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A unified framework for estimating 
country-specific cumulative incidence 
for 18 diseases stratified by polygenic 
risk  

Supplementary Methods 

Study Specific Quality Control 

 
UK Biobank 
 
Registry data 
The relevant columns used to define the phenotypes were:  

● Cause of Death Primary (Column ID: 40001)  
● Cause of Death Secondary (Column ID: 40002) 
● Summary ICD10 Diagnoses (Column ID: 41270) 
● Summary ICD10 Diagnoses Date (Column ID: 41280) 
● Summary ICD9 Diagnoses (Column ID: 41271) 
● Summary ICD9 Diagnoses Date (Column ID: 41281) 

 
Such data are taken from the hospital episode statistics which relate to hospital inpatient 
data. For more information, please see here. Registry coverage depends on the country with 
follow-up beginning in 1997, 1998 and 1981 for England, Wales and Scotland respectively. 
End of follow-up was stated as 31st January 2021.  
 
Genotyping and quality control 
Two arrays were used to genotype UK Biobank participants. The UK Biobank Lung Exome 
Variant Evaluation (UKBiLEVE) Axiom array was used to genotype 49,950 participants. The 
remaining 438,427 participants were genotypes using the Applied Biosystems UK Biobank 
Axiom Array.  
 
Principal Component Analysis (PCA) was performed on the genetic data and centralised 
quality control (QC) on variants was performed on individuals identified to belong to the 
largest cluster (N=463,844) according to Aberrant - an unsupervised clustering algorithm1. 
Variants were assessed for evidence of allele frequency variation across batch, plate, sex or 
array and that genotypes were largely consistent with Hardy-Weinberg Equilibrium 
expectations (all p-value thresholds < 10-12). If a variant failed one or more tests within a 
given batch it was set to missing. Previous research2 provides more detailed information on 
testing. 

 
Imputation 
For 487,442 individuals, imputation was performed using the IMPUTE4 3 software. Genetic 
variation from the Haplotype Reference Consortium (HRC) 4 and merged UK10K+1000 
Genomes were used as a reference panel5. Single Nucleotide Polymorphisms (SNPs) were 
only included in the final imputation if they were present in both reference panels, giving a 
total of 96,959,328 SNPs. 

https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/HospitalEpisodeStatistics.pdf
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Ancestry assignment 
Ancestry assignment uses methodology and scripts from GenoPred 
(https://opain.github.io/GenoPred/DiverseAncestry.html). Individuals were stratified into one 
of five super populations African (AFR), American (AMR), South Asian (SAS), East Asian 
(EAS) and European (EUR). The 1000 Genomes data 6 acted as a reference given the 
individuals are known to belong to one of the 5 super populations. Only unambiguous SNPs 
also present in both the HapMap3 consortium 7 and the imputed UK Biobank data were 
retained for PCA. SNPs within both the reference (1000 Genomes) and target (UK Biobank) 
samples underwent quality control such that the minor allele frequency (MAF) > 5%, variant 
missingness > 2% and Hardy-Weinberg Equilibrium p-value > 1e-6. 467,970 autosomal 
SNPs remained following QC and were in the intersection of the reference and target 
samples. Regions with long range linkage disequilibrium were excluded and independent 
SNPs (SNPs greater than 1000kb apart and r2 < 0.2) retained. PCA was then performed in 
the reference sample using PLINK v2 8 and a multinomial elastic-net regression was trained 
using 5-fold cross validation, super population as the outcome and the first 10 PCs as 
covariates. PCs from the target sample were then projected into the reference space and 
prediction on super population made. Classifications were made according to the super 
population with the greatest probability. To be classified the max probability must be over 
0.5, otherwise it was set to missing.  
 
PCA was performed using a random subset of 1000 individuals per super population and 
PC’s from the rest of the super population sample projected onto this space. Distances from 
the centroid were calculated and outliers removed. Outliers were classified as having a 
distance > 75 percentile + 30*Interquartile Range. Following within-ancestry QC, 8,381, 
1,063, 2,393, 447,332 and 9,435 individuals were allocated to AFR, AMR, EAS, EUR and 
SAS super populations respectively. 
 
FinnGen 
 
Registry data 
Phenotype data within FinnGen is constructed from the collection of nationwide electronic 
health registers. This gives a comprehensive coverage of almost all of a patient's 
interactions with the health service including hospitalizations, medications, procedures and 
deaths. The 18 different registers used by the project are listed below in order of their follow-
up times: 
 

● Finnish Cancer Registry - From 1953 
● Register of Congenital Malformations - From 1963 
● Reimbursement - From 1964 
● Population Register - From 1964 
● Finnish Registry for Kidney Diseases - From 1964 
● Causes of Death - From 1969 
● Care Register for Health Care Inpatient Visits, HILMO - From 1969 
● Socio-economic data - From 1970 
● The Finnish Registry of Visual Impairment - From 1983 
● Medical Birth Register - From 1987 
● Finnish National Infectious Disease Register - From 1989 
● Cervical Cancer Screening - From 1991 
● Breast Cancer Screening - From 1992 
● Drug Purchases - From 1995 
● The Care Register for Social Welfare - From 1995 
● Care Register for Health Care, specialist outpatient visits, HILMO - From 1998  
● Register of Primary Health Care Visits, Avohilmo - From 2011 

