
Dear Editors and Reviewers,

Thank you for your thorough review and insightful comments on our manuscript. We have made
substantial revisions to address all of your suggestions, including:

(1) adding a discussion on the homolog bias in pairtools phase;

(2) clarifying the role of filtering in Hi-C data processing and enabling automated filtering of
non-informative Hi-C byproducts;

(3) simplifying the manuscript by focusing on pairtools parse and removing the sections on
parse2 to be explored in future work;

(4) adding a new documentation page on common Hi-C analysis workflows and clarifying the
key settings of pairtools;

(5) updating pairtools to use a clearer notation for reporting walk-related information and
clarifying the role of the --walks-policy parameter.

The point-by-point responses are provided below. We believe these changes have significantly
improved the manuscript and hope that it now meets the standards for publication in your
journal.

Sincerely,

Open2C.

Below, you can find the original notes by reviewers are in black fond and our response is in
blue.

Reviewer #1: The Open2C consortium presents a manuscript in which they describe a
computational tool (pairtools) that parses sequencing data from a Hi-C experiment that has
been mapped using a standard pipeline (e.g. bwa or minimap). It parses the raw mapping file
that can be used as input for cooler, which can generate Hi-C contact matrices that are used for
further analysis and viewing of the Hi-C data. In that sense it serves a function similar to
SAMtools. The paper is clear summary of what the software can do. There is also a nice
comparison to similar tools, including memory and speed benchmarking.

I have no major comments for the paper. I have a few suggestions for improvement.

1.1 - Can the authors discuss whether pairtools phase has a bias for the reference allele. This
can be an issue with allele-specific reads and specific tools have been developed to counteract
this (e.g. WASP, PMID: 26366987). I can imagine that for short fragments this can be an issue.

Thank you for this suggestion! Indeed, homolog bias is a crucial aspect of any
homolog-resolved method. We revisited the homolog-resolved studies performed with pairtools
(Erceg et.al. 2019, AlHaj Abed et.at. 2019) and found the homolog bias to be between 1% and
3%. We attribute these low biases to two factors: (1) our approach to calling homologs, where
reads are aligned to “concatenated” genomes containing both homologs, treats them equally,
and avoids introducing biases at the mapping stage; (2) in this particular study, the SNVs for
paternal and maternal homologs had equal quality, as we re-sequenced both parental strains
and the F1 progeny. Conversely, in situations where the two sets of SNVs have different
qualities and/or come from different sources, one should expect higher homolog biases. We
have added the following paragraph to the manuscript:

“

The approach of pairtools to resolving homologs is designed to minimize homolog biases: when reads are
aligned to both homologs simultaneously, both homologs are treated equally. For example, in the two
studies that introduced the approach behind pairtools phase 10,52, the observed homolog bias was
around 1-3%. Similarly important for this low bias was the fact that this study re-sequenced both parental
strains as well as the genome of their F1 progeny, thus obtaining high-quality SNVs for both homologs.
Otherwise, potential differences in the SNV quality between the two homologs (for example, if two
parental strains were sequenced with different quality) could introduce homolog bias.

”

1.2 - The authors discuss multi-contact 3C+ methods, they should also include Tri-C (Hughes
lab), MC-4C (de Laat lab) and Nano-C (Noordermeer lab)

1.3 - Hi-C data is often binned, but also computational methods exist that do not use binning:
binless (PMID: 31028255) and shaman (https://www.biorxiv.org/content/10.1101/187203v1)

(Addressing 1.2 and 1.3): We have updated the manuscript to mention these citations.

https://www.biorxiv.org/content/10.1101/187203v1

Reviewer #2: Abdennur and collegues present here a new python package, named pairtools, to
efficiently process Hi-C based sequencing data from raw sequencing reads, to normalized
contact matrices (in .cool format). Compared to other existing solutions, pairtools offers the
possibility to detect multiple proximity ligation envents (called walk) which are particularly
interested for long-reads sequencing technologies or to explore more complex ligation events.
The python package provides a CLI which make the different steps easy to implement in a
bioinformatics pipeline. The code is well packaged, easy to install and well documented. For
these reasons, I think pairtools could become a valuable standard in the field of Hi-C processing
in the coming years.

