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1. General information

All components as well as reagents and solvents were used as received without further purification,
unless stated otherwise. Reagents and solvents were bought from Sigma Aldrich and BLDpharm and
if applicable, kept under argon atmosphere. Technical solvents were bought from VWR International
and Biosolve, and are used as received. Product isolation was performed using silica (60, F254,
Merck™), and TLC analysis was performed using Silica on aluminum foils TLC plates (F254, Supelco
Sigma-Aldrich™) with visualization under ultraviolet light (254 nm and 365 nm) or appropriate TLC
staining. *H (400MHz) and 3C (100MHz) NMR spectra were recorded at ambient temperature using a
Bruker Avance Il+ 600 or a Bruker Avance Ill HD 400. 'H NMR spectra are reported in parts per million
(ppm) downfield relative to CDCls; (7.26 ppm), 3C NMR spectra are reported in ppm relative to CDCl3
(77.2 ppm). NMR spectra uses the following abbreviations to describe the multiplicity: s = singlet, d =
doublet, t = triplet, q = quartet, p = pentet, h = hextet, hept = heptet, m = multiplet, dd = double
doublet, td = triple doublet. Known products were characterized by comparing to the corresponding
'H NMR and **C NMR from literature. GC analyses were performed on: GC-FID (Varian 430-GC) in
combination with an auto sampler (Varian CP-8400), on GC-FID (Shimadzu GC-2014 equipped with CP-
Sil 8 CB column and FID-2014 detector), on GC-MS combination (Shimadzu GC-2010 Plus coupled to a
Mass Spectrometer; Shimadzu GCMS-QP 2010 Ultra) with an auto sampler unit (AOC-20i, Shimadzu).
Melting points were determined with a Buchi B-540 capillary melting point apparatus in open
capillaries and are uncorrected.

Chemicals: DMF (99.8%, extra dry), DMA (99.8%, extra dry) and DMSO (99.8%, extra dry) were
purchased from Acros Organics and used as purchased. The transition metal photocatalysts
Ru(bpy)s(PFs)2, [Ir{dFCFsppy}.(bpy)]PFs, fac-Ir, Mes-Acr-Me* were purchased from commercial
sources. The organic photocatalysts 4CzIPN, tBu4CzIPN and 3DPAFIBN were prepared by the
procedure outlined in previous publications.!

Deuterated solvents were used as purchased (CDCls).

Photochemical experiments were performed magnetically stirred in 10 mL glass test tubes with screw
caps equipped with silicon septa. The tubes were irradiated with a blue Kessil light (456 nm, 40W) or
aviolet Kessil light (390 nm, 52W) in an EvoluChem™ PhotoRedOx Box. To maintain a constant reaction
temperature of 35°C, the setup was cooled by a constant airflow (Figure S1, A, B).

Figure S1: a) Kessil light; b,c) Setup using EvoluChem™ PhotoRedOx Box.
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2.Synthesis and characterization of starting materials

The starting materials described below were prepared according to reported procedures.

2.1  8-bromo-1,4-dioxaspiro[4,5]decane

O/> 8-Bromo-1,4-dioxaspiro[4,5]decane was synthesized following a reported

O\O procedure.? 1,4-Dioxa-spiro[4,5]-decane-8-ol (1 equiv) and CBr4 (1.2 equiv) were

Br dissolved in dry CH,Cl; (0.1 M). The solution was cooled to 0°C and PPhs (1.2 equiv)

was added. After 24 h, the solvent was removed and the residue was extracted into

diethylether. The crude residue was purified by column chromatography (EtOAc/hexanes 1:3) to
afford a colorless liquid.

2.2 (2-bromopropoxy)(tert-butyl)dimethylsilane

Bromopropan-1-ol (1 equiv) and imidazole (2.5 equiv) were dissolved in DMF
(0.6 M). TBDMS-CI (1.2 equiv) was then added to the reaction mixture. The
reaction mixture was stirred for 3 hours until the starting material was consumed. The reaction

J\/ J< The compound was synthesized according to a reported procedure.® 2-
Br O\Si
/

\

mixture was then extracted in Et,0 and the combined organic layers were dried over Na,SO; and
evaporated under reduced pressure. The crude residue was purified by column chromatography
(hexanes) to afford a colourless liquid.

2.3 (8R,9S,13S,14S)-13-methyl-3-vinyl-7,8,9,11,12,13,15,16-octahydro-
6H-cyclopentala]phenanthren-17(14H)-one

The compound was synthesized according to a reported procedure.* Estrone (1.0 equiv) was dissolved
O in CHyCl; (0.2 M solution) and the solution was cooled down to 0 °C.

Trifluorosulfonic acid anhydride (1.1 equiv) and triethylamine (2.0 equiv)
were then slowly added. The mixture was stirred at ambient temperature
for 24 h. A saturated aqueous solution of NaHCO; was then added, the
layers were separated and the aqueous phase was extracted three times
with CHyCl,. The combined organic layers were dried over Na,SO4 and evaporated under reduced
pressure. The crude residue was purified by column chromatography (EtOAc/heptane 1:20).

The compound obtained was then further reacted to form the final desired product (3-
[[(Trifluoromethyl)sulfonyl]oxy]estra-1,3,5(10)-trien-17-one).
3-[[(Trifluoromethyl)sulfonyl]oxy]estra-1,3,5(10)-trien-17-one (1 equiv) was dissolved in THF (0.5 M)
and potassium vinyltrifluoroborate (1.2 equiv), PdCl; (2.0 mol%), PPhs (6.0 mol%), Cs,COs (3.0 equiv)
and H,0 (0.5 mL) were added sequentially. The suspension was refluxed at 80 °C for 24 h, cooled down
to ambient temperature and quenched by the addition of H,O. The phases were separated, the
aqueous layer was extracted with CH,Cl,, the combined organic layer was dried over Na,SO4 and
evaporated under reduced pressure. The crude product was purified via column chromatography
(EtOAc/heptane 1:20) to vyield (8R,9S,13S,14S)-13-methyl-3-vinyl6,7,8,9,11,12,13,14,15,16-
decahydro-17H-cyclopenta[a]phenanthren-17-one as a white solid.
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3. Optimization studies

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate
(BPhsNa), photocatalyst (PC), bromocyclohexane and 4-tert-butylstyrene were added. The solvent was
then added. The vial was closed with a silicon septum and degassed with argon for 20 min. The vial
was then irradiated with a Kessil light (456 nm, 40W/ 390 nm, 52W). The progress of the reaction was
monitored by TLC and GC/MS. After completion, the solution was diluted with diethylether and
transferred in a separatory funnel containing water. The organic layer was separated, and the aqueous
layer was extracted with diethylether. The combined organic layers were dried over Na,;SO4. The
solvent was removed in vacuum and the product was isolated through column chromatography
(hexane). In some cases, after the extraction, the NMR vyield was determined instead using 1,3,5-
trimethoxybenzene as internal standard.

O
“»ﬁi é»ii >t
N// N N Z &“N @

o 9

4CzIPN 3DPAFIBN -Acr-
£ (P*,Pz.) 135 Bu-4CzIPN Eqp (PP) = +1.09 E M?/gcr BF2408
= . = . *IP7) = +
112 ! Eqp (PYP) = +1.21 112 ! 112 ( _) .
Eqj (PIP7) = -1.21 Eqp2 (P/P7) =-1.59 Eqi2 (P/P7) =-0.59

N
7 N\
= 3
[Ir(dF(CF3),ppy)2(dtbbpy)]PFg [Ir(dtbbpy)(ppy).]PFg fac-Ir(ppy); [Ru(bpy)3](PFg),
Eqpp (P*/P) = +1.21 Eqp (P*/P) = +1.32 Eq2 (P*/P") = +0.31 Eqpp (P*P7) = +0.77
Eqp (PIP) = 1.37 Eq (PIP) = -1.37 Eqp (PIP) = 2,19 Eqp (PIP7) = -1.33

Figure S2: Photocatalysts employed in the optimization studies.
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Figure $3: Boryl radical sources employed in the optimization studies.
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Table S1: Optimization of the photocatalyst (PC).

X Br PC
+ + BPhyNa >
tBu 456 nm LED light

solvent (0.1 M), tBu
1 2 [B] Ar, rt, 16 h 3
Entry PC Solvent Equivalent (1/2/[B]) Yield?

1 4CzIPN (5 mol%) DMF 1.5/1/1 65%
2 4CzIPN (5 mol%) DMF 1/1.5/1.5 50%
3 (Ir[dF(CF3)2ppyl2(dtbpy))PFs DMF 2/1/2 56%

(2 mol%)
4 [Ir(dtbbpy)(ppy)2]PFs (2 Mmol%) DMF 2/1/2 30%
5 fac-Ir(ppy)s DMF 2/1/2 -
6 9-Mesityl-3,6-di-tert-butyl-10- DMF 2/1/2 -

phenylacridinium tetrafluoroborate

(10 mol%)
7 Ru(bpy)s(PFs)2 (2 mol%) DMF 1.5/1/1 -
8 3DPAFIPN (5 mol%) DMF 1/1.5/1.5 28%
9 tBu-4CzIPN (5 mol%) DMF 1/1.5/1.5 60%
10 tBu-4CzIPN (5 mol%) DMF 1.5/1/1 38%

aNMR vyield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.

Table S2: Optimization of the borate.

N Br PC
+ + [B] >
tBu 456 nm LED light

solvent (0.1 M), tBu
1 2 Ar, rt, 16 h 3
Entry PC Solvent Equivalent (1/2/[B]) Borate Yield?
9 4CzIPN DMF 2/1/2 B2 75%
10 4CzIPN DMF 2/1/2 B3 Traces
11 4CzIPN DMF 2/1/2 B4 Traces
12 4CzIPN DMF 2/1/2 B5 -

aNMR vyield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.
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Table S3: Optimization of the solvent.

