
eMethods. Study Analyses
GWAS data quality control
Each of the five Open Genome-wide Association study (GWAS) datasets1-3 of Respiratory
Diseases utilized in this work was subjected to stringent quality control; the inclusion criteria and
specifics of the quality control processes were reported in detail in the original publication.
Additionally, we only use any data for data analysis following additional, stringent quality control
using the techniques listed below: (1) Only bialleles were present for genes in the 1000 Genomes
Project (1KGP) Phase 3 reference panel of the European reference population that had a minor
allele frequency (MAF) greater than 0.01; (2) After matching, SNPS without a rsID or with a
duplicate rsID is removed; (3) chromosomal positions of all SNPS are matched to those in the
hg19 human reference genome.
Global AND Local genetic correlation analysis
To determine the polygenicity of each respiratory trait, we first assessed the GWAS heritability of
each variable using univariate linkage disequilibrium score regression(LDSC)4. Using bivariate
LDSC, a global genetic correlation analysis (ranging from -1 to 1) was additionally carried out to
determine the shared genetic components among the five respiratory illnesses. By building a
regression relationship between the LD score and the results of the GWAS test, LDSC calculates
the heritability of a single trait or the genetic association of two characteristics. The LD score was
calculated using European ancestry reference data
(https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2) from
1000G and was limited to 1.2 million HapMap3 SNPs
(http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip) with good data
quality control. SNPS in the MHC region were disregarded because complex LD interactions have
an impact on the assessment of genetic correlations. We did not restrict intercept terms in
univariate and bivariate LDSC analyses since we did not know the extent of sample overlap.
Instead, we used intercept terms to determine whether population stratification existed in a single
trait GWAS or whether there was a possibility of sample overlap between two GWAS datasets.
Furthermore, we estimated genetic correlations between five respiratory disorders using High
Definition Likelihood (HDL)5 and compared them to LDSC estimates. Due to the fact that HDL
bases its estimates on LD information from across the genome, it has a lower variance than LDSC.
Our HDL estimates are based on the reference panel of UK Biobank imputed HapMap3
SNPs(https://github.com/zhenin/HDL/wiki/Reference-panels).
The global genetic correlations that LDSC and HDL assess are Inferred from compiled data on all
genome variants. However, due to the intricacy of disease association and genetic variation, The
amount and direction of each region's contribution to genetic correlation varied, and there were
also considerable differences in the genetic correlation between the two traits across regions.
Particularly, opposing regional genetic correlations may cancel one another, reducing the global
genetic correlation of traits and hiding any potential pleiotropic effects. Therefore, we estimated
the genetic associations in locally independent regions of the genomic6 pairwise in five respiratory
disorders using the Local Analysis of Variant Association (LAVA). LAVAwas performed on 2,495
separate LD blocks previously divided, with LD estimates based on a 1000G EUR reference.
Multi-trait pleiotropy analysis using CPASSOC
Cross Phenotype Association (CPASSOC)7 is a Meta-analysis that combines the effect values of a
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SNP in multiple traits, calculates a summary statistic, and provides a P-value to indicate whether
the site is significantly associated or not. Through hypothesis tests (H0, H1), CPASSOC identifies
multiple validity associations. H0: Zmeta =Z1+Z2+Z3=0 (Z1=Z2=Z3=0), H1:
Zmeta=Z1+Z2+Z3≠0 (Z1≠0 | Z1≠2 | Z3≠0). It is statistically proven that the SNP is related to at
least one trait when H0 is rejected（P < 5×10-8） . By incorporating data from several GWAS,
CPASSOC enhanced the sample size in order to find new relevant SNPS. The SHet estimates
produced by CPASSPC were based on Meta-analysis and thus allowed for the existence of
heterogeneous effects among several features. A Z-score correlation matrix of independent SNPS
is also used by CPASSOC to account for the impact of sample overlap on outcomes. Only SNPS
that appeared in all five GWAS were included in our analysis. PCPASSOC<5×10-8 SNPS are regarded
as significant pleiotropic SNPS.

Genomic Loci Characterizationand Functional Annotation
Based on the findings of CPASSOC, we discovered the probable pleiotropy locus using Functional
mapping and annotation of genetic associations (FUMA)8. The SNPs that met the requirements
PCPASSOC<5×10-8 and LD r2<0.60 are considered as independent significant SNPs, while SNPs that
satisfy the criteria r2<0.1 are regarded as Lead SNPs. If the Lead SNPs are less than 500kb apart, it
is identified as a locus. Within each loci, the SNP with the smallest p-value is the Top SNP. The
SNP function was annotated using data from the Phase 3 reference panel of the European
Reference Population 1000 Genomes Project (1KGP). Then, we used FUMA to calculate the
RegulomeDB score and the Combined Annotation Dependent Depletion (CADD) score, and
SNPS with a CADD value greater than 12.37 were regarded as possibly deleterious variations.
You can also keep examining functional annotations, channels, and organizational expressions
using additional FUMA tools. Finally, in order to acquire the genetic loci of a single GWAS, we
annotated the original GWAS of 5 respiratory disorders using the same parameters through FUMA.
We compared the pleiotropic loci produced by CPASSOC with five single traits using the
beginning and ending loci of the loci in an effort to discover additional association sites. A
polygenic locus is regarded as a novel pleiotropic locus if it does not overlap in any single trait
GWAS.