https://opain.github.io/GenoPred/DiverseAncestry.html
https://cancerregistry.fi/
https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/register-descriptions/register-of-congenital-malformations
https://raportit.kela.fi/ibi_apps/WFServlet?IBIF_ex=NIT137AL&YKIELI=E
https://dvv.fi/en/population-information-system
https://www.muma.fi/liitto/suomen_munuaistautirekisteri/finnish_registry_for_kidney_diseases
https://www.stat.fi/til/ksyyt/index_en.html
https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/register-descriptions/care-register-for-health-care
https://taika.stat.fi/en/
https://www.nkl.fi/en
https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/register-descriptions/newborns
https://thl.fi/en/web/infectious-diseases-and-vaccinations/surveillance-and-registers/finnish-national-infectious-diseases-register
https://cancerregistry.fi/screening/cervical-cancer-screening/
https://cancerregistry.fi/screening/breast-cancer-screening/
https://www.kela.fi/kelas-research-and-statistics
https://www.julkari.fi/bitstream/handle/10024/127104/Tr21_15.pdf?sequence=4&isAllowed=y
https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/register-descriptions/care-register-for-health-care
https://thl.fi/fi/tilastot-ja-data/ohjeet-tietojen-toimittamiseen/perusterveydenhuollon-avohoidon-hoitoilmoitus-avohilmo
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● The Finnish Vaccination Register - From 2011 

 
Note: while primary health care visits are included within FinnGen, by default these cases 
are excluded from the endpoints. As such, we only consider secondary care data for our 
disease endpoints.  
 
Genotyping and quality control 
FinnGen consists of prospectively recruited samples and a series of legacy cohorts with 
genotypes already available 9. Prospective samples were genotyped using the 
ThermoFisher Axiom custom array which tags a total of 655,973 variants. Genotype calling 
was performed using the Array Power Tools software. Legacy cohorts were genotyped using 
various Illumina arrays and genotype calling was performed using either GenCall or zCall 
algorithms. 
 
For both prospective and legacy cohorts the following quality control metrics were used.  
 
Samples were removed if:  

● Pihat was > 0.9 and the samples were not monozygotic or replicates  
● There was a discrepancy between reported sex and genetically determined sex (F-

value ≤ 0.3 for females and ≥ 0.8 for males) 
● Missingness was ≥ 5% 
● Heterozygosity was ±4 standard deviations from the population average 
● Pihat was > 0.1 with 14 or more samples 
● Samples were ±4 standard deviations away from the population average according to 

the first two genetic principal components. 

 
Samples were tagged should there be evidence of a mendelian error or contain replicate 
samples with over 50,000 discrepancies.  
 
Variants were removed if: 

● The variant failed the Hardy-Weinberg Equilibrium test (p-value < 10-6) 
● The variant had a call rate < 98% 

 
Imputation 
Pre-phasing was performed using Eagle 2.3.510 and samples were imputed using the SiSu 
v3 imputation reference panel. This reference panel is specific to the Finnish population, 
containing high-coverage (25-30x) whole-genome sequencing data from 3,775 Finns and 
16,962,023 variants with minor allele count ≥ 3. After imputation, 16,387,711 variants were 
imputed with high quality (INFO > 0.6) 

 
Ancestry assignment 
Firstly, the FinnGen samples were combined with the 1000 genomes phase 3 dataset6. 
Genetic principal components were calculated using a subset of 49,451 pruned SNPs. 
Aberrant1 was used to identify and remove samples that deviated from the main cluster. A 
probability of belonging to either a North-Western European or Finnish population was 
calculated by firstly performing PCA with individuals belonging to these ancestries from 1000 
genomes data. FinnGen samples were then projected onto this PCA space and Mahalanobis 
distances calculated for each sample against each of the two ancestries. Samples were 
retained if there was ≥ 95% probability of belonging to the Finnish ancestry cluster. 
 
Trøndelag Health Study  
 
Registry data 

https://thl.fi/en/web/infectious-diseases-and-vaccinations/surveillance-and-registers/finnish-national-vaccination-register-and-monitoring-of-the-vaccination-programme
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The periodic population-based health survey design includes three recruitment waves—
HUNT1 (1984-1986), HUNT2 (1995-1997), and HUNT3 (2006-2008)—concentrated in the 
North-Trøndelag area, where all adults > 20 years of age were invited to participate. 
Electronic health records from the Trøndelag county hospitals (Nord-Trøndelag Hospital 
Trust, including St. Olavs, Namsos, and Levanger Hospitals) hold International Classification 
of Diseases and Related Health Problems (ICD) codes back to 1987 and were last accessed 
August 8, 2021. There is likely under-ascertainment of less-serious common conditions with 
only hospital records. Main and secondary diagnoses were used. Follow-up time is 
calculated from age of first enrollment in HUNT to the last hospital record accession. 