X Br 4CzIPN (5 mol%)
+ + BPhyNa >
tBu 456 nm LED light

solvent (0.1 M), tBu
1 2 [B] Ar, rt, 16 h 3
Entry PC (5 mol%) Solvent Equivalents Yield?
(1/2/18])

13 4CzIPN DMA 1/1.5/1.5 35%
14 ACzIPN DMA, H,0 (5 equiv) 2/1/2 88%
15 4CzIPN MeOH 1/1.5/1.5 -
16 4CzIPN 1,4-Dioxane 1/1.5/1.5 < 10%
17 4CzIPN Acetone 1/1.5/1.5 Traces
18 4CzIPN iPrOAc 1/1.5/1.5 <10%
19 4CzIPN Toluene 1/1.5/1.5 -
20 4CzIPN DCE 1/1.5/1.5 -
21 4CzIPN ACN 1/1.5/1.5 -
22 4CzIPN DMSO 1.5/1/1 - ¥
23 4CzIPN DMA 1.5/1/1 38%

aNMR yield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.
*Addition of a phenyl radical to the styrene detected in GC-MS.

Table S4: Optimization of the equivalents of the reactants.

X Br 4CzIPN (5 mol%)
+ + BPhyNa >
tBu 456 nm LED light

solvent (0.1 M), tBu
1 2 [B] Ar, rt., 16 h 3
Entry PC (5 mol%) Solvent Equivalent (1/2/[B]) Yield?
24 4CzIPN DMF 1/1.5/1 50%
25 4CzIPN DMF 2/1/1 53%
26 4CzIPN DMF 2/1/2 68%
27 4CzIPN DMF 2/1/3 51%
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aNMR vyield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.

Table S5: Optimization of different reaction parameters and additives.

X Br
' O/ '
tBu
1 2

Entry

28
29
30
31
32
33
34
35

36

37

38

PC (5 mol%)

4CzIPN
4CzIPN
4CzIPN
4CzIPN
4CzIPN
tBu4CzIPN
4CzIPN
4CzIPN (2 mol%)

4CzIPN

4CzIPN

4CzIPN

BPh,Na

[B]

4CzIPN (5 mol%)

Equivalent

(1/2/[8])
1/1.5/1.5
1.5/1/1
2/1/2
2/1/2
2/1/2
2/1/2
1/2/2.5
2/1/2

2/1/2

2/1/2

2/1/2

visible light
DMF, tBu
Ar, rt., 16 h 3

Additive/ light/ concentration

4-picoline
dtbbpy (50 mol%)
DMAP
4-methoxypyridine
Kessil light (390 nm)
Kessil light (390 nm)
Kessil light (390 nm)
Kessil light (390 nm)
Kessil light (390 nm),
0.2M
Kessil light (390 nm),
0.05M
Kessil light (390 nm),

H>0 (5 equiv)

aNMR yield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.
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70%
84%

88%

92%

95%
(85%)



4. Mechanistic investigations

4.1  Control experiments

To elucidate the mechanistic scenario, control experiments were performed. The results can be
found in the table reported below.

Table S6: Control experiments.

X Br 4CzIPN (5 mol%)
+ + BPhyNa -
tBu 390 nm LED light

DMF (0.1 M), H,O (5 equiv) tBu

1 2 [B] Ar, rt, 16 h 3
2 equiv 1 equiv 2 equiv

Entry Variation from standard conditions Yield?
1 None 95%
2 No photocatalyst -
3 No light -
4 No BPhiNa -
5 No inert atmosphere 30%
6 DMF/H,0 (4:1) 55%
7 Addition of DIPEA (2 equiv) instead of BPhs;Na ¥
8 Addition of tetrabutylammonium bromide instead of BPhsNa -
9 Addition of PPh; instead of BPhsNa -
10 Addition of Na-ascorbate instead of BPhsNa X
11 456 nm instead of 390 nm 87%

aNMR yield, using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses. *No product formation was
detected, nor the product of a reductive dehalogenation.

The need for PC and light confirms the photocatalytic nature of the reaction under study (Entry 2,3,
Table S6). Inert atmosphere also plays a relevant role in the reaction (Entry 5). Oxygen can act as a
catalyst quencher, but it can also interfere with boryl radical generation and thus in the halogen atom
transfer (XAT) step.® In the absence of a boryl radical source (Entry 4), the product formation was not
detected. Considering the PC redox window, bromocyclohexane cannot undergo direct single electron
reduction, thus the need for a halogen atom abstractor.

To further exclude the involvement of a multi photon process,®’ we evaluated the role of BPhsNa as
an electron shuttle rather than a boryl radical source for XAT. According to previous reports, a
photocatalyst, often first quenched by an electron donor, can be further excited in its radical anionic
form in a multi photon process, that generates as a result a super reductant species able to reduce
highly challenging scaffolds, mostly aryl halides.” This process is dependent on the photocatalyst, on
the electron shuttle and on the wavelength under use. Under our conditions, the exclusion of NaBPh,
and the addition of different reductants (Entry 7,8,9,10), did not lead to product formation.
Furthermore, blue irradiation (456 nm, Entry 11) is also an alternative efficient irradiation wavelength,
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and the reactivity is not limited to a single wavelength (a crucial parameter for multi photon
processes).

An increase in the amount of water was found to be detrimental to the reaction, mainly due to PC
insolubility (Entry 6).

In addition, we also wondered if the change in the wavelength was needed because of the higher
energy of the 390 nm light that could lead to a higher temperature in the system. To cross check this,
a reaction was run using a 456 nm light without turning on the cooling fan, reaching a temperature of
45 °C. This experiment did not lead to yield improvement.

4.2  Radical inhibition experiments

To prove radical involvement in the reaction mechanism, a radical quencher (TEMPQO) was added to
the reaction.

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate
(BPhsNa, 2 equiv), photocatalyst (4CzIPN, 5 mol%), bromocyclohexane (1 equiv, 0.2 mmol), 4-tert-
butylstyrene (2 equiv) and TEMPO (4 equiv) were added. DMF (0.1 M) and H,O (5 equiv) were then
added. The vial was closed with a silicon septum and degassed with argon for 20 min. The vial was
then irradiated with a Kessil light (390 nm) for 16h. The result of the reaction was monitored through
GC/MS.

Though not possible to isolate a radical adduct, product formation was suppressed (5% GC-MS vyield,
Scheme S1).

4CzIPN (5 mol%),

+ + >
tBu @ tBu

390 nm LED light
DMF (0.1M), H,0O (5 equiv)
Ar, rt,16 h

Scheme S1: Experiment with TEMPO.

5% GC-MS yield

To further prove the involvement of radicals in the devised transformation, two radical clock
experiments were also performed (Scheme S2A and S2B).

4CzIPN (5 mol%),

A
X
tBu 390 nm LED light Bu

o
DMF (0.1M), H,0 (5 equiv) 39 ﬁay'e'd
Ar, 1,16 h

4CzIPN (5 mol%),

B
N NaBPh4 /O/\/\/\
+ > \ >
,Bu/©/\ Br 390 nm LED light tBu 40% yield

DMF (0.1M), H,O (5 equiv) 4b
Ar, 11,16 h

Scheme S2: Radical clock experiments.
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2A/2B) To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium
tetraphenylborate (BPhsNa, 2 equiv), 4CzIPN (5 mol%), 6-bromohex-1-ene (1A, 1 equiv, 0.2 mmol) or
(bromomethyl)cyclopropane (1B, 1 equiv, 0.2 mmol) and 4-tert-butylstyrene (2 equiv) were added.
DMF (0.1 M) and H;0 (5 equiv) were then added. The vial was closed with a silicon septum and
degassed with argon for 20 min. The vial was then irradiated with a Kessil light (390 nm) for 16h. After
completion, the solution was diluted with diethylether and transferred in a separatory funnel
containing water. The organic layer was separated, and the aqueous layer was extracted with
diethylether. The combined organic layers were dried over Na;SO.. The solvent was removed in
vacuum and the product was isolated through column chromatography (hexane).

1-(tert-butyl)-4-(3-cyclopentylpropyl)

Compound 4a was prepared according to the above procedure and isolated as a pale yellow oil.
Column Chromatography: Silica, heptane
'H NMR (400 MHz, Chloroform-d) & 7.31 (d, J = 6.9 Hz, 2H), 7.13 (d, J = 7.3 Hz,
mm 2H), 2.58 (t,J = 7.8 Hz, 2H), 1.78 — 1.72 (m, 3H), 1.65 —1.58 (m, 4H), 1.52 —1.47
(m, 2H), 1.40 - 1.34 (m, 2H), 1.32 (s, 9H), 1.28 — 1.22 (m, 2H).
13C NMR (101 MHz, CDCI3) 6 148.43, 140.07, 128.14, 125.24, 40.24, 36.20, 35.87, 34.47,32.85, 31.58,

30.85, 25.35.
HRMS (El): [M] cal’d for CigHa2s: 244.2191, found: 244.2187

1-(tert-butyl)-4-(hex-5-en-1-yl)benzene

Compound 4b was prepared according to the above procedure and isolated as a pale yellow oil.

Column Chromatography: Silica, heptane

@N\/\ 'H NMR (400 MHz, Chloroform-d) 6 7.30 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz,

Bu 2H), 5.86 —5.76 (m, 1H), 5.00 (d, J = 17.1 Hz, 1H), 4.94 (d, J = 10.2 Hz, 1H), 2.59
(t, J = 8 Hz, 2H), 2.13 — 2.05 (m, 2H), 1.67 — 1.59 (m, 2H), 1.49 — 1.41 (m, 2H),

1.31 (s, 9H).

13C NMR (101 MHz, CDCl;) & 148.43, 140.07, 128.14, 125.24, 36.20, 35.87, 34.47, 32.85, 31.58, 30.85,

25.35
HRMS (El): [M] cal’d for Ci6H24: 216.1878, found: 216.1870
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'H spectrum of 4a
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'H spectrum of 4b
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4.3  Light-dark experiment

The light-dark experiment was performed according to the general procedure.

