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Supplementary Figure 1. Uncropped images of Western Blots. 
 
Raw Western blot images with protein molecular weight ladder and black box outlining the image being 
cropped to generate Extended Data Fig.6e. There are three proteins being examined here: dCas9-
10xGCN4 (estimated MW ~200kDa, can be seen by Cas9 antibody); scFV-CTCF-V5 (WT and 
Y226A/F228A) (estimated MW ~140kDa), which can be seen by either CTCF or V5 antibodies.  
 

  
 
Supplementary Figure 1. Western blots show the expression of proteins in three lanes: the vec 
indicates cells infected with virus expressing empty vector; the ‘CTCF wt’ indicates cells expressing 
scFV-CTCF-V5 WT and dCas9-GCN4; the ‘Y226A_F228A’ indicates cells expressing scFV-
CTCF(Y226A/F228A)-V5 and dCas9-GCN4. The antibodies used for blotting are labeled on top of the 
blots. Blots were probed 1:2000 with primary antibody anti-CTCF, Millipore #07-729, anti-V5 Invitrogen 
#R960-25, anti-Cas9 Protein-tech #26758-I-AP, anti-GAPDH; and secondary anti-rabbit-IgG-HRP 
conjugate (CTCF and Cas9) or anti-mouse-IgG-HRP (V5 and GAPDH) conjugate. 
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Supplementary Figure 2. Sanger Sequencing of genetic deletion/mutation in TFF1p. 
 
We used Sanger sequencing to validate each and every case of the genetic editing shown in 
Supplementary Table 1. The Supplementary Figure 2 below shows the sanger validation of five 
cases of successful genome editing, which include the case of CTCF motif disruption in TFF1 promoter 
(TFF1p CTCF-motif mutant, top), the deletion of the CTCF binding peak in TFF1 promoter (∆CTCF), 
the deletion of ERa binding peak (∆ERE) in the TFF1 promoter, as well as two independent TFF1 
promoter deletion by two separate sets of gRNAs (gRNA1/2 and gRNA3/4). 
 

 
Supplementary Figure 2. In the middle of the panel, we show a UCSC genome browser screenshot 
for ChIP-seq of CTCF, ERa, p300 and PolII binding in the TFF1 promoter. Sanger sequencing results 
show the five cases of successful genome editing, which include the case of CTCF motif disruption in 
TFF1 promoter (TFF1p CTCF-motif mutant, top), the deletion of the CTCF binding peak in TFF1 
promoter (∆CTCF), the deletion of ERa binding peak (∆ERE) in the TFF1 promoter, as well as two 
independent TFF1 promoter deletion by two separate sets of gRNAs (gRNA1/2 and gRNA3/4). The 
DNA sequences below Sanger sequencing data indicate CTCF motif (only for the top panel) or gRNA 
sequences (for all other panels).  
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Supplementary Figure 3. Sanger Sequencing of genetic deletion for TFF1e and TFF3p. 
 
The TFF1 enhancer is about 10kb away from the TFF1 promoter, which bears a strong CTCF binding 
peak. As shown in the Extended Data Fig.8d, the TFF1 enhancer is the only one of the four cases that 
has an enhancer CTCF peak among four estrogen-induced enhancer-gene pairs (TFF1e-p, P2RY2e-p, 
PGRe-p, KCNK5e-p). We deleted the entire TFF1 enhancer, or only the CTCF peak in it using 
CRISPR/Cas9.  
 

 
Supplementary Figure 3. The plot in the middle shows the genomic landscape of the TFF2 and TFF3 
genes relative to the TFF1 gene and the TFF1 enhancer. The Sanger Sequencing results above or 
below show full deletion of TFF1 enhancer (i.e. TFF1 enhancer KO or TFF1e-KO in Supplementary 
Table 1), deletion of a CTCF binding peak inside the TFF1 enhancer (i.e. TFF1e CTCF-KO), as well as 
the deletion of the TFF3 promoter (i.e. TFF3p-KO) in MCF-7 cells. The DNA sequences below Sanger 
sequencing data indicate gRNA sequences. 
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Supplementary Figure 4. Sanger Sequencing of genetic deletion of P2RY2p, PGRp and KCNK5p. 
 
We have additionally conducted CRISPR/Cas9 deletion of three other estrogen target gene promoters 
(PGRp, P2RY2p and KCNK5p, also see Extended Data. Figs.1,4 and 8).  
 

 
Supplementary Figure 4. Diagrams and Sanger Sequencing results show the promoter deletion of 
P2RY2 (panel a), PGR (panel b), and KCNK5 (panel c). The DNA sequences below Sanger 
sequencing data indicate gRNA sequences. 
 
 
  



 5 

Supplementary Figure 5. Sanger Sequencing of genetic deletion or mutation of ZCCHC7p, PVT1p 
and CLPTM1Lp. 
 
We have analyzed pan cancer genomic data (ICGC and PCAWG datasets, http://icgc.org/ and 
https://dcc.icgc.org/pcawg) to find cancer mutations/deletions that locate to oncogene-neighboring 
promoters (ONPs). Three prominent cases of ONP promoters next to oncogenes were selected for 
genetic deletion or for generating point mutations to model cancer genetic changes. These include 
ZCCHC7p that locates next to PAX5 oncogene (panel a), PVT1p that locates next to MYC oncogene 
(panel b), and CLPTM1Lp that locates next to the TERT oncogene (panel c).  
 

