Toward Reliable Dipole Moments without Single Excitations: The Role of Orbital Rotations and Dynamical Correlation

Rahul Chakraborty¹, Matheus Morato F. de Moraes¹, Katharina Boguslawski¹, Artur Nowak¹, Julian Świerczyński², and Paweł Tecmer¹

¹Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
²Institute of Engineering and Technology, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland

 $\label{eq:corresponding} Corresponding \ authors: \ matheusmorat@gmail.com, \ k.boguslawski@fizyka.umk.pl, \\ ptecmer@fizyka.umk.pl \\$

Supplementary Information

Type	Molecule	Bond length (Å)	μ (D)
	$_{ m HF}$	0.917	1.827
	HCl	1.275	1.109
Singly bonded	LiH	1.596	5.882
Singly-bonded	NaH	1.889	6.400
	${ m LiF}$	1.564	6.327
	NaCl	2.361	9.002
	AlF	1.654	1.515
	ClF	1.628	0.850
	GaF	1.774	2.400
	LiNa	2.810	0.470
	CO	1.128	0.112
	\mathbf{CS}	1.535	1.958
	CSe	1.676	1.990
Multiply-bonded	SiO	1.510	3.098
	SiS	1.730	1.740
	SiSe	2.058	1.100
	GeO	1.625	3.282
	GeS	2.012	2.000
	PN	1.491	2.751
$A^{2+}B^{2-}$	MgO	1.749	6.200

Table S1: Experimental bond lengths and dipole moments of diatomics studied in this work.

Table S2: Dipole moments (μ in D) of main-group diatomics in different methods. Frozen core approximation has been used here for all the methods. CC_u and CC_r denote unrelaxed and relaxed dipole moments of the corresponding CC methods.

Molec	ule Basis	pCCD	pCCD	pCCD	CCSD_u	$CCSD(T)_u$	oo-pCCD	oo-pCCD	oo-pCCD	CCSD_r	$CCSD(T)_{i}$
			-LCCD	-LCCSD				-LCCD	-LCCSD		
	cc-pVDZ	1.915	1.899	1.814	1.822	1.817	1.861	1.857	1.861	1.830	1.819
	cc- $pVTZ$	1.915	1.889	1.790	1.813	1.800	1.872	1.861	1.838	1.823	1.807
ШĘ	cc- $pVQZ$	1.907	1.880	1.789	1.815	1.801	1.866	1.852	1.832	1.826	1.809
ш	aug-cc-pVDZ	1.923	1.890	1.746	1.787	1.781	1.857	1.845	1.800	1.803	1.788
	aug-cc-pVTZ	1.915	1.880	1.749	1.794	1.782	1.860	1.845	1.806	1.808	1.791
	aug-cc-pVQZ	1.913	1.878	1.758	1.802	1.788	1.857	1.842	1.815	1.814	1.797
	cc- $pVDZ$	1.386	1.378	1.339	1.329	1.312	1.344	1.346	1.404	1.323	1.312
	cc- $pVTZ$	1.242	1.228	1.173	1.184	1.172	1.215	1.211	1.239	1.182	1.174
ЦСI	cc- $pVQZ$	1.210	1.195	1.145	1.150	1.139	1.194	1.189	1.196	1.150	1.142
noi	aug-cc-pVDZ	1.212	1.199	1.126	1.144	1.128	1.198	1.196	1.190	1.146	1.132
	aug-cc-pVTZ	1.175	1.147	1.049	1.093	1.081	1.158	1.149	1.126	1.097	1.086
	aug-cc-pVQZ	1.163	1.138	1.061	1.108	1.096	1.153	1.146	1.139	1.110	1.099
	cc- $pVDZ$	5.903	5.857	5.681	5.735	5.735	5.721	5.753	5.951	5.735	5.735
LiH	cc- $pVTZ$	5.931	5.889	5.764	5.848	5.848	5.829	5.855	6.015	5.848	5.848
	cc- $pVQZ$	5.964	5.924	5.799	5.855	5.855	5.854	5.876	6.025	5.856	5.856