Overall the manuscript is well written but can be a bit difficult to follow for non experts
(especially the part on the 'walk' reads). Here are a few comments on the manuscript and the
tools itself ;

2.1 - The minimal pairtools-based pipeline is presented in the manuscript and is defined as
mapping | parse | sort | dedup.
I think this view is misleading because it does not include any filtering step(s) to remove non
valid 3C products.
The end-users could think that 90% of the sequenced reads are good 3C products while this is
usully not the case.
I think the 'pairtools select' step should be part of the standard pipeline to filter non-valid 3C
products (regardless how they are filtered).

We agree that filtering is essential to Hi-C processing pipelines and that the manuscript needs to
discuss this issue in more detail. However, we omit filters from the minimal pipeline and defer
discussion of filtering until later in the manuscript for two reasons:

1) The philosophy of the Open2C tool suite is to avoid early filtering, instead generating
and storing the most complete (i.e., unfiltered but tagged) versions of datasets. This
approach helps prevent data loss and maintains a comprehensive overview of the
dataset. For example, identifying the strand convergence distance for filtering Hi-C
by-products necessitates access to unfiltered data.

2) The minimal pipeline does, in fact, filter data, albeit downstream of pairtools. Specifically,
cooler and cooltools automatically filter non-informative Hi-C by-products by ignoring the
first two diagonals of the matrix in all computations. These default settings are typically
sufficient for 4-bp cutter Hi-C and Micro-C at resolutions >= 1kb.

The revised manuscript now discusses filtering in the chapter "Stats and scaling" after
introducing all the concepts and tools necessary for understanding filtering:

“

The orientation convergence distance reported by pairtools stats can also be used to remove all Hi-C byproducts
from binned output conservatively:

pairtools stats library.nodups.pairs.gz -o library.stats

CONV_DIST=`grep "summary/dist_freq_convergence/convergence_dist" library.stats | cut -f2`

pairtools select “(chrom1!=chrom2) or (abs(pos1-pos2)>=${CONV_DIST})” library.nodups.pairs.gz \

| cooler cload pairs -c1 2 -p1 3 -c2 4 -p2 5 chromsizes.txt:1000 - output.1000.cool

Such filtering is, however, typically unnecessary as cooler and cooltools by default ignore the first two diagonals
in most computations, which is sufficient to remove by-products of 4bp-cutter Hi-C and Micro-C at resolutions
>=1kb.

“

2.2 - The bwa mem options are important for Hi-C data processing. I would suggest to specify
which options to use in the command line exemple L102.

We agree. The updated version of the manuscript now mentions aligner flags:

“Importantly, aligners must align the two reads of a pair independently (i.e., avoid 'pair rescue'). In the
case of bwa mem, adding the -SP flags ensures this behavior.”

We have also updated the online documentation to mention aligner settings.

2.3 - After reading the manuscript, I cannot see in which cases the 'parse' command should be
used instead of the 'parse2' command. It seems that 'parse2' could completly replace both
commands ? if so, I would simplify the message by only presenting the 'parse2' command.

2.4 - In supFig1h, we can see that the behavior of the --report-orientation option in parse2 is
different than in the parse command. What is the reason for that ? Simple recommandation or
use case about which options to use would help the user.

2.5 - To better understand the interest (and the differences) of parse versus parse2, would it
makes sense to always illustrate how the command will handle a single ligation and a multiple
ligation. For instance, in Fig1a, I guess in a case of multiple ligation, the parse command will
return a contact between the red and yellow part, while is it not reported with the parse2
command, is that correct ?

2.6 - The walk parsing strategy is not clearly explained in the Figure 2 legend. What is the
message here ?