 
 
Genotyping and quality control 
DNA from 71,860 HUNT samples was genotyped using one of three different Illumina 
HumanCoreExome arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM 
HUNT Biobank v1.0). These chips included custom content to directly genotyped missense 
and loss of function variants and lipid associated variants from low pass sequencing, among 
other potentially actionable protein altering variants. Samples that failed to reach a 99% call 
rate, had contamination > 2.5% as estimated with BAF Regress 11, large chromosomal copy 
number variants, lower call rate of a technical duplicate pair and twins, gonosomal 
constellations other than XX and XY, or whose inferred sex contradicted the reported 
gender, were excluded. Samples that passed quality control were analysed in a second 
round of genotype calling following the Genome Studio quality control protocol described 
elsewhere 12. Genomic position, strand orientation and the reference allele of genotyped 
variants were determined by aligning their probe sequences against the human genome 
(Genome Reference Consortium Human genome build 37 and revised Cambridge 
Reference Sequence of the human mitochondrial DNA; http://genome.ucsc.edu) using 
BLAT. Variants were excluded if their probe sequences could not be perfectly mapped to the 
reference genome, cluster separation was < 0.3, Gentrain score was < 0.15, showed 
deviations from Hardy Weinberg equilibrium in unrelated samples of European ancestry with 
p-value < 0.0001), their call rate was < 99%, or another assay with higher call rate 
genotyped the same variant.   
 
Imputation 
Imputation was performed on the 69,716 samples of recent European ancestry using 
Minimac3 (v2.0.1, http://genome.sph.umich.edu/wiki/Minimac3) 13 with default settings (2.5 
Mb reference based chunking with 500kb windows) and a customized Haplotype Reference 
consortium release 1.1 (HRC v1.1) for autosomal variants and HRC v1.1 for chromosome X 

variants4. The customized reference panel represented the merged panel of two reciprocally 
imputed reference panels: 1) 2,201 low-coverage whole-genome sequences samples from 
the HUNT study and 2) HRC v1.1 with 1,023 HUNT WGS samples removed before merging. 
We excluded imputed variants with Rsq < 0.3 resulting in over 24.9 million well-imputed 
variants.  
 
Ancestry assignment 
Ancestry of all samples was inferred by projecting all genotyped samples into the space of 
the principal components of the Human Genome Diversity Project (HGDP) reference panel 
(938 unrelated individuals; downloaded from http://csg.sph.umich.edu/chaolong/LASER/) 14, 
using PLINK v1.90 (8). Recent European ancestry was defined as samples that fell into an 
ellipsoid spanning exclusively European populations of the HGDP panel. The different arrays 
were harmonized by reducing to a set of overlapping variants and excluding variants that 
showed frequency differences > 15% between data sets, or that were monomorphic in one 
and had MAF > 1% in another data set. The resulting genotype data were phased using 
Eagle2 v2.3 10.  
 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.sph.umich.edu/wiki/Minimac3
http://genome.sph.umich.edu/wiki/Minimac3
http://csg.sph.umich.edu/chaolong/LASER/
http://csg.sph.umich.edu/chaolong/LASER/
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Estonian Biobank 
 
Registry data 
Phenotype data within EstBB is put together from the collection of electronic health registers, 
including from two largest hospitals in Estonia. We include both primary and secondary care 
data as well as self-reported diagnoses. Estonia has a solidary health insurance system and 
national public health insurance covers ∼94% of the population 
(https://eurohealthobservatory.who.int/countries/estonia). Causes of death and Cancer 
registry record all cases despite the health insurance status in Estonia.  Following registries 
were included in phenotype definition process: 

● Causes of Death Registry- diagnoses from 2003 until 2020 
● National Cancer Registry- diagnoses from 1955 until 2017 
● Estonian Health Insurance Fund - From 2001 until 2020 
● The North Estonia Medical Centre from 1993 until 2017 
● Tartu University hospital from 2006 until 2017 
● E-Health system from 1998 to 2020 

Self-reported diagnoses’ dates ranged from 1920 - 2018. For the follow-up time calculation 
in Table 1, we used as baseline the start of National Health Insurance Fund data from 2003 
(2001-2002 no state-wide coverage) until the end of last linking in 2020, so the follow-up IQR 
is 0. 
 
Genotyping and quality control 
Estonian BioBank (EstBB) samples were genotyped with 4 sub-versions of Infinium Global 
Screening Array-24. Samples with less than 95% call-rate were excluded. Sample sex 
recorded in the EstBB database was compared with genetic sex. Samples with sex 
mismatch were further inspected for sex chromosome abnormalities (X0, XXY, etc.), and 
samples with confirmed database vs genetic sex mismatch were excluded. In total, 202 910 
individuals passed sample quality control. SNP quality control was performed by excluding: 
(a) all SNPs with less than 95% call-rate, (b) SNPs showing more than 5% AF difference 
from the AF mean estimated using all genotyping batches with more than 10 000 samples 
per batch, (c) SNPs with Illumina GenTrain score < 0.6 or cluster separation score < 0.4 in 
any genotyping batch, (d) autosomal SNPs with HWE exact test p-value < 1e-4. In total, 
approximately 328K autosomal and X-chromosome SNPs with MAF > 1% passed quality 
control and were used in the imputation. All the variants were processed on the human 
genome assembly GRCh37. 
  
Imputation 
Imputation was performed using local Estonian imputation reference panel made of 2056 
WGS samples. Genotypes were pre-phased with Eagle v2.4.1 (10) and imputed with Beagle 
5.1 using default parameters15. Multiallelic positions were excluded from imputation output. 
In total, 39 546 641 variants were used in the study. 
 
