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S1. No relationship between brain parenchymal volume and brain tissue distribution 

The potential influence of brain parenchymal volume on brain tissue distribution was assessed by 

performing a linear regression analysis in the transport domain. When correcting for covariates of 

age, gender, gene cohort, and full-scale IQ, there was no statistically significant relationship 

between brain parenchymal volume and brain tissue distribution for either gray matter (Pearson 

correlation coefficient 0.12, p = 0.20) or white matter (Pearson correlation coefficient 0.21, p = 

0.29). The scatter plots in Figure S1 illustrate the regression relationship between brain 

parenchymal volume and brain tissue distribution. Therefore, the variations in brain tissue 

distribution assessed in this paper are not accounted for by brain parenchymal volume differences. 

a. 

b.



Figure S1. The relationship between total brain parenchymal volume and brain tissue distribution 
is not statistically significant for either (a) gray matter or (b) white matter when correcting for 
covariates of age, total full-scale IQ, gender, and gene cohort. Each point represents an individual 
subject when projected onto the direction in transport space that is maximally correlated with total 
brain parenchymal volume. FSIQ was missing for one subject. 



S2. Gray matter variation not completely explained by white matter variation 

Figure S2. Data projected onto the top CCA direction from 100 iterations from the test set. 
Although the relationship between gray matter and white matter tissue distribution is statistically 
significant, the variance explained on unseen data is 31%. 

The dependence between gray matter and white matter tissue distribution was measured using 

canonical correlation analysis (CCA) [66] in the transport domain. Figure S2 illustrates the 

correlation between gray matter and white matter tissue distribution when projected onto the top 

canonical direction. The CCA technique was iterated 100 times, with 75% of the dataset randomly 

sampled for training and the remaining 25% for testing in each iteration. The mean correlation 

coefficient in the test set is reported. Statistical significance of the computed direction was 

determined using permutation testing over T = 100 iterations.  

We observe that the relationship between gray and white matter distribution is statistically 

significant (Pearson correlation coefficient 0.56, p < 0.01), with variance explained on unseen data 

WM vs. GM canonical correlation 



of 31%. Therefore, their structural variations cannot be mutually explained fully, motivating 

separate analyses on gray and white matter.  

S3. Classification using separate white matter and gray matter parenchymal volumes 

The ability to distinguish CNV based on white and gray matter parenchymal volumes was 

evaluated, as illustrated in Figure S3. There is generally a positive correlation between gray matter 

and white matter volumes. Furthermore, duplication carriers typically have lower volumes 

compared to controls, while deletion carriers have the highest volumes. However, the distributions 

across CNV cohorts are overlapping, which limits the ability to discriminate CNV based solely on 

parenchymal volume. 

Figure S3. Parenchymal volumes, white matter vs. gray matter. Parenchymal volumes alone are 
insufficient to distinguish individuals with 16p11.2 copy number variations.  
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A penalized linear discriminant analysis (pLDA) classifier was trained using original white matter 

and gray matter parenchymal volumes as separate dimensions. Table S1 summarizes the 

classification accuracy achieved through stratified repeated 10-fold cross validation, using the 

same folds as detailed in the main text. The classification is not much better than chance (Cohen’s 

kappa 0.19). However, it is important to consider multicollinearity when using both gray and white 

matter together as features in the model. 

The discriminant ability of age, gender, and separate gray matter and white matter volumes was 

assessed to enable direct comparison with Table 3 in the main text. A pLDA classifier was trained 

and tested using stratified repeated 10-fold cross validation with the same folds as in the main text. 

The results in Table S1 show that CNV discrimination is not much better than chance (Cohen’s 

kappa 0.19 to 0.23). White matter volume appears to enable better CNV discrimination than gray 

matter.  

Overall, the results indicate that the ability to discriminate 16p11.2 CNV is driven by tissue 

changes in white and gray matter not captured by volume alone.  