 
Supplementary Figure 5. Sanger sequencing results below are showing successful homozygous 
deletion of the three ONP promoters (panels a,b, and the left side of panel c). The DNA sequences 
below Sanger sequencing data indicate gRNA sequences. In addition to promoter deletion, for the 
CLPTM1L promoter, we used CRISRP/Cas9-mediated genome cutting followed by homologous 
recombination using oligonucleotides as donor to knock-in cancer point-mutations (right side of panel c, 
also see main manuscript Fig.3e,f,g). The Sanger sequencing result of the knock-in region is shown in 
panel c (right side). For this, a heterozygous genotype was achieved (pink highlights show the 
mutations). 
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Supplementary Figure 6 and notes.  
Additional discussion that oncogene-neighboring promoters (ONPs) that are significantly mutated in 
human cancers. 
 
We aim to examine the cancer mutations (or small deletions) homed in gene promoters neighboring 
oncogenes, which we dubbed oncogene-neighboring promoters (ONPs). The list of oncogenes was 
based on COSMIC database Cancer Gene Census (CGC), and promoters located in -/+200 kb 
genomic distance from the oncogene promoters (OPs, n=315) were referred to as oncogene-
neighboring promoters (ONPs, n=1,693). We analyzed ICGC (International Cancer Genome 
Consortium) and the Pan Cancer Analyses of Whole Genome (PCAWG) datasets (http://icgc.org/ and 
https://dcc.icgc.org/pcawg).  
 
ICGC Release 28 simple mutation and structure mutation data were obtained from ICGC data portal. 
Only mutations and deletions identified by whole genome sequencing (WGS) were used for further 
analysis. In total, 76,005,698 unique WGS mutations from 6,285 donors among 68 cancer cohorts were 
searched against 37,552 TSSs of 27,502 RefSeq genes annotated based on genome build hg19. The 
distances of mutations to TSSs were calculated by bedtools. The mutations with distance shorter than 
1kb from TSSs were considered as promoter-homed mutations. Similarly, for deletions, a total of 
64,113 deletions from 2,229 donors in 18 cancer cohorts were determined to be associated with 
promoters by distance selection. 
 
We applied a Binomial probability model [1] to determine the statistical significance of mutational 
hotspots at promoter level, where the expected probability of a promoter mutation due to chance in 
each cancer cohort was calculated by the total mutations in all gene promoters divided by the total 
donor and promoter counts separately. The one-sided P-values for each gene promoter in every cancer 
type were determined by binomial test based on the affected donors and total tested donors, to test 
whether the number of donors observed was higher than the expected number by chance given the 
expected pattern of promoter mutation in that cancer type/cohort. The FDR values were adjusted by 
Benjamini-Hochberg method. In the plot below, we showed a list of significantly mutated or deleted 
ONPs (FDR < 0.001), and with a high number of donor counts (affected total donors > 10). 
(Supplementary Figure 6).  
 
Supplementary Figure 6 legend: 
In the plot below, the cancer cohorts (x axis) were ranked by the original cancer sites, and the ONP-OP 
gene pair (y axis) was reverse-alphabetically ranked by the neighboring oncogenes. Gene names 
before “->” are those of ONPs, while those after “->” are oncogenes. For example, “mutation TNFSF8-> 
TNC (row 3 below)” indicates that TNC is an oncogene listed in COSMIC, and the gene promoter of 
TNFSF8 was identified as an ONP, which contains a significant number of somatic mutations in several 
cancer types. The dot size was scaled by the percentage of affected donors in each of that cancer 
type/cohort (SamplePerc). Only pairs of ONPs-OPs with mutations affecting more than 10 total donors 
in at least 1 cancer cohort and FDR < 0.001 by binomial test were shown here as dots with red color. 
Short deletion (<10 Kb) covering an ONP was shown as dots with blue color. The Cancer type 
abbreviations can be found in ICGC data portal (http://icgc.org/), for example: BLCA-US: Bladder 
Urothelial Cancer - TCGA, US. 
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deletion : UQCRQ −> AFF4
mutation : LINC00638 −> AKT1

mutation : SPTBN4 −> AKT2
mutation : CBX7 −> APOBEC3B

mutation : UXT −> ARAF
mutation : LINC02313 −> ARHGAP5

mutation : CTSS −> ARNT
mutation : HORMAD1 −> ARNT
mutation : AP2A1 −> BCL2L12
mutation : PRMT1 −> BCL2L12

mutation : RPL13A −> BCL2L12
mutation : CEACAM22P −> BCL3

mutation : TOMM40 −> BCL3
mutation : VPS11 −> BCL9L

mutation : SLC30A6 −> BIRC6
mutation : CYP4F22 −> BRD4

mutation : NFIX −> CALR
mutation : GNA12 −> CARD11

mutation : LOC100129603 −> CARD11
mutation : URI1 −> CCNE1
deletion : KRT24 −> CCR7

