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Supplementary Figure 1. Scheme of induction of M@s and vascular cells from human iPSCs.
Schematic diagrams of in vitro protocols for differentiation of human iPSCs into a) Mes, b) VECs,
and ¢) VSMCs. C3H10T1/2, mouse mesenchymal stromal cells; VEGF, vascular endothelial
growth factor; BMP4, bone morphogenetic protein 4; bFGF, basic fibroblast growth factor; GM-
CSF, granulocyte-macrophage colony-stimulating factor; M-CSF, macrophage colony-stimulating
factor; G-CSF, granulocyte-colony stimulating factor; IL-3, interleukin 3; SCF, stem cell factor

TPO, thrombopoietin; VEGFR2, vascular endothelial growth factor receptor 2.
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Supplementary Figure 2. Differentiation and characterization of human iPSC-derived Mgs and
vascular cells. a) Representative bar graphs showing mRNA levels of hematopoietic and M-specific
genes normalized by GAPDH mRNA (n = 3). b) Flow cytometric histograms of the expression of cell

surface markers on iPS- and PB-derived Mes. iPS-derived Mes were stained with appropriate



antibodies on days 14 and 21 of differentiation. Unstained cells were used as negative controls for each
cell type. ¢) Giemsa-stained images of day 14 HPCs (left) and day 21 mature iMes (right). d)
Representative flow cytometry plots for phagocytosis assay on days 14 and 21 of differentiation (left)
and MFTI of phagocytosis (right) (n = 4). An unpaired #-test was performed to calculate the p-value. e)
mRNA levels of pro-inflammatory cytokines after dose-dependent treatment of lipopolysaccharide
normalized by GAPDH mRNA on day 21 of differentiation (n = 3). f) Flow cytometric analysis of
different VEC cell surface markers on day 17 of differentiation. g) Phase-contrast microscopic images
of iPSCs (left) and mature iVECs (right) on day 17 of differentiation. The scale bar is 500um. h) mRNA
expression levels of VEC maturation genes normalized by GAPDH mRNA on day 17 of differentiation
(n = 3). i) Immunocytochemistry of VE-cad expression (left) and VE-cad with DAPI (right). The scale
bar is 100um. j) Acetylated low-density lipoprotein (acLDL) uptake between primary human aortic
endothelial cells (HAECs; far left) and iVECs (middle) and MFI of acLDL (right) (n = 3). An unpaired
t-test was performed to calculate the p-value. The scale bar is 500pum. k) Phase-contrast microscopic
image of iPSCs (left) and mature iVSMCs on day 17 of differentiation (right). The scale bar is 500um.
) Immunocytochemistry of a-SMA (far left), calponin-1 (left), a-SMA with calponin-1 (right), and o-
SMA with calponin-1 with DAPI (far right). The scale bar is 100pm. m) mRNA expression levels of
VSMC maturation genes normalized by GAPDH mRNA on day 17 of differentiation (n = 3). Data are
shown as the mean + SEM of biologically independent samples. *p < 0.05, **p < 0.01, ***p < 0.001,

*E*%p <0.0001. ns, not significant. Source data are provided as a Source Data file.
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Supplementary Figure 3. Comparisons among healthy-, WS-, and gcWS-iM¢gs and iPSC-derived
vascular cells. a) Flow cytometric analysis of cell surface markers of HPCs (left) and representative
bar graph of CD34" CD43" cells (right) induced from healthy-, WS- and gcWS-iPSCs on day 14 of
differentiation (n = 3). One-way ANOVA with Tukey’s multiple comparisons was performed to
calculate the p values. b) Flow cytometric analysis of cell surface markers of VPCs (left) and
representative bar graph of VEGFR2" CD34" cells (middle) and CD34" cells (right) induced from
healthy- and WS-iPSCs on day 10 of differentiation. (n = 4). An unpaired #-test was performed to
calculate the p-value. ¢) Absolute numbers of healthy- and WS-iVECs (top) and healthy- and WS-
iVSMCs (bottom) on day 17 of differentiation. d) Schematic diagram of oxLDL treatment in iM@s on
day 21 of differentiation. e) Flow cytometric analysis of oxLDL uptake by healthy-, WS-, and gcWS-
iMes (left) and calculated percent foam cell formation (middle) and MFI of oxLDL uptake (right) (n =

3). One-way ANOVA with Tukey’s multiple comparisons was performed to calculate the p values.



Percent foam cell formation was calculated from the oxLDL" CD11b" cell population. Data are shown
as the mean £ SEM. (n = 4) two biologically independent samples over two independent experiments.