Ancestry assignment 
EstBB samples were combined with the 1000 genomes phase 3 dataset for ancestry 
analysis6. Genetic principal components were calculated using a subset of quality controlled 
and pruned genotyped SNPs. This was further used to identify and remove samples that 
deviated from the main cluster via visual inspection. In total, 481 non-european ancestry 
individuals based on principal components were excluded from the analysis. 
 
Mass General Brigham Biobank 
 
Registry data 
Patients and employers of multiple health centers at Mass General Brigham (MGB) 
in Eastern Massachusetts are enrolled in the MGB Biobank16. The MGB Biobank 

https://www.tai.ee/et/statistika-ja-registrid/surma-pohjuste-register
https://www.tai.ee/et/statistika-ja-registrid/vahiregister
https://www.regionaalhaigla.ee/en
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was founded in 2008 and the research protocol was approved by the Human 
Research Committee of MGB. The EHR data were retrieved from the MGB Patient 
Data Registry (RPDR). A biobank portal which is an i2b2-based data repository 
linking disparate and high-dimensional patient data was implemented . The weekly 
updated repository integrates Information from primary and curated data resources. 
Data stored on the observational medical outcomes partnership (OMOP) can also be 
queried through i2b2. The start of follow-up was defined as the first diagnosed ICD 
code across all EHG data. The end of follow-up was defined as death date for 
deceased people and most recent visit date for others. The ICD codes were 
available in the MGBB since its establishment in 2008. 
 
Genotyping and quality control 
To date, ~65,000 individuals with informed consent have generated and provided genomic 
information. In this study, we were focused on those individuals genotyped on the Illumina 
Global Screening Array. We retained genotyped SNPs that: i) minor allele count >= 2, ii) 
missingness <= 2% iii) Hardy-Weinberg equilibrium  p-value >= 1e-6, and iv) concordant 
allele frequency with gnomAD (chi-squared value >= 300). For individual-level quality 
controls, we removed those individuals that i) heterozygosity > 3 standard deviation of 
population mean, ii) missingness > 1% and ii) discordant sex between self-reported and 
genetic inferred sex. Finally, 563,449 genotyped variants for 52,459 individuals were 
subsequently imputed. 
 
Imputation 
The genotypes after quality controls were imputed at the Michigan imputation server using 
the TOPMed r2 imputation panel 17 using Minimac 18. Eagle v2.4 was used for haplotype 

phasing10. Variants with imputation INFO scores > 0.3 were further retained for follow-up 
analyses. 
 
Ancestry assignment 
We projected all individuals onto the first 6 PCs based on 168,898 variants in the combined 
reference dataset from 1000 Genomes Project Phase 3 and Human Genome Diversity 
Project. We applied a random forest classifier and assigned ancestry to 6 continental groups 
(including European, Central and South-Asian, East-Asian, African, Middle-Eastern and 
American) if the probability was larger than 0.8. 
 
Genomics England 
 
Registry data 
Available clinical data in the Genomics England research environment are divided into 
primary, sourced from the Genomic Medicine Centres for all participants upon enrollment in 
the program, and secondary clinical data come from third parties such as Public Health 
England or NHSD which complement the primary clinical data with additional information. 
The following table was included in the phenotype definition process: 

Hospital Episode Statistics admitted patient care (hes_apc) - contains historic records of 
admissions into secondary care of Genomics England main programme participants. The 
period covered by the registry is from September 13, 1992, to January 31, 2022 (Genomics 
England version 15). The HES records are based on the ICD-10 coding system, which has 
been in use since April 1995. For more information please see: https://re-
docs.genomicsengland.co.uk/release15/.The beginning of follow-up was defined as the date 
for registry linkage. If an individual was born after that date, the date of birth is the beginning 
of follow-up time.      
 

https://re-docs.genomicsengland.co.uk/release15/.Follow-up
https://re-docs.genomicsengland.co.uk/release15/.Follow-up
https://re-docs.genomicsengland.co.uk/release15/.Follow-up
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Genotyping and quality control 
Genome sequencing was performed in DNA samples from 78,195 individuals using Illumina 
HiSeq X systems (150 bp  paired-end format). Reads were aligned using the iSAAC Aligner 
(version 03.16.02.19) and small variants were called using Starling Small Variant Caller 
(version 2.4.7). Samples were aligned to the Homo Sapiens NCBI GRCh38 assembly with 
decoys. 

 
Aggregation of single-sample gVCFs was performed using the Illumina software gVCF 
genotyper (version 2019). Variant normalisation and decomposition were implemented by vt 
(version 0.57721). Genomic annotation and calculation of allele statistics were performed 
using Ensembl VEP and bcftools respectively. The multi-sample VCF dataset (aggV2) was 
then split into 1,371 roughly equal chunks to allow faster processing. Only variants that passed 
all provided site quality control criteria were processed. 
 
Imputation 
The WGS genotypes (~722M variants) were filtered to a variant base list used for PGS 
model generation, which includes 18,421,839 variants. (For further information on how the 
variant list was derived see: https://research-
help.genomicsengland.co.uk/pages/viewpage.action?pageId=72351761) 
Genotypes were phased and imputed using the 1000G reference panel (v5a) which was lifted-
over from GRCh37 to GRCh38 using cross-map. 
 