Table S1. Separating gray and white matter parenchymal volume 

Features Test 
accuracy 

Sensitivity 
(deletion/control/ 
duplication) 

Specificity 
(deletion/control/ 
duplication) 

Cohen’s 
kappa 

White and gray 
matter volumes 
only 

43.8 [40.7, 
46.8]% 

57.4 [54.4, 60.5]% / 
27.9 [25.1, 30.7]% / 
74.1 [71.4, 76.8]% 

71.3 [68.4, 74.1]% / 
77.5 [74.9, 80.1]% / 
69.5 [66.7, 72.4]% 

0.19 
[0.17, 
0.21] 

Age, gender, and 
white matter 
volume 

46.6 [43.6, 
49.7]% 

61.7 [58.7, 64.7]% / 
31.5 [28.6, 34.3]% / 
73.4 [70.6, 76.1]% 

71.9 [69.1, 74.7]% / 
80.0 [77.5, 82.5]% / 
71.1 [68.3, 73.9]% 

0.23 
[0.20, 
0.25] 

Age, gender, and 
gray matter volume 

43.6 [40.5, 
46.7]% 

61.6 [58.6, 64.6]% / 
28.4 [25.6, 31.2]% / 
66.8 [63.9, 69.7]% 

74.0 [71.2, 76.7]% / 
79.9 [77.4, 82.4]% / 
65.4 [62.5, 68.4]% 

0.19 
[0.17, 
0.22] 



S4. Visualization of 3D TBM-generated brain structural variations 

The discriminant subspaces in Figure 3a-d in the main manuscript can be interrogated at different 

points along direction 1 and direction 2 and the corresponding brain structural variations defining 

each class boundary can be directly visualized through inverse 3D TBM transformation. This 

approach allows us to visualize the variations in brain morphology enabling sensitive 

discrimination of 16p11.2 genetic cohorts. Figure S4 and S5 correspond to the computer-generated 

images for white matter and gray matter, respectively, when the discriminant subspaces in Figure 

3a,c and Figure 3b,d are sampled in the main manuscript.  

Figure S4 shows the discriminant subspace for white matter tissue computed in the transport 

domain. The discriminant subspace for gray matter is shown in Figure S5.   



Figure S4. Brain images generated by 3D TBM when sampling the discriminant subspace in 
Figure 3a,c. Here, 0 represents the mean image, and 𝜎ଵ and 𝜎ଶ represent standard deviations from 
the mean in direction 1 and direction 2 respectively. Color represents tissue density. 



Figure S5. Brain images generated by 3D TBM when sampling the discriminant subspace in 
Figure 3b,d. Here, 0 represents the mean image, and 𝜎ଵ and 𝜎ଶ represent standard deviations from 
the mean in direction 1 and direction 2 respectively. Color represents tissue density. 

Example visual differences are illustrated in TBM-generated Figures S6 and S7, which are 

sampled along discriminant direction 1. In slice 85, we see a characteristic increase in white matter 

density in the superior cerebral (frontoparietal) white matter (deletion carriers > controls > 

duplication carriers). Slices 73 and 63 show changes in occipital white matter density, including 

the splenium of the corpus callosum (deletion carriers > controls > duplication carriers). Slice 53 

shows differences in the inferior temporal (duplication carriers > controls > deletion carriers) and 



inferior frontal (deletion carriers > controls > duplication carriers) regions, while the brainstem is 

unchanged. In slice 47, the superior vermis of the cerebellum is affected (deletion carriers > 

controls > duplication carriers). Finally, in slice 39, we see that the cerebellar hemispheric white 

matter is affected such that (deletion carriers > controls > duplication carriers). 

Figure S6. White matter. These computer-generated images can be interpreted to understand the 
differences that enable high classification accuracy by visualizing along discriminant direction 1. 
Color represents tissue density. Here, 𝜎ଵ is the standard deviation from the mean (represented by 
score 0). The axial slices best showing the changes in white matter morphology are shown. 



Figure S7. Gray matter. These computer-generated images can then be interpreted to understand 
the differences that enable high classification accuracy by visualizing along discriminant direction 
1. Color represents tissue density. Here, 𝜎ଵ is the standard deviation from the mean (represented
by score 0). The axial slices best showing the changes in gray matter morphology are shown.

Slice 55 shows increased gray matter density in the orbitofrontal regions (deletion carriers > 

controls > duplication carriers). Furthermore, there are changes in gray matter density in the 

dentate nucleus of the cerebellum (duplication carriers > controls > deletion carriers). Slice 81 

shows changes in gray matter density in the insular regions (deletion carriers > controls > 

duplication carriers) as well as in the temporoparietal junction (deletion carriers < controls < 

duplication carriers). Furthermore, the posterior cingulate shows changes as well (deletion carriers 

> controls > duplication carriers). Finally, slice 90 shows that gray matter density in the inferior

perirolandic areas are affected as well (duplication carriers < controls < deletion carriers) with left 

showing more changes than the right. 



S5. Effect of confounding variables on TBM pLDA discrimination 

As deletion carriers were younger than both duplication carriers and controls, the pLDA 

discriminant was computed after removing the influence of confounding variables of age and 

gender on the TBM maps according to Eq. S1.  