(n = 3) represents biologically independent samples. Source data are provided as a Source Data file.
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Supplementary Figure 4. In vitro iM¢ and iPSC-derived vascular cell co-culture system. a)
Schematic diagrams of in vitro 2D co-culture of iMes with iPSC-induced vascular cells. b)
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inflammatory iMes.
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Supplementary Figure 5. Cross-co-culture showed that WS-iM@s were necessary for inducing

phenotypic changes in vascular cells. a) Absolute numbers of CD14" adherent iMgs on iVECs after



co-culture with oxLDL-treated iM@s (n =4). b) mRNA levels of ICAM normalized by GAPDH mRNA
in iVECs after co-culture with oxLDL-treated M@s (n = 4). ¢) IL6 and TNFa protein levels quantified
by ELISA after co-culture with oxLDL-treated Mos (n =4). d) /L6 and TNFo mRNA levels normalized
by GAPDH mRNA in iVECs after co-culture with oxLLDL-treated Mos (n = 4). e) Absolute numbers
of iVSMC:s after co-culture with oxLDL-treated Mgs (n = 4). f) mRNA levels of VSMC contractile
markers (CNNI (n =4), ACTA2 (n = 4), TAGLN (n = 4), and SMTN (n = 5)) normalized by GAPDH
mRNA after co-culture with oxLLDL-treated Mos. g) Flow cytometric analysis of cell surface marker
(ICAM-1 and VE-cad) expression on iVECs in control and CM groups. h) /[CAM-1I mRNA levels
normalized by GAPDH mRNA in control and CM groups (n = 3). i) /L6 mRNA levels normalized by
GAPDH mRNA in the control and CM group (n = 3). j) Absolute numbers of iVSMCs in control and
CM groups (n = 3). k) mRNA levels of VSMC contractile markers normalized by GAPDH mRNA in
control and CM groups (n = 3). Two-way ANOVA with Tukey’s multiple comparisons was performed
to calculate the p values. Data are shown as the mean + SEM. (n = 4) represents two biologically
independent samples over two independent experiments, and (n = 3) represents biologically

independent samples. Source data are provided as a Source Data file.
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Supplementary Figure 6. RNA-seq analysis of iPS-derived vascular cells. a) Heatmap of DEGs
in healthy- and WS-iVECs before and after oxLDL treatment. DEGs were obtained from Cuffdiff
and grouped into four clusters by K-means clustering, with each column representing a sample
group and each row representing an individual gene (n = 3 biologically independent samples).
Cluster-wise pathway enrichment analysis of the top 10 pathways in each cluster in iVECs (b-e). )
Heatmap of DEGs in healthy- and WS-iVSMCs before and after oxLDL treatment. DEGs were
obtained from Cuffdiff and grouped into four clusters by K-means clustering, with each column
representing a sample group and each row representing an individual gene (n = 3 biologically
independent samples). Cluster-wise pathway enrichment analysis of the top 10 pathways in each

cluster in iVSMCs (g-j). Source data are provided as a Source Data file.
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Supplementary Figure 7. Effect of type I IFN signal knockdown on healthy- and gcWS-iMgs. a)
Percent knockdown (KD) efficiency by shIRF3 and shIRF7 in healthy-iMgs (n = 4). b) mRNA levels
of type I IFN signature genes normalized by GAPDH mRNA after lentiviral transduction of shIRF3 and
shIRF7 in healthy-iMos (n = 3). ¢) Fold change in absolute numbers of healthy-iMes after lentiviral

transduction of shIRF3 and shIRF7 (n=4). d) Representative flow cytometric plots of SA-f3-gal staining



after lentiviral transduction of shIRF3 (left) and shIRF7 (middle) and MFI of SA-B-gal (right) (n = 3).
e) CDKN24 mRNA levels normalized by GAPDH mRNA in healthy-iMeos (n = 3). f) Pro-inflammatory
cytokine levels, determined by ELISA, after lentiviral transduction of shIRF3 and shIRF7 in healthy-
iMes (n = 3). g) IL6 and TNFa mRNA levels normalized by GAPDH mRNA after lentiviral
transduction of shIRF3 and shIRF7 in healthy-iM@s (n = 3). h) Percent KD efficiency by shIRF3 and
shIRF7 in gcWS-iMos (n = 4). i) mRNA levels of type I IFN signature genes normalized by GAPDH
mRNA after lentiviral transduction of shIRF3 and shIRF7 in gcWS-iMes (n = 4). j) Fold change in
absolute numbers of gcWS-iMes after lentiviral transduction of shIRF3 and shIRF7 (n = 4). k)
CDKN24 mRNA levels normalized by GAPDH mRNA in gcWS-iMes (n=4). 1) IL6 and TNFa mRNA
levels normalized by GAPDH mRNA after lentiviral transduction of shIRF3 and shIRF7 in gcWS-iMes
(n = 4). Data are shown as the mean + SEM. (n = 4) represents two biologically independent samples
over two independent experiments, and (n = 3) represents biologically independent samples. One-way
ANOVA with Dunnett’s multiple comparisons was performed to calculate the p values. Source data are