Ancestry assignment 
The genetic ancestry of the patients was estimated using a random forest classifier and data 
from 1000 genomes project phase 3 (1KGP3) dataset. Firstly, all unrelated samples from the 
1KGP3 were selected and 188,382 HQ SNPs were subsetted. After filtering for MAF > 0.05 in 
1KGP3 (and GE data), the first 20 PCs were calculated using GCTA and the aggV2 data were 
projected onto the 1KGP3 PC loadings. The random forest model to predict ancestries was 
trained based on: 

• First 8 1KGP3 PCs 

• set Ntrees = 400  

• Train and predict on 1KGP3 Admixed American, African, East Asian, European, and 
South Asian super-populations. 

Individuals were assigned for any one ancestry with a probability of > 0.8. 

Generation Scotland 
 
Registry data 
Disease outcomes were ascertained through linkage to primary (GP) and secondary 
(hospital) healthcare records. Individuals were subsetted to those registered at a GP 
that consented to sharing of primary records. GP records consisted of Read2 codes, 
which were mapped to ICD-10. Hospital data were obtained from Scottish Morbidity 
Records (SMR) where disease outcomes were coded using ICD-9 (pre March 1997) 
or ICD-10 (post March 1997). Start of followup was considered to be the latest date 
between Date of birth or March 1980, the date of GP linkage. End of followup was 
considered to be October 2020 (the date to which GP data is available), date of 
death, or date of disease onset if after October 2020 (hospital data is available until 
March 2022).      
 
Genotyping and quality control 
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Generation Scotland (GS) consists of ~24,000 individuals from across Scotland aged 
between 18-99 years. Phenotypic data were obtained at baseline along with whole blood 
samples for DNA quantification. 
  
Genotype data was assayed for 20,195 participants in two batches with 9,863 participants in 
the first batch and the remainder in the second. The genotyping was performed using the 
Illumina HumanOmniExpressExome-8 v1.0 BeadChip and the Illumina 
HumanOmniExpressExome-8 v1.2 BeadChip, respectively. Individuals or SNPs with a low 
call rate (<98%) and SNPs with Hardy-Weinberg p-value<1x10-6 were removed. Mendelian 
errors were removed by setting the individual-level genotypes at erroneous SNPs to missing. 
  
Imputation 
Genotyped data were imputed using the HRC panel v1.14. Autosomal haplotypes were 
checked to ensure consistency with the reference panel (strand orientation, reference allele, 
position. Pre-phasing was performed using Shapeit2 v2r837 19,20 using the Shapeit2 
duohmm option1121 and cohort family structure in order to improve imputation quality 22. 
Variants with low imputation quality (INFO<0.4) as well as monogenic variants were 
removed from the imputed set resulting in 24,111,857 variants for downstream analysis. 
 
Ancestry assignment 
Ancestry outliers were removed from the dataset. These were defined as individuals who 
were more than six standard deviations away from the mean in a principal component 
analysis of GS merged with 1092 participants from the 1000 Genomes Project6. 

Comparing two Hazard Ratios 
 
To determine whether the hazard ratios (HRs) differ by sex, we compared the HRs directly 
as well as more formally in an interaction. When comparing the HRs directly we employed 
the following method: 
 
Firstly the difference between the log(HRs) for men and women is calculated: 
 

Delta = log(HRmen) - log(HRwomen) 
 
The standard error of the difference is calculated as: 
 

Standard error of difference = (SEmen)2 + (SEwomen)2 

 
Finally, a Z-score is created to derive a p-value: 
 

Z-score = Delta / Standard error of difference 
 
 

PGS Selection 

The optimal PRS methodology is likely to vary across traits and cohorts. For 
example, breast cancer seems to have a slightly less polygenic architecture as PGS 
by the pruning and thresholding method perform better than a Bayesian method 
such as LDPred23. Whereas previous work has shown genome-wide scores are 
generally better than smaller scores24. Rather than wade into the score differences 
across traits, we selected a method, MegaPRS, that has outperformed other 
methods and should perform broadly well (as shown in Zhang et al25). MegaPRS 
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incorporates several different Bayesian methods simultaneously and was selected 
as a default method to generate all scores.  

We aimed for the most harmonized analysis possible across all traits, by 
selecting the same method for all and limiting analysis to the SNPs in the 
intersection of HapMap phase 3 SNPs and the 1000 Genomes with a minor allele 
frequency greater than 1% in at least one super population (M=1,330,820). 
Therefore the scores across cohorts are including the same or very largely 
overlapping set of SNPs, making the effect sizes of scores comparable across 
cohorts from the same disease. From Genomics England, FinnGen, HUNT, and 
MGBB the percentage overlap of SNPs within each trait’s PGS ranged from 83.4-
100%. 