mutation : NDST1 −> CD74
mutation : RPS14 −> CD74

mutation : CEACAM5 −> CD79A
mutation : CEACAM7 −> CD79A

deletion : CSH1 −> CD79B
mutation : EEF1AKMT3 −> CDK4

mutation : CD27 −> CHD4
mutation : ING4 −> CHD4

mutation : METTL21A −> CREB1
mutation : AKR1D1 −> CREB3L2

mutation : FKBP8 −> CRTC1
mutation : LSM10 −> CSF3R

mutation : LOC101927987 −> CTNNA2
mutation : LINC00462 −> CYSLTR2

mutation : OS9 −> DDIT3
deletion : CEP95 −> DDX5

mutation : CXCR5 −> DDX6
mutation : RNF144B −> DEK

mutation : EGFR−AS1 −> EGFR
mutation : CDK18 −> ELK4

deletion : NEUROD2 −> ERBB2
deletion : PNMT −> ERBB2
deletion : TCAP −> ERBB2

mutation : IKZF3 −> ERBB2
mutation : COQ10A −> ERBB3

mutation : MYL6B −> ERBB3
deletion : ETS2 −> ERG

mutation : LINC00114 −> ERG
mutation : LINC01423 −> ERG

mutation : LOC101928398 −> ERG
mutation : ARL4D −> ETV4

mutation : DHX8 −> ETV4
deletion : FCRLA −> FCGR2B
mutation : HSPA7 −> FCGR2B

deletion : FCRL2 −> FCRL4
mutation : FCRL5 −> FCRL4

mutation : ETS1 −> FLI1
mutation : URAD −> FLT3

mutation : OR2Y1 −> FLT4
mutation : PRR23A −> FOXL2
mutation : PRR23B −> FOXL2
mutation : PRR23C −> FOXL2
mutation : SNX12 −> FOXO4
mutation : EIF4E3 −> FOXP1

mutation : FOXP1−AS1 −> FOXP1
mutation : NEXN −> FUBP1

mutation : PIM2 −> GATA1
deletion : MBD6 −> GLI1

mutation : R3HDM2 −> GLI1
mutation : CELF5 −> GNA11

mutation : LOC105372695 −> GNAS
mutation : LEFTY2 −> H3F3A

deletion : ITGB4 −> H3F3B
mutation : CCL26 −> HIP1

deletion : HIST1H2BD −> HIST1H3B
mutation : HIST1H2AC −> HIST1H3B
mutation : HIST1H2BC −> HIST1H3B
mutation : HIST1H2BD −> HIST1H3B
mutation : HIST1H2BF −> HIST1H3B
mutation : HIST1H3D −> HIST1H3B
mutation : HIST1H4E −> HIST1H3B

mutation : HOXA−AS2 −> HOXA9
mutation : HOXA−AS3 −> HOXA9
mutation : FLJ12825 −> HOXC13

deletion : HOXD10 −> HOXD13
mutation : HOXD10 −> HOXD13
mutation : HOXD12 −> HOXD13
mutation : HOXD9 −> HOXD13

mutation : PKP3 −> HRAS
mutation : CRYGA −> IDH1
mutation : CRYGB −> IDH1

mutation : TTLL13P −> IDH2
mutation : LOC100506406 −> IL7R

mutation : UGT3A1 −> IL7R
mutation : DUSP22 −> IRF4

mutation : ARRDC2 −> JAK3
mutation : FCHO1 −> JAK3

mutation : RPL18A −> JAK3
deletion : LINC01135 −> JUN
mutation : FAM117A −> KAT7
deletion : RHEBL1 −> KMT2D

mutation : CCDC65 −> KMT2D
mutation : RND1 −> KMT2D

mutation : LRMP −> KRAS
mutation : HADH −> LEF1

mutation : LINC01991 −> LPP
mutation : LOC101927769 −> MACC1

mutation : MACC1−AS1 −> MACC1
deletion : MASCRNA −> MALAT1

deletion : NEAT1 −> MALAT1
deletion : SSSCA1 −> MALAT1
deletion : TALAM1 −> MALAT1

mutation : MAP3K11 −> MALAT1
mutation : NEAT1 −> MALAT1

deletion : LOC101927322 −> MALT1
mutation : ALPK2 −> MALT1

mutation : LINC01926 −> MALT1
mutation : JRKL−AS1 −> MAML2
mutation : ANKRD24 −> MAP2K2