𝑉 = 𝐷 − 𝑍(𝑍்𝑍)ିଵ𝑍்𝐷 

Here, 𝑍 ∈ ℝ௡ ୶ ௖ , which is the matrix containing c covariates and n is the number of subjects. D 

corresponds to the original data matrix before dimensionality reduction and V is the residual data 

matrix that is uncorrelated and orthogonal to the confounding variables. PCA was performed for 

dimensionality reduction, retaining the components capturing 96% of the variance as in the main 

text, followed by classification using pLDA, which yields the following plots in Figure S8.  

Eq. S1 



Figure S8. 3D TBM discriminant subspace, corrected for influence of age and gender. Each 
subject in the study is represented by a point on the scatter plot. Subject data projected onto the 
most discriminant subspace computed by pLDA for (a) white matter and (b) gray matter. 
Boundaries between the classes computed based on nearest centroid classification for (c) white 
matter and (d) gray matter. 

10-fold stratified repeated cross validation was performed to obtain the test accuracy and

confidence intervals using the same folds as in the main text. Results are summarized in Table S2. 

(a) (b) 

(c) (d) 



Table S2. TBM classification accuracies corrected for age and gender 

Features Test accuracy Sensitivity 
(deletion/control/ 
duplication) 

Specificity 
(deletion/control/ 
duplication) 

Cohen’s 
kappa 

White 
matter 
TBM 
(corrected) 

88.9 [86.9, 90.8]% 89.7 [87.9, 91.6]% / 
92.9 [91.3, 94.5]% / 
76.0 [73.4, 78.7]% 

96.5 [95.3, 97.6]% / 
84.4 [82.1, 86.6]% / 
97.9 [97.0, 98.8]% 

0.81 [0.78, 
0.83] 

Gray 
matter 
TBM 
(corrected) 

86.7 [84.6, 88.8]% 91.0 [89.2, 92.8]% / 
88.9 [87.0, 90.9]% / 
74.8 [72.1, 77.5]% 

96.1 [94.9, 97.3]% / 
83.9 [81.6, 86.1]% / 
95.7 [94.5, 97.0]% 

0.77 [0.74, 
0.80] 

Thus, TBM demonstrated robust classification performance even after controlling for age and 

gender through a covariate-controlled experiment, suggesting reliable individual classification.   

S6. Combined gray and white matter penalized linear discriminant analysis 

As gray matter and white matter contain partially independent information, the pLDA technique 

was applied to the concatenated gray and white matter data matrix. The top 96% of the variance 

in the combined dataset was captured by 83 components. The resulting discriminant subspace in 

Figure S9 again demonstrates that the classes are highly separable, although with minimally 

increased intra-class variance compared to white matter alone.  



a. 

b. 

Figure S9. The CNV cohorts remain separable when gray matter and white matter are 
concatenated into a single data matrix 



S7. Image domain representation versus transport-domain representation 

S7.1 PCA variance plots 

Images were smoothed and padded to enable direct comparison to the TBM processing pipeline in 

the main manuscript.  

For white matter structural images, 96% of the variance in the dataset is captured by 132 

components in the transport domain, 183 components using modulated SPM, 189 components 

using unmodulated SPM, and 184 components in the image domain. 

For gray matter structural images, 96% of the variance in the dataset is captured by 46 components 

in the transport domain, 181 components using modulated SPM, 188 components using 

unmodulated SPM, and 182 components in the image domain.  

a.



b. 

Figure S10. Transport-based morphometry best captures brain structural variations compared to 
other modeling techniques for both white matter (a) and gray matter (b) images. TBM requires the 
fewest principal components to explain the variance in the dataset.  

Figure S10 illustrates that the transport domain offers strong modeling advantages compared to 

other registration-based techniques.  

S8. Template change 

In prior work, substituting a smooth template with a different nearest neighbor template did not 

significantly increase or decrease discrimination accuracy [20]. We demonstrate this in Figure S11. 

A new template was computed from 172 healthy individuals aged 58-81 from a separate study 

published in [22]. Then, the current study population images were registered to this template [22], 



following affine registration to match the gross orientation and scaling of the images in the cohort. 

As Figure S11 demonstrates, changing the template does not modify class separability.   

Figure S11. pLDA discriminant subspace calculated for (a) white matter and (b) gray matter 

(a) (b) 



S9. Harvard-Oxford atlas registration 
a.      

b. 

