 psychological inter usual care Walker et al. 2014 psychological interusual care Wang et al. 2019 psychological inter usual care Wang et al. 2019 psychological interusual care Willems et al. 2016 psychological interusual care Wuetal, 2016 psychological interusual care Wu et al. 2021 psychological interusual care Yoo et al. 2005 psychological interusual care Yun et al. 2017 psychological inter usual care Zhang et al. 2021 psychological interusual care Zhao et al. 2021 psychological interusual care Zhao et al., 2015 psychological interusual care Zhou et al. 2020 psychological interusual care Anderson et al. 2006 psychological interusual care Björneklett et al. 20 psychological inter usual care Børøsund et al. 2020 psychological inter usual care Carbajal-López et al. psychological interusual care Rahmani et al. 2014 psychological interusual care Carlson et al. 2013 psychological interusual care El et al. 2008 psychological interusual care Lapid et al. 2007 psychological inter usual care Lu et al. 2017 psychological interusual care Murphy et al. 2019 psychological interusual care Pettiford et al. 2017 psychological interusual care Poort et al. 2020 psychological interusual care Ramirez et al. 2019 psychological interusual care Rottmann et al. 201: psychological inter usual care Sharpeetal. 2014 psychological interusual care Sohl et al. 2017 psychological interusual care Van Amstel et al. 201 psychological interusual care Yanezet al. 2015 psychological interusual care

overall survival quality of life overall survival quality of life overall survival quality of life recurrence free sur quality of life quality of life

S24. Publication bias

Figure S24.1.Overall Survival

Figure S24.1. Funnel plot for OS outcome showing possible publication bias (Egger's test p-value is 0.0524).

Figure S4.2. Recurrence-free Survival

Figure S24.2.Funnel plot for RFS outcome showing no publication bias (Egger's test p-value is 0.4226).

S24.3.Global Qol

Figure S24.3.1.Provider

Figure S24.3.1.Funnel plot for Global QoL provider subgroup showing possible publication bias.

Figure S24.2 .Funnel plot for Global QoL environment subgroup showing possible publication bias.

Figure S24.3.3.Type

Figure S24.3.3.Funnel plot for Global QoL type subgroup showing possible publication bias.

Figure S24.3.4.Duration of Intervention

Figure S23.3.4. Funnel plot for Global QoL intervention duration subgroup showing possible publication bias.

Figure S24.3.5.Cancer Stage

Figure S24.3.5. Funnel plot for Global QoL cancer stage subgroup showing possible publication bias.

Figure S24.3.6. Funnel plot for Global QoL cancer type subgroup showing possible publication bias.

S24.4.Emotional Qol

Figure S4.4.1.Provider

Figure S24.4.1. Funnel plot for Emotional QoL provider subgroup showing possible publication bias.

Figure S24.4.2. Funnel plot for Emotional QoL environment subgroup showing possible publication bias.

Figure S24.4.3.Type

Figure S24.4.3. Funnel plot for Emotional QoL type subgroup showing possible publication bias.

Figure S24.4.4.Duration of Intervention

Figure S24.4.4. Funnel plot for Emotional QoL duration subgroup showing possible publication bias.

Figure S24.4.5.Cancer Stage

Figure S24.4.5. Funnel plot for Emotional QoL cancer stage subgroup showing possible publication bias.

Figure S24.4.6. Funnel plot for Emotional QoL cancer type subgroup showing possible publication bias.

S24.5.Social Qol

Figure S24.5.1.Provider

Figure S24.5.1. Funnel plot for Social QoL provider subgroup showing possible publication bias

Figure S4.5.2. Funnel plot for Social QoLenvironment subgroup showing possible publication bias

Figure S24.5.3.Type

Figure S24.5.3.Funnel plot for Social QoL type subgroup showing possible publication bias

Figure S24.5.4. Duration of Intervention

Figure S24.5.4. Funnel plot for Social QoL duration subgroup showing possible publication bias

Figure S24.5.5.Cancer Stage

Figure S24.5.5. Funnel plot for Social QoL cancer stage subgroup showing possible publication bias

Figure S24.5.6. Funnel plot for Social QoL cancer type subgroup showing possible publication bias

S24.6. Physical Qol

Figure S24.6.1. Provider

Figure S24.6.1. Funnel plot for Physical QoL provider subgroup showing possible publication bias

Figure S24.6.2. Funnel plot for Physical QoLenvironment subgroup showing possible publication bias

Figure S24.6.3.Type

Figure S24.6.3. Funnel plot for Physical QoL type subgroup showing possible publication bias

Figure S24.6.4. Duration of Intervention

Figure S24.6.4. Funnel plot for Physical QoL duration subgroup showing possible publication bias

Figure S24.6.5. Funnel plot for Physical QoL cancer stage subgroup showing possible publication bias

Figure S24.6.6 Funnel plot for Type QoL cancer stage subgroup showing possible publication bias

