
 

 

Appendix A: Description of the variables used in our experiment  
 

Variable Name Possible Values Variable Description* 

Last Status Deceased, Discharged For the selected visit the status of the patient 

Age Splits [18,59], (59, 74], (74, 90] Age intervals (in years) at time of admission 

Gender Concept Name FEMALE, MALE 
Documented gender in the EHR (Electronic Health 

Record) 

Visit Concept Name 

Inpatient Visit 

Outpatient Visit 

Emergency Room Visit 

For the selected visit the type of the visit 

Is ICU True, False 
Patient admitted to the ICU based on documented room 

charges 

Was Ventilated Yes, No The patient had invasive ventilation 

Acute Kidney Injury Yes, No 
Had an increase in serum creatinine of 0.3 mg/dL 

within 48 hours 

Length of Stay Numeric Value (days) Number of calendar days in the facility 

Oral Temperature Numeric Value (℃)  

Oxygen Saturation Numeric Value (%) Oxygen saturation in Arterial blood by Pulse oximetry 

Respiratory Rate Numeric Value (/min)  

Heart Rate Numeric Value (/min)  

Systolic Blood Pressure Numeric Value (mmHg)  

* The descriptions are extracted from: 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912 

 

 

Appendix B. Training of encoder/decoder models on RSNA dataset 
1. Principal component analysis (PCA) 

 PCA is a statistical technique that uses orthogonal transformation to convert a set of observations of possibly cor-

related variables into a set of values of linearly uncorrelated variables called principal components. This method is 

widely used for dimensionality reduction of data. We utilized the “sklearn.decomposition.PCA” module from the 

scikit-learn library (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html). The param-

eter n_components was set to 128. 

  

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=89096912


 

 

2. Autoencoder (AE)  

 An AE is a neural network used for the unsupervised learning of efficient coding. The aim of an AE is to learn the 

representation (encoding) of a set of data, typically for dimensionality reduction [S1]. We have specified 128 dimen-

sions for the latent code as follows: 

 
Encoder     Decoder   
Layer Activation Output Shape   Layer Activation Output Shape 
(Input Image)  256 × 256 × 1   (Latent vector)  128 
Convolution 1× 1 LReLU 256 × 256 × 8   Linear LReLU 4 × 4 × 512 
Convolution 3× 3 LReLU 256 × 256 × 16   Upsampling  8 × 8 × 512 
Downsampling  128 × 128 × 16   Convolution 3×3 LReLU 8 × 8 × 256 
Convolution 3× 3 LReLU 128 × 128 × 32   Upsampling  16 × 16 × 256 
Downsampling  64 × 64 × 32   Convolution 3× 3 LReLU 16 × 16 × 128 
Convolution 3× 3 LReLU 64 × 64 × 64   Upsampling  32 × 32 × 128 
Downsampling  32 × 32 × 64   Convolution 3× 3 LReLU 32 × 32 × 64 
Convolution 3× 3 LReLU 32 × 32 × 128   Upsampling  64 × 64 × 64 
Downsampling  16 × 16 × 128   Convolution 3× 3 LReLU 64 × 64 × 32 
Convolution 3× 3 LReLU 16 × 16 × 256   Upsampling  128 × 128 × 32 
Downsampling  8 × 8 × 256   Convolution 3× 3 LReLU 128 × 128 × 16 
Convolution 3× 3 LReLU 8 × 8 × 512   Upsampling  256 × 256 × 16 
Downsampling  4 × 4 × 512   Convolution 3× 3 LReLU 256 × 256 × 8 
Linear  128   Convolution 1× 1 Tanh 256 256 × 1 

 

3. Auto-encoding generative adversarial networks (αGAN) 

 An αGAN merges AE with GAN, aiming to improve upon the AE's capability by producing sharper and more 

realistic images through adversarial training [S2, S3]. We have specified 128 dimensions for the latent code as follows. 

The generator and encoder of the Auto-encoding GAN are identical to those of the decoder and encoder described in 

the AE, respectively. 

 
Generator     Encoder   
Layer Activation Output Shape   Layer Activation Output Shape 
(Same with decoder of the auto-encoder we used)   (Same with encoder of the auto-encoder we used) 
        
Discriminator     Code Discriminator  
Layer Activation Output Shape   Layer Activation Output Shape 
(Input Image)  256 × 256 × 1   (Latent vector)  128 
Convolution 1× 1 LReLU 256 × 256 × 8   Linear LReLU 1500 
Convolution 3× 3 LReLU 256 × 256 × 16   Linear  1 
Downsampling  128 × 128 × 16      
Convolution 3× 3 LReLU 128 × 128 × 32      
Downsampling  64 × 64 × 32      
Convolution 3× 3 LReLU 64 × 64 × 64      
Downsampling  32 × 32 × 64      
Convolution 3× 3 LReLU 32 × 32 × 128      
Downsampling  16 × 16 × 128      
Convolution 3× 3 LReLU 16 × 16 × 256      
Downsampling  8 × 8 × 256      
Convolution 3× 3 LReLU 8 × 8 × 512      
Downsampling  4 × 4 × 512      
Linear  1      