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate
(BPhsNa, 2 equiv), photocatalyst (4CzIPN, 5 mol%), bromocyclohexane (1 equiv, 0.2 mmol), and 4-tert-
butylstyrene (2 equiv) were added. DMF (0.1 M) and H,0 (5 equiv) were then added. The vial was
closed with a silicon septum and degassed with argon for 20 min. The vial was then irradiated with a
Kessil light (390 nm).

Product formation over time was determined through GC-MS. A calibration curve with the pure
desired product was used for yield calculation.

As visible from Figure S4, in the absence of light irradiation, product formation is suppressed.

60

Light Dark Light Dark Light Dark
50
40
s
o 30
2
=
20
10
0
o] 50 100 150 200 250 300 350
Time (min)

Figure S4: Light-dark experiment.

4.4 Fluorescence quenching experiment

The experiment was performed on a fluorescence spectrophotometer (FLS 920, Edinburgh
Instruments). In a typical experiment, to a 0.1 mM solution of 4CzIPN in dry acetonitrile (ACN), an
appropriate amount of quencher was added in a 1.0 cm quartz cuvette. The solutions were irradiated
at 400 nm and emission was measured at 540 nm. The relative intensity 10/l was calculated as a
function of quencher concentration, where 10 is the luminescence intensity in the absence of a
guencher, while | is the intensity in the presence of the quencher. Before each measurement, the
solutions were degassed and kept under nitrogen atmosphere.
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B Bromocyclohexane
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Figure S5: Fluorescence quenching experiment. A) Quenching of sodium tetraphenylborate; B) Quenching of
bromocyclohexane; C) Quenching of 4-tert-butylstyrene; D) Stern-Volmer quenching plot.

The analysis revealed that BPhsNa acts as a quencher in the reaction, while bromocyclohexane and 4-
tert-butylstyrene cannot quench the excited photocatalyst (Figure S5).

4.5  Cyclic voltammetry

The experiments were conducted using a cyclic potentiometer (Metrohm PGSTAT20 potentiostat/
galvanostat) with a glassy carbon working electrode, a Pt counter electrode and an Ag/AgCl reference
electrode. In the standard procedure, 0.02 mmol of substrate were dissolved in 10 mL of a 0.1 M
[N(Bu)4]PF¢ electrolyte solution in degassed ACN. The reactor was sealed with a rubber septum and
purged with nitrogen. Each measurement was conducted at 100 mV/s at room temperature under
nitrogen atmosphere without stirring, using ferrocene as internal standard.®

As evident from the graphs here reported, bromocyclohexane and 4-tert-butylstyrene have redox
potentials that lie outside the redox window of 4CzIPN (E1/, (P*/P’) = +1.35, E1/2 (P/P?) =-1.21 vs SCE).
BPh.Na, on the other hand, shows an oxidation peak at +1.2 V vs SCE and can therefore be oxidized
by the PC employed.

To correctly define the oxidation potential of the species, in our case the Nernst equation could not
be employed, since an irreversible cyclic voltammogram was obtained. This result can be accounted
for the reactivity of the oxidized species, which undergoes degradation. To estimate the value of E%,,
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the half peak potential Ep/2 (which corresponds to the potential at half the maximum of the local
maximum current in the cyclic voltammogram) was calculated with the following equation:®

()

NaBPh,

0,00008
0,00006

0,00004

(A

0,00002

Current

<
S

0,2 02 4 06 0,8 1 1,2 1,4 1,6
-0,00002

-0,00004

-0,00006 )
Potential (V)

Figure S6: Cyclic voltammogram of BPhsNa, using ferrocene as internal standard.

Bromocyclohexane

0,0002

-0,0002

-0,0004

Current (A)

-0,0006
-0,0008

-0,001

-0,0012
Potential (V)

Figure S7: Cyclic voltammogram of bromocyclohexane, using ferrocene as internal standard.
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Figure S8: Cyclic voltammogram of tert-butylstyrene, using ferrocene as internal standard.
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4.6 Deuteration experiments

In order to find evidence of a final protonation or HAT step in the reaction mechanism, isotope
labelling experiments were performed.

AN Br 0
/@/\ . O/ +  BPhNa 4CzIPN (5 mol%) .
tBu 390 nm LED light

DMF (0.1 M), D,0 (5 equiv) o

1 2 [B] Ar, rt, 16 h 3
2 equiv 1 equiv 2 equiv

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate

(BPhsNa, 2 equiv), photocatalyst (4CzIPN, 5 mol%), bromocyclohexane (1 equiv, 0.2 mmol) and 4-tert-
butylstyrene (2 equiv) were added. DMF (0.1 M) and D,0 (5 equiv) were then added. The vial was
closed with a silicon septum and degassed with argon for 20 min. The vial was then irradiated with a
Kessil light (390 nm) for 16h. After completion, the solution was diluted with diethylether and
transferred in a separatory funnel containing water. The organic layer was separated, and the aqueous
layer was extracted with diethylether. The combined organic layers were dried over Na,;SO4. The
solvent was removed in vacuum and the product was isolated through column chromatography
(hexane, 90% yield, 80% deuterium incorporation).

In the attempt to increase deuterium incorporation, we added 20 equiv of D,0, with no improvement.
Though this result could suggest that a protonation might be undergoing,® several precedent literature
works highlight how the generation of an anion from the intermediate benzylic radical (generated
upon radical addition) is not favoured because of the high reduction potential of this reaction
intermediate.>°

Nevertheless, taking into account that the O-H and O-D bond dissociation energy in H,O and D,0 is
high, an HAT step seemed at first not probable.

To gain further insight in this step, we performed further reactions using DMF-d7, which is also known
to undergo HAT.

Table S7: Deuterium labelling studies.

Variation Result

20 equiv D20 (in DMF) 80% D incorporation
20 equiv ACN-d3 (in DMF) No D incorporation
20 equiv acetone-d6 (in DMF) No D incorporation
DMF-d7 and 5 equiv H,0O 10% D incorporation
DMF-d7 and 5 equiv D,O 84% D incorporation

Adding DMF and different co-solvents instead of D,0O, such as ACN-d3 (also able to undergo HAT) or
acetone-d6, no deuterium incorporation was observed.

The results obtained led us to understand that a solvent mediated HAT step leads to at least 10% of
product formation, but it is not the main hydrogen source. Similar deuterium incorporation values
were obtained when varying the alkyl bromide or styrene in the reaction (see below).

Considering HAT a more probable step than anion generation, we started investigating what in our
system could promote HAT from H,0 or D0, with the aid of computational calculations as well.

We performed a control experiment where bromocyclohexane was not added. The reaction mixture
was treated according to the general procedure and the reaction outcome was monitored through
GC-MS. The hydrogenation of 4-tert-butylstyrene was observed. Similarly, if instead of H,0, D,O was
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added, deuterium incorporation could be detected. Similar results were obtained with p-
methoxystyrene as well.

In the case of p-CFs-styrene or p-Cl-styrene, decomposition of the initial styrene was observed. This
might explain the reluctance of these substrates to undergo radical addition, as a result of a faster

decomposition rate.

A N 4CZIPN (5 mol%)
- +  BPhyNa 390 nm LED light "
u DMF (0.1 M), H,0 (5 equiv) ="
1 equiv 1 equiv Ar, rt, 16 h detected via GC-MS
D
B N 4CzIPN (5 mol%) D
- +  BPhyNa 390 nm LED light
u DMF (0.1 M), D,0 (5 equiv)
1 equiv 1 equiv Ar, rt, 16 h detected via GC-MS

Figure $9: Reduction of styrenes obtained omitting the addition of alkyl bromides suggests a HAT mediated mechanism.
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Figure S10: GC-MS chromatograms of reactions A and B described in Figure S9.

We took into consideration different reaction pathways. It has been demonstrated that a complex
between borane and water can act as a HAT mediator, activating water toward a homolytic O-H bond
cleavage.t2 Similarly, water activation toward HAT was presented in a recent work by Studer and co-
workers.* Nonetheless, the involvement of borinic acid or HBr (side products of the reaction) as HAT
mediators could not be excluded.

Though not possible to determine the exact pathway of the last HAT step, these results led us to
consider a HAT step as final step of the transformation, involving water as hydrogen source. Further

proves of this hypothesis were studied through DFT calculations.
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Aware that an anion formation could not be excluded, we attempted trapping the anion through the
addition of different electrophiles to the reaction mixture. The electrophiles were not trapped.
Therefore we tend to consider HAT a more probable step (Scheme S3).

BPhyNa (2 equiv) tBu
Br
/@/\ . O/ . co, 4CzIPN (5 mol%) _
Bu 390 nm LED light
DMF (0.1 M), COOH
1 2 Ar, rt, 16 h n.d.
2 equiv 1 equiv 1 atm then workup with 2N HCI

BPhyNa (2 equiv) O OH
/@A O/Br 4CZIPN (5 mol%) ‘
390 nm LED light O
tBu

DMF (0.1 M),
1 Ar, rt 16 h
2 equiv 1 equw 2 equiv

Scheme S3: Anion trapping experiments.

1-(tert-butyl)-4-(2-cyclohexylethyl)benzene-d

D

Compound D1 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) & 7.34 — 7.27 (m, 2H), 7.15 — 7.09 (m, 2H), 2.61 — 2.55 (m, 1.19 H),
1.82 — 1.75 (m, 2H), 1.74 — 1.63 (m, 3H), 1.54 — 1.47 (m, 2H), 1.32 (s, 9H), 1.28 — 1.14 (m, 4H), 0.99 —
0.89 (m, 2H).

13C NMR (101 MHz, CDCls) 6 148.38, 140.30, 128.10, 125.27, 39.49, 37.58, 34.47, 33.48, 32.84, 32.48
(t, /=19 Hz), 31.58, 26.88, 26.50.