Figure S12. (a) Cortical segmentation and (b) subcortical segmentation of the population mean 
image via the Harvard-Oxford atlas 



After the Harvard-Oxford atlas is registered to the population mean image, the segmentations for 

cortical and subcortical segmentation are shown in Figure S12.  

S10. Supplementary Text 
S10.1 HDLSS Data 

Nonlinear classifiers are prone to overfitting in high-dimensional low sample size (HDLSS) 

problems, and the variance of the classifier increases as the classifier becomes more complex. This 

is a limitation of large neural networks. 

Here, 3D TBM can model nonlinear distances in the image domain as Euclidean distances in the 

transport domain. Thus, we can use a linear classifier, which offers several advantages. First, is 

efficient implementation. Next, linear classifiers have a favorable bias-variance tradeoff, 

especially for high –dimensional data [65].  

S10.2 TBM: generative modeling 

Generative modeling offers a way to interpret opaque machine learning models. As generative 

modeling produces plausible instances of the data, we can generate representative data samples 

through TBM synthesis, which can be written in closed form (Equation 3). In contrast to other 

generative techniques, 3D TBM is physics-based and captures the transport phenomenon and is 

convex, offering a unique solution. This allows for direct physical interpretation.   

Traditional quantitative morphometry approaches [58-60, 63-64] also suffer from the inability to 

recover the physical substrates underlying the associations between quantitative metrics (i.e. brain 

volume, cortical thickness, shape descriptors, etc.) and genetic cohort. These metrics are reductive 



and physical shifts in morphologic profile cannot be recovered from these descriptors alone, i.e. 

they are not generative. 

A key advance of 3D TBM as a predictive model is the ability to directly visualize and interpret 

the tissue shifts driving classification. Unfortunately, traditional methods that rely on extracting a 

set of numerical descriptors such as volume, thickness, etc. from the images or those that rely on 

voxelwise comparison are non-invertible transformations. Indeed, the creators of voxel-based 

morphometry summarize: "in [predictive] models, the parameters have no physical meaning unless 

the corresponding generative model [used to explain the data] is invertible” [18].  

S10.3 Image domain 

To compare to TBM classification, image domain classification was performed both for whole 

brain and for individual tissue maps. First, raw whole brain images were affine registered to correct 

for gross orientational and size differences and skull stripped. Then, they were smoothed and 

normalized similar to the preprocessing steps for the individual gray and white matter maps. After 

dimensionality reduction using PCA, retaining 96% of the variance, the discriminant subspace was 

computed in the training set using pLDA, with scatter plots displayed in Figure S13.  



Figure S13. Whole brain image domain discriminant subspace after affine registration, intensity 
normalization, and smoothing. Each subject in the study is represented by a point on the scatter 
plot. Subject data projected onto (a) the most discriminant subspace computed by pLDA. (b) 
boundaries between the classes computed based on nearest centroid classification  

The classification accuracies are computed after stratified repeated 10-fold cross validation with 

the same folds as in the main text. Results are in Table S3. The original whole brain images were 

separable with accuracy comparable to chance.  

Table S3. Image domain classification accuracies, whole brain 

Features Test 
accuracy 

Sensitivity 
(deletion/control/ 
duplication) 

Specificity 
(deletion/control/ 
duplication) 

Cohen’s 
kappa 

Whole brain 
(normalized) 

53.6 [50.5, 
56.7]% 

65.9 [63.0, 68.9]% / 
47.1 [44.0, 50.2] % / 
58.1 [55.1, 61.2]% 

75.9 [73.3, 78.6]% / 
68.4 [65.5, 71.3]% / 
82.1 [79.8, 84.5] % 

0.27 
[0.25, 
0.30] 

Next, the discriminant ability of the preprocessed affine registered gray and white matter tissue 

maps was assessed. PCA analysis was run on these maps, retaining the components capturing the 
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top 96% of the variance, as in the main TBM analysis. The scatter plots in Figure S14 demonstrate 

the pLDA discriminants in the training space.  

Figure S14. Gray and white matter preprocessed images. Each subject in the study is represented 
by a point on the scatter plot. Subject data projected onto the most discriminant subspace computed 
by pLDA for (a) white matter and (b) gray matter. Boundaries between the classes computed based 
on nearest centroid classification for (c) white matter and (d) gray matter. 