Continued on next page

Table S2 – Continued from previous page

Molec	ule Basis	pCCD	pCCD	pCCD	CCSD_u	$\operatorname{CCSD}(\mathbf{T})_u$	oo-pCCD	oo-pCCD	oo-pCCD	CCSD_r	CCSD(T)
	UDZ		-LCCD	-LCCSD	F 011	F 011	F 010	-LCCD	-LCCSD	5 010	F 010
	aug-cc-pVDZ	5.995	5.950	5.782	5.911	5.911	5.912	5.936	6.088	5.912	5.912
LiH	aug-cc-pVTZ	5.972	5.932	5.811	5.872	5.872	5.873	5.894	6.037	5.873	5.873
	aug-cc-pVQZ	5.982	5.944	5.818	5.868	5.868	5.869	5.889	6.031	5.869	5.869
	cc- $pVDZ$	6.959	6.871	6.557	6.423	6.423	6.610	6.657	7.011	6.424	6.424
	cc- $pVTZ$	6.959	6.871	6.557	6.615	6.615	6.610	6.657	7.011	6.616	6.616
NaH	cc- $pVQZ$	7.002	6.913	6.571	6.665	6.665	6.679	6.721	7.049	6.666	6.666
Itali	aug-cc-pVDZ	7.029	6.940	6.533	6.678	6.678	6.679	6.724	7.065	6.679	6.679
	aug-cc-pVTZ	7.028	6.940	6.617	6.692	6.692	6.693	6.734	7.058	6.693	6.693
	aug-cc-pVQZ	7.027	6.940	6.588	6.687	6.687	6.696	6.736	7.052	6.689	6.689
	cc- $pVDZ$	6.464	6.427	5.991	6.195	6.173	6.363	6.350	6.140	6.232	6.179
	cc- $pVTZ$	6.406	6.372	6.063	6.273	6.245	6.358	6.345	6.194	6.296	6.251
I ;F	cc- $pVQZ$	6.413	6.384	6.139	6.285	6.260	6.379	6.367	6.247	6.304	6.266
LIL	aug-cc-pVDZ	6.490	6.469	6.250	6.369	6.359	6.461	6.452	6.337	6.389	6.364
	aug-cc-pVTZ	6.451	6.424	6.202	6.322	6.304	6.411	6.399	6.295	6.341	6.311
	aug-cc-pVQZ	6.442	6.415	6.204	6.324	6.304	6.407	6.396	6.317	6.342	6.310
	cc-pVDZ	9.324	9.264	8.841	9.012	8.949	9.252	9.230	9.038	9.030	8.955
	cc- $pVTZ$	9.182	9.128	8.834	9.047	8.997	9.201	9.184	9.057	9.057	9.000
N CI	cc- $pVQZ$	9.225	9.177	8.956	9.138	9.099	9.201	9.194	9.209	9.146	9.100
NaCI	aug-cc-pVDZ	9.350	9.321	9.088	9.231	9.199	9.346	9.339	9.225	9.242	9.203
	aug-cc-pVTZ	9.305	9.263	9.028	9.191	9.158	9.305	9.291	9.199	9.200	9.161
	aug-cc-pVQZ	9.264	9.224	9.038	9.179	9.146	9.278	9.266	9.203	9.186	9.148
	cc-pVDZ	1.559	1.498	1.123	1.280	1.261	1.519	1.469	1.111	1.329	1.278
	cc-pVTZ	1.372	1.348	1.226	1.286	1.265	1.375	1.347	1.179	1.314	1.279
. 155	cc-pVQZ	1.383	1.359	1.300	1.366	1.351	1.403	1.379	1.275	1.387	1.365
Alf	aug-cc-pVDZ	1.433	1.418	1.352	1.430	1.431	1.496	1.475	1.314	1.458	1.442