REFERENCES

- Huri, M., Huri, E., Kayihan, H. & Altuntas, O. Effects of occupational therapy on quality of life of patients with metastatic prostate cancer. A randomized controlled study. *Saudi Med J* 36, 954-961 (2015). https://doi.org:10.15537/smj.2015.8.11461
- 2 Giesler, R. B. *et al.* Improving the quality of life of patients with prostate carcinoma: a randomized trial testing the efficacy of a nurse-driven intervention. *Cancer* **104**, 752-762 (2005). https://doi.org:10.1002/cncr.21231
- 3 Wang, J., Yan, C. & Fu, A. A randomized clinical trial of comprehensive education and care program compared to basic care for reducing anxiety and depression and improving quality of life and survival in patients with hepatocellular carcinoma who underwent surgery. *Medicine (Baltimore)* **98**, e17552 (2019). https://doi.org:10.1097/MD.000000000017552
- Trask, P. C., Paterson, A. G., Griffith, K. A., Riba, M. B. & Schwartz, J. L.
 Cognitive-behavioral intervention for distress in patients with melanoma: comparison with standard medical care and impact on quality of life. *Cancer* 98, 854-864 (2003). <u>https://doi.org:10.1002/cncr.11579</u>
- 5 Takano, T. *et al.* Effectiveness of self-help workbook intervention on quality of life in cancer patients receiving chemotherapy: results of a randomized controlled trial. *BMC Cancer* **21**, 588 (2021). <u>https://doi.org:10.1186/s12885-021-08333-2</u>
- McCaughan, E., Curran, C., Northouse, L. & Parahoo, K. Evaluating a psychosocial intervention for men with prostate cancer and their partners: Outcomes and lessons learned from a randomized controlled trial. *Appl Nurs Res* 40, 143-151 (2018). <u>https://doi.org:10.1016/j.apnr.2018.01.008</u>
- 7 Walker, J. *et al.* Integrated collaborative care for major depression comorbid with a poor prognosis cancer (SMaRT Oncology-3): a multicentre randomised controlled trial in patients with lung cancer. *Lancet Oncol* **15**, 1168-1176 (2014). <u>https://doi.org:10.1016/S1470-2045(14)70343-2</u>
- 8 Zhang, L. *et al.* Reminiscence therapy exhibits alleviation of anxiety and improvement of life quality in postoperative gastric cancer patients: A randomized, controlled study. *Medicine* **100**, e26821 (2021). <u>https://doi.org:10.1097/md.00000000026821</u>
- 9 Walker, L. G. *et al.* Psychological, clinical and pathological effects of relaxation training and guided imagery during primary chemotherapy. *Br J Cancer* **80**, 262-268 (1999). <u>https://doi.org:10.1038/sj.bjc.6690349</u>
- 10 Arving, C. *et al.* Individual psychosocial support for breast cancer patients: a randomized study of nurse versus psychologist interventions and standard care. *Cancer Nurs* **30**, E10-19 (2007). https://doi.org:10.1097/01.NCC.0000270709.64790.05
- 11 Liu, T. *et al.* Mindfulness-based stress reduction in patients with differentiated thyroid cancer receiving radioactive iodine therapy: a randomized controlled trial. *Cancer Manag Res* **11**, 467-474 (2019). https://doi.org:10.2147/CMAR.S183299

- 12 Lutgendorf, S. K. *et al.* Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach. *Brain Behav Immun* **24**, 1231-1240 (2010). <u>https://doi.org:10.1016/j.bbi.2010.06.014</u>
- 13 Miaskowski, C. *et al.* The use of a responder analysis to identify differences in patient outcomes following a self-care intervention to improve cancer pain management. *Pain* **129**, 55-63 (2007). https://doi.org:10.1016/i.pain.2006.09.031
- 14 Lee, Y. H., Lai, G. M., Lee, D. C., Tsai Lai, L. J. & Chang, Y. P. Promoting Physical and Psychological Rehabilitation Activities and Evaluating Potential Links Among Cancer-Related Fatigue, Fear of Recurrence, Quality of Life, and Physiological Indicators in Cancer Survivors. *Integr Cancer Ther* **17**, 1183-1194 (2018). <u>https://doi.org:10.1177/1534735418805149</u>
- Hawkes, A. L., Pakenham, K. I., Chambers, S. K., Patrao, T. A. & Courneya, K. S. Effects of a multiple health behavior change intervention for colorectal cancer survivors on psychosocial outcomes and quality of life: a randomized controlled trial. *Ann Behav Med* **48**, 359-370 (2014). https://doi.org:10.1007/s12160-014-9610-2
- 16 Yoo, H. J., Ahn, S. H., Kim, S. B., Kim, W. K. & Han, O. S. Efficacy of progressive muscle relaxation training and guided imagery in reducing chemotherapy side effects in patients with breast cancer and in improving their quality of life. *Support Care Cancer* **13**, 826-833 (2005). https://doi.org:10.1007/s00520-005-0806-7
- 17 Klinkhammer-Schalke, M. *et al.* Direct improvement of quality of life using a tailored quality of life diagnosis and therapy pathway: randomised trial in 200 women with breast cancer. *Br J Cancer* **106**, 826-838 (2012). https://doi.org:10.1038/bjc.2012.4
- 18 Marchioro, G. *et al.* The impact of a psychological intervention on quality of life in non-metastatic breast cancer. *Eur J Cancer* **32A**, 1612-1615 (1996). https://doi.org:10.1016/0959-8049(96)00134-7
- 19 Walczak, A. *et al.* Encouraging early discussion of life expectancy and end-oflife care: A randomised controlled trial of a nurse-led communication support program for patients and caregivers. *Int J Nurs Stud* **67**, 31-40 (2017). <u>https://doi.org:10.1016/j.ijnurstu.2016.10.008</u>
- 20 Petersen, R. W. & Quinlivan, J. A. Preventing anxiety and depression in gynaecological cancer: a randomised controlled trial. *BJOG* **109**, 386-394 (2002). <u>https://doi.org:10.1111/j.1471-0528.2002.01271.x</u>
- 21 Vanbutsele, G. *et al.* Effect of early and systematic integration of palliative care in patients with advanced cancer: a randomised controlled trial. *Lancet Oncol* **19**, 394-404 (2018). <u>https://doi.org:10.1016/S1470-2045(18)30060-3</u>
- 22 Schofield, P. *et al.* A tailored, supportive care intervention using systematic assessment designed for people with inoperable lung cancer: a randomised controlled trial. *Psychooncology* **22**, 2445-2453 (2013). https://doi.org:10.1002/pon.3306
- 23 Qin, X. *et al.* The effect of psychological status on postoperative nutrition, immune function and life quality in elderly patients with gastric cancer. *Biomedical Research (India)* **28**, 3912-3916 (2017).
- 24 Zhou, L., Tian, Y., Yu, J., Chen, T. & An, F. Effect of at-home cognitive behavior therapy combined with nursing on revised piper fatigue scale, pittsburgh sleep quality index, self-rating anxiety scale and self-rating

depression scale of ovarian cancer patients after chemotherapy. *International journal of clinical and experimental medicine* **13**, 4227-4234 (2020).