Stratified repeated 10-fold cross validation was performed to obtain the test accuracy and 

confidence intervals as described in the main text. Results are summarized in Table S4. These 

(c) (d) 

(a) (b) 



results underscore the effectiveness of our preprocessing steps of affine registration, segmentation, 

and normalization on the original images. TBM further improves upon these classification 

accuracies by up to 10% by capturing the nonlinear information not well-assessed in the image 

domain alone (Table 3).  

Table S4. Image domain classification accuracies, separate white and gray matter 

Features Test 
accuracy 

Sensitivity 
(deletion/control/ 
duplication) 

Specificity 
(deletion/control/ 
duplication) 

Cohen’s 
kappa 

WM tissue 
maps 
(normalized) 

84.9 [82.7, 
87.1]% 

95.0 [93.6, 96.3]% / 
89.3 [87.4, 91.2]% / 
59.9 [56.9, 63.0]% 

97.2 [96.2, 98.2]% / 
80.2 [77.7, 82.6]% / 
94.4 [93.0, 95.9]% 

0.74 
[0.71, 
0.76] 

GM tissue maps 
(normalized) 

87.7 [85.6, 
89.7]% 

91.7 [90.0, 93.4]% / 
92.8 [91.2, 94.4]% / 
67.8 [64.9, 70.7]% 

97.8 [96.9, 98.7]% / 
80.8 [78.4, 83.3]% / 
96.9 [95.9, 98.0]% 

0.78 
[0.76, 
0.81] 

Finally, the model was interrogated to visualize the changes driving classification ability in the 

image domain, directly comparable to Figure S7 generated by TBM.   



Figure S15. Gray matter. Synthetic images generated by interrogating the image domain model 
along direction 1. Linear voxelwise comparison can assess presence of differences in spatial gray 
matter to some degree, however, the ghost images are seen where differences are present. Color 
represents normalized tissue intensity. Here, 𝜎ଵ is the standard deviation from the mean 
(represented by score 0).  

Figure S15 demonstrates that although the image domain model leveraging voxelwise comparison 

can detect spatial differences in gray matter to some degree, it is not sufficiently sensitive to 

nonlinear patterns such as gyral folding. This limitation is evidenced by the presence of ghost 

image where gyri are not comparable in a voxelwise manner. In contrast, Figure S7 highlights the 

strength of TBM in elegantly capturing and visualizing nonlinear changes in tissue distribution 

such as gyration. 

Several factors could explain why separating gray and white matter tissues improves classification 

performance. First, combining these tissues in a whole brain image might lead to destructive 

deletion control duplication 

Gyration 
differences 
result in 
ghost 
images 



interference, where opposing signals from gray and white matter changes cancel out. Second, 

changes may be tissue-specific, meaning that they primarily affect either gray matter or white 

matter. Isolating each tissue compartment allows the model to focus on the tissue-specific changes, 

leading to better discrimination. Third, segmenting the whole brain into gray and white matter 

effectively reduces data dimensionality, which improves classification performance.  

S10.4 Voxel-based morphometry 

On the preprocessed images, further statistical parametric maps were generated for gray matter 

and white matter structural images separately. The standard VBM8 toolbox in the Statistical 

Parametric Mapping software version 12 was used.  

S10.5 Deformation-based morphometry 

Unlike with transport-based morphometry, the deformation field is not unique for a pair of images; 

thus, many possible deformation fields may exist between images and the statistical results may 

vary depending as a function of the field rather than solely the two images of interest. The 

deformation fields were computed using the standard VBM8 toolbox from the affinely registered 

images to enable appropriate comparison with 3D TBM. The standard VBM8 toolbox was used 

for the computations above. 

S10.6 Penalized linear discriminant analysis with voxel-based maps 

To enable comparison to discrimination ability with the TBM technique, VBM and DBM maps 

were generated according to the procedure in S10.4 and S10.5. Then, stratified 10-fold cross-



validation was performed using the same code as that for 3D TBM classification analysis. The 

results are summarized in Tables S5A and S5B.  



Table S5. Classification accuracies using pLDA 

A. 
Features Test 

accuracy 
Sensitivity 
(deletion / control/ 
duplication) 

Specificity 
(deletion / control/ 
duplication) 

Cohen’s 
kappa 

GM tissue maps 
(unmodulated)  

84.9 [82.7, 
87.1]% 

84.3 [82.1, 86.6]/ 
99.2 [98.7, 99.8]/ 
43.3 [40.3, 46.4]% 

99.7 [99.3, 100]/ 
65.7 [62.7, 68.6]/ 
99.8 [99.5, 100]% 

0.71 
[0.69, 
0.74] 

WM tissue 
maps 
(unmodulated) 