mutation : CCDC94 −> MAP2K2
mutation : CREB3L3 −> MAP2K2

mutation : TOP3B −> MAPK1
deletion : LOC100130075 −> MDM2

deletion : LRRC34 −> MECOM
mutation : LRRIQ4 −> MECOM

mutation : CDC20 −> MPL
deletion : AKAP1 −> MSI2

mutation : OR1M1 −> MUC16
mutation : OR7G2 −> MUC16

mutation : MUC20 −> MUC4
mutation : PVT1 −> MYC

mutation : PPIE −> MYCL
mutation : GACAT3 −> MYCN
deletion : CUEDC2 −> NFKB2

mutation : RPARP−AS1 −> NFKB2
mutation : SYCP1 −> NRAS

mutation : ARHGEF11 −> NTRK1
mutation : NES −> NTRK1

mutation : SH2D2A −> NTRK1
mutation : NTRK3−AS1 −> NTRK3

mutation : EMC4 −> NUTM1
mutation : LINC02283 −> PDGFRA

mutation : LINC01391 −> PIK3CB
mutation : RPS20 −> PLAG1

mutation : SDR16C5 −> PLAG1
mutation : SDR16C6P −> PLAG1

mutation : ARGFX −> POLQ
mutation : ACTRT2 −> PRDM16

deletion : AMZ2 −> PRKAR1A
mutation : LINC01482 −> PRKAR1A

mutation : DKFZp451B082 −> QKI
mutation : DAGLB −> RAC1

mutation : SLC30A8 −> RAD21
mutation : RPL32 −> RAF1

mutation : TOP2A −> RARA
mutation : SNORA105A −> SF3B1

mutation : SLC2A12 −> SGK1
mutation : FSCN3 −> SND1

mutation : SOX2−OT −> SOX2
deletion : DINOL −> SRSF3

mutation : SSX9 −> SSX1
mutation : SSX7 −> SSX2

deletion : PSMC3IP −> STAT3
deletion : RDH16 −> STAT6

mutation : SH3GL1P1 −> SUZ12
deletion : RDM1 −> TAF15

mutation : CCL15−CCL14 −> TAF15
mutation : CYP4Z1 −> TAL1
mutation : REEP6 −> TCF3

mutation : LOC107984703 −> TCL1A
mutation : TCL6 −> TCL1A

mutation : LINC01511 −> TERT
deletion : PGC −> TFEB

deletion : TWNK −> TLX1
mutation : TNFSF8 −> TNC

deletion : LOC101927550 −> TRRAP
deletion : USP34 −> XPO1
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Supplementary Figure 7 and notes.  
ONP cancer mutations and CTCF motif disruption. 
 
Our results suggested that ERR is an overlooked biological/pathological process in which “a promoter 
defect prevents its engagement with its enhancer, which is released to scan the chromatin 
neighborhood, finding a new preferred target”. Underlying ERR, the low-affinity CTCF binding at gene 
promoters appears to act as a quite common, but not universal, mechanism that dictates enhancer-
promoter engagement. Direct motif disruption represents one of the several mechanisms that can 
cause CTCF binding loss at promoters and can trigger ERR. 
  

 
Supplementary Figure 7: 

a) A model figure to show several mechanisms that can impact CTCF binding at chromatin sites 
including promoters, which can potentially modulate/induce ERR. (TF X in the orange objects: 
other transcription factors). 
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b) Recurrent cancer mutations located in oncogene promoters, oncogene-neighboring promoters 
or all promoters that are predicted to disrupt CTCF motif. P values: Two-sided Fisher’s exact 
tests. The numbers indicate the numbers of cancer mutations derived from ICGC release 28. 

c) Box-and-whisker plots showing TERT expression levels in patients carrying mutations in ONP 
(i.e. CLPTM1L promoter) or in the OP (TERT promoter) itself. Well-reported two hotspot 
mutations in the TERT promoter were plotted as comparisons (-66nt and -88nt, which can also 
be referred to as C228T and C250T [2-4]). “Others” indicate all other cancer samples in that 
specific cancer cohort. Only samples with both genotype and RNA-seq data were included in 
this analysis. Three cancer cohorts are shown here (LICA-FR, PBCA-US, SKCM-US). PBCA-
US and SKCM-US are shown because they are the only two cohorts that contain samples 
carrying mutations of the CLPTM1L promoter and paired genotype/RNA-seq datasets are 
available (red dots). LICA-FR does not contain any sample with CLPTM1L promoter mutation, 
but is shown here as a comparison because it is a cancer cohort with the most prevalent 
mutations in the TERT promoter itself. The boxes in the plots show 25-75% quantile of RNA-seq 
expression values, and whisker in the middle shows the median. 

 
We consider that the “promoter defect” that can cause ERR can be multi-fold. Obviously, complete 
deletion of a promoter is the most obvious case, and we showed multiple examples of oncogene 
neighboring promoters that were deleted in human cancers (Fig.3 and Extended Data Fig.9c, and 
Supplementary Figure 6), for which we provided experimental support that ERR operates therein.  
 
We consider CTCF defect to be one, rather than an exclusive, mechanism underlying the loss of 
engagement of a promoter from its enhancer. For the subset of promoters that CTCF binding is 
determining, we are aware that CTCF binding can be affected due to direct motif changes, or changes 
in adjacent DNA sequences not directly overlapping the CTCF motif [5], or epigenetic changes [6] (e.g. 
DNA methylation [7] or nucleosome remodeling [8], Supplementary Figure 7a). Indeed, the CRISPRi 
method (i.e. dCas9-KRAB) that we used in Fig.3b,c and Extended Data Fig.9d suppressed promoters 
by creating heterochromatinization of promoters (e.g. H3K9me3), which can disrupt CTCF binding [9]. 
Furthermore, post-translational modifications of CTCF such as phosphorylation or poly ADP-
ribosylation are known to alter CTCF binding to chromatin [10-12] (Supplementary Figure 7a, 
condition 5). There mechanisms may act at specific locus or under specific cell status to modulate 
CTCF binding at promoters to impact ERR and enhancer-promoter engagement. Indeed, in the 
NUCKS1-RAB7L1 locus, the three SNPs in the NUCKS1 promoter did not directly overlap any CTCF 
motifs, but they can still affect the binding of CTCF (Fig.4f). 
 