 

 



 

 

4. Outline of the αGAN model 

 

 This Figure outlines the architecture of the αGAN system, which includes four key components. The encoder (E) 

processes real images from the RSNA dataset, encoding them into latent representations. The generator (G), which 

uses either latent codes or Gaussian noise, synthesizes images that mimic real images. The discriminator (D) then 

assesses these images, distinguishing between the genuine images from the dataset and the fabricated images created 

by G. Finally, the code discriminator (Code D) distinguishes between the actual Gaussian distribution and the latent 

codes produced by the encoder. 

 

 

Appendix C. Encoders for metric learning 
 We used the Torchxrayvision library (available at https://github.com/mlmed/torchxrayvision) to encode the images 

[S4]. Within this library, there is a model pretrained on a large dataset using densenet121 [S5] as a base, designed to 

classify 18 outcomes (Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Enlarged Cardio-

mediastinum, Fibrosis, Fracture, Hernia, Infiltration, Lung Lesion, Lung Opacity, Mass, Nodule, Pleural Thickening, 

Pneumonia, Pneumothorax). We reset the weights of the final fully connected layer of the pre-trained model before 

utilization. The images were resized to 224×224 pixels before input. To encode the tabular data, after converting the 

categorical variables into dummy variables, we employed a simple two-layer, fully connected network as follows: 

 
Encoder for tabular data  
Layer Activation Output Shape 
(Number of table columns)  16 
Linear LReLU 32 
Linear  18 

 

 For contrastive learning training, we used a loss function based on cosine similarity. 

 

 

  



 

 

Appendix D: Structure of the prediction model for Last Status 
 We combined the images and tabular data using the following structure. As in Appendix C, we reset the weights of 

the final fully connected layer of the densenet121 model from TorchXrayvision. 
Image Encoder     Table Encoder   
Layer Activation Output Shape   Layer Activation Output Shape 
(Input image)  224 × 224 × 1   (Number of table columns)  15 

Pretrained densenet121 from torchxrayvision   Linear LReLU 32 
(Output dims)  18   Linear  18 
        
Classifier       
Layer Activation Output Shape      
Concatenate  36      
Linear  1      

 

 

Appendix E: Classification and regression performance 
 The first column served as the dependent variable, and models were trained using all the table data and images as inde-

pendent variables, excluding the dependent variable itself and “Last Status.” The model was evaluated on the test set of 

pDS. “Last Status” was excluded because it represents outcome information, indicative of future states. Comparisons were 

made using pDS : sDS = 1 : 0 as the reference and P values were adjusted using the Holm method. The type of test varied 

depending on the metric: McNemar's test for accuracy (ACC), DeLong's test for area under the curve (AUC), and Wilcoxon 

signed-rank test for mean absolute error (MAE). P-values less than 0.05 were considered statistically significant. 

  Ratio between pDS and sSD (pDS : sDS) 

Dependent Variables Metrics 0 : 1 0.25 : 0.75 0.5 : 0.5 0.75 : 0.25 1 : 0 pDS + sDS 

Age Splits ACC 0.52 0.59 0.59 0.62 0.66 0.66 

Gender Concept Name* AUC 0.75 0.76 0.86 0.91 0.90 0.96 

Visit Concept Name** AUC 0.77 0.95 0.94 0.95 0.95 0.94 

Is ICU AUC 0.86 0.90 0.89 0.90 0.90 088 

Was Ventilated AUC 0.92 0.91 0.95 0.93 0.94 0.96 

Acute Kidney Injury AUC 0.76 0.73 0.77 0.78 0.78 0.78 

Length of Stay (days) MAE 6.29 5.17 5.60 5.19 5.12 5.10 

Oral Temperature (%) MAE 1.38 1.52 1.32 1.41 1.39 1.30 

Oxygen Saturation (%) MAE 4.53 4.16 4.11 4.11 3.90 4.02 

Respiratory Rate (/min) MAE 3.90 3.88 4.44 3.92 3.83 3.93 

Heart Rate (/min) MAE 17.01 15.89 15.16 16.15 15.37 15.39 

Systolic Blood Pressure 

(mmHg) 
MAE 18.80 17.94 17.98 17.62 17.86 17.23 

ACC: Accuracy, AUC: area under the receiver operating characteristic curve, MAE: mean absolute error 

Cells highlighted in color indicate statistically significant performance changes compared to that with pDS : sDS = 1: 0, with orange 

denoting improvement and blue indicating a decrease in performance. 

* Gender Concept Name: Binary classification (MALE/FEMALE).  

** Visit Concept Name: Treated as binary because there are no cases with the “Outpatient Visit” category in the pDS test set. 
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