	aug-cc-pVTZ	1.394	1.383	1.359	1.394	1.387	1.424	1.401	1.300	1.416	1.401
	aug-cc-pVQZ	1.370	1.342	1.315	1.400	1.392	1.409	1.387	1.325	1.419	1.406
	cc-pVDZ	1.303	1.265	0.962	1.094	1.073	1.109	1.091	1.059	1.128	1.091
	cc-pVTZ	1 1 1 9	1.069	0 799	0.968	0.921	0.979	0.954	0.907	1 002	0.951
	cc-pVQZ	1.059	1.002	0.741	0.915	0.821	0.929	0.900	0.841	0.948	0.895
ClF	aug-cc-nVDZ	1.000 1.073	1 013	0.738	0.884	0.865	0.875	0.853	0.832	0.923	0.890
	aug cc pVDZ	1.070 1.072	1.010 1.004	0.738	0.898	0.854	0.010	0.000	0.833	0.920 0.934	0.886
	aug ee pv 12 aug-cc-pVOZ	1.072 1.072	1.001	0.730	0.896	0.845	0.910	0.872	0.823	0.001	0.879
	cc-pVDZ	2 255	2 102	1.830	2 021	1 963	2 260	2 207	1.844	2 030	1 9/3
	cc pVTZ	2.200 2.172	2.132 2 1 3 0	1.006	2.021 2.008	1.903 2.043	2.200 2.216	2.207	1.044 1.063	2.030 2.070	2.000
	cc pV1Z	2.172 2.108	2.150 2.167	2.057	2.030 2.105	2.045 2.147	2.210	2.101	2.084	2.013 2.170	2.003 2.112
GaF	our co pVDZ	2.190 2 301	2.107	2.007 2.187	2.130 2.218	2.147	2.20 2.307	2.220 2.370	2.034 2.172	2.170 2.307	2.112 2.261
	aug-cc-pVDZ	2.301 2.244	2.201	2.107	2.510	2.290 2.207	2.391	2.370	2.172 2.114	2.307 2.210	2.201 2.171
	aug-cc-pV1Z	2.244 2.224	2.222 2 102	2.122 2.113	2.244 2.251	2.207	2.309 2.205	2.210	$2.114 \\ 2.138$	2.219	2.171 2.176
	aug-cc-pvQZ	0.515	0.550	2.115	0.202	0.000	0.808	2.205	2.130	0.000	2.170
	cc-pVDZ	0.515	0.559	0.959	0.090	0.880	0.090	0.809	0.048	0.900	0.879
	cc-p V T Z	0.502	0.000	0.970	0.892	0.721	0.009	0.858	0.051	0.894	0.723
LiNa	cc-pvQZ	0.570	0.009	1.001	0.090	0.071	0.895	0.802	0.001	0.900	0.077
Lina	aug-cc-pvDZ	0.008	0.870	0.840	0.892	0.804	0.880	0.860	0.044	0.895	0.803
	aug-cc-pv1Z	0.003	0.070	1.071	0.894	0.710	0.893	0.800	0.052	0.890	0.720
	aug-cc-pVQZ	0.590	0.040	1.069	0.898	0.653	0.901	0.100	0.001	0.900	0.001
	cc-pVDZ	0.144	0.069	0.494	0.252	0.262	0.124	0.186	0.474	0.172	0.221
CO	cc-pVTZ	0.164	0.086	0.446	0.178	0.210	0.089	0.146	0.397	0.106	0.167
	cc-pVQZ	0.189	0.110	0.406	0.135	0.169	0.078	0.132	0.352	0.065	0.125
	aug-cc-pVDZ	0.265	0.165	0.421	0.172	0.182	0.073	0.132	0.386	0.097	0.141