84.2 [82.0, 
86.5]% 

82.1 [79.7, 84.5]/ 
99.6 [99.2, 100]/ 
41.5 [38.5, 44.6]% 

100 [100, 100]/ 
63.6 [60.7, 66.6]/ 
99.7 [99.4, 100]% 

0.70 
[0.67, 
0.73] 

GM tissue maps 
(modulated)  

71.0 [68.2, 
73.8]% 

83.9 [81.6, 86.2]/ 
71.3 [68.5, 74.1]/ 
54.8 [51.7, 57.8]% 

97.7 [96.7, 98.6]/ 
70.9 [68.1, 73.7]/ 
81.7 [79.3, 84.1]% 

0.51 
[0.48, 
0.55] 

WM tissue 
maps 
(modulated) 

72.5 [69.8, 
75.3]% 

81.7 [79.3, 84.1]/ 
68.9 [66.0, 71.8]/ 
72.3 [69.5, 75.0]% 

96.1 [94.9, 97.3]/ 
78.5 [76.0, 81.1]/ 
81.0 [78.6, 83.4]% 

0.55 
[0.52, 
0.58] 

B. 
Features Test 

accuracy 
Sensitivity 
(deletion / control 
/ duplication) 

Specificity 
(deletion /control 
duplication) 

Cohen’s 
kappa 

Deformation fields 93.4 
[91.9, 
95.0]% 

95.7 [94.4, 96.9]/ 
95.6 [94.3, 96.8]/ 
84.5 [82.2, 86.7]% 

98.7 [98.1, 99.4]/ 
90.6 [88.8, 92.4]/ 
98.0 [97.2, 98.9]% 

0.89 
[0.87, 
0.91] 

Thus, compared to other techniques assessing nonlinear information, TBM achieved higher 

classification accuracies of up to 22% for white matter and 17% for gray matter.  

S11. Regional mean displacements based on Harvard-Oxford atlas 

As described in the main text, the Harvard-Oxford atlas was co-registered to the template image 

and TBM displacements were analyzed on a regional basis. Regional volume contraction/dilation 

beyond mean displacements was calculated as the determinant of the Jacobian of the transport 

maps. Z-scores were calculated regarding degree of local regional volume expansion (positive) or 

contraction (negative). The classifier was interrogated at three standard deviations away from the 

mean image for duplication carriers and deletion carriers, either along direction 1 or direction 2, 



corresponding to the discriminant subspaces in Figure 2. The average voxelwise Z scores per 

region are summarized in Table S6 through Table S9.  

Generally, every region queried by the atlas undergoes local change – suggesting diffuse rather 

than local perturbations due to 16p11.2 genotype. Second, we confirm that there are reciprocal 

changes between duplication/deletion carriers given overlapping regions of change, but in different 

direction with gene dosage. Third, the areas undergoing the largest local volume contraction or 

expansion do not necessarily conform with known anatomic brain networks, again supporting the 

observation of a diffuse rather than network-specific perturbation.  

Table S6. Direction 1 – Z-scores of cortical regions 

Deletion carriers Duplication carriers 

1. Frontal pole -0.02  0.01 
2. Insular cortex -0.09  0.06 
3. Superior frontal gyrus  0.05 -0.06
4. Middle frontal gyrus  0.08 -0.09
5. Inferior frontal gyrus (pars

triangularis) 
-0.06  0.06 

6. Inferior frontal gyrus (pars
opercularis)

 0.47 -0.50

7. Precentral gyrus  0.12 -0.12
8. Temporal pole  0.29 -0.29
9. Superior temporal gyrus (anterior

division) 
 0.21 -0.23

10. Superior temporal gyrus (posterior
division)

 0.06 -0.06

11. Middle temporal gyrus (anterior
division) 

-0.01  0 

12. Middle temporal gyrus (posterior
division)

 0.26 -0.22

13. Middle temporal gyrus
(temporooccipital part) 

 0.31 -0.26

14. Inferior temporal gyrus (anterior
division)

 0.10 -0.11

15. Inferior temporal gyrus (posterior
division) 

-0.36  0.38 



16. Inferior temporal gyrus
(temporooccipital part)

 0.04 -0.07

17. Postcentral gyrus -0.02  0.02 
18. Superior parietal lobule -0.25  0.24 
19. Supramarginal gyrus (anterior

division) 
 0.05 -0.08

20. Supramarginal gyrus (posterior
division)

 0.11 -0.13

21. Angular gyrus  0.35 -0.32
22. Lateral occipital cortex (superior

division)
 0.13 -0.14

23. Lateral occipital cortex (inferior
division) 

 0.11 -0.13

24. Intracalcarine cortex -0.85  1.02 
25. Frontal medial cortex -0.25  0.20 
26. Juxtapositional lobule cortex (formerly

