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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

In the study, “Enhancing the diagnosis of functionally relevant coronary artery disease with machine 

learning”, Bock and colleagues present a multitask model to improve diagnostic decision-making using 

clinical profiles and stress-testing ECGs. There is substantial clinical utility in defining ECG parameters 

that allow better risk stratification, especially where more advanced imaging is limited. However, I have 

some comments about the approach's success in achieving the goals: 

 

1) The authors report an AUROC of 0.71 for their best-performing model to risk stratify. At face value, 

this is a modest performance. While better than clinicians, the NPV of 0.89, observed for the 15% 

threshold, will be challenging for clinical practice, especially when this approach aims to reduce 

unnecessary testing. The authors should more clearly justify the optimal thresholds needed for such a 

validation procedure. 

 

2) The data sources in both internal and external validation data require more details. The internal 

validation data are part of a single hospital cohort study – what were the various clinical settings where 

the patients presented? The external validation data paragraph does not define any of the aspects 

clearly – were these patients consecutive? What was the care setting? The CAD history was assumed to 

be negative – why was that? Why were patients dropped for 1 missing observation? How many patients 

were dropped this way? Several aspects need substantially better calibration. 

 

3) There is some value in traditionally low-risk groups – those that can perform exercise stress tests (as 

opposed to pharmacological) and younger age. What were the full model performance characteristics in 

these populations? This is pertinent as the modestly higher AUROC in these groups should be further 

supported by data on clinical meaningfulness. 

 

4) The model identifies common predictors often used in subjective risk stratification and decision-

making (prior CAD, age, sex, and other similar features) – this is helpful. However, the ECG features in 

SHAP analysis are not adequately addressed. Are there aspects from the SHAP synthesis that identify 

ECG components of interest? The example provided, and the associated discussion is unclear–are there 

at least positive and negative examples that are meaningful, which could be used to strengthen the 

synthesis? Also are there summary statistics that can be presented across all positive and negative 

studies to make the assessment more objective? 

 

5) The outcome definitions require further details in the study. The authors said a stress 

imaging/angiography-based assessment was made by the cardiologist. But since the decisions on further 

testing were clinically indicated, it is important to know what proportion of the population had the full 

cascade of testing. And what were the findings of tests. 

 

6) Several risk thresholds are presented, but the underlying approaches' reliability information is limited. 

Since the authors frequently refer to risk stratification before even evaluating the model findings, the 

reliability of the approach to pre-test stratification of risk is important. 



 

7) The authors state (line 154): “Finally, we combine predictions from both the statistical model and 

deep learning approach with the cardiologist’s post-test judgment by training a new logistic regression 

model on all three scores from the training set. We refer to this collaborative approach”. The 

collaborative model, touted as being the most successful, is unclear to the reviewer. How is this post-test 

judgment quantified? How is it combined numerically? 

 

8) The 2-6-2 sequence of the stress ECG was constructed up to twenty times per patient for training the 

model. The authors should clarify the influence of such an approach on application to a real-world 

setting. How was this applied in the validation setting? 

 

9) The paper is somewhat dense, and many aspects of the modeling and decisions are not well 

explained. This leads to a challenge in understanding the value of some of the findings when they are 

presented. 

 

10) The tables and figures are similarly not adequately positioned, and the reviewer was challenged in 

finding the content essential to interpreting the study, If the set-up of the study and the order of 

presentation was better presented, I believe the readership will benefit substantially. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

This paper is addressing an early detection technique for Functionally relevant coronary artery disease 

(fCAD) that can result in premature death or nonfatal acute myocardial infarction. Two machine learning 

(ML) techniques were used to predict fCAD: initial one is using a small number of static clinical data, 

whereas the later one leverages electrocardiogram (ECG) signals from exercise stress testing. The results 

demonstrate that ML can significantly outperform cardiologists in predicting the presence of stress-

induced fCAD in terms of area under the receiver operating characteristics. 

The paper is well written and provide proper justification of the methods used. The dataset (3522 

patients for ECG) is very important feature of this study and it is properly validated by cardiologist. 

 

Machine Learning techniques used in the paper are conventional ML techniques that are used in 

different applications. 

Overall, paper is good and provide good framework how to complement cardiologist by using this 

framework. 

 

My only criticism with the results presents for younger age or less than 60 years of age population. As 

the dataset’ median value of age is 66.7 years with standard deviation is 11.1 that how you can predict 

model for lesser age. 

 

In Fig. 2, Sensitivity and Precision were shown, It is good idea to present the Specificity, Recall and 

Accuracy and F1 score will presented as well. 