Continued on next page

Table S2 – Continued from previous page

Molec	ule Basis	pCCD	pCCD	pCCD	CCSD_u	$\operatorname{CCSD}(\mathbf{T})_u$	oo-pCCD	oo-pCCD	oo-pCCD	CCSD_r	$CCSD(T)_{i}$
			-LCCD	-LCCSD				-LCCD	-LCCSD		
CO	aug-cc-pVTZ	0.278	0.184	0.388	0.141	0.170	0.074	0.129	0.355	0.070	0.126
	aug-cc-pVQZ	0.280	0.191	0.368	0.128	0.161	0.078	0.131	0.344	0.059	0.117
	cc-pVDZ	1.583	1.641	2.350	1.935	1.928	1.785	1.860	2.241	1.843	1.879
	cc- $pVTZ$	1.639	1.692	2.397	1.959	1.949	1.917	1.968	2.273	1.878	1.918
CS	cc-pVQZ	1.685	1.728	2.419	1.979	1.963	1.963	2.009	2.288	1.898	1.937
00	aug-cc-pVDZ	1.615	1.677	2.423	2.021	2.014	1.851	1.924	2.323	1.936	1.971
	aug-cc-pVTZ	1.611	1.678	2.433	2.010	1.999	1.977	2.026	2.313	1.928	1.969
	aug-cc-pVQZ	1.626	1.680	2.416	2.000	1.984	1.983	2.028	2.305	1.919	1.959
	cc-pVDZ	1.838	1.912	2.849	2.255	2.215	2.078	2.176	2.671	2.126	2.148
	cc- $pVTZ$	1.825	1.908	2.911	2.275	2.233	2.197	2.274	2.726	2.153	2.185
CSe	cc- $pVQZ$	1.857	1.927	2.927	2.268	2.222	2.226	2.297	2.718	2.146	2.178
CDC	aug-cc-pVDZ	1.793	1.890	2.919	2.335	2.293	2.167	2.262	2.741	2.214	2.234
	aug-cc-pVTZ	1.768	1.871	2.926	2.304	2.260	2.240	2.315	2.737	2.183	2.213
	aug-cc-pVQZ	1.763	1.848	2.878	2.277	2.230	2.238	2.309	2.718	2.155	2.187
	cc-pVDZ	3.309	3.135	1.893	2.534	2.405	3.070	2.944	2.112	2.697	2.506
	cc- $pVTZ$	3.456	3.297	2.173	2.881	2.698	3.375	3.268	2.390	3.009	2.791
SiO	cc- $pVQZ$	3.610	3.447	2.310	3.089	2.908	3.531	3.430	2.573	3.207	2.998
510	aug-cc-pVDZ	3.613	3.438	2.162	2.976	2.850	3.506	3.398	2.461	3.115	2.933
	aug-cc-pVTZ	3.662	3.502	2.301	3.109	2.943	3.574	3.472	2.572	3.232	3.032
	aug-cc-pVQZ	3.686	3.527	2.343	3.157	2.984	3.584	3.484	2.626	3.273	3.073
	cc- $pVDZ$	1.016	0.937	0.427	0.731	0.632	1.365	1.238	0.418	0.794	0.684
	cc- $pVTZ$	1.091	1.002	0.565	0.903	0.801	1.396	1.293	0.564	0.947	0.840
SiS	cc-pVQZ	1.044	0.975	0.646	0.952	0.862	1.380	1.285	0.623	0.993	0.898
	aug-cc-pVDZ	1.088	0.995	0.517	0.853	0.768	1.433	1.325	0.532	0.907	0.815
	aug-cc-pVTZ	1.111	1.010	0.563	0.920	0.829	1.380	1.283	0.582	0.965	0.869
	aug-cc-pVQZ	1.106	1.021	0.638	0.955	0.869	1.292	1.212	0.661	0.997	0.904
	cc-pVDZ	1.786	1.609	0.362	0.997	0.840	2.174	1.983	0.488	1.167	0.977
	cc-pVTZ	1.786	1.609	0.362	1.243	1.064	2.174	1.983	0.488	1.388	1.183
SiSe	cc-pVQZ	1.797	1.628	0.465	1.337	1.166	2.190	2.007	0.571	1.473	1.278
	aug-cc-pVDZ	1.828	1.616	0.278	1.156	1.010	2.254	2.048	0.462	1.310	1.134
	aug-cc-pVTZ	1.861	1.652	0.321	1.261	1.095	2.146	1.960	0.501	1.404	1.212
	aug-cc-pVQZ	1.860	1.659	0.399	1.339	1.171	2.178	1.998	0.573	1.474	1.282
	cc-pVDZ	3.752	3.524	1.697	2.712	2.516	3.214	3.072	2.149	2.926	2.663
	cc-pVTZ	3.893	3.699	2.027	3.092	2.833	3.569	3.451	2.502	3.260	2.959
GeO	cc-pVQZ	4.069	3.857	2.067	3.311	3.051	3.739	3.628	2.697	3.462	3.168
	aug-cc-pVDZ	4.120	3.921	2.175	3.287	3.096	3.805	3.687	2.669	3.467	3.210
	aug-cc-pVTZ	4.168	3.957	2.052	3.364	3.126	3.815	3.703	2.732	3.521	3.241
	aug-cc-pVQZ	4.174	3.961	2.043	3.406	3.157	3.819	3.709	2.776	3.553	3.270
	cc-pVDZ	2.514	2.325	0.964	1.730	1.523	2.900	2.675	1.141	1.896	1.672
	cc-pVTZ	2.625	2.432	1.131	1.993	1.765	2.956	2.779	1.298	2.120	1.887
GeS	cc-pVQZ	2.608	2.436	1.264	2.116	1.902	2.978	2.812	1.419	2.233	2.014
	aug-cc-pVDZ	2.685	2.482	1.133	2.008	1.814	3.070	2.882	1.348	2.151	1.944
	aug-cc-pVTZ	2.646	2.459	1.170	2.075	1.866	2.983	2.812	1.362	2.201	1.985
	aug-cc-pVQZ	2.647	2.470	1.250	2.137	1.929	2.981	2.819	1.435	2.253	2.039
	cc-pVDZ	2.578	2.486	1.968	2.394	2.290	2.493	2.422	2.155	2.474	2.368
D 77	cc-pVTZ	2.868	2.736	2.140	2.638	2.482	2.704	2.634	2.377	2.714	2.582
PN	cc-pVQZ	2.984	2.844	2.247	2.762	2.595	2.795	2.726	2.488	2.833	2.700
	aug-cc-pVDZ	2.931	2.794	2.223	2.688	2.581	2.782	2.715	2.419	2.771	2.660
	aug-cc-pVTZ	3.023	2.871	2.240	2.765	2.614	2.821	2.752	2.478	2.843	2.716