MegaPRS by default generates from the full provided GWAS summary 
statistics two different sets called pseudo GWAS “training” and “testing” sets. The 
primary use of pseudo summary statistics is to construct and train prediction models, 
in order to decide parameters of the effect size’s prior distribution25. Therefore no 
individual level data was used to train or test different versions of PGSs, however 
MegaPRS does internally compose several versions of PGSs together with some 
statistics about their predictive ability. 
Future work would benefit from comparing existing scores, particularly ones being 
moved into clinical care, within this framework. As a comparison, the HR for the top 
1% PRS versus the median (40-60%) in UK Biobank European individuals was 3.82 
(3.46-4.21 95% CI) with the MegaPRS score in this study. In another publication 
using UK Biobank, the same comparison had an HR of 3.52 (2.93-4.24) using the 
Mavaddat, AJHG, 2019 score26. 
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e) 

 
Supplementary Figure 1. Forest plots of each phenotype. a) No stratification. b) Sex 
stratification. c) Age stratification. d) Age and sex stratification - Males. e) Age and sex 
stratification - Females. Note: for figures d and e the limit has been restricted to 5 for 
presentability, meaning the confidence intervals has been truncated on the graphs.  
 
  



 

19 

 

 
Supplementary Figure 2. Age specific effects of meta-analyzed log(Hazard Ratios) 
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Supplementary Figure 3. Hazard ratios per standard deviation stratified by age and sex. 
Note: phenotypes were only included if the model selected was age and sex stratified. 
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Supplementary Figure 4. Age specific effects of meta-analyzed log(Hazard Ratios) 
stratified by sex 
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Supplementary Figure 5. The baseline model is the first 10 principal components of genetic 
data. The PRS as a predictor is the PRS percentile grouping, but resulst are similar when 
PRS is a continuous variable. Birth year was used as a proxy for age, since age was used 
as the time-scale of the Cox model and not as a predictor. For the model considered best for 
each phenotype, see Supplementary Table 13. Error bars are 95% confidence intervals for 
the C-statistic. 
 
 
 
 



 

23 

 

a. All Cancers
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b. Appendicitis 
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c. Asthma 
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d. Atrial Fibrillation 
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e. Breast Cancer 
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f. Colorectal Cancer
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g. Epilepsy 
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h. Gout 
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i. Hip Osteoarthritis
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j. Knee Osteoarthritis 
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k. Lung Cancer 
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l. Depression 
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m. Skin Melanoma 
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n. Rheumatoid Arthritis 
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o. Type 1 Diabetes 
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p. Type 2 Diabetes 

 
Supplementary Figure 6. Country and sex-specific cumulative absolute risk estimates in 
the top, bottom and reference percentile groupings also including uncertainty measures 
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(95% confidence intervals). a) All Cancers. b) Appendicitis. c) Asthma. d) Atrial Fibrillation. 
e) Breast Cancer f) Colorectal Cancer. g) Epilepsy. h) Gout. i) Hip Osteoarthritis. j) Knee 
Osteoarthritis. k) Lung Cancer. l) Depression. m) Skin Melanoma. n) Rheumatoid Arthritis. 
o) Type 1 Diabetes. p) Type 2 Diabetes 
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Supplementary Figure 7. Country-specific absolute risks for Type 2 Diabetes. Red dashed 
lines highlight age 45, the point at which the American Diabetes association recommends 
screening. The intersection with the blue cumulative risks were taken as the country's clinical 
threshold.  
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Supplementary Figure 8. Type 2 Diabetes cumulative incidence by PGS strata in the top 
and bottom percentile of the distribution and the reference category (40-60%) inclusive of 
confidence intervals.  
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Supplementary Figure 9. Country-specific absolute risks for Breast Cancer. Red dashed 
lines highlight age 50, the age at which screening is recommended. The intersection with the 
blue cumulative risks were taken as the country's clinical threshold.  
 
 
 
 

 
 
 
 
 



 

43 

 

 
Supplementary Figure 10. Breast Cancer cumulative incidence by PGS strata in Finland 
inclusive of the top and bottom percentiles of risk for breast cancer.  
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a) 
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Supplementary Figure 11. Comparison of the cumulative incidence estimates resulting 
from the use of study specific hazard ratios or meta-analysed estimates. a) Type 2 Diabetes. 
b) Coronary Heart Disease 
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Supplementary Figure 12. Sensitivity analysis reviewing the impact of including relatives on 
the hazard ratios within FinnGen and Estonian Biobank. Third degree relatives and higher 
were removed and the hazard ratios were compared.  
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Supplementary Figure 13. Sensitivity analysis reviewing the impact of secondary care 
diagnoses (ICD codes) vs primary care diagnoses (Readv2 and CTV3 codes) on the hazard 
ratios within the UK Biobank.  
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Supplementary Figure 14. Sensitivity analysis reviewing the impact of assuming follow-up 
begins at birth, at the start of the registry linkage or at recruitment (baseline) in the UK 
Biobank. 
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Supplementary Figure 15. Estimating age-specific hazard ratios. This schematic 
describes how age-specific hazard ratios were estimated. Using Type 2 Diabetes and 
FinnGen data as an example, Cox Proportional Hazard models were first performed on four 
intervals. The log hazard ratios plotted above are placed at the median age at onset within 
each interval and a weighted linear regression was fit to the data. The predicted age specific 
log hazard ratios from the weighted linear regression are plotted in red. For any age outside 
of the range, the log hazard ratio is assumed to be equal to the nearest age in which a 
prediction was in range.   
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Supplementary Tables 
 
Phenotype PGS Beta  

(Std. Err) 
PGS 
P-value 

Sex 
Beta 
(Std. 
Err) 

Sex 
P-value 

PGS*Sex 
Beta 
(Std. Err) 

PGS*Sex  
P-value 

All Cancers 0.136 
(0.004) 

