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Conventional single-subject VBM 

Conventional single-subject VBM was performed with the SPM12 software package 

(www.fil.ion.ucl.ac.uk/spm/). The processing steps are illustrated in Supplementary Figure 1. In brief, 

the original 3D T1w-MRI scan was segmented into a gray matter (GM), white matter, and cerebrospinal 

fluid component images. Spatial correspondence between the GM component image of the patient and 

the GM component images of the NDB was established via high dimensional non-linear image 

registration (DARTEL) [1]. The registered and modulated individual GM component image was 

smoothed by convolution with an isotropic Gaussian kernel of 8 mm full-width-at-half-maximum. After 

smoothing, a voxel-based two-sample t-test of the individual smoothed GM component image against 

the GM component images of the NDB was carried out, resulting in a statistical t-map. Age and total 

intracranial volume were taken into account as nuisance covariates. The total intracranial volume was 

estimated in each T1w-MRI scan by using a 3D-CNN specifically trained for accurate and stable 

delineation of the total intracranial volume [2; 3].  

3D-CNN architecture 

The architecture of the custom 3D-CNN is shown in Figure 1 in the manuscript. The 3D-CNN follows 

a fully convolutional encoder-decoder (U-net-like) architecture with 3D convolutions with 3x3x3 kernel 

size. Residual blocks are used in the encoder [4]. In addition, deep supervision [5] is employed by 

including additional segmentation layers at several stages in the decoder. The encoder reduces the 

spatial feature map size four times (using convolution with stride 2) and doubles the feature map number 

with each reduction. Starting with 16 feature maps of size 160x160x160 in the first layer, this leads to 
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256 maps of size 10x10x10 in the last encoder layer. The decoder uses convolution layers, followed by 

nearest-neighbour up-sampling and deep supervision in three layers [5]. For the long-range connections 

between encoder and decoder a feature concatenation is employed. Leaky ReLU [6] is used as activation 

function in each layer. Due to the rather large patches of 160x160x160 voxels the batch size is 1. 

Therefore, instance normalization, a special case of group normalization, is used instead of batch 

normalization.  

Data augmentation 

Random combinations of the following data augmentation techniques were used during training of the 

3D-CNN to further increase the heterogeneity of the training dataset. 

▪ Random left-right flipping of the image patches. 

▪ Rotation around the x-, y- or z-axis by an angle randomly chosen between -10 and 10 degrees. 

▪ Translation in x-, y- or z-direction by a distance randomly chosen between -5 and 5 mm. 

▪ Voxel-wise adding of Gaussian random noise with zero mean and variance randomly chosen 

between 0 and 0.0001. The voxel values were normalized between 0 and 1 (this is required for every 

CNN) 

▪ Simulation of a random bias field. A plane was selected randomly within the 3D volume. For all 

other planes, the distance to the selected plane was computed. Distance values were scaled to the 

interval [1, d] with d a random number between 1 and 2. Image voxel values were multiplied with 

the scaled distance of the plane the voxel was located in.  

The first three augmentation techniques were applied simultaneously to the input and to the output of 

the 3D-CNN whereas the last two techniques were applied only to the input image (output unchanged). 

Application of the 3D-CNN  

For the application of the 3D-CNN to a T1w-MRI scan, eight (2x2x2) evenly distributed overlapping 

crops of 160x160x160 mm3 were taken. For each crop, the predicted class values were computed and 
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merged to the entire volume by taking the mean values in the overlapping regions. Each of the 4 output 

maps (corresponding to the 4 parts of the statistical maps from scanner-specific-VBM, Figure 1 in the 

manuscript) contains (probability) values between 0 and 1. The output maps corresponding to the ‘low 

significance’ part and to the ‘high GM density’ part of conventional t-maps were ignored. The output 

maps corresponding to the ‘low extrahippocampal GM density’ part and to the ‘low hippocampal GM 

density’ part were summed voxel-by-voxel to obtain the (final) CNN-VBM map.  

The voxel intensities in the CNN-VBM map range between 0 and 1. The threshold corresponding to 

P=.005 for t-maps from scanner-specific-VBM was identified as follows. On a subset of 130 randomly 

selected cases from the training dataset (2 cases per scanner), the CNN-VBM-map was binarized using 

varying thresholds between 0.1 and 0.85 (step size 0.05). For each threshold on the CNN-VBM-map, 

the Dice similarity coefficient of the resulting binarized map with the corresponding conventional gold 

standard map from scanner-specific-VBM binarized at P=.005 was computed for each of the 130 cases. 