Continued on next page

Molec	ule Basis	pCCD	pCCD	pCCD	CCSD_u	$CCSD(T)_u$	oo-pCCD	oo-pCCD	oo-pCCD	CCSD_r	$CCSD(T)_{i}$
			-LCCD	-LCCSD				-LCCD	-LCCSD		
PN	aug-cc-pVQZ	3.062	2.904	2.290	2.807	2.643	2.830	2.762	2.523	2.880	2.749
	cc-pVDZ	8.366	8.041	4.423	4.934	3.838	4.158	4.122	5.758	4.600	4.952
	cc- $pVTZ$	8.377	8.036	3.962	5.996	4.696	4.109	4.075	5.940	5.721	5.706
MgO	cc-pVQZ	8.430	8.089	3.752	6.576	5.256	3.949	3.923	5.996	6.316	6.196
MgO	aug-cc-pVDZ	8.366	8.041	4.423	6.573	5.341	4.158	4.122	5.758	6.349	6.294
	aug-cc-pVTZ	8.377	8.036	3.962	6.759	5.470	4.109	4.075	5.940	6.513	6.404
	aug-cc-pVQZ	8.430	8.089	3.752	6.911	5.608	3.949	3.923	5.996	6.664	6.510

Table S2 – Continued from previous page

•

TableS3: Error analysis w.r.t. experimental values for the dataset of 20 main group diatomics studied in this work. Errors are calculated as $|\mu_{Method} - \mu_{Exp.}|$

