
The CelFiE-ISH Model

1 Reference Atlas

The reference atlas consists of one matrix βt,m, with the probability of methyla-
tion for cell type t at position m. In this model we do not re-estimate the atlas
at each iteration.

2 Mixture

The mixture is one matrix X, with dimensions C reads over M CpG sites.

3 Likelihood

The observed data likelihood is:

P (x|α, β) =
∏
c

∑
t

αtP (xc|βt) =∏
c

∑
t

αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m

(1)

The observed data log-likelihood is:

logP (x|α, β) =
∑
c

log(
∑
t

αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m) =

∑
c

logsumexp

{
log(αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m)

}
=

∑
c

logsumexp

{
log(αt) +

∑
m

xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)

} (2)

The complete data likelihood is:

P (x, z|α, β) = P (x|z, β)P (z|α)
(3)
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Where the first term is

log(P (x|z, β)) =
∑
t,c,m

log
[
β
zt,cxc,m

t,m (1− βt,m)zt,c(1−xc,m)[
]

=
∑
t,c,m

zt,c[xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)]

(4)

and the second term is

log(P (z|α)) =
∑
t,c

log(α
zt,c
t ) =

∑
t,c

zt,clog(αt)

(5)

4 Q function

As z in unknown, we define p̃ as the probability of z:

P (zt,c = 1|α, β) =: p̃t,c

Q is the expected value of the log-likelihood function.
At iteration i, the Q-function is:

Qi = Ez|x,αi,β(logP (x, z|α, β)) =∑
t,c

p̃it,c
∑
m

[xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)] +

∑
t,c

p̃it,clog(αt)

(6)

2



5 E-step

In the E-step we estimate the latent variable z and use it to define the Q function.

P (zt,c = 1|xc, β, α) =
αt

∏
m β

xm,c

t,m (1− βt,m)1−xm,c∑
k αk

∏
m β

xm,c

k,m (1− βk,m)1−xm,c
=: p̃t,c

(7)

6 M-step

In the M-step we maximize the Q function, holding the estimate for the latent
variable z constant and maximizing α.

αt =

∑
c p̃t,c
C

The CelFiE-ISH ReAtlas Model

7 Reference Atlas

The reference atlas consists of two matrices, Yt,m and DY
t,m, with the number

of methylated and total reads for cell type t at position m respectively. We
assume Yt,m is drawn from a Binomial distribution with βt,m being the true
methylation probability and DY

t,m being the number of trials. We re-estimate
the atlas at each iteration.

8 Mixture

The mixture is one matrix X, with dimensions C reads over M CpG sites.

9 Likelihood

The observed data likelihood is:

P (x|α, β) = P (x|α, β)P (Y |β) =
∏
c

∑
t

αtP (xc|βt)P (Y |β) =

∏
c

{∑
t

αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m

}∏
t

∏
m

{
β
Yt,m

t,m (1− βt,m)D
Yt,m−Yt,m

}
(8)
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The observed data log-likelihood is:

logP (x|α, β) =
∑
c

log(
∑
t

αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m) + log(P (Y |β)) =

∑
c

logsumexp

{
log(αt

∏
m

β
xc,m

t,m (1− βt,m)1−xc,m)

}
+log(P (Y |β)) =

∑
c

logsumexp

{
log(αt) +

∑
m

xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)

}
+log(P (Y |β)) =

∑
c

logsumexp

{
log(αt) +

∑
m

xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)

}
+

∑
t,m

{
Yt,mlogβt,m + (DYt,m − Yt,m)log(1− βt,m)

}
(9)

The complete data likelihood is:

P (x, z, Y |α, β) = P (x|z, β)P (z|α)P (Y |β)
(10)

The first term is

log(P (x|z, β)) =
∑
t,c,m

log
[
β
zt,cxc,m

t,m (1− βt,m)zt,c(1−xc,m)[
]

=
∑
t,c,m

zt,c[xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)]

(11)

The second term is

log(P (z|α)) =
∑
t,c

log(α
zt,c
t ) =

∑
t,c

zt,clog(αt)

(12)
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The third term is

log(P (Y |β)) =
∑
t,m

Yt,mlogβt,m + (DYt,m − Yt,m)log(1− βt,m)

(13)

10 Q function

As z in unknown, we define p̃ as the probability of z:

P (zt,c = 1|α, β) =: p̃t,c

Q is the expected value of the log-likelihood function.
At iteration i, the Q-function is:

Qi = Ez|x,αi,βi(logP (x, z, Y |α, β)) =∑
t,c

p̃it,c
∑
m

[xc,mlog(βt,m) + (1− xc,m)log(1− βt,m)] +

∑
t,c

p̃it,clog(αt)+∑
t,m

Yt,mlogβt,m + (DYt,m − Yt,m)log(1− βt,m)

(14)

11 E-step

In the E-step we estimate the latent variable z and use it to define the Q function.