(Addressing questions 2.3-2.6) We agree with the reviewers that the distinction between ‘parse’
and ‘parse2’ complicated the original version of the manuscript. Upon further reflection, we have
realized that a thorough treatment of Hi-C walks and optimizing software for analyses of such
walks extends beyond the current scope of this manuscript. The current version of parse2
represents the first step in this direction, which may still undergo major changes in the future. As

such, we have removed 'parse2' and its related sections to provide a more focused study. We
will explore this functionality in greater detail in future work.

2.7 - Could you illustrate the interest of 'paritools header' with a concrete use case ? In which
cases this function could be useful ?

Thank you - indeed, the use case for pairtools header may not be clear for our readership. We
have added the following short description to the corresponding section of the manuscript:

Pairtools header helps to fix .pairs files that were generated by scripts or software that do not fully comply
with the .pairs format specifications and have missing or improperly formatted headers.

2.8 - I always had in mind that PCR duplicates are reads that start/end exactly at the same
genomic positions (and align in the same way on the genome). To my knowledge, this is the
definition used by picard or samtools to remove duplicates. I'm not sure to understand, why for
Hi-C data it could be interesting to account for potential losses of a few nucleotides ? what is the
technical rational behind this ?

Thank you for raising this issue. During the preparation of the answer to this question, we
carefully examined several publicly available datasets and visualized the distributions of
distances between molecules with similar alignments on both sides. Interestingly, we found no
evidence of even minor (+/- 1bp) variability in the 5'-positions of PCR duplicates. Based on this
result, we have updated the default behavior of pairtools dedup to require only perfect matches
between molecules to call them PCR duplicates.

Additionally, we have revised the text of the paper to reflect this change. We no longer suggest
that PCR duplicates in standard Hi-C protocols may have positional mismatches. Instead, we
emphasize an alternative use case for allowing mismatches in dedup: duplicate detection in
single-cell protocols that involve whole genome amplification. The updated version of the
sentence now reads as follows:

“To accommodate non-standard protocols, e.g. some varieties of single-cell Hi-C 15,16, where the
amplification step occurs between ligation and sonication, pairtools dedup can detect duplicated pairs
even when their mapped positions do not match exactly. “

2.9 - The command 'pairtools scaling' is interesting to validate the QCs of an experiment and to
define which minimal distance between two interactors could be used to remove those artefacts.
However, this is not really compatible with a standard bioinformatics worflow to automatically
process Hi-C data. Here again, recommandations or exemple of the 'select' command could be
useful for the users.
2.10 - L297-298. The authors mentionned the interest for digestion Hi-C protocols to have
access to the fraction of unwanted 3C products like self-circle, dangling-end, and mirror reads.

https://paperpile.com/c/FQmtMw/7aMr1+RsGMe

Does pairtools provide those statistics ? or is there a way to easily get the information?

(Addressing questions 2.9-2.10) Thank you for this useful suggestion! We have updated
pairtools stats to calculate and report the orientation convergence distance. As we show in the
answer to point 2.1., this distance can be extracted via Unix command line tools and used in
automated data processing pipelines. Following the suggestion from point 2.10, we also report
the number of cis reads with separations below the convergence distance, split by four possible
read orientations. We additionally express these numbers as a fraction of (a) all, (b) uniquely
mapped and deduplicated, and (c) cis pairs. Together, these numbers give an estimate of the
fraction of non-informative Hi-C by-products, such as self-circles and dangling ends.

2.11 - The comparison of the performance of the different tools is interesting but, to me, not the
most important information for the end-users. Did the authors compare the performance of the
tools in terms of valid ligation products detected ? is there any big differences ? This could be a
way to illustrate the interest of the 'walk' reads strategy which is one of the interest of pairtools
compared to the other tools. If not major difference is observed on the final list of valid ligation
products between the different tools, I think this should be also mentioned.

We agree that performance is just one of many factors considered by users when choosing
tools. Comparing the ability of different tools to detect valid ligation products is indeed important,
but a thorough and objective comparison would require significant time and effort, and lies
outside of the scope of this manuscript. More importantly, a quick comparison by us alone would
likely be biased; to ensure fairness, the creators of the other tools should be involved, as they
have the deepest understanding of their software and can help select optimal parameters. Thus,
a detailed comparison of the tools' capabilities is better suited for a dedicated benchmarking
study by an independent 3rd party or a competition, similar to those in the field of protein folding
(e.g. CASP or CAPRI).