provided as a Source Data file.
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Supplementary Figure 8. Silencing type I IFN signaling ameliorates vascular health in WS-iPS-
derived cells. a) Absolute numbers of CD14" adherent iMes on iVECs after co-culture with shIRF3
and shIRF7 lentiviral-transduced oxLDL-treated WS-iMos (n = 3). b) Representative FACS histograms
(left) and MFI (right) of cell surface ICAM-1 expression on iVECs. The dotted line represents the shCtrl
histogram peak (n = 3). ¢) /ICAM-1 mRNA levels normalized by GAPDH mRNA (n = 3). d) mRNA
levels of VSMC contractile markers normalized by GAPDH mRNA in iVSMCs after co-culture with
shIRF3 and shIRF7 lentiviral-transduced oxLDL-treated WS-iMos (n = 3). Data are shown as the mean
+ SEM of biologically independent samples. One-way ANOVA with Dunnett’s multiple comparisons

was performed to calculate the p values. Source data are provided as a Source Data file.
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Supplementary Figure 9. Unchanged type I IFN signaling upon NOX2-dependent inhibition of
ROS generation in WS-iMgs. a) Representative flow cytometric plots showing ROS accumulation
(left) and MFI of ROS accumulation (right) in healthy- and WS-iMes before and after oxLDL treatment
(n = 4). t-tests with correction for multiple comparisons using the Bonferroni-Dunn method were
performed to calculate the p values. b) NOX2 mRNA levels normalized by GAPDH mRNA (n = 3). -
tests with correction for multiple comparisons using the Bonferroni-Dunn method were performed to
calculate the p values. ¢) Representative flow cytometric plots showing ROS accumulation (left),
percent of ROS accumulated cells (middle), and MFI of ROS accumulation (right) in WS-iMes before
and after GSK2795039 treatment (n = 3). One-way ANOVA with Dunnett’s multiple comparisons was
performed to calculate the p values. d) mRNA levels of type I IFN signature and pro-inflammatory

cytokine genes normalized by GAPDH mRNA. Data are shown as the mean + SEM of biologically

independent samples. Source data are provided as a Source Data file.
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Supplementary Figure 10. Unchanged type I IFN signals upon NRTI treatment of WS-iMgs. a)
FPKM of ER-stress-related genes in healthy- (n = 3) and WS-iMegs (n = 4) before and after oxLDL
treatment. b) FPKM of MB21D1 and TMEM173 genes in healthy- (n = 3) and WS-iMgs (n = 4) before
and after oxLDL treatment. ¢) Schematic diagram of nucleoside/nucleotide reverse transcriptase
inhibitor (NRTI) treatment of WS-iMeos (left) and MB21D1 and TMEM173 mRNA levels in untreated
and NRTI-treated WS-iM@s normalized by GAPDH mRNA. mRNA levels of type I IFN signature

genes in untreated and lamivudine-treated (d) emtricitabine-treated (e¢) WS-iMes normalized by



GAPDH mRNA. Two-way ANOVA with Tukey’s multiple comparisons was performed to calculate
the p values. Data are shown as the mean + SEM of biologically independent samples. Source data are

provided as a Source Data file. NRTI, Nucleoside Reverse Transcriptase Inhibitor.
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Supplementary Figure 11. Expression of RTEs in human peripheral blood-derived cells. a)
Heatmaps showing differential expression of RTEs obtained using limma-voom in healthy aged-PB-
Mos (n = 2) and WS-PB-Mgs (n = 2), with each column representing a sample group and each row
representing an individual RTE (adjusted p < 0.05, Ifc > 0.5). Moderated paired #-tests were performed
using limma, and the p values were corrected for multiple comparisons using Benjamini Hochberg's
method. b) Levels of global RTE expression in healthy aged-PB-Mes and WS-PB-Mos (adjusted p <
0.05, Ifc > 0.5). Data are presented as logCPM values of biologically independent samples. The yellow
line on the violin plot represents the median global RTE expression. A two-tailed unpaired #-test was
performed to calculate the p value ¢) Numbers of individual RTEs at sub-families (LINE, SINE, and

ERV) levels in healthy aged-PB-M@s and WS-PB-Mgs. Source data are provided as a Source Data file.
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Supplementary Figure 12. Accumulation of dsRNA in iPS-derived vascular cells. a) Representative

FACS plot of dsRNA accumulation (left) and MFI of dsRNA accumulation (right) in healthy-, WS-,

and gcWS-iVECs (n = 3). b) Representative FACS plot of dsRNA accumulation (left) and MFI of

dsRNA accumulation (right) in healthy-, WS-, and gcWS-iVSMCs (n = 3). One-way ANOVA with

Tukey’s multiple comparisons was performed to calculate the p values. Data are shown as the mean +

SEM of biologically independent samples. Source data are provided as a Source Data file.