- 25 Northouse, L. L. *et al.* Randomized clinical trial of a family intervention for prostate cancer patients and their spouses. *Cancer* **110**, 2809-2818 (2007). <u>https://doi.org:10.1002/cncr.23114</u>
- 26 Penedo, F. J. *et al.* Technology-Based Psychosocial Intervention to Improve Quality of Life and Reduce Symptom Burden in Men with Advanced Prostate Cancer: Results from a Randomized Controlled Trial. *Int J Behav Med* 27, 490-505 (2020). <u>https://doi.org:10.1007/s12529-019-09839-7</u>
- 27 Penedo, F. J. *et al.* Cognitive behavioral stress management intervention improves quality of life in Spanish monolingual hispanic men treated for localized prostate cancer: results of a randomized controlled trial. *Int J Behav Med* **14**, 164-172 (2007). <u>https://doi.org:10.1007/BF03000188</u>
- 28 Rodriguez Vega, B. *et al.* Combined therapy versus usual care for the treatment of depression in oncologic patients: a randomized controlled trial. *Psychooncology* **20**, 943-952 (2011). <u>https://doi.org:10.1002/pon.1800</u>
- 29 Peoples, A. R. *et al.* Effects of cognitive behavioral therapy for insomnia and armodafinil on quality of life in cancer survivors: a randomized placebocontrolled trial. *J Cancer Surviv* **11**, 401-409 (2017). <u>https://doi.org:10.1007/s11764-017-0597-0</u>
- 30 Parker, P. A. *et al.* The effects of a presurgical stress management intervention for men with prostate cancer undergoing radical prostatectomy. *J Clin Oncol* **27**, 3169-3176 (2009). <u>https://doi.org:10.1200/JCO.2007.16.0036</u>
- 31 van de Wal, M., Thewes, B., Gielissen, M., Speckens, A. & Prins, J. Efficacy of Blended Cognitive Behavior Therapy for High Fear of Recurrence in Breast, Prostate, and Colorectal Cancer Survivors: The SWORD Study, a Randomized Controlled Trial. *J Clin Oncol* **35**, 2173-2183 (2017). <u>https://doi.org:10.1200/JCO.2016.70.5301</u>
- 32 Serfaty, M. *et al.* Acceptance and commitment therapy for adults with advanced cancer (CanACT): A feasibility randomised controlled trial. *Psychooncology* **28**, 488-496 (2019). <u>https://doi.org:10.1002/pon.4960</u>
- 33 Sandsund, C. *et al.* Holistic needs assessment and care plans for women with gynaecological cancer: do they improve cancer-specific health-related quality of life? A randomised controlled trial using mixed methods. *BMJ Support Palliat Care* **10**, e16 (2020). <u>https://doi.org:10.1136/bmjspcare-2016-001207</u>
- Wu, H. X. *et al.* Psychological and behavioral intervention improves the quality of life and mental health of patients suffering from differentiated thyroid cancer treated with postoperative radioactive iodine-131. *Neuropsychiatr Dis Treat* 12, 1055-1060 (2016). <u>https://doi.org:10.2147/NDT.S105460</u>
- 35 Rodin, G. *et al.* Emotion And Symptom-focused Engagement (EASE): a randomized phase II trial of an integrated psychological and palliative care intervention for patients with acute leukemia. *Support Care Cancer* **28**, 163-176 (2020). <u>https://doi.org:10.1007/s00520-019-04723-2</u>
- 36 Zhou, J. *et al.* Effect of PDCA-based nursing management model on the quality of life and complications of patients with acute leukemia undergoing chemotherapy. *Am J Transl Res* **13**, 3246-3253 (2021).
- 37 Thomas, M. L. *et al.* A randomized, clinical trial of education or motivationalinterviewing-based coaching compared to usual care to improve cancer pain management. *Oncol Nurs Forum* **39**, 39-49 (2012). <u>https://doi.org:10.1188/12.ONF.39-49</u>