Despite these additional layers of mechanisms, we tested how often genetic changes in human cancer 
can directly disrupt CTCF motifs in gene promoters. We analyzed recently released ICGC Release 28 
simple mutations that are located in gene promoters, and found that ~5% (n=4,103) of all promoter-
located cancer somatic mutations (n=85,616) overlap a CTCF consensus Motif (JASPAR motif 
MA0139.1). This employed a very stringent criterion as the mutation nucleotide has to directly overlap a 
FIMO-called CTCF motif. Of these, 2.04% (n=1,749) are predicted to disrupt CTCF motifs by FIMO 
(Supplementary Figure 7b). Our analysis showed that the likelihood of having CTCF motif disrupted is 
significantly higher for mutations located in oncogene-neighboring promoters (ONPs) than for those 
located in oncogene promoters (OPs) or in random promoters (Supplementary Figure 7b). 
Experimentally, we selected one case of highly mutated CTCF motif for validation. There are 35 
patients that carry mutations in the promoter of CLPTM1L, with three of them overlapping a single 
CTCF motif (Fig.3e and Extended Data Fig.9e). A knock-in cell line that carries patient mutations 
showed disrupted CTCF binding in the CLPTM1L promoter, and it displayed deregulation of CLPTM1L 
and TERT gene expression (Fig.3f). These results functionally proved that some clinical mutations can 
activate TERT oncogene expression via ERR (Fig.3e,f,g and Supplementary Fig. 7c).  
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We also examined the expression of TERT gene in cancer patients’ samples in which the CLPTM1L 
promoter harbored mutations. There are very few samples from cancer patients that carry ONP 
mutations available in the ICGC, for which paired genotype and RNA-seq datasets were conducted 
(common for low frequency noncoding mutations). For one of the three patients that carry CTCF 
disruption mutation in the CLPTM1L promoter (Fig.3e and Supplementary Figure 7c, PBCA-US, 
Specimen ID: SP201610; mutation ID: MU126588416), paired genotype and RNA-seq are available. 
Analysis of the RNA-seq data in this patient’s sample showed that this sample had ~5-fold higher 
expression of TERT mRNA when compared to the mean expression level of TERT in that tumor type 
(Supplementary Figure 7c). There is another patient sample with a mutation in the CLPTM1L 
promoter but this was not predicted to disrupt CTCF motif (Supplementary Figure 7c, SKCM-US, 
Specimen ID: SP103866). This patient sample also has paired genotype and RNA-seq available, which 
had a ~3-fold higher level of TERT expression than the mean level seen in this cancer cohort 
(Supplementary Figure 7c). For comparison, we also analyzed patient samples with well-known 
hotspot mutations located in the TERT promoter (i.e., the -66nt and -88nt mutations, also referred to as 
C228T and C250T [2-4]). The TERT promoter is the most highly mutated noncoding region in human 
cancers [2-4]. In some cancer types, these hotspot mutations correlate with higher expression of TERT 
gene (see the Extended Data Fig.4a of a recent PCAWG paper [4]). However, in some other cancer 
types, including the one having the highest frequency of TERT promoter hotspot mutations (i.e., Liver 
cancer from France, or LICA-FR), the mutation-carrying tumors did not have significantly higher 
expression of TERT (Supplementary Figure 7c). The mechanism underlying such cancer type 
specificity for TERT promoter hotspot mutations is not clear at this stage, although tumor heterogeneity, 
mutation calling process and tumor sample numbers may be contributing factors. For the PBCA-US 
cohort, there was one case of patient carrying the -66nt hotspot mutation in the TERT promoter, and 
one case of patient carrying mutation in the CLPTM1L promoter (Supplementary Figure 7c). The 
gene expression of TERT in the ONP-mutated patient (CLPTM1Lp mutation, red dot) is higher than that 
in the patient with -66nt hotspot mutation in the TERT promoter (green dot, Supplementary Figure 
7c). 
 
Overall, due to the rarity of ONP-homed mutations and the limited samples for both genotype and RNA-
seq, it is currently difficult to conduct statistical analysis of gene expression in cancer patient samples 
carrying rare noncoding mutations. But these results above support that ERR-like events take place in 
oncogene activation in clinical samples, and CTCF disruption in ONPs can directly activate TERT 
expression (together with Fig.3e,f,g). With increasing numbers of cancer samples with paired genotype 
(e.g., WGSs) and gene expression (i.e., RNA-Seq), future work will aim to delineate the correlation of 
ONP-mutated samples with cancer gene activation, and will distinguish those mutations that are 
potential “drivers” of ERR events versus those representing background mutations. Experimentally, it is 
critical to directly test the potential driver functions of these rare ONP mutations in cancer development 
using animal models. In this regard, it is noteworthy that even alleles mutated once in 5,338 tumors can 
still be tumorigenic [13], emphasizing that systematic experimental validation of rare cancer mutations 
can be important in addition to statistical analysis. Some of these rare noncoding mutations may 
provide insights to understand ~5-8% of human cancers for which no driver mutations can be identified 
[14]. 
 