P (zt,c = 1|xc, β, α) =
αt

∏
m β

xm,c

t,m (1− βt,m)1−xm,c∑
k αk

∏
m β

xm,c

k,m (1− βk,m)1−xm,c
=: p̃t,c

(15)

12 M-step

In the M-step we maximize the Q function, holding the estimate for the latent
variable z constant and maximizing α.

αt =

∑
c p̃t,c
C
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Next, we re-estimate the atlas:

βt,m =
Yt,m+

∑
c p̃t,cxc,m

DYt,m+
∑

c p̃t,c

(16)

The Epistate Model

At every marker region, reads are drawn from one of two possible epistates:
θhigh and θlow. Each epistate consists of a set of binomial distributions θ =
{θ1, θ2, ..., θm}, one per CpG site covered by the marker region. θhigh is ar-
bitrarily defined to be the epistate with higher mean methylation. Cell types
differ by the probability of observing each epistate in each region.

13 Reference Atlas

The reference atlas consists of one matrix λt,c, with the probability of observing
θhigh under cell type t at read c. Within a genomic region λ does not vary
between reads, leaving λt. Additionally, for every position we know θhigh,m and
θlow,m (see below). The overall probability of methylation per position is:

βt,m = λtθhigh,m + (1− λt)θlow,m

14 Mixture

The mixture is one matrix X, with dimensions C reads over M CpG sites.

15 Likelihood

The observed data likelihood is:

P (x|α, θhigh, θlow, λ) =
∏
c

∑
t

αt

{
λt,c

∏
m

[
θ
xc,m

high(1− θhigh)
1−xc,m

]
+

(1− λt,c)
∏
m

[
θ
xc,m

low (1− θlow)
1−xc,m

]}
(17)
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The observed data log-likelihood is:

logP (x|α, θhigh, θlow, λ) =
∑
c

log(
∑
t

αt

{
λt,c

∏
m

[
θ
xc,m

high(1− θhigh)
1−xc,m

]
+

(1− λt,c)
∏
m

[
θ
xc,m

low (1− θlow)
1−xc,m

]}
) =

∑
c

logsumexpt

{
log(αt) + log(λt,c

∏
m

[
θ
xc,m

high(1− θhigh)
1−xc,m

]
+

(1− λt,c)
∏
m

[
θ
xc,m

low (1− θlow)
1−xc,m

]
)

}
=

∑
c

logsumexpt

{
log(αt) + logsumexp

{
log(λt,c) +

∑
m

[
xc,mlog(θhigh) + (1− xc,m)log(1− θhigh)

]
,

log(1− λt,c) +
∑
m

[
xc,mlog(θlow) + (1− xc,m)log(1− θlow)

]}}
(18)

z is the indicator for α and µ is the indicator for λ. The complete data likelihood
is:

P (x, z, µ|α, θhigh, θlow, λ) = P (x|µ, θhigh, θlow)P (z|α)P (µ|z, λ)
(19)

The first term is

log(P (x|µ, θhigh, θlow)) = log(
∏
c

∏
m

[
θ
µcxc,m

high,m(1− θhigh,m)µc(1−xc,m)

θ
(1−µc)xc,m

low,m (1− θlow,m)(1−µc)(1−xc,m)

]
) =

∑
c,m

[
µcxc,mlog(θhigh,m) + µc(1− xc,m)log(1− θhigh,m)+

(1− µc)xc,mlog(θlow,m) + (1− µc)(1− xc,m)log(1− θlow,m)

]
(20)
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The second term is

log(P (z|α)) =
∑
t,c

log(α
zt,c
t ) =

∑
t,c

zt,clog(αt) (21)

The third term is

log(P (µ|z, λ)) = log(
∏
t

∏
c

λ
zt,cµc

t,c (1− λt,c)
zt,c(1−µc)) =

∑
t,c

[
zt,cµclog(λt,c) + zt,c(1− µc)log(1− λt,c)

] (22)

16 Q function

As z in unknown, we define p̃ as the posterior probability of z:

P (zt,c = 1|α, x) =: p̃t,c

Similarly,
P (µc = 1|z, x) =: q̃c

Note that λ, θhigh, θlow and by extension β are always given and not re-
estimated. For simplicity, we left them out of the conditional statements.
Q is the expected value of the log-likelihood function.