Quanti	ty Basis	pCCD	pCCD	pCCD	CCSD_u	$_{u}$ CCSD(T) $_{u}$	oo-pCCD	oo-pCCD	oo-pCCD	CCSD_r	CCSD(T)
			-LCCD	-LCCSD				-LCCD	-LCCSD		
	cc-pVDZ	0.385	0.325	0.600	0.303	0.399	0.334	0.347	0.493	0.278	0.313
MILE	cc- $pVTZ$	0.387	0.316	0.552	0.181	0.273	0.339	0.325	0.409	0.183	0.204
	cc- $pVQZ$	0.412	0.336	0.520	0.169	0.203	0.363	0.348	0.365	0.181	0.143
MUL	aug-cc-pVDZ	0.426	0.344	0.498	0.170	0.222	0.355	0.337	0.403	0.164	0.157
	aug-cc-pVTZ	0.437	0.356	0.530	0.180	0.194	0.363	0.345	0.373	0.191	0.148
	aug-cc-pVQZ	0.442	0.363	0.520	0.193	0.173	0.376	0.357	0.349	0.205	0.143
	cc-pVDZ	0.599	0.513	0.787	0.441	0.655	0.574	0.560	0.610	0.457	0.452
	cc- $pVTZ$	0.601	0.506	0.766	0.260	0.442	0.585	0.565	0.512	0.266	0.290
DMCE	cc- $pVQZ$	0.631	0.531	0.763	0.255	0.322	0.627	0.606	0.463	0.251	0.234
LINDE	aug-cc-pVDZ	0.633	0.530	0.688	0.269	0.336	0.607	0.579	0.505	0.252	0.258
	aug-cc-pVTZ	0.640	0.535	0.753	0.276	0.300	0.604	0.581	0.476	0.262	0.244
	aug-cc-pVQZ	0.651	0.545	0.764	0.290	0.271	0.636	0.614	0.447	0.276	0.240

Figure S1: Potential energy surface of CO with oo-pCCD method and its dynamic correlation correction variants in aug-cc-pVTZ basis.

Species	pCCD	pCCD-	pCCD-	CCSD_u	$CCSD(T)_u$	oo-pCCD	oo-pCCD-	oo-pCCD-	CCSD_r	$\overline{\text{CCSD}(\mathbf{T})_r}$
		LCCD	LCCSD				LCCD	LCCSD		
HF	1.913	1.878	1.764	1.806	1.792	1.855	1.840	1.819	1.818	1.800
HCl	1.163	1.138	1.055	1.104	1.092	1.151	1.144	1.133	1.107	1.095
LiH	5.984	5.945	5.798	5.854	5.851	5.912	5.927	5.994	5.856	5.851
NaH	7.028	6.946	6.452	6.577	6.551	6.740	6.778	6.960	6.578	6.553
LiF	6.444	6.416	6.186	6.311	6.288	6.413	6.399	6.290	6.328	6.295
NaCl	9.265	9.232	8.990	9.144	9.102	9.285	9.274	9.153	9.154	9.108
AlF	1.371	1.345	1.379	1.439	1.432	1.394	1.373	1.374	1.456	1.446
ClF	1.072	1.001	0.744	0.908	0.853	0.897	0.868	0.839	0.940	0.887
GaF	2.224	2.188	2.090	2.270	2.252	2.295	2.261	2.117	2.309	2.267
LiNa	0.587	0.649	0.800	0.678	0.653	0.897	0.882	0.473	0.676	0.662
CO	0.280	0.191	0.376	0.131	0.166	0.084	0.139	0.352	0.062	0.122
CS	1.629	1.684	2.469	2.024	2.006	1.996	2.043	2.349	1.939	1.981
CSe	1.764	1.850	2.891	2.252	2.204	2.266	2.334	2.710	2.134	2.170
SiO	3.687	3.528	2.378	3.193	3.013	3.686	3.576	2.545	3.304	3.102
SiS	1.107	1.022	0.655	0.976	0.885	1.364	1.273	0.630	1.016	0.922
SiSe	1.899	1.683	0.422	1.428	1.252	2.068	1.892	0.630	1.553	1.350
GeO	4.176	3.957	1.822	3.377	3.114	3.862	3.735	2.401	3.550	3.252
GeS	2.649	2.473	1.056	2.081	1.850	3.081	2.901	1.007	2.214	1.982
PN	3.063	2.907	2.327	2.839	2.664	2.826	2.760	2.559	2.907	2.773
MgO	8.430	8.088	4.139	6.859	5.526	3.510	3.551	5.232	6.660	6.484

Table S4: Dipole moment (μ in D) of diatomic molecules in aug-cc-pVQZ basis set without frozen core. CC_u and CC_r denote unrelaxed and relaxed dipole moments of the corresponding CC methods.