Other possible regulators of ERR at gene promoters:  
Our experimental data suggests that CTCF acts as a key determinant at promoters for enhancer-
promoter engagement in multiple loci (using CRISPR KO, motif disruption/mutation, or mutation knock-
in as well as dCas9 based chromatin tethering), but CTCF is unlikely a universal regulator for every 
single promoter for its engagement with enhancer. Our results showed that more than half of promoters 
for cell-type-specific highly expressed genes in MCF7 cells (Fig.2b) have a CTCF peak at their 
promoters, and these CTCF sites are generally-speaking weak sites. Consistently, a recent work found 
that a large portion of CTCF sites in human genome are tissue- or cell-type specific, with only a small 
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portion (~20%) of CTCF sites being cell-type-constitutive [7]. These suggest that CTCF may be 
important for a portion of cell type specific gene expression via E-P looping. While such numbers of 
promoters with CTCF binding can be affected by the peak calling algorithm and cutoff, it is clear from 
our results that the CTCF binding is often weak at promoters as compared to those at TAD boundaries. 
There are other candidate proteins that may act via promoter binding to mediate enhancer-promoter 
choice. For example, ZNF143 has been shown to be a DNA binding factor at promoters to modulate E-
P looping [15]. We speculate that additional factors, particularly those of the zinc finger family (to which 
CTCF and ZNF143 belong), may be candidates for future investigation that can play some similar or 
redundant roles at gene promoters for their functional engagement with enhancers.  
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Supplementary Figures 8, 9, 10 and notes.  
Additional information about GTEx analysis. 
 
The search for potential ERR events in the human population was conducted using data from the 
Genotype-Tissue Expression (GTEx) project V7 release [16] for 48 tissue types. In order to identify 
potential ERR events, we first searched for cis-eQTLs in promoter-proximal regions (defined as regions 
2kb upstream and 1kb downstream of GENCODE annotated gene TSSs). We used cis-eQTL-gene 
interactions deemed significant by GTEx project’s standards (gene-wise FDR<0.05). We refer to these 
genes that host cis-eQTLs in their promoters as ‘Gene-CP’ (i.e., cognate promoter), and these eQTLs 
are referred to as P-eQTLs (Extended Data Fig.11a). We then select the subset of Gene-CP 
promoters whose P-eQTLs also target another distal gene within the same chromosomal neighborhood 
in the same tissue type (this distal gene is referred to as ‘Gene-AP’ for alternative promoter). In 
particular, our methodology requires the same P-eQTL variant having opposite effects on the allelic 
expression of the two genes in that specific tissue type. We defined the chromosomal neighborhood in 
this context by setting the eQTL distance threshold to 200kb (based on an estimated ~180kb median 
size of chromatin contact domains [17]). Additionally, to avoid erroneous signals arising from Gene-CP 
promoter directly affecting the activity of Gene-AP, we maintained a minimum distance of 5kb between 
the TSSs of the two genes. At this stage, our analysis found 19,231 unique Gene-CP/Gene-AP pairs 
showing opposite correlation with P-eQTLs in Gene-CP promoter (Supplementary Table 4a). Out of 
these, 45.8% (8,799/19,231) are identified recurrently in multiple tissues, and 65.7% (12,638/19,231) of 
them harbor multiple P-eQTLs in the Gene-CP promoter. While we identified unique Gene-CP/Gene-
AP pairs, we counted the events based on gene names rather than the numbers of P-eQTLs. For 
example, if “GeneA” and “GeneB” were regarded as a unique Gene-CP/Gene-AP pair, GeneA/GeneB 
was counted only once, even if “GeneA” promoter harbors multiple P-eQTLs. Furthermore, if “GeneA” 
and a second neighboring gene - “GeneC” - were identified as another unique Gene-CP/Gene-AP pair, 
then GeneA/GeneC will be counted separately from GeneA/GeneB pair, although they shared “GeneA” 
promoter P-eQTLs.  
 
Next, we identified GTEx cis-eQTLs that overlapped with an exhaustive set of enhancer regions 
experimentally identified by the ENCODE [18], FANTOM5 [19], and Roadmap Epigenomics [20] 
projects. Out of the 19,231 Gene-CP/Gene-AP pairs that share P-eQTLs in the Gene-CP promoter, we 
searched for the subset that Gene-CP also possesses a cis-eQTL in its chromosomal neighborhood (-
/+200kb) in the given tissue type that overlaps an enhancer region. The specific occurrence of P-
eQTL/Gene-CP/Gene-AP/enhancer-cis-eQTL was inferred as a potential ERR event; and this cis-eQTL 
targeting Gene-CP that overlaps an enhancer was referred to as enhancer-eQTL, or E-eQTL. The 
potential ERR events combined across all the tissue types were found to be constituted of 872 unique 
Gene-CP/Gene-AP pairs across the genome. The steps described above are illustrated in the flowchart 
in Extended Data Fig.11a, and subsequent downstream analyses were carried out using R [21] and 
Bioconductor packages for genomic analyses [22]. Among the 872 unique pairs of genes undergoing 
ERR-like regulation, 61.4% (535/872) were recurrently observed in multiple tissues, and 77.1% 
(672/872) have multiple P-eQTLs in the Gene-CP promoter (Extended Data Fig.11b). P-eQTLs in the 
Gene-CPs of the potential ERRs were then considered for subsequent clinical/disease association 
analysis (Supplementary Table 4c).   
 
