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Supplemental Method:

Gating strategy for flow Cytometry to confirm the expression of MSC-specific

surface markers.

Using the aspect ratio intensity and area of the brightfield channel on the Amnis Flow
sight we were able to visualize and gate the single cells. Thresholds on the Amnis
flow sight were determined by histograms generated by single color stained positive
and negative beads. Using this data, baseline thresholds were determined to run our
samples. The threshold generated by the control beads was used to visualize the
images of cells in a scatterplot and determine the single cells that were positively
stained?®.

Supplemental Figures

Supplemental Figure 1. Mesenchymal stem cell (MSC) showing typical
morphological appearance in normoxic and hypoxic conditions under the microscope

as spindle-shaped, fibroblast-like cells in culture. (A, B respectively)

Supplemental Figure 2: Mesenchymal stem cell (MSC) characterization in normoxia
conditions. (A) Positive MSC markers (CD73, CD90 and CD105) and (B) negative
MSC markers (CD14, CD34, CD45).

Supplemental Figure 3: Mesenchymal stem cell (MSC) characterization in hypoxia
conditions. (A) Positive MSC markers (CD73, CD90 and CD105) and (B) negative
MSC markers (CD14, CD34, CD45).

Supplemental Figure 4: MSC characterization by with fluorescently conjugated
antibodies against CD73, CD90, CD105. (A) . Cells strongly positive for markers
CD73, CD90 and CD105.

Supplemental Figure 5: MSC Morphology and differentiation. Tri-lineage
differentiation into adipocyte (FABP4), chondrocyte (Aggrecan) and osteocytes

(osteocalcin) and their quantification.

Supplemental Figure 6: Normoxia HTN vs Normoxia Healthy Control MSCs.
Normoxic-MSC of hypertension vs. healthy control mapped a total of 13,469 genes,

with 463 significant dysregulated genes (n=306 upregulated & n=157 downregulated).



Gene ontology analysis showed that upregulated genes were implicated in
modulation of vasculature development, migration, response to growth factor and
negative regulation of proliferation, whereas downregulated genes participated in
insulin like growth factor binding proteins (A, B, respectively). Volcano plot
demonstrated the distribution of differentially expressed genes, with downregulated
and upregulated genes based on p-value and log.fc (C). Heatmap showed angiogenic
and inflammatory genes upregulated in HTN MSCs compared to HC MSCs and an

equal dysregulation of senescence genes in MSCs of both the groups (D).

Supplemental Figure 7: Normoxia Healthy Control vs Hypoxia Healthy Control
MSCs. In healthy control-MSCs, a total of 13138 genes were mapped, with 261
significant dysregulated genes (n=60 upregulated & n=201 downregulated). Gene
ontology analysis showed that gene upregulated participated in modulation of
angiogenesis and methylation, whereas downregulated genes were involved in
cellular response to tumor necrosis factor (A, B, respectively). Volcano plot
demonstrated the distribution of differentially expressed genes, with downregulated
and upregulated genes based on p-value and log.fc (C). Heatmap showed
dysregulated genes significant for angiogenesis, and inflammation upregulated more
in hypoxic HC MSCs compared to normoxic HC MSCs (D).

Supplemental Figure 8: Gene ontology (GO) analysis pathways (A) Biological
Process (B) Molecular Functions (C) Cellular Components of Upregulated gene sets

with significant changes between Hypoxia HKD and Normoxia HKD MSCs.

Supplemental Figure 9: Genes and Transcription Factor (TF) network Interactions
between Normoxia HKD and Normoxia HC mRNA targets derived from STRING. Color
lines represent interactions between Normoxia HKD and Normoxia HC mRNA targets
according to the functional association networks. Red circles indicate common (TF)
MRNA targets between Normoxia HKD MSCs and Normoxia HC MSCs.
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Supplemental Figure 10: Genes and Transcription Factor (TF) network Interactions
between Normoxia HKD and Normoxia HTN mRNA targets derived from STRING.
Color lines represent interactions between Normoxia HKD and Normoxia HTN mRNA
targets according to the functional association networks. Red circles indicate common
(TF) mRNA targets between Normoxia HKD MSCs and Normoxia HTN MSCs.
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Supplemental Figure 11: Genes and Transcription Factor (TF) network Interactions
between HKD normoxia and hypoxia mRNA targets derived from STRING. Color lines
represent interactions between HKD normoxia and hypoxia mRNA targets according
to the functional association networks. Red circles indicate common (TF) mRNA

targets between HKD normoxia and hypoxia.
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Supplemental Figure S12: Inflammatory markers

Inflammatory factors under normoxic and hypoxic state in IFN- vy, IL-1qa, IL-6, IL-8,
and TNF-a in HC(n=12)-, HTN(n=9)- MSCs, and HKD(n=12)- MSCs.At baseline
normoxic conditions, there was no difference in inflammatory cytokines released
among the groups (Fig S12A-E). However, under HPC, there was an increase of IFN-
y levels only in HC-MSCs (p-value=0.04) (Fig S12-A). Among the baseline of the HC,
HTN and HKD, there was no difference (Fig S13).