supplementary motor cortex)
-0.05  0.03 

27. Subcallosal cortex -0.09  0.12 
28. Paracingulate gyrus -0.04  0.02 
29. Cingulate gyrus (anterior division)  0.40 -0.39
30. Cingulate gyrus (posterior division)  0.25 -0.23
31. Precuneous cortex -0.23  0.24 
32. Cuneal cortex  0.12 -0.18
33. Frontal orbital cortex -0.35  0.35 
34. Parahippocampal gyrus (anterior

division)
-0.20  0.20 

35. Parahippocampal gyrus (posterior
division) 

 0.27 -0.27

36. Lingual gyrus  0.04 -0.07
37. Temporal fusiform cortex (anterior

division) 
-0.06  0.05 

38. Temporal fusiform cortex (posterior
division)

-0.01 -0.02

39. Temporal occipital fusiform cortex  0.04 -0.06
40. Occipital fusiform gyrus -0.04 -0.01
41. Frontal operculum cortex -0.63  0.64 
42. Central opercular cortex -0.85  0.89 
43. Parietal operculum -0.88  0.96 
44. Planum polare -0.04 -0.03
45. Heschl’s gyrus (includes H1 and H2)  0.09 -0.15
46. Planum temporale  0.11 -0.17
47. Supracalcarine cortex -0.55  0.41 
48. Occipital pole -0.07  0.06 



Table S7. Direction 1 – Z scores of subcortical regions (deep gray matter and white matter†) 

Deletion carriers Duplication carriers 
1. Left cerebral white matter†  0.08 -0.11
2. Left cerebral cortex -0.04  0.03 
3. Left lateral ventricle† -0.06  0.05 
4. Left thalamus -0.06  0.04 
5. Left caudate  0.32 -0.33
6. Left putamen  0.16 -0.21
7. Left pallidum  0.06 -0.03
8. Brain stem†  0.09 -0.08
9. Left hippocampus -0.05  0.05 
10. Left amygdala -0.03  0 
11. Left accumbens  0.15 -0.19
12. Right cerebral white matter†  0.06 -0.08
13. Right cerebral cortex -0.10  0.10 
14. Right lateral ventricle† -0.08  0.07 
15. Right thalamus -0.16  0.14 
16. Right caudate  0.03 -0.05
17. Right putamen  0.14 -0.18
18. Right pallidum  0.11 -0.10
19. Right hippocampus -0.02  0.01 
20. Right amygdala  0.03 -0.05
21. Right accumbens  0.08 -0.11

Table S8. Direction 2 – Z-scores of cortical regions 

Deletion/Duplication 
carriers 

Controls 

1. Frontal pole  0.12 -0.12
2. Insular cortex  0.27 -0.27
3. Superior frontal gyrus -0.05  0.05 
4. Middle frontal gyrus -0.05  0.05 
5. Inferior frontal gyrus (pars

triangularis) 
 0.26 -0.26

6. Inferior frontal gyrus (pars
opercularis)

-0.12  0.12 

7. Precentral gyrus -0.02  0.01 
8. Temporal pole -0.35  0.36 
9. Superior temporal gyrus (anterior

division) 
-0.58  0.62 

10. Superior temporal gyrus (posterior
division)

 0.11 -0.11



11. Middle temporal gyrus (anterior
division) 

-0.37  0.38 

12. Middle temporal gyrus (posterior
division)

 0.26 -0.25

13. Middle temporal gyrus
(temporooccipital part) 

 0.22 -0.23

14. Inferior temporal gyrus (anterior
division)

-0.04  0.05 

15. Inferior temporal gyrus (posterior
division) 

 0.23 -0.22

16. Inferior temporal gyrus
(temporooccipital part)

 0.43 -0.41

17. Postcentral gyrus  0.24 -0.24
18. Superior parietal lobule  0.22 -0.22
19. Supramarginal gyrus (anterior

division) 
 0.50 -0.49

20. Supramarginal gyrus (posterior
division)

 0.40 -0.38

21. Angular gyrus  0.29 -0.31
22. Lateral occipital cortex (superior

division)
 0.02 -0.02

23. Lateral occipital cortex (inferior
division) 

 0.08 -0.08

24. Intracalcarine cortex -0.05  0.05 
25. Frontal medial cortex  0 -0.01
26. Juxtapositional lobule cortex

(formerly supplementary motor
cortex)