HRMS (El): [M] cal’d for CisH22: 245.2254, found: 245.2249
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'H NMR spectrum of D1
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4.7  UV-Vis spectroscopic analyses

Fate of the photocatalyst
A discoloration of the reaction mixture was observed at the end of the irradiation time. We

hypothesized that the need of 390 nm as irradiation wavelength could be justified by a change in the
catalyst structure, that could lead to the formation of an active species with a different absorption
profile.* The fate of the photocatalyst was therefore analysed.

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar sodium a 1x10°> M solution of
BPhsNa and 4CzIPN in DMF was prepared (Figure S11-A). The vial was closed with a silicon septum and
degassed with argon for 20 min. The vial was then irradiated at 2 cm away from a Kessil light (390 nm,
40W) and samples were taken at different time frames. The sample was further diluted (10x) and
analyzed with a Carey 5000, Varian, United States UV/Vis spectrometer. The same procedure was
repeated mixing 4CzIPN with bromocyclohexane (Figure S11-B) and 4-tert-butylstyrene (Figure S11-C)
respectively. The results obtained are shown in Figure S11-B and C.

In the case of Figure S11-D, the reaction was prepared according to the General Procedure. Aliquots
of 20 pL were then diluted and the absorbance profile of the reaction mixture was analyzed before
and after irradiation. In the last case, we observed a decrease in the absorbance at 456 nm,
wavelength usually employed in the presence of 4CzIPN, and observed an increase in the absorbance
before 400 nm. This could explain the need of a different wavelength to increase the reaction
outcome. Considering the overall analysis, the decomposition product of the photocatalyst was not
further studied, but it was possible to understand that the decomposition might be promoted by
BPhsNa and lead to the formation of a different photocatalytic species.
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Figure S11: UV-Vis absorption spectra of A) 1x10~> M solution of 4CzIPN and BPh,;Na B) 1x10~> M solution of 4CzIPN and
bromocyclohexane C) 1x10> M solution of 4CzIPN and tert-butylstyrene. D) 1x10-> M solution of the reaction mixture.
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Electron-donor acceptor complex?

To further study the possible interaction between the reactants, the absorption of single components
and combinations of them were evaluated. No changes in the absorption spectra were observed. We
could therefore exclude the involvement of EDA complexes in the observed reactivity. The only
absorbing species in the visible range was confirmed to be 4CzIPN (Figure S12).
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Figure $12: Absorption spectra of reaction components and their combinations.

4.8 Hammett plot

The effect of substituents on the styrene was investigated through an Hammett plot.

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate

(BPhsNa, 2 equiv), photocatalyst (4CzIPN, 5 mol%), bromocyclohexane (1 equiv, 0.2 mmol), and the
appropriate styrene (2 equiv) were added. DMF (0.1 M) and H,0 (5 equiv) were then added. The vial
was closed with a silicon septum and degassed with argon for 20 min. The vial was then irradiated

with a Kessil light (390 nm). Aliquots of 50 pL of the reaction were taken every 30 min for 2.5 h. 50 pL
of a 0.05 M solution of dodecane as internal standard was added and the sample was analyzed by GC-

FID.

The result of the Hammett analysis is reported below. While electron donating groups show similar
rates, electron withdrawing groups slow down the reaction (Figure S13). This could be due to polarity
match for the final HAT step, that is favoured by more nucleophilic radicals.
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Figure $13: Hammett plot analysis of the reaction.
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5. DFT calculations

Density functional theory (DFT) calculations were employed using Gaussian 16 package®® to obtain the

equilibrium structures of all molecules using the B3LYP*® functional with a flexible triple zeta basis set

(def2-TzVP).Y To modulate the solvation effects, the calculations were carried out in N,N-

Dimethylformamide (DMF) with the SMD solvation model of Truhlar and coworkers!® and an atom-

pairwise dispersion correction (D3) was added in all calculations.’® The transition states were

identified at the same level of theory and confirmed by the presence of an imaginary frequency.
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14198100
23205500
95352400
18399800

Ground state optimized geometry (A)of S6:

.80340700
.89331800
.56094600
.73640600
.37817200
.49578400
.92190100
.86003300
.58008500
.39723800
0.72142800
-0.01042000
.39016400
-1.51776300
-2.75284600
-0.64067700
-3.89226800
-2.82735700
-3.79212300
-4.85440700
-2.55714200
-4.67720500
-2.49113300
-0.06628900
0.79814400
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.51419800
.93228800
.89059500
.27974200
.33584500
.90712900
.45491800
.42092200
.73468100
.85008300
.35775800
.06949800
.32923100
.96173400
.59775700
.47318100
.95758800
.59183700
.32385900
.45359100
.95847900
.82542500
.95798100
.43712300
.85881400

PP ORFRrOOOOOOo
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.73312700
.09201300
.69687000
.57471300
.03990100
.58990400
.25739300
.11104500
.07968000
.11816700
.19732100
.03751800
.02690500
.56164900
.63171500
.93884600
.15350700
.05613000
.38363500
.20017200
.43684100
.75666200
.84985500
.09736800
.19022200

Ground state optimized geometry (A)of Int-1:

-1.33796200
-2.69737900
-0.44681400
-3.27200200
-1.03674000
-2.39567300
-3.31836400
-4.77220800
-0.93469400
0.93369400
-2.79218600
-0.41198800
.96355100
-5.56331600
-4.99861200
-5.32617000
-5.23787500
-6.62295000
-5.46894900
-4.61969100
-4.49964500
-6.06650600
-5.18310100
-6.39706200
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.28397300
.19526400
.23235300
.05919000
.91678400
.98834200
.03360100
.07695700
.18015700
.34964700
.88721200
.75583700
.68910500
.16330700
.28550400
.29568300
.06017800
.01458400
.34832600
.56564000
.18547200
.38729500
.17597700
.40521800

-0.
-0.
.51489900
.02956700
.08141900
.30954600
.90290300
.24680500
.31535500
.76848800
.76542100
.35973300
.47369000
.18982300
.75807700
.51914300
.34177400
.02876300
.26210500
.32907300
.12112600
.96847000
.59584200
.32886500

85664100
61941600
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-4.83663300
1.27012000
3.40074700
1.89673700
4.41929300
1.75404100
4.21839900
5.86133500
4.28357800
6.07114600
6.09272200
6.55588000
5.06233600
7.09306400
5.94916700
5.25684500
5.19235000
3.62367000
2.92301700
3.39455400
3.57579100

T Q@EDI@DDoDQ@DoD QDD DOD QDT

.22184100
.25812800
.15368200
.49096000
.29682100
.17882500
.87799000
.78437600
.97874100
.21564300
.29481000
.62363800
.36390100
.60533400
.30220600
.95000000
.04323400
.84275200
.67797500
.33900800
.37721100

.21380400
.25870800
.45404200
.22545500
.36587900
.48500000
.54292400
.32787500
.21107500
.81181500
.28126300
.22893800
.73158600
.79120000
.77064500
.17443100
.57904300
.69198200
.60486900
.63967700
.39958200

Ground state optimized geometry (A)of TS-1:

0.87776800
1.65362600
-0.07440900
1.46677000
0.50978700
-0.28114000
1.02416900
-0.66026000
2.40230300
2.06947200
-1.33635000
0.37646000
-2.45008700
r 0.38242000
-3.33358300
-2.75148300
-3.84801500
-2.11270700
.70152700
-4.04078600
-4.43406800
-5.55833600
-3.14612800
-5.08398900
1.27457600
.53007500
.52526200
.50769500
.18075900
.59104300
.19298200
.45468500
.46812400
.39581700
.17745700
.87618900
.20512500
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.02388500
.75508600
.13042500
.59579900
.70885900
.94890500
.14093800
.55350600
.44562800
.16452700
.94295200
.58589700
.16384200
.88538700
.92507500
.20955700
.78225400
.83399800
.01120900
.84131400
.34895300
.46181300
.98300000
.96221000
.15402500
.30976900
.62994700
. 77478700
.81309300
.19042700
.01440300
.97653500
.51666100
.87341700
.50036000
.09165100
.34776400

-1

.53106200
-0.
-1.
. 73564200
.20696100
.32643100
.59819700
.75944800
.00589300
.43343800
.82037100
.27515300
.14685300
.84930200
.66635000
.29023500
.33722300
.89953400
.12530400
.20983600
.28143400
.61061200
.80937200
.89506700
.03929200
.03386700
.19188700
.63346200
.57182600
.13688900
.58411400
.70411500
.34878100
.72446200
.41525600
.70606900
.99729000

63676200
05429400
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.22848000 -
.29446600
.50837700 -
.09983100

junjyaniaviga
SN N W

.62787900
.74026600
.09632100
.08376600

. 74535400
.13479800
.18230300
.45833000

Ground state optimized geometry (A)of TS-2:

-1.37352000 -
-2.55091500 -
-0.33997400 -
-2.76176600 -
-0.55412400 -
-1.72746700
-3.30709100 -
-4.04159100
-1.24980700 -
0.87653400 -
-1.84119400
0.20947900 -
1.98493200 -
-5.04937800
-3.68583200
-4.71696400
-4.63887600
-5.93911200
-5.36746200
-3.20527000
-3.00936600
-4.59102000
.98265000 -
-5.63240600
-4.06591900
0.89789200 -
.48060000 -
.79080100 -
.39745400 -
.99622800 -
.80917600 -
.26135600
.03554200 -
.38441400
.94682500
.87667500
.45824100
.01231800
.77548400
.06026600
.80801700
.59927000
.97951800
.91968800
.86463900 -
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1.
1.
1.
0.
0.
0.
.29522800
0.
2.
.40072000
.88747100
.39305900
.26743000
.38103600
.24617800
.54063900
.53779100
.00717400
.66077900
.42967700
.58741200
.85695400
.50964500
.13447900
.83946600
.13147200
.62736100
.98409300
.28502100
.64018900
.02341700
.94221200
.13011100
.11088000
.66335900
.23748800
.70885600
.95476200
.45460400
.46352100
.54389400
.48232600
.16892800
.78352300
.30444300