- 38 Fernandez-Rodriguez, C., Villoria-Fernandez, E., Fernandez-Garcia, P., Gonzalez-Fernandez, S. & Perez-Alvarez, M. Effects of Behavioral Activation on the Quality of Life and Emotional State of Lung Cancer and Breast Cancer Patients During Chemotherapy Treatment. *Behav Modif* **43**, 151-180 (2019). <u>https://doi.org:10.1177/0145445517746915</u>
- 39 Fann, J. R., Fan, M. Y. & Unutzer, J. Improving primary care for older adults with cancer and depression. *J Gen Intern Med* **24 Suppl 2**, S417-424 (2009). https://doi.org:10.1007/s11606-009-0999-4
- 40 Ohlsson-Nevo, E., Karlsson, J. & Nilsson, U. Effects of a psycho-educational programme on health-related quality of life in patients treated for colorectal and anal cancer: A feasibility trial. *Eur J Oncol Nurs* **21**, 181-188 (2016). https://doi.org:10.1016/j.ejon.2015.10.002
- 41 Antoni, M. H. *et al.* How stress management improves quality of life after treatment for breast cancer. *J Consult Clin Psychol* **74**, 1143-1152 (2006). https://doi.org:10.1037/0022-006X.74.6.1152
- 42 Ashing, K. T. & George, M. Exploring the efficacy of a paraprofessional delivered telephonic psychoeducational intervention on emotional well-being in African American breast cancer survivors. *Support Care Cancer* **28**, 1163-1171 (2020). <u>https://doi.org:10.1007/s00520-019-04899-7</u>
- 43 Esplen, M. J., Warner, E., Boquiren, V., Wong, J. & Toner, B. Restoring body image after cancer (ReBIC): A group therapy intervention. *Psychooncology* 29, 671-680 (2020). https://doi.org:10.1002/pon.5304
- 44 Burns, D. S. The effect of the bonny method of guided imagery and music on the mood and life quality of cancer patients. *J Music Ther* **38**, 51-65 (2001). https://doi.org:10.1093/jmt/38.1.51
- 45 Dos Santos, M. *et al.* Cognitive rehabilitation program to improve cognition of cancer patients treated with chemotherapy: A 3-arm randomized trial. *Cancer* 126, 5328-5336 (2020). <u>https://doi.org:10.1002/cncr.33186</u>
- 46 Gaston-Johansson, F. *et al.* Long-term effect of the self-management comprehensive coping strategy program on quality of life in patients with breast cancer treated with high-dose chemotherapy. *Psychooncology* **22**, 530-539 (2013). <u>https://doi.org:10.1002/pon.3031</u>
- 47 Garssen, B. *et al.* Stress management training for breast cancer surgery patients. *Psychooncology* **22**, 572-580 (2013). https://doi.org:10.1002/pon.3034
- 48 Hall, S. *et al.* A novel approach to enhancing hope in patients with advanced cancer: a randomised phase II trial of dignity therapy. *BMJ Support Palliat Care* **1**, 315-321 (2011). <u>https://doi.org:10.1136/bmjspcare-2011-000054</u>
- 49 Napoles, A. M. *et al.* Nuevo Amanecer: results of a randomized controlled trial of a community-based, peer-delivered stress management intervention to improve quality of life in Latinas with breast cancer. *Am J Public Health* **105** Suppl 3, e55-63 (2015). <u>https://doi.org:10.2105/AJPH.2015.302598</u>
- 50 Gao, Q., Li, H., Zou, Y., Hou, B. & Liu, L. Effectiveness of a comprehensive post-operative health education program in improving quality of life after gastric cancer surgery. *Ann Palliat Med* **9**, 921-926 (2020). <u>https://doi.org:10.21037/apm.2020.04.14</u>
- 51 Dieng, M. *et al.* Benefits of a brief psychological intervention targeting fear of cancer recurrence in people at high risk of developing another melanoma: 12-month follow-up results of a randomized controlled trial. *Br J Dermatol* **182**, 860-868 (2020). <u>https://doi.org:10.1111/bjd.17990</u>

- 52 Karlsen, R. V. *et al.* Couple Counseling and Pelvic Floor Muscle Training for Men Operated for Prostate Cancer and for Their Female Partners: Results From the Randomized ProCan Trial. *Sex Med* **9**, 100350 (2021). <u>https://doi.org:10.1016/j.esxm.2021.100350</u>
- 53 Boele, F. W. *et al.* Internet-based guided self-help for glioma patients with depressive symptoms: a randomized controlled trial. *J Neurooncol* **137**, 191-203 (2018). <u>https://doi.org:10.1007/s11060-017-2712-5</u>
- 54 Braeken, Á. P. *et al.* Psychosocial screening effects on health-related outcomes in patients receiving radiotherapy. A cluster randomised controlled trial. *Psychooncology* **22**, 2736-2746 (2013). <u>https://doi.org:10.1002/pon.3340</u>
- 55 Cheung, Y. L., Molassiotis, A. & Chang, A. M. The effect of progressive muscle relaxation training on anxiety and quality of life after stoma surgery in colorectal cancer patients. *Psychooncology* **12**, 254-266 (2003). https://doi.org:10.1002/pon.638
- 56 van der Hout, A. *et al.* Role of eHealth application Oncokompas in supporting self-management of symptoms and health-related quality of life in cancer survivors: a randomised, controlled trial. *Lancet Oncol* **21**, 80-94 (2020). https://doi.org:10.1016/S1470-2045(19)30675-8
- 57 Ham, K. *et al.* Preliminary Results From a Randomized Controlled Study for an App-Based Cognitive Behavioral Therapy Program for Depression and Anxiety in Cancer Patients. *Front Psychol* **10**, 1592 (2019). https://doi.org:10.3389/fpsyg.2019.01592
- 58 Ding, K. *et al.* Managing Cancer and Living Meaningfully (CALM) Intervention on Chemotherapy-Related Cognitive Impairment in Breast Cancer Survivors. *Integr Cancer Ther* **19**, 1534735420938450 (2020). <u>https://doi.org:10.1177/1534735420938450</u>
- Fillion, L. *et al.* A brief intervention for fatigue management in breast cancer survivors. *Cancer Nurs* 31, 145-159 (2008).
 https://doi.org:10.1097/01.NCC.0000305698.97625.95
- 60 Gonzalez-Hernandez, E. *et al.* Cognitively-Based Compassion Training (CBCT((R))) in Breast Cancer Survivors: A Randomized Clinical Trial Study. *Integr Cancer Ther* **17**, 684-696 (2018). <u>https://doi.org:10.1177/1534735418772095</u>
- 61 Breitbart, W. *et al.* Individual meaning-centered psychotherapy for the treatment of psychological and existential distress: A randomized controlled trial in patients with advanced cancer. *Cancer* **124**, 3231-3239 (2018). https://doi.org:10.1002/cncr.31539
- 62 van der Meulen, I. C. *et al.* Long-term effect of a nurse-led psychosocial intervention on health-related quality of life in patients with head and neck cancer: a randomised controlled trial. *Br J Cancer* **110**, 593-601 (2014). <u>https://doi.org:10.1038/bjc.2013.733</u>
- 63 Turner, J. *et al.* A tiered multidisciplinary approach to the psychosocial care of adult cancer patients integrated into routine care: the PROMPT study (a cluster-randomised controlled trial). *Support Care Cancer* **25**, 17-26 (2017). https://doi.org:10.1007/s00520-016-3382-0
- 64 Reese, J. B. *et al.* Efficacy of a multimedia intervention in facilitating breast cancer patients' clinical communication about sexual health: Results of a randomized controlled trial. *Psychooncology* **30**, 681-690 (2021). https://doi.org:10.1002/pon.5613