Overall it is good paper. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

 

SUMMARY 

Bock et al. present the results of a retrospective analysis evaluating the predictive performance of 

machine learning for detection of functionally significant coronary artery disease. The authors 

demonstrate that machine learning can outperform cardiologist estimations of the risk of functionally 

significant CAD, potentially decreasing the number of patients that would require further risk 

stratification. Additionally, there seemed to be benefit from combining ML predictions with cardiologist 

estimates. 

GENERAL COMMENTS FOR THE AUTHORS 

The authors have performed a comprehensive study which includes model development and external 

testing for predicting ‘functionally relevant’ coronary artery disease. This could potentially help 

physicians choose between functional or anatomic imaging approaches. The most novel aspect of the 

model is that it incorporates stress ECG data automatically, which can be challenging clinically given the 

high frequency of noisy baseline data. However, the importance of this is minimized from a clinical 

perspective because the stress ECG is typically collected during the functional imaging test (instead of 

performing an exercise stress prior to deciding on which imaging test to pursue). The model more 

accurately predicts the presence of functionally relevant CAD compared to expert clinical judgement 

with stress ECG results. There are a few similar studies which have been performed with machine 

learning (Most similar study, DOI: 10.1007/s12350-022-03012-6; internal testing n=20,418 from 5 sites; 

external testing n=9,019 from two sites; AUC 0.76 in external testing); (doi: 10.1155/2021/3551756; 

n=2503); (https://link.springer.com/article/10.1007/s12350-018-1304-x);( doi: 10.2196/16975);( DOI: 

10.1016/j.cvdhj.2022.02.002). The first study has larger and more diverse training and external testing 

populations. The authors present another finding of significant interest; integrating expert judgement 

with the ML prediction improved performance (although there are issues with the current methodology 

as outlined in point 3 below). 

A major concern is that the primary outcome, ‘functionally relevant’ CAD is a combination of two 

outcomes (myocardial ischemia by SPECT or obstructive CAD on cath) without clear delineation of how 

many patients were classified with each method. Selective referral to invasive angiography induces some 

bias in the study since some clinical aspects which may be utilized by the ML model (ECG findings, 

symptoms) also influence decisions to pursue invasive angiography. Notably, the previously mentioned 

studies did not include hybrid outcomes such as the one used by Bock et al. 

SPECIFIC COMMENTS FOR THE AUTHORS 

1) The model is developed in a cohort of patients who were referred for SPECT MPI (which is typically 

intermediate or higher risk). This is not the same population as the screening population that the 

authors are discussing in the Introduction, limiting generalizability of the model. 

2) The definition of “functionally relevant” coronary artery disease outlined by the authors in the 

Introduction (symptoms of ischemia, death or MI) is not the same as the definition used in the study. 

3) The cardiologist judgement was combined with the ML prediction using a logistic regression model. 



Did the authors consider including it as a feature for the ML model instead? Additionally, why not 

provide the cardiologists with the results to see how this would change their post-test probability 

estimate (particularly relevant since this is how it would most likely be implemented)? 

4) The authors utilized cardiologist judgement using a visual scale after the EST. What factors were the 

physicians using? Did any perform formal calculations of pre and post-test probability? Do you have any 

sense of inter-rater reproducibility for these estimates? 

5) There are several available risk scores that could be used to predict the likelihood of obstructive CAD 

(updated Diamond Forrester, CAD consortium scores, etc.). Consider including comparisons to these 

scores as supplemental results. 

 

 

MINOR POINTS: 

6) What proportion of patients underwent cath to adjudicate functionally relevant CAD? How many 

cases were “equivocal” on cath? 

7) In the “Data collection, label generation, and robustness”, should state that the external population is 

also a SPECT MPI referral cohort. 

8) The introduction should provide some mention of coronary artery calcium scoring or CCTA. 

9) Consider explicitly stating the central adjudication of functionally significant CAD was done blinded to 

demographics and ECG stress data (assuming this is the case), if not discuss potential bias related to this. 

10) Consider removing unnecessary abbreviations (w.r.t. ; l.h.s. etc.) 

11) It does not seem appropriate to ‘upsample’ patients with functionally relevant CAD in the external 

testing population (Page 15). This defeats the purpose of external testing (to see if the model works in 

other populations) by trying to make the populations more similar. Additionally, since you upsampled 

this population, it is misleading to say that the prevalence was 6% in Tables. 

12) What was the definition of positive TID ratio? 