1

82024900
08050400
60582500
08553200
60406700
12749700

75445800
58230500

-0.
-0.
-0.
0.
0.
0.
-1.
0.
.73200300
.12598700
.70868200
.65620200
.64576200
.00254600
.06813300
.46216300
.00248200
.90767800
.92313800
.03224200
. 71719500
.01811500
.60495300
.52762000
.28531900
.92988100
.30920900
.56337700
.82034800
.52717300
.70920300
.44429100
.08961300
.01498700
.36330900
.29961500
.16688600
.31506300
.82958300
.04862800
.44479900
.78185300
.62466800
.02393500
.06616400

-1

97014700
93732100
04736700
01934200
91853600
94564100
67942000
09254000
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Bromodiphenylborane Borinic acid

Ph.__Ph H.O
e M0 e

Br OH

Ground state optimized geometry (A)of diphenylborane:

-2.70987700 -2.23879900 -0.72737900
-3.84009200 -1.67672100 -0.14199500
-1.49100200 -1.57557900 -0.66020900
-3.74915500 -0.44137000 0.49549200
-2.53610200 0.23103800 0.53564700
-1.37365100 -0.32227900 -0.03023700
-2.77783100 -3.19475700 -1.23205800
-4.78925600 -2.19711900 -0.18402300
-4.62664800 -0.00157200 0.95350100
-2.48565500 1.19643800 1.02312000
-0.00000100 0.39401800 0.00001600
-0.62054800 -2.02710300 -1.11854900
.00000100 2.36464600 -0.00000100
.37364900 -0.32227900 0.03025200
.49100900 -1.57557900 0.66022100
.70988500 -2.23879800 0.72737700
.62056000 -2.02710500 1.11857100
.53609300 0.23103900 -0.53564500
.48563900 1.19644000 -1.02311700
.74914800 -0.44136700 -0.49550500
.84009300 -1.67671800 0.14198100
.77784600 -3.19475600 1.23205500
.62663400 -0.00156900 -0.95352400
.78925800 -2.19711500 0.18399800

T DT ITCQOQIDQO@Dn OO EZmmZDnZD 00000
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Ground state optimized geometry (A)of borinic acid = $6
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6. General procedure

To an oven-dried 10 mL glass vial equipped with a magnetic stirring bar, sodium tetraphenylborate
(BPhsNa, 2 equiv), 4CzIPN (5 mol%), organohalide (1 equiv, 0.3 mmol), styrene (2 equiv) and water (5
equiv) were added. DMF was then added. The vial was closed with a silicon septum and degassed with
argon for 20 min. The vial was then irradiated with a Kessil light (390 nm, 52W) for 16h. After
completion, the solution was diluted with diethylether and transferred in a separatory funnel
containing water. The organic layer was separated, and the aqueous layer was extracted with
diethylether. The combined organic layers were dried over Na;SO.. The solvent was removed in
vacuum and the product was isolated through column chromatography.

Note: all the reactions can also be performed at 456 nm (difference in yield 10-15%).

Limitations of the method: Electron-poor styrenes (e.g. p-CFs or p-NO;, p-Cl styrenes) showed very
limited or no reactivity. Side products deriving from their polymerization and decomposition could be
detected. Concerning the alkyl bromides, tert-butyl bromide was not a competent reaction partner,
probably due to steric factors.

/.NMR spectra

1-(tert-butyl)-4-(2-cyclohexylethyl)benzene?®

Compound 3 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

H NMR (400 MHz, Chloroform-d) & 7.32 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 2.63 — 2.57 (m, 2H),
1.83 — 1.76 (m, 2H), 1.75 — 1.64 (m, 3H), 1.56 — 1.50 (m, 2H), 1.33 (s, 9H), 1.29 — 1.15 (m, 4H), 1.00-
0.90 (m, 2H).

13C NMR (101 MHz, CDCls) 6 148.38, 140.33, 128.10, 125.27, 39.57, 37.61, 34.47, 33.48, 32.85, 31.58,
26.88, 26.51

Spectroscopic data were consistent with literature values.

1-(tert-butyl)-4-(2-cyclobutylethyl)benzene

Compound 4 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

1H NMR (400 MHz, Chloroform-d) & 7.33 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 2.55-2.49 (t, J =
7.9 Hz, 2H), 2.33 (p, J = 7.8 Hz, 1H), 2.13 — 2.05 (m, 2H), 1.94 — 1.81 (m, 2H), 1.77 — 1.70 (m, 2H), 1.70
—1.63 (m, 2H), 1.35 (s, 9H).

13C NMR (101 MHz, CDCls) 6 148.43, 139.88, 128.15, 125.23, 38.97, 35.82, 34.47, 33.01, 31.58, 28.36,
18.58.

HRMS (El): [M] cal’d for CigH24: 216.1878, found: 216.1878

1-(tert-butyl)-4-(2-cyclopentylethyl)benzene?
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Compound 5 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) & 7.34—-7.30 (m, 2H), 7.17 = 7.12 (m, 2H), 2.64 — 2.59 (m, 2H), 1.85-
1.77 (m, 3H), 1.69 — 1.60 (m, 4H), 1.58-1.49 (m, 2H), 1.34 (s, 9H), 1.21-1.11 (m, 2H).

13C NMR (101 MHz, CDCls) 6 148.40, 140.15, 128.11, 125.25, 39.89, 38.29, 34.71, 34.47,32.81, 31.58,
25.39.

Spectroscopic data were consistent with literature values.

(4-(tert-butyl)phenethyl)cycloheptane

Compound 6 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) 6 7.38 — 7.31 (m, 2H), 7.18 — 7.13 (m, 2H), 2.65 — 2.60 (m, 2H), 1.84
—1.77 (m, 2H), 1.75 - 1.64 (m, 2H), 1.66 — 1.46 (m, 8H), 1.36 (s, 9H), 1.35 — 1.24 (m, 3H).

13C NMR (101 MHz, CDCls) & 148.37, 140.30, 128.13, 125.27, 40.27, 39.15, 34.70, 34.46, 33.43, 31.59,
28.75, 26.65.

HRMS (El): [M] cal’d for CigHs0: 258.2342, found: 258.2336

(1S,4R)-2-(4-(tert-butyl)phenethyl)bicyclo[2.2.1]heptane

Compound 7 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

IH NMR (400 MHz, Chloroform-d) 6 7.34 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 2.62 — 2.57 (m, 2H),
2.26 —2.22 (m, 1H), 2.06 — 2.03 (m, 1H), 1.69 — 1.60 (m, 1H), 1.56 — 1.42 (m, 6H), 1.36 (s, 9H), 1.23 —
1.15 (m, 2H), 1.16 — 1.09 (m, 2H).

13C NMR (101 MHz, CDCI3) 6 148.39, 140.09, 128.18, 125.25, 42.10, 41.27, 39.04, 38.40, 36.75, 35.53,
34.47,33.84, 31.59, 30.26, 28.99.

HRMS (El): [M] cal’d for Ci9Has: 256.2191, found: 256.2185

1-(tert-butyl)-4-(3-methylpentyl)benzene

Compound 8 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane
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'H NMR (400 MHz, Chloroform-d) 6 7.36 — 7.33 (m, 2H), 7.18 — 7.15 (m, 2H), 2.72 — 2.53 (m, 2H), 1.74
—1.62 (m, 1H), 1.51 — 1.40 (m, 2H), 1.36 (s, 9H), 1.31 — 1.19 (m, 2H), 0.97 (d, J = 6.2 Hz, 3H), 0.93 (t, J
= 7.3 Hz, 3H).

13C NMR (101 MHz, CDCl3) 6 148.41, 140.28, 128.11, 125.28, 38.67, 34.47, 34.35, 33.09, 31.58, 29.52,
19.27,11.45.

HRMS (El): [M] cal’d for CigHa6: 218.2034, found: 218.2033

1-(tert-butyl)-4-butylbenzene??

Compound 9 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) 6§ 7.32 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 2.66 — 2.56 (m, 2H),
1.65—1.58 (m, 2H), 1.43 — 1.35 (m, 2H), 1.34 (s, 9H), 0.95 (t, J = 7.3 Hz, 3H).

13C NMR (101 MHz, CDCls) 6 148.43,139.98, 128.18, 125.23, 35.26, 34.47, 33.80, 31.44, 22.63, 14.13.
Spectroscopic data were consistent with literature values.

1-(tert-butyl)-4-tridecylbenzene

s

Compound 10 (X = Br) was prepared according to the general procedure (GP) and isolated as pale
yellow oil.

Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) 6 7.32 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 2.59 (t, J = 7.8 Hz,
2H), 1.63 (p, J = 7.3 Hz, 2H), 1.33-1.32 (m, 12H), 1.29 = 1.27 (m, 17H), 0.91 (t, J = 6.6 Hz, 3H).

13C NMR (101 MHz, CDCls) & 148.42, 140.05, 128.16, 125.23, 35.60, 34.47, 32.10, 31.67, 31.58, 29.85,
29.82, 29.78, 29.71, 29.64, 29.53, 22.86, 14.28..

HRMS (El): [M] cal’d for Cy3Haso: 316.3130, found: 316.3120

1-(tert-butyl)-4-undecylbenzene?

AT

Compound 10 (X = 1) was prepared according to the general procedure (GP) and isolated as pale yellow
oil.

Column Chromatography: Silica, heptane

1H NMR (400 MHz, Chloroform-d) 6 7.31 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.2 Hz, 2H), 2.64 — 2.54 (m, 2H),
1.66 —1.56 (m, 2H), 1.32 (s, 16H), 1.27 (s, 9H), 0.89 (t, J = 6.8 Hz, 3H).

13C NMR (101 MHz, CDCls) 6 148.41, 140.04, 128.15, 125.22, 35.59, 34.46, 32.08, 31.66, 31.57, 29.83,
29.80, 29.76, 29.69, 29.62, 29.51, 22.84, 14.27.

Spectroscopic data were consistent with literature values.

