Electronic Supplementary Information

Nanoparticulated Bimodal Contrast Agent for Ultra-High-Field Magnetic Resonance Imaging and Spectral X-ray Computed Tomography

Daniel González-Mancebo,¹ Ana Isabel Becerro,^{1*} Carlos Caro,^{2,3,4} Elisabet Gómez-González,¹ María Luisa García-Martín,^{2,3,4} Manuel Ocaña¹

¹Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain.

²Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, 41092 Seville, Spain

³Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina – IBIMA Plataforma BIONAND Málaga 29590, Spain

⁴CIBER-BBN, ISCIII

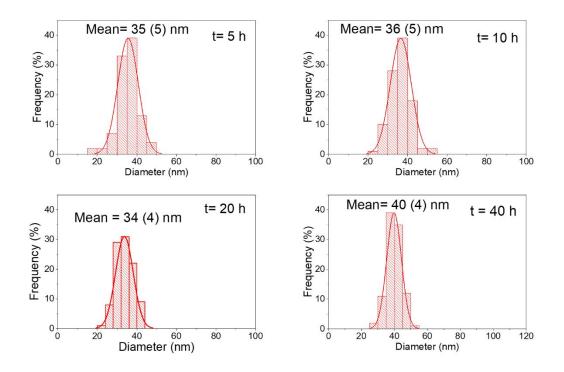
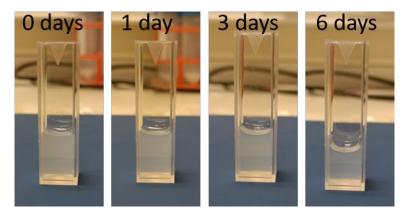
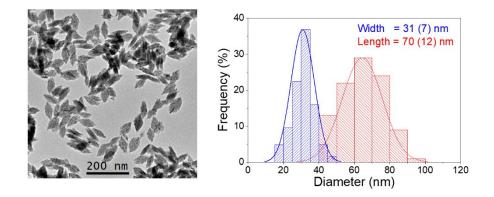




Figure S1: Size histograms obtained from TEM micrographs of the NPs synthesized at different reaction times using nominal Ba/(Ba+Dy) = 0.75.

Figure S2: Photographs of Ba51Dy49 NPs suspensions taken after different periods of time at rest.

Figure S3: TEM micrograph and size histograms of DyF_3 NPs synthesised as follows: $Dy(acac)_3$ (0.067 M) was dispersed in glycerol (6 mL) with magnetic stirring at 80 °C for 3 hours. After cooling down, 205.5 µL of [BMIM]BF₄ (0.55 M) were added with magnetic stirring for 3 minutes at room temperature to favor homogenization. The resulting dispersion was transferred to a tightly closed Teflon test tube and heated for 20 hours in an oven preheated at 120 °C. After cooling down, the dispersion was washed twice with ethanol and once with distilled water.