13) Consider including a comparison to the previous work discussed above 
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Reviewer #1 (Remarks to the Author): 
 
In the study, “Enhancing the diagnosis of functionally relevant coronary artery 
disease with machine learning”, Bock and colleagues present a multitask model 
to improve diagnostic decision-making using clinical profiles and stress-testing 
ECGs. There is substantial clinical utility in defining ECG parameters that allow 
better risk stratification, especially where more advanced imaging is limited. 
However, I have some comments about the approach's success in achieving the 
goals: 
 
1) The authors report an AUROC of 0.71 for their best-performing model to risk 
stratify. At face value, this is a modest performance. While better than clinicians, 
the NPV of 0.89, observed for the 15% threshold, will be challenging for clinical 
practice, especially when this approach aims to reduce unnecessary testing. 
The authors should more clearly justify the optimal thresholds needed for such a 
validation procedure. 
 
R: As suggested by Reviewer 1, we have clarified the presentation of the 
various thresholds. Currently, no "optimal" threshold is defined in the literature, 
so we chose to present performance across a broad range of potentially 
clinically relevant thresholds. The current ESC guidelines for the diagnosis and 
management of chronic coronary artery disease classify patients with a 
probability greater than 15% (but less than 65%) as the group most likely to 
benefit from non-invasive testing. For patients with a CAD probability between 
5% and 15%, testing may be considered by the clinician after assessing the 
overall clinical likelihood. Changes made: p. 7. 
 
2) The data sources in both internal and external validation data require more 
details. The internal validation data are part of a single hospital cohort study – 
what were the various clinical settings where the patients presented? The 
external validation data paragraph does not define any of the aspects clearly – 
were these patients consecutive? What was the care setting? The CAD history 
was assumed to be negative – why was that? Why were patients dropped for 
one missing observation? How many patients were dropped this way? Several 
aspects need substantially better calibration. 
 
R: As suggested by Reviewer 1, we added further details concerning the 
validation cohorts. Changes made: Internal validation cohort: p. 3, External 
validation cohort: pp. 4, 32. 
We agree with the reviewer’s comment that making the assumption of a 
negative CAD history requires justification. Initially, we were not able to identify 
the respective variable in the external data set. After further investigation, 
however, we confirmed that a “CAD history” variable is present in the external 
data set, and we reran our external validation experiments. Additionally, we 
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revisited our initial data cleaning steps and dropped an unnecessary 
requirement to only include patients for which a conclusive ECG result was 
present, thereby dropping patients with “inconclusive” and “non-diagnostic” 
results. As this variable only pertains to the ECG analysis, there is no need to 
drop them. After removing this requirement, nine patients were dropped 
because they had no ground truth label, one patient was dropped because of a 
missing height measurement, and one patient was dropped because of a 
missing weight measurement. In total, we dropped 11 out of 927 patients. After 
the revisited preprocessing and the inclusion of the CAD history, both our 
methods gained in performance. On the original (i.e., not upsampled) data 
set, CARPEClin. reaches a mean AUROC of 0.75 (before 0.73) and AUPRC of 
0.19 (before 0.15). CARPEECG now achieves a mean AUROC of 0.80 (before 
0.77) and AUPRC of 0.28 (before 0.20). In light of this revision, we updated 
Figure 5 with no notable difference, as well as Extended Data Table 3 and 
Extended Data Figure 5. In the latter, we would like to highlight that the sex 
distribution of the external data set is now much closer to the internal data set, 
which may contribute to the performance increase of both our methods. We 
thank the reviewer for pointing out these shortcomings. We believe that the 
additional analysis serves to strengthen our results. 
Lastly, we expanded the “External Validation Data” section in the Methods and 
added that the external validation set is a consecutive SPECT MPI referral 
cohort in the section “Data collection, label generation, and robustness.” 
 
 
3) There is some value in traditionally low-risk groups – those that can perform 
exercise stress tests (as opposed to pharmacological) and younger age. What 
were the full model performance characteristics in these populations? This is 
pertinent as the modestly higher AUROC in these groups should be further 
supported by data on clinical meaningfulness. 
 
R: As suggested by Reviewer 1, we added the full model performance in these 
populations. Changes made: Extended Data Tables 2 and 4 as well as Figure 
3.   

 
 

4) The model identifies common predictors often used in subjective risk 
stratification and decision-making (prior CAD, age, sex, and other similar 
features) – this is helpful. However, the ECG features in SHAP analysis are not 
adequately addressed. Are there aspects from the SHAP synthesis that identify 
ECG components of interest? The example provided, and the associated 
discussion is unclear–are there at least positive and negative examples that are 
meaningful, which could be used to strengthen the synthesis? Also are there 
summary statistics that can be presented across all positive and negative 
studies to make the assessment more objective? 
 