We examined potential ERR events from GTEx for clinical implications by looking for SNV-trait 
associations in the Gene-CP promoter regions. These promoter regions were queried for P-eQTL 
variants, associated with traits and diseases that were identified in genome wide association studies 
(GWAS) in the NHGRI-EBI GWAS Catalog [23] and GWASdb v2 [24]. The resulting list 
(Supplementary Table 4c) was further scrutinized for any clinically relevant cases, particularly if 
similar disease functions or associations exist for Gene-AP that may explain the disease risk SNPs in 
Gene-CP.  
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Since the sample numbers vary considerably for different tissue types in GTEx dataset, one would 
expect tissue types with higher numbers of samples to have higher counts of potential ERR events. We 
performed a linear regression analysis to analyze the relationship between the number of samples and 
the number of potential ERR events per tissue type. Tissues were found to display generally a 
proportional number of potential ERR events relative to the sample numbers. But some tissues appear 
to be outliers with either fewer or greater than the expected number of potential ERR events (Fig. 4a). 
In the future, as the numbers of available samples for different human tissues or diseases increase, we 
expect to see an increase in the number of potential ERR events. 
 
Although we have carefully identified potential “ERR-like events” based on computational analysis 
using GTEx datasets as described above, we cannot exclude that other mechanisms may be involved 
in a certain portion of the potential ERR gene pairs that underlie their gene expression patterns. We 
have considered three additional potential mechanisms, 1) promoter-promoter interaction, 2) lncRNA, 
and 3) linkage disequilibrium. 
 
About direct promoter-promoter interactions: Other possibilities may underlie a subset of potential ERR 
events that we found in our analyses of GTEx data. However, promoter-promoter interaction cannot 
explain the phenomenon of ERR. Instead, promoter-promoter interactions may result in genes 
changing in the same direction (i.e. deletion of one reduced the expression of the other, which has 
been observed in some loci by recent work [25, 26]). But reportedly only a small portion of human 
promoters (2-3% by estimation) may act to activate neighboring promoters [25]. Interestingly, our 
CRISPRi screening of ONPs indeed revealed that some promoters, once inhibited, will reduce the 
neighboring gene expression (Fig.3c). But this type of regulation takes place at a relatively lower 
prevalence (<10%, or 1-2 cases of 25 tested in Fig.3c) than ERR (~32%, or 8 of 25 cases tested in 
Fig.3c), broadly in agreement with the estimation by Dao et al. [25]. 
 
About SNPs in lncRNAs: There is a possibility that some promoter-homed SNPs lying in lncRNAs 
differentially regulate the gene adjacent by affecting lncRNA function. For the 872 identified potential 
ERRs, when we look at the overlap between the P-eQTLs and annotated transcripts in the genome, 
only a small fraction of identified ERR P-eQTLs (19/1,650) were found to overlap with lncRNA 
transcripts. 
 
About Linkage Disequilibrium (LD): Our primary goal in this study is to identify potential ERR gene 
pairs. Therefore, the list of P-eQTLs we identified in Gene-CP does not necessarily demonstrate all of 
them to be causal variants, nor does it completely exclude any other nearby SNPs from contributing to 

the gene expression variation. Indeed, it is a unique challenge for functional 
genomics studies to distinguish causal variants from those that are non-

Supplementary Figure 8: Distribution of linkage disequilibrium (LD) 
between promoter-eQTLs and enhancer-eQTLs defined in our ERR 
analysis. 

Boxplot showing distribution of R2 values between P-eQTLs and the most 
significant E-eQTL for the set of all unique ERRs detected in GTEx tissues. 
With the median R2 at 0.3, most of the P-eQTL and E-eQTL SNPs are not 
in LD, suggesting they independently regulate Gene-CP and Gene-AP. The 
boxplot centerline represents median; box limits indicate the 25th and 75th 
percentiles; whiskers extend 1.5 times the interquartile range from the 25th 
and 75th percentiles. 
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functional, because many SNPs are located in strong Linkage Disequilibrium (LD). In particular, 
common variants with high allele frequencies may display strong LDs with neighboring SNPs [27]. 
Some computational methods have prioritized potentially causal variants based on overlap with 
regulatory elements with active histone marks or chromatin opening, e.g., [28, 29]. We examined the 
LD relationship between our P-eQTLs and E-eQTLs for their contribution to the expression of Gene-CP. 
We found that the P-eQTLs and E-eQTLs involved in our final list of potential ERRs are rarely found in 
the same LD (Supplementary Figure 8), and therefore largely contributed to the gene expression of 
Gene-CP independently. This analysis suggested that while we cannot completely exclude the 
contribution of some of the eQTLs in high LD with P-eQTLs to the gene expression variation of Gene-
CP, it is likely to be infrequent. In the rare cases that P-eQTLs and E-eQTLs are in a high LD domain, 
they may play biologically synergistic or redundant roles.  
 