Supplemental Table S1: Angiogenesis secretome markers

Under normoxic conditions the expression of the pro-angiogenic factors VEGF and
EGF were similar among the groups and HPC did not exert any significant effect in
these specific angiogenic markers. There was a significant increase in HC MSCs EGF
and HGF (Elisa)after hypoxia. We also saw a significant decrease in HKD MSCs HGF

after hypoxia.
Supplemental Table S2: Senescence markers

Under normoxic conditions the expression of P16, P21 and SA B GAL was non-
significant but there was a trend decrease in HC MSCs SA B GAL activity after

treatment with hypoxia.



Supplemental Table S3: PCR markers

At baseline normoxic conditions, there was no difference in TGF -B,PGE, iONS,
GAPDH, IDO,IL10, IL4 among the groups.

Supplemental Table S4A:
Correlation between MSC Function (normoxia) and Age, MSC Function (hypoxia) and
Age

At the baseline and in hypoxic conditions, there was no correlation found between the
function of MSCs and the age of the patients.
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Fig. S1. Spindle-shaped morphology of cells isolated from adipose tissue of humans, characteristic of mesenchymal stem cells.

A. AMSC grown to confluence in Normoxia (20% O2)
B. Cells grown to confluence and subjected to 48 hours of HPC (1% O3)

AMSC, Adipose tissue derived mesenchymal stem cells; HPC, Hypoxia preconditioning, Oz, Oxygen
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Fig. S2. Flowcytometry characterizing the cell surface markers confirming that isolated cells were adipose tissue derived mesenchymal stem
cells in Normoxia conditions.
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Fig. S3. Flowcytometry characterizing the cell surface markers confirming that isolated cells were adipose tissue derived mesenchymal stem

cells in Hypoxia conditions.

A. Cells strongly positive for markers CD73, CD90 and CD105
B. Cells negative for markers CD14, CD34 and CD45
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Fig. S4. A. Adipose tissue derived mesenchymal stem cells were stained with fluorescently conjugated antibodies against CD73, CD90, CD105
and the expression was analyzed by flow cytometry. The histogram in pink represents the isotype control and the histogram in orange, green,

puple respectively represents the stained sample. Cells strongly positive for markers CD73, CD90 and CD105



A. ADIPOCYTE LINEAGE
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Fig. S5. Differentiation of cells grown after isolation from adipose tissue into adipocytes (A), osteocytes (B), chondrocytes (C), and
quantification of adipocytes, osteocytes, and chondrocytes (D) quantification confirming their mesenchymal origin and regenerative
properties. Images captured after fluorescent staining of differentiated cells.
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Fig.S8. Hypoxia HKD vs Normoxia HKD MSCs. Gene ontology (GO) analysis pathways (A) Biological Process (B) Molecular Functions (C) Cellular Components of

Upregulated gene sets with significant changes between Hypoxia HKD and Normoxia HKD MSCs.




Figure: S9
Gene and transcription factors network interactions between HKD and HC (Normoxia)

CASTORZ PLA2GS

O

TMEM140
O C1iores SALLZ LINCO067
-~ @ @ @
cLics NACAD SH3D21 O
O O MAB21L1 FBXO16
sLC17A9 O O
KLHDC1 o
O ZNPasa zBED2 SHISALL
PURG ZNF267 O
O O sLC22A3 ZNF385D CRLF1
zBTB18 T~~~
- O
~ FBXO39
S~ ABCC3 F2RL2 O
OHA53 —— O
: [— MEGF6
¥ zFP1 o
ZNF157 — : : LRRNACL
Q - O"“"“ O
: 3 % FALS N\ RASD1L
VWAL % / 2 / X \ /O
> 8 : \ RASGRP1
e . X - g - BHLHEAGS-C45AZ /O/ IQeN
F11 / . ; »
\ N\ < YLz — . ITPR3. PPFIAA O
( ) N o 4 e ) VIR L, \ O
. . \ R
— _ % Fon = . _—
o — ) ) —— TMEMB6A SGIP1
N
i — REXS
GRAMDIB
/‘/ SCN2A BHLHE22
\ - NCAMZ .
_~ Miex =
NTNL N goxiz . ARMGEF3
o . e RAB27B
CNKSR3 AEHr- ' ANKRD37 O
@) O Ay <@ e
~

ws (O
- O cxxca

: SPAGA

TBx18 /l 1ST2

l MeoxgiARoz |
-

SEMA3D . . SLCH
.' EOXFL = .
NAA;D:. SOX18. OsR2
SLC14A1
v /

THSD1
ADAMTS1S O
O o ZNF470 CFB
: ZNF347

/
DCLK3 yd / O
@ O
/
yd RDH10

i CNIHG ZNFaaz . TSPANLS LeXN

@) O SN )