Figure S2: Distance dependence of the calculated dipole moment components in aug-cc-pVTZ basis for the $H_2O \cdots Rg$ [Rg = He, Ne, Ar, and Kr] complexes.

r (Å)	oo-pCCD	oo-pCCD-LCCD	oo-pCCD-LCCSD	CCSD_r	$CCSD(T)_r$
0.75	-1.606	-1.594	-1.541	-1.548	-1.538
0.80	-1.681	-1.668	-1.616	-1.625	-1.613
0.85	-1.758	-1.745	-1.697	-1.703	-1.688
0.90	-1.835	-1.820	-1.778	-1.781	-1.765
0.917	-1.860	-1.845	-1.806	-1.808	-1.791
0.95	-1.908	-1.892	-1.862	-1.860	-1.841
1.00	-1.974	-1.958	-1.946	-1.938	-1.917
1.10	-2.080	-2.065	-2.112	-2.088	-2.060
1.15	-2.100	-2.089	-2.200	-2.158	-2.127
1.175	-2.111	-2.100	-2.239	-2.191	-2.158
1.20	-2.118	-2.108	-2.278	-2.223	-2.188
1.30	-2.134	-2.127	-2.407	-2.334	-2.291
1.35	-2.088	-2.085	-2.475	-2.378	-2.330
1.40	-2.048	-2.048	-2.524	-2.412	-2.358
1.45	-1.992	-1.995	-2.563	-2.436	-2.374
1.50	-1.921	-1.928	-2.589	-2.447	-2.377
1.55	-1.801	-1.812	-2.581	-2.446	-2.366
1.575	-1.791	-1.803	-2.605	-2.440	-2.354
1.60	-1.742	-1.756	-2.603	-2.430	-2.338
1.65	-1.637	-1.655	-2.590	-2.399	-2.294
1.70	-1.526	-1.547	-2.565	-2.354	-2.234
1.75	-1.412	-1.436	-2.528	-2.293	-2.158
1.80	-1.296	-1.323	-2.482	-2.217	-2.067
1.85	-1.182	-1.211	-2.426	-2.126	-1.963
1.90	-1.071	-1.102	-2.364	-2.023	-1.851
1.95	-0.965	-0.997	-2.298	-1.909	-1.734
2.00	-0.866	-0.898	-2.227	-1.786	-1.619
2.05	-0.773	-0.806	-2.155	-1.656	-1.512
2.10	-0.687	-0.720	-2.082	-1.523	-1.421
2.15	-0.609	-0.642	-2.009	-1.388	-1.353
2.20	-0.538	-0.571	-1.937	-1.253	-1.317
2.25	-0.474	-0.507	-1.867	-1.122	-1.320
2.30	-0.417	-0.449	-1.799	-0.996	-1.368
2.35	-0.366	-0.397	-1.734	-0.877	-1.469
2.40	-0.321	-0.351	-1.671	-0.765	-1.625
2.45	-0.281	-0.311	-1.611	-0.662	-1.838
2.50	-0.246	-0.275	-1.554	-0.567	-2.110
2.75	-0.127	-0.151	-1.311	-0.219	
3.00	-0.067	-0.086	-1.131	-0.033	
3.50	-0.022	-0.040	-0.906		
4.00	-0.009	-0.030	-0.803		

Table S5: Dipole moment surface of the HF molecule in aug-cc-pVTZ basis.

r (Å)	oo-pCCD	oo-pCCD-LCCD	oo-pCCD-LCCSD	CCSD_r	$\operatorname{CCSD}(\mathbf{T})_r$
0.75	1.291	1.295	1.240	1.224	1.223
0.80	1.162	1.170	1.135	1.105	1.106
0.85	1.014	1.027	1.025	0.972	0.978
0.90	0.860	0.879	0.905	0.828	0.838
0.95	0.697	0.722	0.781	0.674	0.691
1.00	0.527	0.559	0.656	0.511	0.536
1.05	0.352	0.392	0.534	0.342	0.378
1.10	0.174	0.224	0.417	0.169	0.217
1.125	0.085	0.140	0.362	0.081	0.137
1.128	0.074	0.129	0.355	0.070	0.127
1.13	0.068	0.123	0.351	0.063	0.120
1.15	-0.003	0.056	0.309	-0.008	0.056
1.20	-0.179	-0.107	0.213	-0.186	-0.103
1.25	-0.349	-0.265	0.132	-0.364	-0.259
1.30	-0.513	-0.415	0.069	-0.541	-0.410
1.35	-0.664	-0.55	0.025	-0.716	-0.555
1.40	-0.806	-0.675	0.006	-0.887	-0.693
1.45	-0.935	-0.786	0.014	-1.055	-0.821
1.50	-1.048	-0.879	0.066	-1.218	-0.939