1.8x10-276 -0.007 
(0.006) 

0.2 -0.009 
(0.006) 

0.1 

Appendicitis 0.053 
(0.006) 

1.27x10-18 0.036 
(0.009) 

1.6x10-4 0.018 
(0.009) 

0.05 

Asthma 0.316 
(0.004) 

<2x10-16 -0.336 
(0.008) 

<2x10-16 0.036 
(0.007) 

6.71x10-7 

Atrial 
Fibrillation 

0.472 
(0.007) 

<2x10-16 0.641 
(0.010) 

<2x10-16 0.017 
(0.009) 

0.05 

CHD 0.233 
(0.007) 

2.22x10-260 0.790 
(0.010) 

<2x10-16 0.063 
(0.008) 

1.2x10-13 

Colorectal 
Cancer 

0.345 
(0.013) 

1.88x10-153 0.275 
(0.019) 

<2x10-16 0.040 
(0.018) 

0.03 

Epilepsy 0.110 
(0.008) 

6.7x10-39 0.138 
(0.012) 

<2x10-16 -0.019 
(0.012) 

0.11 

Gout 0.443 
(0.011) 

<2x10-16 1.242 
(0.015) 

<2x10-16 0.069 
(0.014) 

3.56x10-7 

Hip 
Osteoarthritis 

0.216 
(0.005) 

<2x10-16 -0.247 
(0.009) 

<2x10-16 0.027 
(0.009) 

0.0024 

Knee 
Osteoarthritis 

0.218 
(0.004) 

<2x10-16 -0.265 
(0.007) 

<2x10-16 0.008 
(0.007) 

0.23 

Major 
Depression 

0.171 
(0.003) 

<2x10-16 -0.550 
(0.007) 

<2x10-16 0.009 
(0.006) 

0.16 

Skin Melanoma 0.208 
(0.013) 

8.88x10-59 0.014 
(0.020) 

0.49 0.013 
(0.019) 

0.49 

Rheumatoid 
Arthritis 

0.493 
(0.010) 

<2x10-16 -0.807 
(0.021) 

<2x10-16 -0.004 
(0.019) 

0.82 

Type 1 
Diabetes 

0.789 
(0.016) 

<2x10-16 0.274 
(0.032) 

<2x10-16 -0.020 
(0.023) 

0.38 

Type 2 
Diabetes 

0.561 
(0.005) 

<2x10-16 0.316 
(0.008) 

<2x10-16 -0.054 
(0.007) 

4.78x10-14 

Lung Cancer 0.191 
(0.018) 

5.33x10-26 0.393 
(0.025) 

<2x10-16 0.001 
(0.024) 

0.98 

 
Supplementary Table 1. Main and interaction effects of polygenic scores and sex per 
phenotype. P-values are from a 2-sided Wald test. 
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Phenotype Sex Beta SE Pval Delta SE_Diff Pval 

All Cancers male -0.001 0.0004 0.04 

-0.0002 0.0006 0.67 All Cancers female -0.0007 0.0004 0.15 

Appendicitis male 0.0018 0.0005 0.02 

0.0014 0.0006 0.01 Appendicitis female 0.0003 0.0002 0.12 

Asthma male -0.0046 0.0005 0 

-0.0006 0.0006 0.31 Asthma female -0.004 0.0003 0 

Atrial Fibrillation male -0.009 0.0006 0 

-0.0037 0.001 1.73E-04 Atrial Fibrillation female -0.0053 0.0008 0 

CHD male -0.0079 0.0008 0 

-0.0066 0.0012 1.43E-08 CHD female -0.0013 0.0009 0.17 

Colorectal Cancer male -0.0002 0.001 0.83 

0.003 0.0012 0.01 Colorectal Cancer female -0.0032 0.0007 0 

Epilepsy male -0.002 0.0002 0 

-0.0004 0.0008 0.65 Epilepsy female -0.0016 0.0008 0.08 

Gout male -0.0038 0.0004 0 

-0.0052 0.0011 4.51E-06 Gout female 0.0014 0.0011 0.24 

Hip Osteoarthritis male -0.0016 0.0002 0 

-0.0013 0.0006 0.04 Hip Osteoarthritis female -0.0004 0.0006 0.53 

Knee Osteoarthritis male -0.0001 0.0002 0.71 

0.0021 0.0004 3.67E-08 Knee Osteoarthritis female -0.0021 0.0003 0 

Major Depression male -0.001 0.0003 0.03 

-0.0001 0.0004 0.89 Major Depression female -0.0009 0.0002 0 

Skin Melanoma male -0.003 0.0007 0.01 

-0.0028 0.0009 1.20E-03 Skin Melanoma female -0.0002 0.0004 0.66 

Type 1 Diabetes male -0.0105 0.0011 0 

-0.0012 0.0012 0.34 Type 1 Diabetes female -0.0093 0.0005 0 

Type 2 Diabetes male -0.0095 0.0006 0 

-0.0031 0.0007 4.16E-06 Type 2 Diabetes female -0.0063 0.0003 0 

Lung Cancer male -0.0009 0.0003 0.03 

-0.003 0.0012 0.02 Lung Cancer female 0.002 0.0012 0.14 

Rheumatoid Arthritis male -0.0051 0.0006 0 

0.0004 0.0009 0.67 Rheumatoid Arthritis female -0.0055 0.0008 0 

  
Supplementary Table 2. Differences across sex for betas resulting from weighting linear 

regression of log(Hazard Ratios) on Age. P-value (Pval) is calculated as a 2-sided Wald 

test. 
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No stratification Sex stratified Age stratified Age and Sex stratified 