R: We thank the reviewer for suggesting strengthening our SHAP analysis. In 
addition to the case study, we performed a cohort-wide (i.e., on the held-out test 
set) SHAP analyses summarized in Extended Data Figures 6 and 7. In a first 
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analysis, we investigated the SHAP contribution of individual ECG segments 
and stress test phases, highlighting the importance of the “stress phase” and its 
respective QRS-complex for low prediction scores and ST-segments for high 
prediction scores. We then extracted ECG segments with particularly low and 
high SHAP contributions and computed their average. Extended Data Figure 7 
illustrates a pronounced ST-segment depression that contributes to a high 
prediction score.  
 
 
5) The outcome definitions require further details in the study. The authors said 
a stress imaging/angiography-based assessment was made by the cardiologist. 
But since the decisions on further testing were clinically indicated, it is important 
to know what proportion of the population had the full cascade of testing. And 
what were the findings of tests. 
 
R: As suggested by Reviewer 1, we added further information concerning the 
outcome definition and use of angiography-based assessment to the 
manuscript. Changes made: p. 3. 
 
 
6) Several risk thresholds are presented, but the underlying approaches' 
reliability information is limited. Since the authors frequently refer to risk 
stratification before even evaluating the model findings, the reliability of the 
approach to pre-test stratification of risk is important. 
 
R: As suggested by Reviewer 1, we addressed this by extending the information 
concerning the clinical use of the respective thresholds as presented in reply to 
comment 1. Changes made: p. 7. 
 
7) The authors state (line 154): “Finally, we combine predictions from both the 
statistical model and deep learning approach with the cardiologist’s post-test 
judgment by training a new logistic regression model on all three scores from 
the training set. We refer to this collaborative approach”. The collaborative 
model, touted as being the most successful, is unclear to the reviewer. How is 
this post-test judgment quantified? How is it combined numerically? 
 
R: As suggested by Reviewer 1, we clarified the collaborative approach in more 
detail. The post-test VAS by the cardiologist (estimated probability between 0-
100% after stress testing) was combined with the scores of the deep learning 
approach and the conventional machine learning model. These three scores 
were used to train a logistic regression model to predict the ground truth label. 
The logistic regression was exclusively trained on training set predictions and 
labels to prevent overfitting. Changes made: p. 3 and caption of Figure 1.  
 
 
8) The 2-6-2 sequence of the stress ECG was constructed up to twenty times 
per patient for training the model. The authors should clarify the influence of 
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such an approach on application to a real-world setting. How was this applied in 
the validation setting? 
 
R: Indeed, in the external validation set, we did not have access to the stress 
test segmentation. However, having access to heart rate measurements, we 
approximated the end of the stress test phase as the time at which the 
maximum heart rate was reached. Since we extract the 6 seconds from the 
stress phase from the end backwards, we capture the same physiological 
signals as in the training set. Sampling PRE and RECOVERY phase does not 
require any methodological adjustments. 

 
 
9) The paper is somewhat dense, and many aspects of the modeling and 
decisions are not well explained. This leads to a challenge in understanding the 
value of some of the findings when they are presented. 
 
R: As suggested by Reviewer 1, we reworked all sections and figure captions 
and highlighted the most relevant insights more precisely to provide a better 
understanding of the findings. 
 
 
10) The tables and figures are similarly not adequately positioned, and the 
reviewer was challenged in finding the content essential to interpreting the 
study, If the set-up of the study and the order of presentation was better 
presented, I believe the readership will benefit substantially. 
 
R: As suggested by Reviewer 1, we have moved Figure 1 to appear after the 
section on model development and Figure 4 to the end of the section to 
enhance clarity and facilitate easier interpretation of the study for readers. We 
will optimize the other positions in the journal's layouting step. 

Reviewer #2 (Remarks to the Author): 
 
This paper is addressing an early detection technique for Functionally relevant 
coronary artery disease (fCAD) that can result in premature death or nonfatal 
acute myocardial infarction. Two machine learning (ML) techniques were used 
to predict fCAD: initial one is using a small number of static clinical data, 
whereas the later one leverages electrocardiogram (ECG) signals from exercise 
stress testing. The results demonstrate that ML can significantly outperform 
cardiologists in predicting the presence of stress-induced fCAD in terms of area 
under the receiver operating characteristics. 
The paper is well written and provide proper justification of the methods used. 
The dataset (3522 patients for ECG) is very important feature of this study and it 
is properly validated by cardiologist. 
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Machine Learning techniques used in the paper are conventional ML techniques 
that are used in different applications. 
Overall, paper is good and provide good framework how to complement 
cardiologist by using this framework. 
 
My only criticism with the results presents for younger age or less than 60 years 
of age population. As the dataset’ median value of age is 66.7 years with 
standard deviation is 11.1 that how you can predict model for lesser age. 
 