1-(tert-butyl)-4-(4-chlorobutyl)benzene?
Wm
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Compound 11 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) & 7.31 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 3.56 (t, J = 6.4 Hz,
2H), 2.62 (t,J=7.3 Hz, 2H), 1.88 — 1.71 (m, 4H), 1.32 (s, 9H).

13C NMR (101 MHz, CDCls) 6 148.83, 138.90, 128.16, 125.39, 45.11, 34.67, 34.50, 32.32, 31.55, 28.70.
Spectroscopic data were consistent with literature values.

1-(tert-butyl)-4-(hex-5-yn-1-yl)benzene

W

Compound 12 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

H NMR (400 MHz, Chloroform-d) 6 7.32 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 2.62 (t, J = 7.7 Hz,
2H), 2.24 (td, J = 7.1, 2.7 Hz, 2H), 1.96 (t, /= 2.7 Hz, 1H), 1.80 - 1.70 (m, 2H), 1.64 — 1.56 (m, 2H), 1.33
(s, 9H).

13C NMR (101 MHz, CDCls) & 148.65, 139.28, 128.17, 125.32, 84.62, 68.43, 34.94, 34.48, 31.56, 30.56,
28.23, 18.45.

HRMS (El): [M] cal’d for CieH22: 214.1721, found: 214.1716

Ethyl 5-(4-(tert-butyl)phenyl)pentanoate?”
(0]

}/Q/\/\)LO/\

Compound 13 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:50)

'H NMR (400 MHz, Chloroform-d) & 7.31 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 4.13 (q, J = 7.0 Hz,
2H), 2.59 (t, J = 6.0 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.71 — 1.61 (m, 4H), 1.33 (s, 9H), 1.26 (t, J = 7.1 Hz,
3H).

13C NMR (101 MHz, CDCl5) 6 173.94, 148.54, 139.57, 128.13, 125.26, 60.30, 35.29, 34.43, 31.55, 31.19,
28.97, 24.99, 14.38.

Spectroscopic data were consistent with literature values.

Tert-butyl(4-(4-(tert-butyl)phenyl)-2-methylbutoxy)dimethylsilane

~
Si
N
o

Compound 14 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:50)

'H NMR (400 MHz, Chloroform-d) § 7.34 — 7.30 (m, 2H), 7.16 — 7.12 (m, 2H), 3.49 — 3.45 (m, 1H), 3.42
—3.37(m, 1H), 2.59 (t,J = 7.7 Hz, 2H), 1.72 = 1.57 (m, 2H), 1.54-1.46 (m, 1H), 1.34 (s, 9H), 0.92 (s, 9H),
0.91-0.89 (m, 3H), 0.06 (m, 6H).

13C NMR (101 MHz, CDCl3) 6 148.46, 139.89, 128.17, 125.26, 68.47, 35.91, 35.84, 34.47, 33.11, 31.58,
26.12,18.51, 16.85, -5.19.

GC-MS: [M] cal’d for C,1H3s0Si: 334.27, found: 333.00 (290.93, -tBu)

1-methyl-4-(4-phenoxybutyl)benzene?®
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Compound 15 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:50)

'H NMR (400 MHz, Chloroform-d) 6 7.35 — 7.29 (m, 2H), 7.15 (singlet like multiplet, 4H), 7.00 — 6.97
(m, 1H), 6.96 —6.93 (m, 2H), 4.01 (t, / = 6.1 Hz, 2H), 2.70 (t, / = 7.2 Hz, 2H), 2.37 (s, 3H), 1.93 - 1.78 (m,
4H).

13C NMR (101 MHz, CDCls) § 159.21, 139.26, 135.31, 129.53, 129.14, 128.44, 120.63, 114.62, 67.77,
35.27,29.02, 28.10, 21.12.

Spectroscopic data were consistent with literature values.

(3r,5r,7r)-1-(4-(tert-butyl)phenethyl)adamantane?®

Compound 16 was prepared according to the general procedure (GP) and isolated as pale yellow
viscous liquid.

Column Chromatography: Silica, heptane

4 NMR (400 MHz, Chloroform-d) § 7.35 (d, J = 7.5 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 2.61 — 2.55 (m, 2H),
2.07-1.99 (m, 3H), 1.79 - 1.76 (m, 3 H), 1.74 — 1.68 (m, 3H), 1.61 (d, J = 3.1 Hz, 6H), 1.46 — 1.39 (m,
2H), 1.36 (s, 9H).

13C NMR (101 MHz, CDCl3) 6 148.31, 140.84, 128.10, 125.30, 47.02, 42.59, 37.44, 34.45, 32.61, 31.59,
28.95, 28.64.

Spectroscopic data were consistent with literature values.

tert-butyl 4-(4-methylphenethyl)piperidine-1-carboxylate?’

)@NOM

Compound 17 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

4 NMR (600 MHz, Chloroform-d) § 7.10 — 7.05 (m, 4H), 4.07 (bs, 2H), 2.63 — 2.70 (m, 2H), 2.61 — 2.57
(m, 2H), 2.32 (s, 3H), 1.67 — 1.72 (m, 2H), 1.57 — 1.52 (m, 2H), 1.46 (s, 9H), 1.42 — 1.37 (m, 1H), 1.17 —
1.08 (m, 2H).

Spectroscopic data were consistent with literature values.

3-(4-methylphenethyl)pyrrolidin-1-ium chloride
c oyt

’

Compound 18 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Due to unknown impurities that could not be separated during the purification, the compound was
then Boc-deprotected. Compound 18 was dissolved in a cooled (0 °C) 0.1 M solution of HCI (4N in
dioxane) and stirred at room temperature for 4h. The solvent was removed in vacuo and compound
18’ was washed with Et,0.
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Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

'H NMR (600 MHz, Chloroform-d) 6 9.71 (s, 1H), 9.65 (s, 1H), 7.09 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 7.7
Hz, 2H), 3.47 — 3.39 (m, 2H), 3.26 —3.21 (m, 1H), 2.87 — 2.81 (m, 1H), 2.66 — 2.55 (m, 2H), 2.31 (s, 3H),
2.19-2.11 (m, 1H), 1.81 - 1.70 (m, 3H), 1.66 — 1.60 (m, 1H).

3¢ NMR (151 MHz, CDCls) 6 137.91, 135.87, 129.39, 128.26, 49.90, 44.86, 38.05, 34.44, 34.04, 30.69,
21.12.

HRMS (ESI+): [M+H]* cal’d for Ci3H19N: 190.1590, found: 190.1589

4-(4-(tert-butyl)phenethyl)tetrahydro-2H-pyran
(0]

Compound 19 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

'H NMR (600 MHz, Chloroform-d) § 7.33 (d, J = 8.3 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 3.99 (dd, J = 11.42,
4.41, 2H),3.40 (td, J=11.72, 2.11, 2H), 2.65-2.61 (m, 2H), 1.71-1.66 (m, 2H), 1.62-1.58 (m, 3H), 1.40-
1.35 (m, 2H), 1.34 (s, 9H).

13C NMR (101 MHz, CDCls) 6 148.59, 139.56, 128.05, 125.33, 68.19, 38.85, 34.71, 34.45, 33.23,32.21,
31.54.

HRMS (El): [M] cal’d for C17H260: 246.1983, found: 246.1978

3-(4-(tert-butyl)phenethyl)tetrahydrofuran
Q

Compound 20 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

'H NMR (400 MHz, Chloroform-d) & 7.33 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 3.96 —3.91 (t, J =
7.8 Hz, 1H), 3.88 (td, J = 8.3, 4.7 Hz, 1H), 3.76 (q, J = 7.9 Hz, 1H), 3.41-3.37 (m, 1H), 2.68 — 2.56 (m, 2H),
2.28 -2.17 (m, 1H), 2.12-2.04 (m, 1H), 1.76 — 1.70 (m, 2H), 1.61-1.52 (m, 1H), 1.33 (s, 9H).

13C NMR (101 MHz, CDCls) 6 148.78, 139.07, 128.08, 125.38, 73.46, 68.08, 39.03, 35.27, 34.48, 34.38,
32.61, 31.54.

HRMS (El): [M] cal’d for Ci¢H240: 232.1827, found: 232.1821

3-(4-(tert-butyl)phenethyl)oxetane
(0]

Compound 21 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

IH NMR (400 MHz, Chloroform-d) 6 7.32 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 4.77 (dd, J = 7.8,
5.9 Hz, 2H), 4.37 (t, J = 6.1 Hz, 2H), 3.01 (tt, J = 7.8, 6.3 Hz, 1H), 2.55 — 2.50 (t, J = 98 Hz, 2H), 2.02 (q, /
= 7.7 Hz, 2H), 1.32 (s, 9H).

13C NMR (101 MHz, CDCl3) 6 148.97, 138.47, 128.09, 125.42, 77.71, 35.55, 34.92, 34.49, 32.85, 31.52.
HRMS (El): [M] cal’d for Ci5H,,0: 218.1670, found: 218.1665

8-(4-(tert-butyl)phenethyl)-1,4-dioxaspiro[4.5]decane
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Compound 22 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

'H NMR (400 MHz, Chloroform-d) 6 7.33 — 7.30 (m, 2H), 7.14 — 7.11 (m, 2H), 3.95 (s, 4H), 2.64 — 2.58
(m, 2H), 1.83 = 1.73 (m, 4H), 1.62 — 1.51 (m, 4H), 1.34-1.31 (m, 2H), 1.32 (s, 9H), 0.96 — 0.86 (m, 1H).
13C NMR (101 MHz, CDCl5) 6 148.48, 139.91, 128.05, 125.29, 109.32, 64.30, 38.22, 36.14, 34.61, 34.45,
33.10, 31.55, 30.25.