-0.03  0.03 

27. Subcallosal cortex  0.20 -0.18
28. Paracingulate gyrus -0.06  0.05 
29. Cingulate gyrus (anterior division)  0.08 -0.09
30. Cingulate gyrus (posterior division) -0.26  0.27 
31. Precuneous cortex -0.15  0.14 
32. Cuneal cortex  0.20 -0.19
33. Frontal orbital cortex  0.61 -0.60
34. Parahippocampal gyrus (anterior

division)
 0.17 -0.17

35. Parahippocampal gyrus (posterior
division) 

 0.07 -0.08

36. Lingual gyrus  0.07 -0.08
37. Temporal fusiform cortex (anterior

division) 
 0.14 -0.14

38. Temporal fusiform cortex (posterior
division)

 0.13 -0.14

39. Temporal occipital fusiform cortex  0.06 -0.07
40. Occipital fusiform gyrus  0.19 -0.19



41. Frontal operculum cortex -0.09  0.05 
42. Central opercular cortex  0.15 -0.18
43. Parietal operculum  0.05 -0.06
44. Planum polare  0.15 -0.18
45. Heschl’s gyrus (includes H1 and H2)  0.11 -0.13
46. Planum temporale  0.21 -0.18
47. Supracalcarine cortex  0.41 -0.41
48. Occipital pole  0.19 -0.18

Table S9. Direction 2 – Z scores of subcortical regions (deep gray matter and white matter†) 

Deletion/Duplication 
carriers 

Controls 

1. Left cerebral white matter†  0.08 -0.10
2. Left cerebral cortex  0.10 -0.10
3. Left lateral ventricle† -0.16  0.18 
4. Left thalamus  0.20 -0.20
5. Left caudate  0.29 -0.30
6. Left putamen  0.06 -0.07
7. Left pallidum  0.07 -0.05
8. Brain stem†  0.06 -0.07
9. Left hippocampus  0.50 -0.50
10. Left amygdala  0.16 -0.17
11. Left accumbens  0.16 -0.19
12. Right cerebral white matter†  0.13 -0.14
13. Right cerebral cortex  0.09 -0.09
14. Right lateral ventricle† -0.31  0.33 
15. Right thalamus  0.07 -0.07
16. Right caudate  0.69 -0.68
17. Right putamen  0.14 -0.15
18. Right pallidum  0.54 -0.53
19. Right hippocampus  0.40 -0.39
20. Right amygdala  0.25 -0.26
21. Right accumbens  0.19 -0.25

Networks most affected appear to include the salience network, visual system, association areas, 

mixed motor/sensory function, object recognition, language areas, and visual word/faces 



recognition. The heterogeneity of networks affected mirrors the heterogeneity of phenotypic 

presentations summarized in Table 2 in the main text. 

S12. Summary 

In summary, the transport-based morphometry (3D TBM) [19, 21, 24] technique is generative and 

enables visualization of the structural changes responsible for sensitive prediction, overcoming a 

major obstacle in extracting physical meaning from statistical results. While traditional brain 

morphometry analysis focuses on explaining the given dataset [18], the 3D TBM technique is an 

avenue for predictive modeling, where modern data-driven machine learning techniques can be 

utilized to construct models that can accurately predict the characteristics of new data. Several 

studies have shown that complex, nonlinear, and spatially diffuse patterns can be represented 

sparsely in the transport space [19, 21, 24, 61].  

Canonical correlation analysis investigating the relationship between the gray matter and white 

matter variance finds that 31% of the variance can be mutually explained. The findings are 

compatible with [44], who observed a power law relating how the relative volumes of gray matter 

and white matter scale. However, this power law does not explicitly model the connectivity and 

cortical folding [44], which likely contributes to the remainder of the variance. Furthermore, the 

finding that combining gray matter and white matter do not increase discriminant capability is an 

expected finding may potentially be explained collinearity of gray matter and white matter tissue. 

By discovering and visualizing information that is non-visible to the human eye, 3D TBM 

addresses long-standing limitations in understanding the gene-brain-behavior relationship. We 

envision that this technique can accelerate progress in precision medicine for a variety of diseases. 



With the ability to reveal subtle morphologic variations that may be associated with genetic 

variations, 3D TBM has the potential to inform personalized diagnosis, treatment, and monitoring 

strategies for individuals with neurologic and psychiatric disorders. 
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