R: As suggested by Reviewer 2, we added more detailed information 
concerning the age distribution of the patients to the manuscript. We added a 
paragraph to the limitation section clarifying that in the derivation cohort 26% of 
the patients were younger than 60 years and 7.6% were younger than 50 years 
of age. Changes made: p. 19. 
 
In Fig. 2, Sensitivity and Precision were shown, It is good idea to present the 
Specificity, Recall and Accuracy and F1 score will presented as well. 
Overall it is good paper. 
 
R: As suggested by Reviewer 2, we added this information to the manuscript. 
We added Extended Data Table 4 which includes PPV, specificity, F1 score and 
accuracy metrics. 
 

Reviewer #3 (Remarks to the Author): 
 

SUMMARY 
Bock et al. present the results of a retrospective analysis evaluating the 
predictive performance of machine learning for detection of functionally 
significant coronary artery disease. The authors demonstrate that machine 
learning can outperform cardiologist estimations of the risk of functionally 
significant CAD, potentially decreasing the number of patients that would require 
further risk stratification. Additionally, there seemed to be benefit from combining 
ML predictions with cardiologist estimates. 
 
GENERAL COMMENTS FOR THE AUTHORS 
The authors have performed a comprehensive study which includes model 
development and external testing for predicting ‘functionally relevant’ coronary 
artery disease. This could potentially help physicians choose between functional 
or anatomic imaging approaches. The most novel aspect of the model is that it 
incorporates stress ECG data automatically, which can be challenging clinically 
given the high frequency of noisy baseline data. However, the importance of this 
is minimized from a clinical perspective because the stress ECG is typically 
collected during the functional imaging test (instead of performing an exercise 
stress prior to deciding on which imaging test to pursue). The model more 
accurately predicts the presence of functionally relevant CAD compared to 
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expert clinical judgement with stress ECG results. There are a few similar 
studies which have been performed with machine learning (Most similar study, 
DOI: 10.1007/s12350-022-03012-6; internal testing n=20,418 from 5 sites; 
external testing n=9,019 from two sites; AUC 0.76 in external testing); (doi: 
10.1155/2021/3551756; n=2503); 
(https://link.springer.com/article/10.1007/s12350-018-1304-x);( doi: 
10.2196/16975);( DOI: 10.1016/j.cvdhj.2022.02.002). The first study has larger 
and more diverse training and external testing populations. The authors present 
another finding of significant interest; integrating expert judgement with the ML 
prediction improved performance (although there are issues with the current 
methodology as outlined in point 3 below). 
 
A major concern is that the primary outcome, ‘functionally relevant’ CAD is a 
combination of two outcomes (myocardial ischemia by SPECT or obstructive 
CAD on cath) without clear delineation of how many patients were classified 
with each method. Selective referral to invasive angiography induces some bias 
in the study since some clinical aspects which may be utilized by the ML model 
(ECG findings, symptoms) also influence decisions to pursue invasive 
angiography. Notably, the previously mentioned studies did not include hybrid 
outcomes such as the one used by Bock et al. 
 
R: As suggested by Reviewer 3, we have provided data on the use of invasive 
angiography and its impact on diagnosing functionally relevant coronary artery 
disease. Importantly, we view the combination of these two modalities as a 
significant strength of our study. Given the broad range of pre-test probabilities 
among the enrolled patients, it is impossible to conduct invasive testing on 
everyone. The incorporation of invasive testing results whenever available 
further solidifies our gold standard because adjudication was based on a 
comprehensive set of information, not just imaging data alone. Notably, a 
positive perfusion scan was only overruled when coronary angiography revealed 
normal coronary arteries. Conversely, a negative perfusion scan was only 
overruled if coronary angiography detected a high-grade coronary lesion 
(exceeding 75%) or when the fractional flow reserve was below 0.80. Changes 
made: p. 3. 
 
 
SPECIFIC COMMENTS FOR THE AUTHORS 
 
1) The model is developed in a cohort of patients who were referred for SPECT 
MPI (which is typically intermediate or higher risk). This is not the same 
population as the screening population that the authors are discussing in the 
Introduction, limiting generalizability of the model. 
 
R: As suggested by Reviewer 3, we have included more details regarding the 
pretest risk of the patients within the limitations section. During study enrollment, 
MPI-SPECT/CT was the standard non-invasive imaging modality at our 
institution and was applied to patients with a wide range of pre-test probability 
for CAD. To emphasize this, we added the adjusted CAD Consortium model 

https://link.springer.com/article/10.1007/s12350-018-1304-x


7 

probabilities as used in the current ESC guidelines for diagnosis and 
management of chronic coronary artery disease, demonstrating that 29% of the 
included patients in the derivation and internal validation cohort had an 
estimated probability of <15%. Changes made: p. 18. 