- 65 Powell, C. B. *et al.* A randomized study of the effectiveness of a brief psychosocial intervention for women attending a gynecologic cancer clinic. *Gynecol Oncol* **111**, 137-143 (2008). https://doi.org:10.1016/j.ygyno.2008.06.024
- 66 Nikbakhsh, N. *et al.* Citalopram and group psychotherapy in breast cancer patients: A randomized clinical trial. *Med J Islam Repub Iran* **32**, 68 (2018). https://doi.org:10.14196/mjiri.32.68
- 67 Fang, P., Wu. The effect of psychological support combined with humanistic care on the negative emotions and satisfaction with nursing among gastric cancer surgery patients. (2020).
- 68 Mihuta, M. E., Green, H. J. & Shum, D. H. K. Web-based cognitive rehabilitation for survivors of adult cancer: A randomised controlled trial. *Psychooncology* **27**, 1172-1179 (2018). <u>https://doi.org:10.1002/pon.4615</u>
- 69 McLachlan, S. A. *et al.* Randomized trial of coordinated psychosocial interventions based on patient self-assessments versus standard care to improve the psychosocial functioning of patients with cancer. *J Clin Oncol* **19**, 4117-4125 (2001). <u>https://doi.org:10.1200/JCO.2001.19.21.4117</u>
- 70 Edmonds, C. V., Lockwood, G. A. & Cunningham, A. J. Psychological response to long-term group therapy: a randomized trial with metastatic breast cancer patients. *Psychooncology* 8, 74-91 (1999). <u>https://doi.org:10.1002/(SICI)1099-1611(199901/02)8:1</u><74::AID-PON339>3.0.CO;2-K
- 71 Li, J. & Liu, X. Incremental patient care program decreases anxiety, reduces depression and improves the quality of life in patients with colorectal cancer receiving adjuvant chemotherapy. *Exp Ther Med* **18**, 2789-2798 (2019). https://doi.org:10.3892/etm.2019.7877
- 72 Elyasi, F. *et al.* Cognitive-Behavioral Therapy and Hypnosis Intervention on Anxiety, Depression, and Quality of Life in Patients with Breast Cancer Undergoing Chemotherapy: A Clinical Trial. *Middle East Journal of Cancer* **12**, 236-248 (2021). <u>https://doi.org:10.30476/mejc.2020.83225.1149</u>
- 73 Ferguson, R. J. *et al.* Development of CBT for chemotherapy-related cognitive change: results of a waitlist control trial. *Psychooncology* **21**, 176-186 (2012). <u>https://doi.org:10.1002/pon.1878</u>
- 74 Willems, R. A. *et al.* Short-term effectiveness of a web-based tailored intervention for cancer survivors on quality of life, anxiety, depression, and fatigue: randomized controlled trial. *Psychooncology* **26**, 222-230 (2017). <u>https://doi.org:10.1002/pon.4113</u>
- 75 Wu, Q., Liu, Q. & Pan, S. Effect of wechat platform based continuity of care on the quality of life and psychosocial competence in postoperative patients with breast cancer. *International journal of clinical and experimental medicine* **14**, 1162-1171 (2021).
- 76 Yun, Y. H. *et al.* A randomized controlled trial of physical activity, dietary habit, and distress management with the Leadership and Coaching for Health (LEACH) program for disease-free cancer survivors. *BMC Cancer* **17**, 298 (2017). <u>https://doi.org:10.1186/s12885-017-3290-9</u>
- 77 Zhao, Y. H. & Xu, Y. Effect of Comprehensive Nursing Based on Cognitive Behavior on Psychological Function of Glioma Patients. *Neuropsychiatr Dis Treat* 17, 777-785 (2021). <u>https://doi.org:10.2147/NDT.S286164</u>