Prior to computing the Dice similarity coefficient, the binary maps were smoothed by convolution with 

an isotropic Gaussian kernel with 10 mm full-width-at-half-maximum and then binarized again (all 

values > 0) in order to reduce the sensitivity with respect to minor, clinically irrelevant differences. The 

mean Dice similarity coefficient over the 130 cases was maximal for a threshold of 0.40 (Supplementary 

Figure 4). This value was used for thresholding the CNN-VBM-maps for visual interpretation. 
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Supplementary Tables 

Supplementary Table 1. Visual interpretation of VBM-maps: intra-reader cross tables 

  scanner-specific-VBM multiple-scanner-VBM CNN-VBM 
  reader 1 vote 2 reader 1 vote 2 reader 1 vote 2 
  AD FTLD normal uncert AD FTLD normal uncert AD FTLD normal uncert 

re
ad

er
 1

 

 v
o

te
 1

 AD 40 1 1 5 17 1 1 2 46 1 0 2 

FTLD 4 23 0 0 0 24 0 0 2 29 0 0 

normal 0 0 34 2 3 0 60 2 1 0 21 6 

uncert 0 0 2 6 1 1 4 2 0 2 1 7 

  reader 2 vote 2 reader 2 vote 2 reader 2 vote 2 

re
ad

er
 2

  

v
o
te

 1
 

AD 35 2 0 0 10 2 0 0 36 3 1 0 

FTLD 3 25 0 0 1 22 0 0 1 29 0 0 

normal 0 0 36 2 0 0 70 2 2 0 24 4 

uncert 4 0 2 9 4 1 1 5 7 1 3 7 

(AD: Alzheimer’s disease, CNN: convolutional neural network, CNN-VBM: CNN-based VBM without reference to a 

normal database, FTLD: frontotemporal lobar degeneration, multiple-scanner-VBM: conventional VBM with a mixed 

normal datadase comprising T1w-MRI images from multiple scanners as reference, scanner-specific-VBM: 

conventional VBM with a scanner- and sequence-specific normal database as reference, uncert: uncertain, VBM: voxel-

based morphometry) 
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Supplementary Table 2. Visual interpretation of VBM-maps: between-reader cross tables 

  scanner-specific-VBM multiple-scanner-VBM CNN-VBM 
  reader 1 reader 1 reader 1 
  AD FTLD normal uncert AD FTLD normal uncert AD FTLD normal uncert 

re
ad

er
 2

 AD 35 2 0 0 10 2 0 0 36 3 1 0 

FTLD 3 25 0 0 1 22 0 0 1 29 0 0 

normal 0 0 36 2 0 0 70 2 2 0 24 4 

uncert. 4 0 2 9 4 1 1 5 7 1 3 7 

(AD: Alzheimer’s disease, CNN: convolutional neural network, CNN-VBM: CNN-based VBM without reference to a 

normal database, FTLD: frontotemporal lobar degeneration, multiple-scanner-VBM: conventional VBM with a mixed 

normal datadase comprising T1w-MRI images from multiple scanners as reference, scanner-specific-VBM: 

conventional VBM with a scanner- and sequence-specific normal database as reference, uncert: uncertain, VBM: voxel-

based morphometry) 
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Supplementary Table 3. Visual interpretation of VBM-maps: cross tables of the reader consensus versus the 

ground truth diagnoses for the detection of any neurodegenerative disease (AD or FTLD versus normal), 

separately for each of the three different VBM methods 

    scanner-specific-VBM multiple-scanner-VBM CNN-VBM 

    AD/FTLD normal AD/FTLD normal AD/FTLD normal 

g
ro

u
n

d
 

tr
u
th

 AD/FTLD 68 13 39 42 73 8 

normal 0 37 0 37 4 33 

sens/spec/PPP/NPV 0.84/1.00/1.00/0.74 0.48/1.00/1.00/0.47 0.90/0.89/0.95/0.80 

          

(AD: Alzheimer’s disease, CNN: convolutional neural network, CNN-VBM: CNN-based VBM without reference to a 

normal database, FTLD: frontotemporal lobar degeneration, multiple-scanner-VBM: conventional VBM with a mixed 

normal datadase comprising T1w-MRI images from multiple scanners as reference, NPV: negative predictive value, 

PPV: positive predictive value, scanner-specific-VBM: conventional VBM with a scanner- and sequence-specific 

normal database as reference, sens: sensitivity, spec: specificity, VBM: voxel-based morphometry) 
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Conventional voxel-based morphometry with reference to a scanner- and 

protocol-specific normal database.  
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Supplementary Figure 2. VBM-maps of one of the four false positive cases according to the visual 

consensus interpretation of the CNN-VBM-map. The CNN-VBM-map of the 73y old healthy control 

subject (C) was incorrectly categorized as AD whereas the gold standard map from scanner-specific-

VBM (A) and the map from multiple-scanner-VBM (B) were correctly classified as normal. 
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Supplementary Figure 3. VBM-maps of one of the 42 false negative according to multiple-scanner-

VBM (B). The CNN-VBM-map of the 73y old AD patient (C) was categorized correctly, the gold-

standard map from scanner-specific-VBM (A) was misclassified as FTD. 
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Supplementary Figure 4. Mean Dice similarity coefficient between the thresholded CNN output with 

the gold standard t-maps from scanner-specific-VBM thresholded at P=.005 for varying thresholds on 

the CNN output. 

 