Colorectal Cancer Breast Cancer All Cancers Asthma 

Lung Cancer 
Coronary Heart 
Disease (Females) Epilepsy Atrial Fibrillation 

Skin Melanoma Hip Osteoarthritis Major Depression 
Coronary Heart Disease 
(Males) 

Appendicitis 
(Females) Gout (Females) Rheumatoid Arthritis Gout (Males) 

Knee Osteoarthritis 
(Males)   Type 1 Diabetes Knee Osteoarthritis (Females) 

      Prostate Cancer 

      Type 2 Diabetes 

      Appendicitis (Males) 

 
Supplementary Table 3. Disease-specific model selection. Note: Breast cancer and 
prostate cancer were only tested in females and males respectively. As such, by default, the 
analysis is sex stratified. 
 
 

Country Sex Clinical Threshold 

Estonia Male 5.62 

Estonia Female 4.73 

Finland Male 7.38 

Finland Female 6.41 

Massachusetts Male 7.28 

Massachusetts Female 5.4 

Norway Male 6.1 

Norway Female 4.7 

United Kingdom Male 13.03 

United Kingdom Female 8.92 

Supplementary Table 4. Country and sex-specific clinical thresholds for Type 2 Diabetes. 
 
 

Country Sex Clinical Threshold 

Estonia Female 1.49 

Finland Female 1.71 

Massachusetts Female 1.86 

Norway Female 1.47 

United Kingdom Female 2.05 

Supplementary Table 5. Country-specific clinical thresholds for Breast Cancer. 
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FollowUp 
Start 
Time 

Phenotype Controls Cases Beta SE Delta SE_Diff Z Pval 

Birth Gout 439387 7945 0.63 0.01 NA NA NA NA 

Baseline Gout 439377 6910 0.61 0.01 -0.01 0.02 -0.6 0.55 

Registry Gout 439387 7920 0.63 0.01 0 0.02 0 1 

Birth Prostate 
Cancer 

193123 11638 0.67 0.01 NA NA NA NA 

Baseline Prostate 
Cancer 

193118 9457 0.64 0.01 -0.03 0.01 -2.3 0.02 

Registry Prostate 
Cancer 

193123 11626 0.67 0.01 0 0.01 0 1 

Birth Rheumatoid 
Arthritis 

446338 994 0.63 0.03 NA NA NA NA 

Baseline Rheumatoid 
Arthritis 

446328 733 0.59 0.04 -0.04 0.05 -0.74 0.46 

Registry Rheumatoid 
Arthritis 

446338 978 0.63 0.03 0.01 0.04 0.13 0.9 

Birth Type 1 
Diabetes 

446340 992 0.75 0.03 NA NA NA NA 

Baseline Type 1 
Diabetes 

446330 526 0.65 0.04 -0.1 0.05 -1.76 0.08 

Registry Type 1 
Diabetes 

446340 964 0.74 0.03 0 0.05 -0.09 0.93 

Birth Epilepsy 441446 5886 0.11 0.01 NA NA NA NA 

Baseline Epilepsy 441436 3651 0.1 0.02 -0.01 0.02 -0.56 0.57 

Registry Epilepsy 441446 5736 0.11 0.01 0 0.02 -0.02 0.99 

Birth Breast 
Cancer 

227339 15232 0.51 0.01 NA NA NA NA 

Baseline Breast 
Cancer 

227334 9055 0.5 0.01 -0.01 0.01 -0.55 0.58 

Registry Breast 
Cancer 

227339 14954 0.51 0.01 0 0.01 -0.13 0.9 

 
Supplementary Table 6. Differences in Hazard Ratio depending on if the start of follow-up 
assumed to begin at birth, registry linkage, or recruitment. P-value (Pval) is calculated as a 
2-sided Wald test. 
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Phenotype 

Global 
% of total Disability 
Adjusted Life Years 

High-SDI Only 
% of total Disability 
Adjusted Life Years 

All cancers 9.88 17.17 

Colorectal cancer 0.96 2.07 

Breast cancer 0.81 1.37 

Type 2 diabetes 2.61 3.34 

Prostate cancer 0.34 0.9 

Coronary heart disease 7.19 7.42 

Melanoma of skin 0.07 0.25 

Asthma 0.85 1 

Type 1 diabetes 0.18 0.25 

Atrial fibrillation and flutter 0.33 0.84 

Depression 1.46 1.94 

Lung cancer 1.81 3.8 

Seropositive rheumatoid 
arthritis 0.13 0.24 

Hip-Osteoarthritis 0.04 0.13 

Knee-Osteoarthritis 0.45 0.85 

Gout 0.07 0.17 

Epilepsy 0.52 0.43 

Appendicitis 0.06 0.02 

Total (exc. All cancers) 17.87 25.02 

 
Supplementary Table 7. Diseases selected for analysis and contribution to global burden of 
disease as quantified by percentage of disability adjusted life years. 
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