At iteration i, the Q-function is:

Qi = Ez,µ|x,αi,λ,θhigh,θlow(logP (x, z, µ|αi, θhigh, θlow, λ)) =∑
t,c

{
p̃t,cq̃c

∑
m

[
xc,mlog(θhigh,m) + (1− xc,m)log(1− θhigh,m)

]
+

p̃t,c(1− q̃c)
∑
m

[
xc,mlog(θlow,m) + (1− xc,m)log(1− θlow,m)

]}
∑
t,c

{
p̃t,clog(α

i
t)

}
+

∑
t,c

{
p̃t,cq̃clog(λt,c) + p̃t,c(1− q̃c)log(1− λt,c)

}
(23)
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17 E-step

In the E-step we estimate the latent variables z and µ and use them to define
the Q function.

P (µc = 1|x, α) =
∑
t

P (zt,c = 1|x, αt)P (µc = 1|zt,c = 1, x, α) =∑
t

p̃t,cP (µc = 1|zt,c = 1, x) ∝
∑
t

p̃t,cP (x|µc = 1, zt,c = 1)P (µc = 1|zt,c = 1) =∑
t

p̃t,cP (x|µc = 1)P (µc = 1|zt,c = 1) =
∑
t

p̃t,cλtP (x|µc = 1) =∑
t

p̃t,cλt

∏
m

θ
xc,m

high(1− θhigh)
1−xc,m

(24)

Since µ can only take on two values, we constrain

P (µc = 1|x, p̃) + P (µc = 0|x, p̃) = 1

As above:

P (µc = 0|x, p̃) =
∑
t

p̃t,c(1− λt)
∏
m

θ
xc,m

low (1− θlow)
1−xc,m

Finally:

P (µc = 1|x, α) =
∑

t p̃t,cλt

∏
m θ

xc,m

high(1− θhigh)
1−xc,m∑

t p̃t,cλt

∏
m θ

xc,m

high(1− θhigh)1−xc,m +
∑

t p̃t,c(1− λt)
∏

m θ
xc,m

low (1− θlow)1−xc,m

(25)

We do the same for z:

P (zt,c = 1|x, αt) ∝ P (x|zt,c = 1, αt)P (zt,c = 1|αt) =

[
λt,cP (x|µc = 1) + (1− λt,c)P (x|µc = 0)

]
αt

= αtλt,c

∏
m

[
θ
xc,m

high(1− θhigh)
1−xc,m

]
+ αt(1− λt,c)

∏
m

[
θ
xc,m

low (1− θlow)
1−xc,m

]
(26)

Then normalize so that every read comes from a cell type.

18 M-step

In the M-step we maximize the Q function, holding the estimate for the latent
variables constant and maximizing α. The only term in the Q function with α
is identical to CelFiE and CelFiE+, so the maximization step is the same.

αt =

∑
c p̃t,c
C
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Estimating Epistates in the Reference Atlas

For each marker region in the Epistate reference, we estimate Θhigh, Θlow and λt.
First, we jointly examine all reads from the entire reference dataset. We assume
each read is associated with either Θhigh or Θlow. υj is the prior probability for
epistate j ∈ [1, 2]. At the expectation step, we update the posterior probability
of each read Pj,c given Θ. At the maximization step, we estimate the hidden
state Θ, and υj .

19 Likelihood

The observed data likelihood is:

P (x|Θhigh,Θlow, υ) =
∏
c

2∑
j=1

υj

[∏
m

θ
xc,m

j (1− θj)
1−xc,m

]

Expectation

Pj,c =
υj

∏
m θ

xc,m

m,j (1− θk,j)
1−xc,m∑2

j=1 υj
∏

m θ
xc,m

m,j (1− θk,j)1−xc,m

Maximization

θm1 =
pseudocount+

∑
c P1,cxc,m

2 ∗ pseudocount+
∑

c P1,c

υ1 =
pseudocount+

∑
c P1,c

2 ∗ pseudocount+ C

Then, we split the reference by cell type. For each cell type, λ if the proba-
bility of observing Θhigh. For each subset:

λt =

∑
c P1,c

C

Worst possible RMSE

Let Y = [Y1, Y2, . . . , Yn] be a vector of true cell type fractions in a mixture,
ordered from smallest to largest Y1 ≤ Y2 ≤ . . . ≤ Yn and Ŷ = [Ŷ1, Ŷ2, . . . , Ŷn]
be the estimated values. The RMSE is defined as√√√√ 1

n

n∑
i=1

(Ŷi − Yi)2
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As these are fractions we can add the constraint that
∑n

i=1 Yi = 1 and

0 ≤ Yi ≤ 1 for all i. This is also true for the estimates:
∑n

i=1 Ŷi = 1 and

0 ≤ Ŷi ≤ 1 for all i.
For the worst-case estimation, i.e. the largest RMSE, let Ŷ1 = 1 and Ŷi = 0

for i ̸= 1. The squared error terms are then (1−Y1)
2 for i = 1 and Y 2

i for i ̸= 1.
To prove this results in the maximum RMSE, consider any other estimate

Ŷ ′. This implies, for some j ̸= 1, Ŷ ′
j > 0.