Multitrait colocalization analysis
We apply hypothesis Prioritisation in multi-trait Colocalization (HyPrColoc) using the R package
hyperbolic 1.0 based on the pleiotropic loci acquired by FUMA annotation. With the help of the
Bayesian split clustering method HyPrColoc, it is possible to identify the causal variation that is
shared by each pleiotropic loci across a number of traits. HyPrColoc categorized qualities into
groups based on distinct pleiotropic loci, with traits within each group sharing a chance SNP. The
last colocalization loci among them is the posterior prob>0.7.

Candidate gene analysis
We kept looking into the biological basis of the pleiotropy loci indicated above. First, we
compared all of the pleiotropy loci discovered by CPASSOC to the locations of 19,427
protein-coding genes in NCBI build 37.3. The cross-overlapping loci were taken into
consideration as potential candidate genes for shared risk. Following that, the potential pleiotropic
genes were examined using a gene-based9 association method called multimarker analysis of
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GenoMic annotation (MAGMA). To determine the link between this gene and the investigated
trait, MAGMA combines SNP-related data in the gene (5kb) region using a multivariate regression
model. The GRCh37 assembly created by NCBI served as the basis for the gene's location and
border. The 1000 Genomes Project (1KGP) Phase 3 reference panel for the European reference
population calculated the level of differentiation (LD), and potential confounding factors like gene
size and gene density were utilized as covariates. After Bonferroni correction, P＜ 0.05 is a
significant result.
Gene expression and tissue specificity are not taken into consideration by MAGMA, and SNPS
are expected to affect traits through changing gene expression levels. We used Functional
Summary-based Imputation (FUSION) to perform transcriptome-wide association
(TWAS)11analyses, lung and whole blood tissues which were provided based on GTEx (v. 8)10, on
the original GWAS for each trait, and screened candidate genes for traits at the transcriptome level.
We then combined the results of single-trait TWAS to see if there was gene sharing between the
two tissues. To uncover plasma protein-trait relationships, we similarly conducted whole proteome
association studies (PWAS) utilizing plasma protein cis-PQTL data from European populations.
We then compared the PWAS results for five traits to assess cross-trait protein expression. After
BH correction was applied, P＜0.05 in each tissue was considered significant.

Biological pathway, GTEx tissue, and SNP-heritability enrichment
We used MAGMA gene-set analysis to perform Gene Set for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway databases Gene Set Enrichment Analysis
(GSEA) 9 in order to further study some of the biological implications of these shared genes.
MAGMA's gene set analysis is built on the basis of genetic analysis, which is enriched using the
full distribution of SNP p values. From MsigDB V2023.1, the gene set for GO and KEGG was
derived.
Additionally, we used the phenotype-cell-gene Association (PCGA) analytic platform
(https://pmglab.top/pcga/#/) to carry out tissue/single cell-specific enrichment13-15 in order to
clarify the tissue/cell specificity of pleiotropic SNP data discovered by CPASSOC. GTEx v8 was
used to generate the tissue results, while datasets from PanglaoDB, Human Cell Landscape, and
Allen Brain Atlas as well as PanlaoDB for mice were used to generate the single-cell results.

Mendelian randomization analysis
To investigate the connection between the five phenotypes, we conducted a bidirectional
two-sample MR analysis. The primary approach makes use of Random Effects Inverse Variance
Weighted (IVW), which performs a Meta-analysis on the Wald ratio value of each SNP to
determine the total impact value. Furthermore, when instrumental factors are heterogeneous, it is
possible to provide results estimation that is more accurate. Likewise, we used MR-Egger
regression16 and weighted median17 as the replenishment of the IVW. To further guarantee the
accuracy of the findings, we applied the sensitivity analysis listed below: (1) Horizontal pleiotropy
is examined using the MR-Egger intercept test16, and heterogeneity is calculated using Cochran's
Q statistic. (2) Determine whether a single SNP is responsible for the putative causal influence
between two traits using the leave-one-out method (3) Determine whether the directionality of the
estimated causal relationship between two traits is true using the MR Steiger directionality test (4)
The F statistic is employed to assess the IVs' intensity. It is thought that the analysis results may be
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weakly biased by an instrumental variable if it is less than 10;(5) For the main finding, a
significant threshold (q value＜0.05) is a P-value less than 0.05 after a false discovery rate (FDR)
correction (BH technique).
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