GC-MS: [M] cal’d for CyoH3003: 302.22, found: 301.74

2-(4-methylphenethyl)pyridine®
]
N

Compound 23 was prepared according to the general procedure (GP) and isolated as a white solid.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:10)

'H NMR (400 MHz, Chloroform-d) & 8.58 — 8.55 (m, 1H), 7.57 (td, J = 7.6, 1.9 Hz, 1H), 7.14 — 7.07 (m,
6H), 3.12 — 2.99 (m, 4H), 2.32 (s, 3H).

13C NMR (101 MHz, CDCl5) 6 161.42, 149.25, 138.52, 136.57, 135.48, 129.15, 128.46, 123.19, 121.31,
40.35, 35.75, 21.12.

Spectroscopic data were consistent with literature values.

2-(4-(tert-butyl)phenethyl)-5-(trifluoromethyl)pyridine
= CF3

< |

N

Compound 24 was prepared according to the general procedure (GP) and isolated as white solid.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:10)

4 NMR (400 MHz, Chloroform-d) 6 8.84 — 8.83 (m, 1H), 7.81 (dd, J = 8.2, 2.4 Hz, 1H), 7.34 — 7.30 (m,
2H), 7.23 (d, J=8.2 Hz, 1H), 7.17 - 7.13 (m, 2H), 3.20 — 3.16 (m, 2H), 3.07 — 3.03 (m, 2H), 1.32 (s, 9H).
13C NMR (101 MHz, CDCl3) 6 165.64 (d, J = 1.35), 149.18, 146.41 (q, J = 4.05), 138.01, 133.47 (q, J =
3.46), 128.19, 125.52, 124.41 (q, / = 32.91), 123.39 (q, / = 272.01), 122.80, 40.25, 35.19, 34.53, 31.53.
F NMR (376 MHz, CDCI3) 6 -62.20.

HRMS (ESI+): [M+H]* cal’d for CisH20F3N: 308.1620, found: 308.1628

M.p.: 58-62 °C

5-chloro-2-(4-methylphenethyl)pyridine

= Cl

|

\N
Compound 25 was prepared according to the general procedure (GP) and isolated as a white solid.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:10)
'H NMR (600 MHz, Chloroform-d) & 8.51 (d, J = 2.5 Hz, 1H), 7.53 (dd, J = 8.3, 2.5 Hz, 1H), 7.10 — 7.05
(m, 4H), 7.01 (d, J = 8.3 Hz, 1H), 3.08 — 3.03 (m, 2H), 3.02 — 2.98 (m, 2H), 2.32 (s, 3H).
13C NMR (151 MHz, CDCls) & 159.67, 148.27, 138.19, 136.06, 135.66, 129.59, 129.23, 128.45, 123.89,
39.71, 35.54, 21.15.
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HRMS (ESI+): [M+H]* cal’d for C14H14CIN: 232.0887 , found: 232.0889
M.p.: 69-71 °C

4-(4-methylphenethyl)benzonitrile®

CN

Compound 26 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:10)

H NMR (400 MHz, Chloroform-d) & 7.55 (d, J = 8.2 Hz, 2H), 7.26 — 7.22 (m, 2H), 7.08 (d, J = 7.8 Hz, 2H),
7.01(d, J=7.9 Hz, 2H), 2.98 — 2.94 (m, 2H), 2.90 — 2.85 (m, 2H), 2.32 (s, 3H).

13C NMR (101 MHz, CDCls) 6 147.50, 137.66, 135.88, 132.26, 129.46, 129.27, 128.41, 119.25, 109.92,
38.17,36.92, 21.15.

Spectroscopic data were consistent with literature values.

(2R,3S,4R,5S,6R)-6-(3-(4-(tert-butyl)phenyl)propyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl
tetraacetate

AcO,__O

AcO:(‘j “0Ac

OAc

Compound 27 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:4)

1H NMR (400 MHz, Chloroform-d) § 7.35 —7.31 (m, 2H), 7.16 — 7.12 (m, 2H), 5.36 — 5.29 (m, 1H), 5.10
(dd, J=9.5, 5.8 Hz, 1H), 4.99 (t, J = 9.2 Hz, 1H), 4.26 —4.17 (m, 2H), 4.07 (dd, J = 12.2, 2.6 Hz, 1H), 3.87
(ddd, J=9.6,5.6, 2.6 Hz, 1H), 2.74 (ddd, J = 14.7, 10.1, 4.9 Hz, 1H), 2.59 (ddd, J = 14.0, 9.6, 6.9 Hz, 1H),
2.10 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.87 — 1.76 (m, 2H), 1.32 (s, 9H).

13C NMR (101 MHz, CDCls) § 170.79, 170.26, 169.74, 169.67, 149.21, 137.98, 128.16, 125.56, 72.28,
70.66, 70.46, 69.07, 68.80, 62.57, 34.50, 31.49, 30.71, 27.39, 20.88, 20.83, 20.80, 20.76.

HRMS (ESI+): [M+H]* cal’d for Cy6H3604: 493.24831, found: 493.2436

(2-cyclohexylethyl)benzene*

o

Compound 28 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

14 NMR (400 MHz, Chloroform-d) 8 7.29 — 7.24 (m, 2H), 7.19 — 7.15 (m, 3H), 2.64 — 2.58 (m, 2H), 1.80
—-1.73 (m, 2H), 1.73 - 1.63 (m, 3H), 1.54 — 1.46 (m, 2H), 1.33 - 1.16 (m, 4H), 0.93 (qd, J = 11.7, 3.2 Hz,
2H).

13C NMR (101 MHz, CDCls) 6 143.41, 128.49, 128.38, 125.63, 39.57, 37.48, 33.47, 33.41, 26.86, 26.49.
Spectroscopic data were consistent with literature values.

1-(2-cyclohexylethyl)-4-methylbenzene®!

H;C
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Compound 29 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

H NMR (400 MHz, Chloroform-d) & 7.11 (br. s, 4H), 2.63 — 2.59 (t, J = 6 Hz, 2H), 2.35 (s, 3H), 1.84 —
1.77 (m, 2H), 1.77 — 1.65 (m, 3H), 1.56 — 1.48 (m, 2H), 1.33 — 1.19 (m, 4H), 1.00-0.88 (m, 2H).

13C NMR (101 MHz, CDCls) & 140.30, 135.00, 129.07, 128.36, 39.72, 37.44, 33.47, 32.92, 26.87, 26.49,
21.13.

Spectroscopic data were consistent with literature values.

1-(2-cyclohexylethyl)-4-fluorobenzene*?

F
Compound 30 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

H NMR (400 MHz, Chloroform-d) & 7.15 — 7.10 (m, 2H), 6.99 — 6.93 (m, 2H), 2.62 — 2.56 (m, 2H), 1.81
—1.66 (m, 5H), 1.53 —1.45 (m, 2H), 1.27 — 1.16 (m, 4H), 1.00 — 0.85 (m, 2H).

13CNMR (101 MHz, CDCl3) 6 161.23 (d, J=242.8 Hz), 138.91 (d, J = 3.2 Hz), 129.71 (d, J= 7.7 Hz), 115.06
(d, J=21.0 Hz), 39.66, 37.37, 33.44, 32.56, 26.82, 26.47.

Spectroscopic data were consistent with literature values.

1-(2-cyclohexylethyl)-3-fluorobenzene

F
Compound 31 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) & 7.22 (td, J = 7.8, 6.0 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.91 — 6.83
(m, 2H), 2.65 — 2.59 (m, 2H), 1.82 — 1.61 (m, 5H), 1.54 — 1.46 (m, 2H), 1.33 — 1.15 (m, 4H), 0.97 - 0.89
(m, 2H).

13C NMR (101 MHz, CDCls) § 163.06 (d, J = 244.8 Hz), 146.00 (d, /= 7.1 Hz), 129.71 (d, J = 8.3 Hz), 124.12
(d, J=2.7 Hz), 115.25 (d, /= 20.6 Hz), 112.48 (d, J = 21.1 Hz), 39.19, 37.39, 33.42, 33.15, 26.81, 26.46.
1F NMR (376 MHz, CDCI3) § -114.13.

HRMS (El): [M] cal’d for Ci4H1oF: 206.1471, found: 206.1468

1-(2-cyclohexylethyl)-2-fluorobenzene

F
Compound 32 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

1H NMR (400 MHz, Chloroform-d) § 7.21 - 7.12 (m, 2H), 7.06 — 7.04 (m, 1H), 7.02 — 6.97 (m, 1H), 2.68
—2.62 (t,J=8.0 Hz, 2H), 1.83 — 1.75 (m, 2H), 1.74 — 1.65 (m, 3H), 1.55 — 1.45 (m, 2H), 1.24 — 1.15 (m,
4H), 1.00 —0.89 (m, 2H).

13C NMR (101 MHz, CDCls) § 161.28 (d, J = 244.3 Hz), 130.61 (d, J = 5.3 Hz), 130.11 (d, J = 16.0 Hz),
127.30(d, J=8.1 Hz), 123.96 (d, J = 3.5 Hz), 115.25 (d, J = 22.3 Hz), , 38.09, 37.59, 33.38, 26.84, 26.51,
26.48.
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F NMR (376 MHz, CDCI3) § -119.16.
HRMS (El): [M] cal’d for CisH1oF: 206.1471, found: 206.1468
(1-cyclohexylpropan-2-yl)benzene

Compound 33 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

'H NMR (400 MHz, Chloroform-d) & 7.34 — 7.29 (m, 2H), 7.23 — 7.18 (m, 3H), 2.85 (m, 1H), 1.82-1.77
(m, 1H), 1.73 — 1.61 (m, 4H), 1.57 — 1.49 (m, 1H), 1.45 — 1.35 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H), 1.22 —
1.11 (m, 4H), 0.99 — 0.81 (m, 2H).

3¢ NMR (101 MHz, CDCls) 6 148.32, 128.42, 127.11, 125.83, 46.51, 36.78, 35.20, 33.80, 33.50, 26.86,
26.40, 22.93.