 
 

2) The definition of “functionally relevant” coronary artery disease outlined by the 
authors in the Introduction (symptoms of ischemia, death or MI) is not the same 
as the definition used in the study. 

 
R: As suggested by Reviewer 3, we adapted the paragraph to clarify that 
functionally coronary artery disease in the study context refers to patients with 
symptoms caused by stable coronary artery disease. Changes made: p. 2. 
 
 
3) The cardiologist judgement was combined with the ML prediction using a 
logistic regression model. Did the authors consider including it as a feature for 
the ML model instead? Additionally, why not provide the cardiologists with the 
results to see how this would change their post-test probability estimate 
(particularly relevant since this is how it would most likely be implemented)? 
 
R: We did not consider adding the cardiologist’s judgement to the ML model as 
we wanted the ML models to be minimally biased towards human judgement. 
Our main goal with the usage of ML was to investigate the effectiveness of 
learning physiological patterns from both ECG and patient characteristics that 
are predictive of fCAD.  
We wholeheartedly agree with the reviewer that studying our model’s impact on 
the cardiologist’s judgement to investigate how collaborative ML can shape 
clinical practice is vital. However, the focus of this investigation is to study the 
diagnostic value of ML in the prediction of fCAD which we consider a precursor 
to the prospective clinical studies that the reviewer proposes. 

 
 

4) The authors utilized cardiologist judgement using a visual scale after the EST. 
What factors were the physicians using? Did any perform formal calculations of 
pre and post-test probability? Do you have any sense of inter-rater 
reproducibility for these estimates? 
 
R: As suggested by Reviewer 3, we provided more information concerning the 
cardiologist's judgement. The clinical judgement reflected clinical practice where 
some cardiologists might have used formal calculations and others solely relied 
on their clinical expertise. Nevertheless, we did not obtain data concerning this 
systematically. The estimate was provided by the treating physician at the time 
of presentation of the patient. We therefore cannot assess inter-rater 
reproducibility. Changes made: p. 3. 
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5) There are several available risk scores that could be used to predict the 
likelihood of obstructive CAD (updated Diamond Forrester, CAD consortium 
scores, etc.). Consider including comparisons to these scores as supplemental 
results. 
 
R: As suggested by Reviewer 3, we added available risk scores including the 
CAD consortium scores (updated Diamond Forrester) and adjusted CAD 
consortium scores as currently used in the ESC guidelines to the manuscript 
and compared it to our models. The CAD Consortium score reached an AUROC 
of 0.65 (0.59-0.71) and the score used in the current ESC guidelines reached 
0.68 (0.60-0.76) in the cohort without a CAD history. Both approaches result in 
lower AUROC & AUPRC than our proposed methods. Changes made: Figure 3 
and Extended Data Table 2. 
 
 
MINOR POINTS: 
 
6) What proportion of patients underwent cath to adjudicate functionally relevant 
CAD? How many cases were “equivocal” on cath? 
 
R: As suggested by Reviewer 3, we provided data concerning the usage of 
invasive angiography and the impact on the outcome functionally relevant 
coronary artery disease. Changes made: p. 3. 
 
 
7) In the “Data collection, label generation, and robustness”, should state that 
the external population is also a SPECT MPI referral cohort. 
 
We added this information in the respective section and expanded the section 
“External Validation Data” on p. 32. 
 
 
8) The introduction should provide some mention of coronary artery calcium 
scoring or CCTA. 
 
R: As suggested, we added a paragraph about CCTA and calcium scoring. 
Changes made: p. 2. 
 
 
9) Consider explicitly stating the central adjudication of functionally significant 
CAD was done blinded to demographics and ECG stress data (assuming this is 
the case), if not discuss potential bias related to this. 
 
R: As suggested by Reviewer 3, we added that the central adjudication was not 
blinded to demographics and ECG results. However, the final adjudication was 
based on imagining and invasive testing whenever available Changes made: 
p.3. 
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10) Consider removing unnecessary abbreviations (w.r.t. ; l.h.s. etc.) 
 
R: As suggested, we removed unnecessary abbreviations. 
 
 
11) It does not seem appropriate to ‘upsample’ patients with functionally relevant 
CAD in the external testing population (Page 15). This defeats the purpose of 
external testing (to see if the model works in other populations) by trying to 
make the populations more similar. Additionally, since you upsampled this 
population, it is misleading to say that the prevalence was 6% in Tables. 
 
R: The purpose of upsampling the population is to make AUPRC scores easier 
to interpret. This can be helpful in understanding a model’s performance in the 
context of a random classifier whose AUPRC changes with the prevalence of 
the positive class. However, we do agree that Extended Data Table 3 was not 
consistent in its presentation. We now present the upsampled results in 
parentheses to put more focus on the results that are achieved on the original 
validation cohort. We also clarified this in the table’s caption. 
 