- 78 Zhao, X. *et al.* Influence of psychological intervention on pain and immune functions of patients receiving lung cancer surgery. *Pak J Med Sci* 32, 155-159 (2016). <u>https://doi.org:10.12669/pjms.321.8935</u>
- 79 Rosen, K. D., Paniagua, S. M., Kazanis, W., Jones, S. & Potter, J. S. Quality of life among women diagnosed with breast Cancer: A randomized waitlist controlled trial of commercially available mobile app-delivered mindfulness training. *Psychooncology* **27**, 2023-2030 (2018). https://doi.org:10.1002/pon.4764
- 80 Ruiz-Vozmediano, J. *et al.* Influence of a Multidisciplinary Program of Diet, Exercise, and Mindfulness on the Quality of Life of Stage IIA-IIB Breast Cancer Survivors. *Integr Cancer Ther* **19**, 1534735420924757 (2020). <u>https://doi.org:10.1177/1534735420924757</u>
- 81 Von Ah, D. *et al.* Advanced cognitive training for breast cancer survivors: a randomized controlled trial. *Breast Cancer Res Treat* **135**, 799-809 (2012). https://doi.org:10.1007/s10549-012-2210-6
- 82 Lengacher, C. A. *et al.* Randomized controlled trial of mindfulness-based stress reduction (MBSR) for survivors of breast cancer. *Psychooncology* **18**, 1261-1272 (2009). <u>https://doi.org:10.1002/pon.1529</u>
- 83 Beatty, L., Koczwara, B. & Wade, T. Evaluating the efficacy of a self-guided Web-based CBT intervention for reducing cancer-distress: a randomised controlled trial. *Support Care Cancer* **24**, 1043-1051 (2016). https://doi.org:10.1007/s00520-015-2867-6
- 84 Chu, X. Effect of Mindfulness Based Cognitive Therapy on the Mental Health and Quality of Life in Patients with Breast Cancer. (2020). https://doi.org:10.36468/pharmaceutical-sciences.spl.143
- 85 Berglund, G. *et al.* "Between Men": a psychosocial rehabilitation programme for men with prostate cancer. *Acta Oncol* **46**, 83-89 (2007). <u>https://doi.org:10.1080/02841860600857326</u>
- Dirksen, S. R. & Epstein, D. R. Efficacy of an insomnia intervention on fatigue, mood and quality of life in breast cancer survivors. *J Adv Nurs* 61, 664-675 (2008). https://doi.org/10.1111/j.1365-2648.2007.04560.x
- 87 Dolbeault, S. *et al.* The effectiveness of a psycho-educational group after early-stage breast cancer treatment: results of a randomized French study. *Psychooncology* **18**, 647-656 (2009). <u>https://doi.org:10.1002/pon.1440</u>
- Aranda, S. *et al.* Meeting the support and information needs of women with advanced breast cancer: a randomised controlled trial. *Br J Cancer* 95, 667-673 (2006). <u>https://doi.org:10.1038/sj.bjc.6603320</u>
- 89 Baoyindeligeer, L. Z. Rehabilitation and quality of life improvement of patients with esophageal carcinoma surgery by psychological intervention. (2020).
- 90 Armes, J., Chalder, T., Addington-Hall, J., Richardson, A. & Hotopf, M. A randomized controlled trial to evaluate the effectiveness of a brief, behaviorally oriented intervention for cancer-related fatigue. *Cancer* **110**, 1385-1395 (2007). <u>https://doi.org:10.1002/cncr.22923</u>
- 91 Compen, F. *et al.* Face-to-Face and Internet-Based Mindfulness-Based Cognitive Therapy Compared With Treatment as Usual in Reducing Psychological Distress in Patients With Cancer: A Multicenter Randomized Controlled Trial. *J Clin Oncol* **36**, 2413-2421 (2018). https://doi.org:10.1200/JCO.2017.76.5669
- 92 Schofield, P. *et al.* Nurse-led group consultation intervention reduces depressive symptoms in men with localised prostate cancer: a cluster

randomised controlled trial. *BMC Cancer* **16**, 637 (2016). <u>https://doi.org:10.1186/s12885-016-2687-1</u>

- Hauffman, A. *et al.* Cocreated internet-based stepped care for individuals with cancer and concurrent symptoms of anxiety and depression: Results from the U-CARE AdultCan randomized controlled trial. *Psychooncology* 29, 2012-2018 (2020). <u>https://doi.org:10.1002/pon.5489</u>
- Jelvehzadeh, F., Dogaheh, E. R., Bernstein, C., Shakiba, S. & Ranjbar, H.
 The effect of a group cognitive behavioral therapy on the quality of life and emotional disturbance of women with breast cancer. *Support Care Cancer* 30, 305-312 (2022). <u>https://doi.org:10.1007/s00520-021-06421-4</u>
- 95 Qiu, H. Effects of cognitive behavioral therapy for depression on improving insomnia and quality of life in Chinese women with breast cancer: results of a randomized, controlled, multicenter trial. (2018). https://doi.org/https://doi.org/10.2147%2FNDT.S171297
- 96 Girgis, A., Breen, S., Stacey, F. & Lecathelinais, C. Impact of two supportive care interventions on anxiety, depression, quality of life, and unmet needs in patients with nonlocalized breast and colorectal cancers. *J Clin Oncol* **27**, 6180-6190 (2009). https://doi.org:10.1200/JCO.2009.22.8718
- 97 Guan, S. The improvement strategies of psychological intervention nursing on the anxiety and living quality of patients with gynecologic malignancies during postoperative chemotherapy. (2019).
- 98 Guo, Z. The benefits of psychosocial interventions for cancer patients undergoing radiotherapy. (2013).
- 99 Heiney, S. P. *et al.* Efficacy of therapeutic group by telephone for women with breast cancer. *Cancer Nurs* **26**, 439-447 (2003). https://doi.org:10.1097/00002820-200312000-00003
- 100 Henderson, V. P. *et al.* A randomized controlled trial of mindfulness-based stress reduction for women with early-stage breast cancer receiving radiotherapy. *Integr Cancer Ther* **12**, 404-413 (2013). https://doi.org:10.1177/1534735412473640
- 101 Henderson, V. P. *et al.* The effects of mindfulness-based stress reduction on psychosocial outcomes and quality of life in early-stage breast cancer patients: a randomized trial. *Breast Cancer Res Treat* **131**, 99-109 (2012). https://doi.org:10.1007/s10549-011-1738-1
- 102 Hoffman, C. J. *et al.* Effectiveness of mindfulness-based stress reduction in mood, breast- and endocrine-related quality of life, and well-being in stage 0 to III breast cancer: a randomized, controlled trial. *J Clin Oncol* **30**, 1335-1342 (2012). <u>https://doi.org:10.1200/JCO.2010.34.0331</u>
- Johansson, B. *et al.* Health-related quality of life and distress in cancer patients: results from a large randomised study. *Br J Cancer* **99**, 1975-1983 (2008). <u>https://doi.org:10.1038/sj.bjc.6604789</u>
- 104 Kim, Y. H., Choi, K. S., Han, K. & Kim, H. W. A psychological intervention programme for patients with breast cancer under chemotherapy and at a high risk of depression: A randomised clinical trial. *J Clin Nurs* 27, 572-581 (2018). <u>https://doi.org:10.1111/jocn.13910</u>
- 105 Klafke, N. *et al.* The effects of an integrated supportive care intervention on quality of life outcomes in outpatients with breast and gynecologic cancer undergoing chemotherapy: Results from a randomized controlled trial. *Cancer Med* **8**, 3666-3676 (2019). <u>https://doi.org:10.1002/cam4.2196</u>