The squared error term would then be (1−Y1− Ŷ ′
j )

2 for i = 1, (Ŷ ′
j −Yj)

2 for

i = j, and Y 2
i for i ̸= 1, j. Since Ŷ ′

j is non-negative and ≤ 1, (1 − Y1 − Ŷ ′
j )

2 <

(1− Y1)
2 and (Ŷ ′

j − Yj)
2 < Yj

2.
The entire expression is therefore smaller than the worst-case estimation.

Intuitively, since Y1 is the smallest, its error term has the largest impact on
increasing the RMSE when estimated far from its true value. Thus, any other
estimation would result in a lower RMSE.

WGBS Data Processing

In order to convert BAM files to the Biscuit epiread format, we first generated
a SNP file from the VCF files requiring GQ ≥ 15 for positions overlapping a
dbSNP common allele, and requiring GQ ≥ 60 for all other positions. DbSNP
common allele table was downloaded from UCSC for the hg19 assembly, and
was processed with:
https://github.com/ekushele/methylseq/blob/master/bin/processUcscDbsnp.pl.

From the processed file, we included only ’snv’ records. The formatted-snv
file was zipped and indexed with the tabix -s 1 -b 2 -e 3 command. This
file was passed to bcftools annotate (v1.9) to annotate the header of VCF files:
bcftools annotate WHITELIST -O z -a {COMMON DBSNP FILE} -h common dbsnp.hdr

-c CHROM,FROM,TO,TYPE,COMMON SOME,COMMON ALL,REF MIN,ALT MIN,REF DBSNP,

ALT DBSNP,REF ALL,ALT ALL,RSID,MAX MAF {VCF FILE}.
(common dbsnp.hdr can be found at:
https://github.com/ekushele/methylseq/blob/master/assets/common dbsnp.hdr).

The redhead file was indexed with tabix -p vcf. From the re-headed
files, we included variants with GQ ≥ 60 for heterozygous variants for posi-
tions not overlapping the COMMON DBSNP FILE with bcftools view -O z -i

’ALT!="N" & ALT!="." & ((COUNT(GT=="0/1") ≥ 1&COMMON ALL ==
1&MAX MAF ≥ 0.05) | (COUNT (GT == ”0/1”&GQ ≥ 60) ≥ 1))′{REHEAD V CF} >
{DBSNP HET60}.

{DBSNP HET60} was indexed with tabix -p vcf. For all other variants,
we excluded variants below 10 and parsed the file to be in bed format with the
following command:
bcftools query -u -i ’GT="0/1" & GQ ≥ 10′ −−format′
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%CHROM%POS%POS%REF%ALT [%GT%GQ%SP%AC%AF1]%RSID%
COMMON ALL%MAX MAF%REF MIN%ALT MIN ′{DBSNP HET60}|
awk − vOFS = ”nt”′{$2 = $2− 1; print}′ > {SNP FILE}.
Then, blacklist regions were excluded from BAM files with the command bedtools intersect(v2.29.1)
using the BAM and a whitelist as input files, and additional command line arguments’-ubam -f 1.0’.

Epiread files were produced with the biscuit epiread command for whitelist-
BAM files where a SNP file was given as input to the -B argument: ’-B

SNP FILE’. The epiread files were sorted by names using the command ’-k2,2

-k1,1 -k4,4 -k3,3n’ , and they were converted to a bed-like format, merging
paired-end epiread records together using the script available at
https://github.com/ekushele/methylseq/blob/master/bin/epiread pairedEnd convertion

in debug mode.

The CpG file was downloaded from the Biscuit QC assets release page:
https://github.com/huishenlab/biscuit/releases

These merged files were sorted by position using the command sort -k1,1Vf

-k 2,2n -k 3,3n and then tabixed using the ’tabix -0 -p bed’ command.
The original epireads (before merging) were sorted with sort -k1,1Vf -k5,5V

and tabixed with tabix -0 -s 1 -b 5 -e 5.
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