HRMS (El): [M] cal’d for CisH2: 202.1721, found: 202.1720

2-(2-cyclohexylethyl)naphthalene®

Compound 34 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

1H NMR (400 MHz, Chloroform-d) & 7.84 — 7.78 (m, 3H), 7.64 (s, 1H), 7.51 = 7.42 (m, 2H), 7.38 (td, J =
8.2, 1.8 Hz, 1H), 2.82 (t, J = 8Hz, 2H), 1.86 — 1.82 (m, 2H), 1.81 — 1.59 (m, 5H), 1.34 — 1.18 (m, 4H), 1.08
—0.98 (m, 2H).

13C NMR (101 MHz, CDCl5) 6 141.89, 133.82, 132.04, 127.93, 127.87, 127.73, 127.59, 126.30, 125.96,
125.14, 39.40, 37.47, 33.55, 33.50, 26.86, 26.50.

Spectroscopic data were consistent with literature values.

4-(2-cyclohexylethyl)-1,1'-biphenyl
@

C
C
Compound 35 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane
1H NMR (400 MHz, Chloroform-d) § 7.59-7.56 (m, 2H), 7.53 — 7.48 (m, 2H), 7.45—-7.38 (m, 2H), 7.34 —
7.28 (m, 1H), 7.27 = 7.23 (m, 2H), 2.69 — 2.61 (m, 2H), 1.83 — 1.75 (m, 2H), 1.75 — 1.62 (m, 3H), 1.56-
1.50 (m, 2H), 1.23-1.14 (m, 2H), 1.01 — 0.91 (m, 2H), 0.91 - 0.81 (m, 2H).
13C NMR (101 MHz, CDCl3) § 142.57, 141.34, 138.63, 128.90, 128.83, 127.15, 127.13, 127.08, 39.55,

37.51, 33.48, 33.04, 26.86, 26.50.
HRMS (El): [M] cal’d for CyoH.a: 264.1878, found: 264.1867

(2-cyclohexylethane-1,1-diyl)dibenzene3*

Compound 36 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane
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'H NMR (400 MHz, Chloroform-d) & 7.27 — 7.21 (m, 8H), 7.16 — 7.13 (m, 2H), 4.06 (t, J = 8.0 Hz, 1H),
1.91 (t, J = 8 Hz, 2H), 1.80 — 1.72 (m, 2H), 1.65 — 1.60 (m, 3H), 1.21 — 1.07 (m, 4H), 0.99 — 0.82 (m, 2H).
13C NMR (101 MHz, CDCl5) 6 145.59, 128.89, 128.03, 126.08, 48.11, 43.76, 35.00, 33.56, 26.78, 26.28.
Spectroscopic data were consistent with literature values.

4-(2-cyclohexylethyl)benzonitrile

o

Compound 37 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane

4 NMR (400 MHz, Chloroform-d) § 7.21 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 2.64 — 2.60 (m, 2H),
1.73 —1.60 (m, 5H), 1.48 — 1.43 (m, 2H), 1.25 — 1.11 (m, 4H), 0.94 — 0.84 (m, 2H).

13C NMR (101 MHz, CDCls) 6 140.59, 134.95, 129.04, 127.35, 39.48, 37.36, 33.43, 32.81, 26.82, 26.46,
16.58.

HRMS (El): [M] cal’d for CisH19N 213.1517, found: 213.1518

4-(2-cyclohexylethyl)phenyl acetate

o

Ao

Compound 38 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

4 NMR (400 MHz, Chloroform-d) 8§ 7.17 (d, J = 8.5 Hz, 2H), 7.00 — 6.96 (m, 2H), 2.63 — 2.58 (m, 2H),
2.29 (s, 3H), 1.80 — 1.67 (m, 4H), 1.54 — 1.46 (m, 2H), 1.24 — 1.16 (m, 4H), 0.99 — 0.88 (m, 3H).

13C NMR (101 MHz, CDCl5) 6 157.57, 129.71, 128.90, 127.39, 127.31, 126.80, 120.48, 110.36, 37.80,
37.78, 33.51, 32.08, 27.55, 26.93, 26.55.

HRMS (EI): [M] cal’d for C16H220,: 246.1620, found: 246.1620

(4-(2-cyclohexylethyl)phenyl)(methyl)sulfane3®

MeS
Compound 39 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, heptane

IH NMR (400 MHz, Chloroform-d) 6 7.21 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 2.61 — 2.56 (m, 2H),
2.48 (s, 3H), 1.80 — 1.64 (m, 5H), 1.53 — 1.44 (m, 2H), 1.26 — 1.16 (m, 4H), 1.00 — 0.85 (m, 2H).

13C NMR (101 MHz, CDCls) § 140.59, 134.95, 129.04, 127.35, 39.48, 37.36, 33.43, 32.81, 26.82, 26.46,
16.58.

Spectroscopic data were consistent with literature values.

1-(2-cyclohexylethyl)-4-methoxybenzene*

HSCO/@/\/O

Compound 40 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)
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'H NMR (400 MHz, Chloroform-d) 6 7.14 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 2.65 —
2.58 (m, 2H), 1.86 — 1.67 (m, 5H), 1.57 — 1.48 (m, 2H), 1.36 — 1.21 (m, 4H), 1.03 — 0.93 (m, 2H).

13C NMR (101 MHz, CDCl3) 6 157.68, 135.42, 129.29, 113.79, 55.32, 39.78, 37.36, 33.45, 32.42, 26.85,
26.48.

Spectroscopic data were consistent with literature values.

1-(2-cyclohexylethyl)-3-methoxybenzene

OCH,
Compound 41 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

4 NMR (400 MHz, Chloroform-d) § 7.24 — 7.18 (m, 1H), 6.83 — 6.71 (m, 3H), 3.81 (s, 3H), 2.61 (t, J= 8
Hz, 2H), 1.83 — 1.63 (m, 5H), 1.59 — 1.47 (m, 2H), 1.33 — 1.18 (m, 4H), 0.99 — 0.91 (m, 2H).

13C NMR (101 MHz, CDCl3) § 159.72, 145.07, 129.30, 120.94, 114.27, 110.89, 55.24, 39.41, 37.46,
33.45, 26.84, 26.48.

HRMS (El): [M] cal’d for Ci5sH,,0: 218.1671, found: 218.1670

1-(2-cyclohexylethyl)-2-methoxybenzene

OCH,
Compound 42 was prepared according to the general procedure (GP) and isolated as pale yellow oil.

Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)

'H NMR (400 MHz, Chloroform-d) § 7.18 — 7.16 (m, 1H), 7.14-7.12 (m, 1H), 6.90 — 6.88 (m, 1H), 6.86-
6.83 (M, 1H), 3.82 (s, 3H), 2.64 — 2.59 (m, 2H), 1.84 — 1.76 (m, 2H), 1.73 = 1.62 (m, 4H), 1.50 — 1.43 (m,
2H), 1.23 -1.13 (m, 3H), 0.98 — 0.92 (m, 2H).

13C NMR (101 MHz, CDCl3) & 157.57, 131.85, 129.71, 126.80, 120.48, 110.36, 55.41, 37.80, 37.78,
33.50, 27.55, 26.93, 26.55.

HRMS (El): [M] cal’d for C15H2,0: 218.1671, found: 218.1670

2-(4-(2-cyclohexylethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

O\B
A§<é
Compound 43 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 1:20)
The yield was determined using CH,Br; as internal standard.
Spectroscopic data were consistent with literature values.
(E)-(4-cyclohexylbut-2-en-1-yl)benzene*®

=

Compound 44 was prepared according to the general procedure (GP) and isolated as pale yellow oil.
Column Chromatography: Silica, heptane
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'H NMR (400 MHz, Chloroform-d) § 7.35 — 7.31 (m, 2H), 7.25 — 7.22 (m, 3H), 5.65 — 5.49 (m, 2H), 3.39
(d, J=5.8 Hz, 1.88 H), 3.36 (s, 0.16 H), 1.98 (t, J = 6.3 Hz, 2H), 1.78 — 1.60 (m, 5H), 1.34 — 1.15 (m, 4H),
0.98 — 0.89 (m, 2H).

13C NMR (101 MHz, CDCl3) & 141.29, 129.82, 128.89, 128.61, 128.46, 125.97, 40.72, 39.27, 38.19,
33.30, 26.77, 26.52.

E/Z ratio: 12:1

Spectroscopic data were consistent with literature values.

(8R,9S,13S,14S)-3-(2-cyclohexylethyl)-13-methyl-7,8,9,11,12,13,15,16-octahydro-6H-
cyclopenta[a]phenanthren-17(14H)-one

Compound 45 was prepared according to the general procedure (GP) and isolated as a white solid.
Column Chromatography: Silica, EtOAc/heptane (0:100 to 2:98)

H NMR (400 MHz, Chloroform-d) § 7.20 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 7.9 Hz, 1H), 6.92 (s, 1H), 2.92 —
2.88 (m, 2H), 2.58 — 2.50 (m, 2H), 2.50 — 2.38 (m, 2H), 2.32 - 2.26 (m, 1H), 2.19 - 1.93 (m, 5H), 1.81 —
1.58 (m, 9H), 1.58 — 1.38 (m, 9H), 0.91 (s, 3H).

13C NMR (101 MHz, CDCls) & 140.92, 137.02, 136.40, 129.10, 125.96, 125.40, 50.67, 48.18, 44.46,
39.66, 38.41, 37.62, 36.03, 33.47,32.87,31.77, 29.56, 26.86, 26.75, 26.49, 25.89, 21.74, 14.01. N.B. C-
carbonyl is not visible.

HRMS (ESI+): [M+H]* cal’d for Cy6H360: 365.2839, found: 365.2835

M.p.: 71-73 °C
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'H NMR spectrum of 24
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19F NMR spectrum of 24
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'H NMR spectrum of 25
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'H NMR spectrum of 27
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1F NMR spectrum of 31
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'H NMR spectrum of 32
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19F NMR spectrum of 32
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'H NMR spectrum of 33
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'H NMR spectrum of 35
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'H NMR spectrum of 38
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'H NMR spectrum of 41
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