- 106 Rahmani, S. & Talepasand, S. The effect of group mindfulness based stress reduction program and conscious yoga on the fatigue severity and global and specific life quality in women with breast cancer. *Med J Islam Repub Iran* **29**, 175 (2015).
- 107 Reich, R. R. *et al.* Mindfulness-Based Stress Reduction in Post-treatment Breast Cancer Patients: Immediate and Sustained Effects Across Multiple Symptom Clusters. *J Pain Symptom Manage* **53**, 85-95 (2017). <u>https://doi.org:10.1016/j.jpainsymman.2016.08.005</u>
- 108 Savard, J. *et al.* Randomized clinical trial on cognitive therapy for depression in women with metastatic breast cancer: psychological and immunological effects. *Palliat Support Care* **4**, 219-237 (2006). <u>https://doi.org:10.1017/s1478951506060305</u>
- 109 Schellekens, M. P. J. *et al.* Mindfulness-Based Cancer Recovery (MBCR) versus Supportive Expressive Group Therapy (SET) for distressed breast cancer survivors: evaluating mindfulness and social support as mediators. *J Behav Med* **40**, 414-422 (2017). <u>https://doi.org:10.1007/s10865-016-9799-6</u>
- 110 van den Berg, S. BREATH: Web-Based Self-Management for Psychological Adjustment After Primary Breast Cancer—Results of a Multicenter Randomized Controlled Trial. *Journal of Clinical Oncology* (2015). <u>https://doi.org:10.1200/JCO.2013.54.9386</u>
- 111 Wang, T. J. *et al.* Efficacy of a self-management program on quality of life in colorectal cancer patients: A randomized controlled trial. *Eur J Oncol Nurs* 67, 102431 (2023). <u>https://doi.org:10.1016/j.ejon.2023.102431</u>
- 112 Xia, S. Effect of cognitive behavioral stress management on anxiety, depression, and quality of life in colorectal cancer patients post tumor resection: a randomized, controlled study. *Ir J Med Sci* **192**, 1637-1644 (2023). <u>https://doi.org:10.1007/s11845-023-03405-7</u>
- 113 Peng, L. *et al.* Effects of an online mindfulness-based intervention on Fear of Cancer Recurrence and quality of life among Chinese breast cancer survivors. *Complement Ther Clin Pract* **49**, 101686 (2022). <u>https://doi.org:10.1016/j.ctcp.2022.101686</u>
- Kissane, D. W. *et al.* Meaning and Purpose (MaP) therapy in advanced cancer patients: a randomised controlled trial. *Support Care Cancer* **31**, 734 (2023). <u>https://doi.org:10.1007/s00520-023-08189-1</u>
- 115 Zaman, A. *et al.* Effectiveness of a Tailored Work-Related Support Intervention for Patients Diagnosed with Gastrointestinal Cancer: A Multicenter Randomized Controlled Trial. *J Occup Rehabil* **31**, 323-338 (2021). <u>https://doi.org:10.1007/s10926-020-09920-z</u>
- 116 Kim, S. H., Choe, Y. H., Cho, Y. U., Park, S. & Lee, M. H. Effects of a partnership-based, needs-tailored self-management support intervention for post-treatment breast cancer survivors: A randomized controlled trial. *Psychooncology* **31**, 460-469 (2022). <u>https://doi.org:10.1002/pon.5828</u>
- 117 McCusker, J. *et al.* CanDirect: Effectiveness of a Telephone-Supported Depression Self-Care Intervention for Cancer Survivors. *J Clin Oncol* **39**, 1150-1161 (2021). https://doi.org:10.1200/jco.20.01802
- 118 Lee, J. T., Lee, Y. H. & Chang, Y. P. Mindfulness Stress Management for Female Cancer Survivors Facing the Uncertainty of Disease Progression: A Randomized Controlled Study. *Int J Environ Res Public Health* **19** (2022). <u>https://doi.org:10.3390/ijerph19084497</u>