About SNPs overlapping CTCF motifs: Most GWAS SNPs are not predicted to impact Transcription 
Factor (TF) binding. Indeed, even by combining DNA motifs for a collection of human TFs, only a small 
fraction of causal SNPs associated with immune diseases can be interpreted as motif-disrupting (e.g. 
~10-20% estimated by Farh et al., [28]). It is therefore unlikely that ERR events are universally caused 
by altered CTCF motif/binding at Gene-CP promoters. We analyzed the SNPs defined as P-eQTLs in 
our analysis of potential ERRs, using a similar MEME/FIMO method as those used for calculating 
CTCF motif changes by cancer somatic mutations. We found that out of the 1,650 P-eQTLs, 228 SNPs 
(~13-14%) are located in CTCF core motifs. Based on the reference genome, about 37% of these 
CTCF-located P-eQTL SNPs (85/228) are predicted to disrupt the CTCF motif by FIMO/MEME in 
between the reference or alternative alleles (Supplementary Figure 9). 

Overall, we consider that defective CTCF binding due to direct motif change (also see Supplementary 
Figure 7a) may explain a portion of, but surely not all, ERR-like events. Indeed, in the example of 
NUCKS1-RAB7L1 case we studied in depth in Fig.4, the three SNPs are not directly located in core 
CTCF motifs and are not predicted to disrupt CTCF motifs, but they locate close to ChIP-Seq peaks of 
CTCF (Extended Data Fig.11e). Importantly, our experimental evidence indicated that the alternative 
allele bears lower CTCF binding than the reference allele at the promoter of NUCKS1, which correlated 
with their defective engagement with the active enhancer (Fig.4d,f). These results support the role of 
CTCF in promoter engagement with an active enhancer for a portion of the potential ERR pairs we 
identified, but it is unlikely the universal regulator. 
 
Additional ERR candidate loci associated with genetic disease risk: In addition to NUCKS1-RAB7L1 
locus shown in the main figures, additional Gene-CP/Gene-AP pair identified by our analyses include 
MTHFR/NPPA-AS1. ERR may provide new insights into understanding a prominent cardiovascular 
disease risk SNP rs3737964 [30] in the promoter of MTHFR. This SNP correlates with lower expression 
of MTHFR but higher expression of NPPA-AS1 (Supplementary Figure 10). Notably, NPPA-AS1 

Supplementary Figure 9: A portion of ERR P-
eQTLs may disrupt CTCF motifs. 

Venn Diagram showing that out of 1,650 P-
eQTLs we identified to locate in potential ERR 
Gene-CP promoters, a ~13-14% of them overlap 
a predicted CTCF motif at either Watson or Crick 
strand. Out of these, about 1/3 can in silico alter 
the CTCF motif as predicted by FIMO 
considering the reference (Ref) or alternative 
alleles (Alt). 
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encodes a long non-coding RNA that acts to maintain cardiovascular and metabolic homeostasis by 
post-transcriptionally regulating the expression of NPPA [31]. Therefore, while locating far away from 
NPPA-AS1, rs3737964 may play a role in disease risk by increasing NPPA-AS1 expression via ERR. 
We expect that additional loci that do not show genome-wide significance in GWAS studies may also 
work via ERR to modulate their neighboring gene expression and contribute to disease risk. 
 
 

 
 
Supplementary Figure 10: 
ERR-like regulation at the MTHFR - NPPA locus. The hypertension risk SNP in the MTHFR promoter 
is indicated (top). Box plots showing normalized effect size (NES) of MTHFR or NPPA-AS1 
expression segregated by a hypertension risk SNP rs3737964 in relevant tissues such as artery and 
heart tissues (bottom). The definitions of NES, p-value and m-value could be found in GTEx portal 
(www.gtexportal.org). We directly quote the definition here. For m-value, it denotes the posterior 
probability that an eQTL effect exists in each tissue tested in the cross-tissue meta-analysis; the m 
value ranges in between 0 and 1. For p-value, it was generated by a t-test that compares the 
observed NES from single-tissue eQTL analysis to a null NES of 0. The normalized effect size (NES) 
was used to denote the slope of the linear regression of normalized expression data versus the three 
genotype categories using single-tissue eQTL analysis, representing eQTL effect size. The 
normalized expression values are based on quantile normalization within each tissue, followed by 
inverse quantile normalization for each gene across samples. 
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Supplementary Figure 11.  
Validation of iPSC-derived neural progenitor cells (NPCs) by RNA-Seq. 
 
We confirmed the identity of iPSC derived neural progenitor cells (NPCs) by RNA-seq (Supplementary 
Figure 11). As expected, we did not observe expression of pluripotency markers NANOG and POU5F1 
(Oct4); but we can see strong expression of markers of (neural) stem cell identity, NES (Nestin), MKI67 
(Ki67), LIN28B, and SOX2. We observed robust expression of neuronal-lineage markers TUBB3 (Tuj1), 
ENO2 (NSE), and MAP2; but non or relatively low expression of specialized genes of neuronal identity, 
such as MAPT, SYP, or TH; or glial differentiation, such as GFAP and S100B. Together, these results 
corroborate that our cells are of NPC identity.  
 

 
Supplementary Figure 11. RNA-seq data shown as snapshots of the UCSC genome browser track 
(hg19), the pink color indicates expression signals of RNA-seq of the housekeeping gene (GAPDH), 
Neural stem cell specific genes (NES, MKI67, SOX2), Neural lineage specific genes (MAP2, TUBB3, 
ENO2), Pluripotency specific gene (POU5F1, NANOG), Neuronal specific genes (SYP, TH, MAPT), 
Glial specific genes (S100B, GFAP). 
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