Table S6: Dipole moment surface of the CO molecule in aug-cc-pVTZ basis.

Table S7: Potential energy surface of the CO molecule in aug-cc-pVTZ basis.

r (Å)	oo-pCCD	oo-pCCD-LCCD	oo-pCCD-LCCSD
0.75	-112.039847	-112.263221	-112.264186
0.80	-112.347900	-112.573941	-112.574974
0.85	-112.562476	-112.791373	-112.792613
0.90	-112.708294	-112.940263	-112.941638
0.95	-112.803726	-113.038946	-113.040487
1.00	-112.862264	-113.100881	-113.102623
1.05	-112.893868	-113.136013	-113.137993
1.10	-112.905944	-113.151733	-113.153993
1.125	-112.906435	-113.154085	-113.156501
1.128	-112.906275	-113.154165	-113.156602
1.13	-112.906164	-113.15419	-113.156638
1.15	-112.903983	-113.153519	-113.156103
1.20	-112.892097	-113.145475	-113.148426
1.25	-112.873341	-113.130644	-113.134004
1.30	-112.850002	-113.111302	-113.115103
1.35	-112.823797	-113.089152	-113.093311
1.40	-112.796049	-113.065542	-113.070078
1.45	-112.767685	-113.041273	-113.046226
1.50	-112.739429	-113.016702	-113.022521

Species	\mathbf{r}_e (Å)	θ_e
$H_2O\cdots He$	3.186	79°
$H_2O\cdots Ne$	3.228	76°
$H_2O\cdots Ar$	3.651	100°
$H_2O\cdots Kr$	3.884	109.3°

Table S8: Equilibrium bond parameters of the $H_2O \cdots Rg$ [Rg = He, Ne, Ar, Kr] complexes used in this work. [HM10]

Table S9: Supramolecular dipole moments (μ in D) of the binary complexes in aug-cc-pVTZ basis. CC_u and CC_r denote unrelaxed and relaxed dipole moments of the corresponding CC methods. The errors with respect to reference CCSD(T)_r values are calculated as $\epsilon = \mu_{\text{Method}} - \mu_{\text{CCSD}(T)_r}$.

Species	oo-pCCD	ϵ	oo-pCCD-	ϵ	oo-pCCD-	ϵ	CCSD_r	ϵ	$CCSD(T)_{r}$
			LCCD		LCCSD				
CO-HF	2.586	-0.030	2.630	-0.014	2.866	-0.250	2.571	-0.045	2.616
CO-HCl	1.698	-0.007	1.745	0.040	1.983	0.278	1.652	-0.053	1.705
N_2-HF	2.371	0.047	2.357	0.043	2.329	0.005	2.335	0.011	2.324
N_2 -HCl	1.497	0.064	1.488	0.055	1.466	0.033	1.441	0.008	1.433
$H_2O\cdots He$	1.928	0.107	1.910	0.089	1.835	0.032	1.844	0.023	1.821
$H_2O\cdots Ne$	1.918	0.110	1.899	0.091	1.821	0.013	1.831	0.023	1.808
$H_2O\cdots Ar$	1.905	0.104	1.887	0.086	1.810	0.009	1.822	0.021	1.801
$H_2O\cdots Kr$	1.940	0.096	1.922	0.078	1.863	0.019	1.865	0.021	1.844

References

[HM10] Anastasios Haskopoulos and George Maroulis. "Interaction electric hyperpolarizability effects in weakly bound H2O … Rg (Rg= He, Ne, Ar, Kr and Xe) complexes." In: J. Phys. Chem. A 114.33 (2010), pp. 8730–8741.