- 119 Lu, Z. *et al.* Early Interdisciplinary Supportive Care in Patients With Previously Untreated Metastatic Esophagogastric Cancer: A Phase III Randomized Controlled Trial. *J Clin Oncol* **39**, 748-756 (2021). https://doi.org:10.1200/jco.20.01254
- 120 Kirkegaard, A. M. *et al.* Effects on long-term survival of psychosocial group intervention in early-stage breast cancer: follow-up of a randomized controlled trial. *Acta Oncol* **62**, 422-428 (2023). https://doi.org:10.1080/0284186x.2023.2203329
- 121 Oner Cengiz, H., Bayir, B., Sayar, S. & Demirtas, M. Effect of mindfulnessbased therapy on spiritual well-being in breast cancer patients: a randomized controlled study. *Support Care Cancer* **31**, 438 (2023). <u>https://doi.org:10.1007/s00520-023-07904-2</u>
- 122 Seliniotaki, T. *et al.* Effects of an 8-Week Stress Management Program in Women with Breast Cancer: A Randomized Controlled Trial. *Adv Exp Med Biol* **1339**, 85-95 (2021). <u>https://doi.org:10.1007/978-3-030-78787-5_12</u>
- 123 Anderson, K. O. *et al.* Brief cognitive-behavioral audiotape interventions for cancer-related pain: Immediate but not long-term effectiveness. *Cancer* **107**, 207-214 (2006). <u>https://doi.org:10.1002/cncr.21964</u>
- Bjorneklett, H. G. *et al.* A randomised controlled trial of support group intervention after breast cancer treatment: results on anxiety and depression. *Acta Oncol* 51, 198-207 (2012). https://doi.org:10.3109/0284186X.2011.610352
- 125 Borosund, E. *et al.* Results from a randomized controlled trial testing StressProffen; an application-based stress-management intervention for cancer survivors. *Cancer Med* **9**, 3775-3785 (2020). <u>https://doi.org:10.1002/cam4.3000</u>
- 126 Carbajal-Lopez, E. B., Juarez-Garcia, D. M., Espinoza-Velazco, A. & Calderillo-Ruiz, G. Internet-Delivered Cognitive Behavioral Therapy and Psychoeducation Program for Patients with Gastrointestinal Stromal Tumors. *J Cancer Educ* **37**, 668-674 (2022). <u>https://doi.org:10.1007/s13187-020-01866-3</u>
- 127 Rahmani, S., Talepasand, S. & Ghanbary-Motlagh, A. Comparison of effectiveness of the metacognition treatment and the mindfulness-based stress reduction treatment on global and specific life quality of women with breast cancer. *Iran J Cancer Prev* **7**, 184-196 (2014).
- 128 Carlson LE, D. R., Stephen J, Faris P, Tamagawa R, Drysdale E, Speca M. Randomized controlled trial of Mindfulness-based cancer recovery versus supportive expressive group therapy for distressed survivors of breast cancer. (2013). <u>https://doi.org/10.1200/jco.2012.47.5210</u>
- 129 Ell, K. *et al.* Randomized controlled trial of collaborative care management of depression among low-income patients with cancer. *J Clin Oncol* **26**, 4488-4496 (2008). <u>https://doi.org:10.1200/JCO.2008.16.6371</u>
- 130 Lapid, M. I. *et al.* Improving the quality of life of geriatric cancer patients with a structured multidisciplinary intervention: a randomized controlled trial. *Palliat Support Care* 5, 107-114 (2007). <u>https://doi.org:10.1017/s1478951507070174</u>
- 131 Lu, J. *et al.* Effectiveness of an Intervention to Promote Self-Efficacy on Quality of Life of Patients with Nasopharyngeal Carcinoma of the Zhuang Tribe Minority in Guangxi, China: A Prospective Study. *Med Sci Monit* 23, 4077-4086 (2017). <u>https://doi.org:10.12659/msm.903205</u>

- 132 Murphy, M. J. *et al.* Randomised controlled trial of internet-delivered cognitive behaviour therapy for clinical depression and/or anxiety in cancer survivors (iCanADAPT Early). *Psychooncology* **29**, 76-85 (2020). https://doi.org:10.1002/pon.5267
- 133 Pettiford, J. *et al.* A Bio-Psychosocial Intervention Program for Improving Quality of Life in Breast Cancer Survivors - Final Outcome of a Prospective Randomized Trial. *Breast J* **23**, 537-544 (2017). https://doi.org:10.1111/tbj.12786
- 134 Poort, H. *et al.* Cognitive behavioral therapy or graded exercise therapy compared with usual care for severe fatigue in patients with advanced cancer during treatment: a randomized controlled trial. *Ann Oncol* **31**, 115-122 (2020). <u>https://doi.org:10.1016/j.annonc.2019.09.002</u>
- 135 Ramirez, A. G. *et al.* Assessing the effect of patient navigator assistance for psychosocial support services on health-related quality of life in a randomized clinical trial in Latino breast, prostate, and colorectal cancer survivors. *Cancer* **126**, 1112-1123 (2020). <u>https://doi.org:10.1002/cncr.32626</u>
- 136 Rottmann, N. *et al.* No improvement in distress and quality of life following psychosocial cancer rehabilitation. A randomised trial. *Psychooncology* **21**, 505-514 (2012). <u>https://doi.org:10.1002/pon.1924</u>
- 137 Sharpe, M. et al. Integrated collaborative care for comorbid major depression in patients with cancer (SMaRT Oncology-2): a multicentre randomised controlled effectiveness trial. Lancet **384**, 1099-1108 (2014). https://doi.org:10.1016/S0140-6736(14)61231-9
- 138 Sohl, S. J., Dietrich, M. S., Wallston, K. A. & Ridner, S. H. A randomized controlled trial of expressive writing in breast cancer survivors with lymphedema. *Psychol Health* **32**, 826-842 (2017). https://doi.org:10.1080/08870446.2017.1307372
- 139 Ploos van Amstel, F. K. *et al.* Does a regular nurse-led distress screening and discussion improve quality of life of breast cancer patients treated with curative intent? A randomized controlled trial. *Psychooncology* **29**, 719-728 (2020). <u>https://doi.org:10.1002/pon.5324</u>
- 140 Yanez, B. *et al.* Feasibility, acceptability, and preliminary efficacy of a technology-assisted psychosocial intervention for racially diverse men with advanced prostate cancer. *Cancer* **121**, 4407-4415 (2015). <u>https://doi.org:10.1002/cncr.29658</u>
- 141 Wenzel, L. *et al.* Psychosocial telephone counseling for survivors of cervical cancer: results of a randomized biobehavioral trial. *J Clin Oncol* **33**, 1171-1179 (2015). <u>https://doi.org:10.1200/JCO.2014.57.4079</u>
- 142 Urech, C. *et al.* Web-Based Stress Management for Newly Diagnosed Patients With Cancer (STREAM): A Randomized, Wait-List Controlled Intervention Study. *J Clin Oncol* **36**, 780-788 (2018). <u>https://doi.org:10.1200/JCO.2017.74.8491</u>
- 143 Lerman, R., Jarski, R., Rea, H., Gellish, R. & Vicini, F. Improving symptoms and quality of life of female cancer survivors: a randomized controlled study. *Ann Surg Oncol* **19**, 373-378 (2012). <u>https://doi.org:10.1245/s10434-011-2051-2</u>