 
12) What was the definition of positive TID ratio? 
 
R: As suggested by Reviewer 3, we added the definition of a positive Transient 
ischemic dilation ratio (TID). Changes made: p. 32. 
 
13) Consider including a comparison to the previous work discussed above 
 
R: We thank the reviewer for pointing out the absence of two important 
references. First, in “Machine learning to predict abnormal myocardial perfusion 
from pre-test features”, Miller et al. train gradient-boosted decision trees on 26 
features to predict the presence of abnormal myocardial perfusion as 
adjudicated by visual interpretation. A key difference between this study and the 
study of Miller et al. is the focus on a smaller set of eight static and easily 
obtainable clinical features, alongside the incorporation of ECG time series data 
in the deep learning model. Furthermore, the diagnostic gold standard included 
functional information (i.e. coronary angiography) whenever available rather 
than only imaging data. We have also conducted ablation studies to investigate 
the impact of different ECG leads and preprocessing methods which can be 
used as a starting point for future studies involving deep learning and ECG time 
series. Furthermore, we follow the recommendation to perform rigorous 
subcohort analyses vital to highlight our model’s strengths and weaknesses. We 
also perform an in-depth analysis of the clinical utility of our methods by 
reporting their predictive performance at thresholds recommended by European 
and American guidelines and by conducting a decision curve analysis. Finally, 
we perform interpretability analyses to underline the (dis)advantages of 
conventional ML and DL, thereby underlining Miller et al.’s observation of the 
importance of the “CAD history” variable. To summarize, our study focuses on 
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the clinical utility of conventional ML, deep learning, and their combination with 
human judgement to predict fCAD using static but also dynamic features (e.g., 
ECG signals) providing recommendations for ECG preprocessing, lead 
selection, and multi-task learning, culminating in competitive external, cross-
modality validation performance (see updated Extended Data Table 3). 
Similarly, Megna et al. perform a comparison of different ML approaches trained 
on static clinical variables, not considering the ECG signal. Their study differs 
from ours in numerous aspects: 1) The authors excluded patients with a history 
of CAD, a population for which we demonstrate the benefit of a collaborative ML 
approach (mean AUROC of CARPEColl.: 0.68 vs. Cardiologist: 0.63), 2) no 
exercise stress testing is performed, the authors limit their analysis to 
pharmacologically induced stress limiting the application of their proposed 
method, and 3) no external validation is performed. Next to these differences, 
there are also similarities. For instance, our SHAP analysis confirms their 
reported importance of the “sex” and “age” variable for tree-based learners such 
as CARPEClin..  
Given that the first study requires substantially more variables than ours 
and the second one was performed on a small subcohort, we believe it 
best to refrain from a numerical comparison. However, we reference the 
studies in the appropriate sections. 

 



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Thanks to the authors for clarifying many of the questions I raised. I only have two minor points: 

 

- I continue to be skeptical of the collaborative performance of clinicians and AI, which is posed as the 

best-performing model. Especially because in the absence of true blinding, clinicians in practice will likely 

defer to the model outputs over their own judgment ("automation bias"). I suspect this will drive the 

performance lower in practice. 

- Since the subcohort analyses do not evaluate statistical interaction tests by different test types and 

subgroups, and do not account for multiple testing, some of the inferences on model performance 

differences are overstated. 

 

 

Reviewer #2 (Remarks to the Author): 

 

I am happy with the changes and paper looks far better than the original submission. 

 

 

Reviewer #3 (Remarks to the Author): 

 

SUMMARY 

Bock et al. present the results of a retrospective analysis evaluating the predictive performance of 

machine learning for detection of functionally significant coronary artery disease. The authors 

demonstrate that machine learning can outperform cardiologist estimations of the risk of functionally 

significant CAD, potentially decreasing the number of patients that would require further risk 

stratification after clinical assessment. This is a first revision, and I reviewed the original manuscript. 

GENERAL COMMENTS FOR THE AUTHORS 

The authors have responded to the previous comments. Some responses to my comments were 

incomplete. However, I have limited the points which I think the authors still need to address to only the 

most critical issues. The unaddressed comments include: 

1) Regarding the composite outcome for functional coronary artery disease, the authors have given the 

breakdown of how many patients underwent coronary angiography within 3 months (n=701) but should 

report model performance (and calibration) separately for patients with and without ICA. 

2) The authors should include the fact the clinical judgement was integrated with the ML model using 

logistic regression is a limitation. It is unclear whether this would actually translate in clinical practice 

and tends to overestimate the utility of combined analysis. 