TRIMA7 O R

HES6 THAP10 EYA4

PTPRN ATOHS ABHDI CLSTNZ

HOXA11 O . OLEMLL ADCY4 O TMEM144 O
-© @ O
ZNFaos GALNT16

FOXQ1
] RFLNB FBLN7
) wesse () O / O O @) Favtsson
e O / O

HEYL DAB1 O
HESA4 O O JAMZ GPR146
o - O s o” O

O . ZNF329 KCNJ12 KIRREL3

Omz O’““"" O ‘ L \ msc THAPS @)

Yy2z

O

TCAF2

&

:‘ ABIZBP

/
/ RGS17

/
:’ MAMDC2



Figure: S10
Gene and transcription factors network interactions between HKD and HTN (Normoxia)
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Figure: S11
Gene and transcription factors network interactions between HKD Normoxia and HKD Hypoxia
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Table S1- Angiogenesis secretome markers at baseline normoxia

VARIABLES HC (12) HTN (9) HKD (12) P value
EGF 7.94108e7 (5.97554e7° - 4.98339¢° (3.44828e®-  7.19277e*° (5.9043e 2 - NS
1.00493¢8) 1.5619¢8) 1.10211e8)
HGF 7.0609e3(3.90828e8- 7.03846e-8(3.43478e8-  3.7796e -8(2.8515e8-2.111e NS
2.02851e7) 2.77636e7) Ty#
VEGF 0.00018 (5.88315e™- 0.000338342 (8.01248e"  (0.000119132 (4.22891e>- NS
0.000262995) >-0.001057009) 0.000373018)
VEGF (at gene level) 0.977101 (0.55706725- 1.07 (0.64-1.435) 1.21 (0.79-1.46) NS
1.3536075)
EGF (at gene level) 0.97 (0.705- 2.1325) 3.06 (0.24- 5.68) 1.344779401 (0.425334961 - NS
3.110220509)
Abbreviations: HC: healthy control; HTN: hypertension; HKD: Hypertensive kidney disease
Table S2- Senescence markers at baseline normoxia
VARIABLES HC (12) HTN (9) HKD (12)
P value
P16 1.063 (0.430- 1.696) 1.160 (0.570- 1.480) 0.866 (0.472- 2.445) NS
P21 0.810 (0.623- 1.190) 0.870 (0.610- 1.490) 0.895 (0.640- 1.113) NS
SA B GAL 15765.5 (10393.500- 35322.5 (25168.500- 14956.5 (6672.875- *0.04
29550.500) 52886.000) 19085.000)

Abbreviations: HC: healthy control; HTN: hypertension; HKD: Hypertensive kidney disease



Table S3 — PCR Markers at baseline normoxia

VARIABLES

TGF -8

PGE

iNOS

IDO

IL10

IL4

GAPDH

Abbreviations: HC: healthy control; HTN: hypertension; HKD: Hypertensive kidney disease; NS: non-significant

HC (12)

24.214 (23.488-25.148)

26.827 (26.414- 27.859)

36.454 (35.355-37.295)

36.603 (34.912- 39.251)

38.702 (35.725-39.716)

39.178 (37.917- 40.000)

20.156 (19.052- 21.981)

HTN (9)

24.800 (24.441, 25.324)

27.621 (26.550- 28.666)

38.396 (37.897- 39.677)

38.831 (36.902- 39.447)

35.699 (34.445- 39.221)

39.067 (37.522- 40.000)

21.375 (20.167- 22.746)

HKD (12)

25.182 (24.504, 25.484)

27.020 (26.817- 27.341)

36.625 (36.351- 37.391)

37.380 (35.873- 38.867)

36.374 (34.541- 38.427)

38.511 (36.663- 40.000)

20.847 (20.310- 21.231)

P value

NS

NS

NS

NS

NS

NS

NS



Table S4- Correlation between age and MSC function in hypoxic and normoxic conditions

Age
MSC function | r P
NX 0.16 0.36
Proliferation
HX 0.17 0.33
Proliferation

Abbreviations: MSC: mesenchymal stem cell; NX: normoxia; HX: hypoxic
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