I've tested pairtools on some MicroC data and did not had any major issue in installing it through
conda and even using it in practice. I was able to get some first results in a few hours. Here are
a few questions I had while running the CLI ;

2.12 - The package itself is very flexible, even maybe too flexible for beginners. I would
appreciate to have some clear guidelines about what would be a typical or standard worflows for
the most common Hi-C protocols, and which parameters to use for each CLI step.

Indeed, the extensive feature set of pairtools and its flexibility can be overwhelming for new
users. To make it easier to get started, we have added a new page to the online documentation
that accomplishes the following:

1. Provides a step-by-step guide for setting up the minimal Hi-C pipeline, utilizing the
Open2C toolset.

2. Explains the main parameters of pairtools and the factors to consider when choosing the
optimal values.

The new section of documentation can be found here:
https://pairtools.readthedocs.io/en/latest/protocols_pipelines.html . We will continue to update it
regularly based on questions received on the Pairtools issue tracker and Slack channel.

2.13 - Running 'pairtools stats', I saw in the statistics file some pair types I was not able to
defined ;
pair_types/UU 147151119
pair_types/Uu 43246049
pair_types/uU 43414173
pair_types/uu 14042597
pair_types/RU 1341742
pair_types/UR 1346450
What is the difference between u and U ? is there any documentation on that ?
I also noticed that in the pairs file, I only have UU ... and no uu ?

We thank the reviewer for pointing out the confusion created by the difference between lower-
and upper-case pair types. At the time of submission, pairtools parse used lowercase in pair
types to indicate read sides containing multiple alignments (i.e. sides that could give rise to
walks as thus requiring walk-policy for their interpretation). This suggestion highlights that (a)
this notation was too confusing and difficult to interpret and (b), more importantly, could interfere
with pair type-based filtering. To address this, we updated pairtools parse to use only upper
case letters in pair types. We moved the walk-related information into three optionally reported
columns: (i) “read_side”, i.e. which side of a paired-end read the alignment originates from, (ii)
“algn_idx”, the 0-based index of the alignment in the read side, counting from the 5’-end, (iii)
“same_side_algn_count”, i.e. the total number of alignments in the same read side. With this
information, users will be able to filter out pairs originating from walks.

2.14 - The 'walks-policy' option of the parse command is not easy to understand. By default, I
would used the '--walks-policy 5unique' for standard Hi-C protocol (digestion Hi-C) but I'm not
sure to see how this option will impact the final results ?

Thank you for spotting this omission. We have updated Supplementary Figure 1 to include
panels describing the effects of different walk policies in a few typical scenarios.

https://pairtools.readthedocs.io/en/latest/protocols_pipelines.html

Have the authors made all data and (if applicable) computational code underlying the
findings in their manuscript fully available?
The PLOS Data policy requires authors to make all data and code underlying the findings
described in their manuscript fully available without restriction, with rare exception (please refer
to the Data Availability Statement in the manuscript PDF file). The data and code should be
provided as part of the manuscript or its supporting information, or deposited to a public
repository. For example, in addition to summary statistics, the data points behind means,
medians and variance measures should be available. If there are restrictions on publicly sharing
data or code —e.g. participant privacy or use of data from a third party—those must be
specified.

Reviewer #1: Yes

Reviewer #2: Yes

PLOS authors have the option to publish the peer review history of their article (what does this
mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made
public.

Do you want your identity to be public for this peer review? For information about this
choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

https://journals.plos.org/ploscompbiol/s/materials-and-software-sharing
https://journals.plos.org/ploscompbiol/s/editorial-and-peer-review-process#loc-peer-review-history
https://journals.plos.org/ploscompbiol/s/editorial-and-peer-review-process#loc-peer-review-history
https://www.plos.org/privacy-policy