3) How many cases does the following statement apply to?: “In case of equivocal findings from MPI-

SPECT/CT and coronary angiography, and adjudication committee…..” 

I have one new comment: 

4) Expert interpretation of MPI, presumably, was performed with knowledge of stress test results and 

clinical features (both available to the model). This may lead to overestimation of the performance of 



stress ECG features in particular (and underscores the importance of the cath only analysis suggested in 

point 1). 
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Reviewer #1 (Remarks to the Author): 

1. I continue to be skeptical of the collaborative performance of clinicians and AI, which 

is posed as the best-performing model. Especially because in the absence of true 

blinding, clinicians in practice will likely defer to the model outputs over their own 

judgment ("automation bias"). I suspect this will drive the performance lower in 

practice. 

● As suggested by Reviewer # 1, we added a respective paragraph to our 

limitation section.  

2. Since the subcohort analyses do not evaluate statistical interaction tests by different 

test types and subgroups, and do not account for multiple testing, some of the 

inferences on model performance differences are overstated. 

● As suggested by Reviewer #1, we extended our Bonferroni correction by 

introducing an additional correction factor. The drawn conclusions remain 

largely the same. We furthermore added an interaction analysis in 

Supplementary Figure 4. 

Reviewer #2 (Remarks to the Author): 

 

I am happy with the changes and paper looks far better than the original submission. 

 

Thank you for your positive feedback on our revisions; we greatly appreciate your 

acknowledgment that the paper looks far better than the original submission. 

 

Reviewer #3 (Remarks to the Author): 

 

1. Regarding the composite outcome for functional coronary artery disease, the authors 

have given the breakdown of how many patients underwent coronary angiography 

within 3 months (n=701) but should report model performance (and calibration) 

separately for patients with and without ICA. 

● As suggested by Reviewer #3, we performed the analyses in patients with 

and without coronary angiography assessment within 90 days. The model's 

discriminative performance increase remained consistent across patients (see 

Supplementary Figures 2 and 3).  

2. The authors should include the fact the clinical judgement was integrated with the ML 

model using logistic regression is a limitation. It is unclear whether this would actually 

translate in clinical practice and tends to overestimate the utility of combined 

analysis. 

● As suggested by Reviewer #3, we added a respective paragraph to the 

limitation section. 
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3. How many cases does the following statement apply to?: “In case of equivocal 

findings from MPI-SPECT/CT and coronary angiography, and adjudication 

committee….." 

● As suggested by Reviewer #3, we added this information to the referenced 

paragraph. It applied to 147/701 or 21% of the 701 patients that underwent 

coronary angiography within 90 days. 

4. Expert interpretation of MPI, presumably, was performed with knowledge of stress 

test results and clinical features (both available to the model). This may lead to 

overestimation of the performance of stress ECG features in particular (and 

underscores the importance of the cath only analysis suggested in point 1). 

● As suggested by Reviewer #3, we compared model performance in patients 

who underwent coronary angiography within 90 days and those who did not. 

The model's performance increase remained consistent across patients, 

regardless of whether they received invasive coronary artery assessment or 

not. We added a respective paragraph to the limitations. 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Thanks for the revisions to the manuscript. I appreciate that there are limitations, and that authors have 

acknowledged them. 

 

 

Reviewer #3 (Remarks to the Author): 

 

SUMMARY 

Bock et al. present the results of a retrospective analysis evaluating the predictive performance of 

machine learning for detection of functionally significant coronary artery disease. The authors 

demonstrate that machine learning can outperform Cardiologist estimations of the risk of functionally 

significant CAD, potentially decreasing the number of patients that would require further risk 

stratification. This is a second revision. 

 

GENERAL COMMENTS FOR THE AUTHORS 

The authors have made further revisions to the manuscript in response to the previous comments. 

The limitations continue to be the use of a composite definition of functionally significant CAD (abnormal 

SPECT or ICA findings), with adjudication of 21% of studies due to “equivocal findings”. This represents a 

significant proportion of studies. The authors should include details on how these were adjudicated. 

 

The second limitation is that the combined model (ML plus clinician) is integrated using logistic 

regression, which does not translate into actual clinical utility. 
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Reviewer #3 (Remarks to the Author) 

1. The limitations continue to be the use of a composite definition of functionally significant 

CAD (abnormal SPECT or ICA findings), with adjudication of 21% of studies due to “equivocal 

findings”. This represents a significant proportion of studies. The authors should include 

details on how these were adjudicated. 

a. As suggested, we included details on how equivocal findings were adjudicated. 

2. The second limitation is that the combined model (ML plus clinician) is integrated using 

logistic regression, which does not translate into actual clinical utility. 

a. We revised the manuscript acknowledging the limitations of logistic regression 

where necessary. 
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