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Abstract

The evolution of drug resistance leads to treatment failure and tumor progression. Intermittent androgen deprivation
therapy (IADT) helps responsive cancer cells compete with resistant cancer cells in intratumoral competition. However,
conventional IADT is population-based, ignoring the heterogeneity of patients and cancer. Additionally, existing IADT
relies on pre-determined thresholds of prostate-specific antigen to pause and resume treatment, which is not optimized for
individual patients. To address these challenges, we framed a data-driven method in two steps. First, we developed a time-
varied, mixed-effect, and generative Lotka-Volterra (tM-GLV) model to account for the heterogeneity of the evolution
mechanism and the pharmacokinetics of two ADT drugs Cyproterone acetate (CPA) and Leuprolide acetate (LEU)
for individual patients. Then, we proposed a reinforcement-learning-enabled individualized IADT framework, namely,
I2ADT, to learn the patient-specific tumor dynamics and derive the optimal drug administration policy. Experiments
with clinical trial data demonstrated that the proposed I2ADT can significantly prolong the time to progression of prostate
cancer patients with reduced cumulative drug dosage. We further validated the efficacy of the proposed methods with a
recent pilot clinical trial data. Moreover, the adaptability of I2ADT makes it a promising tool for other cancers with the
availability of clinical data, where treatment regimens might need to be individualized based on patient characteristics
and disease dynamics. Our research elucidates the application of deep reinforcement learning to identify personalized
adaptive cancer therapy.
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Supplementary Information

S1. Algorithms for validation

S2. Details of PcaC construction
There are two phenotypes of prostate cancer cells prior to

initiating intermittent androgen deprivation therapy (IADT):

responsive (hormone-dependent) and resistant (hormone-

independent) cells, as described by (3). In the tumor

microenvironment, resistant phenotypes can gain advantages

through genetic or epigenetic mutations, leading to competition

between the two phenotypes. This dynamic is expressed in

Formula (1), where the definitions of each variables are

described in Table 1 of main text:

dx

dt
= RX(1− (K

−1
A(t)x)

α −D). (1)

In the context of interacting phenotypes, both internal

competition and external pressures influence the two phenotypes,

which are regarded as permanently bounded variations of the

system represented by Equation 1. Under these conditions,

equilibrium cannot be achieved and is instead replaced by

ultimate boundedness (a compact set of values in the state

space) (4; 5). Consequently, the competitive community matrix

is established as follows:

A(t) =

{
1 1

1+eγt

1
1+eγt 1

}
, γ ∈ <+, (2)
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Algorithm 1 Online Train tM-GLV

Data: IADT clinical data: X (0 : τ)

Input : Data: X (0 : τ)

Initial parameters: θ0online
Output: online tM-GLV model: M(a; θonline)

Train tM-GLV

θonline ← θ0online
Max Iteration ← Nonline

while k < Nonline do
Pk ← ξ − torch solver

L ←MSE(Pk, P ) . P is ground truth PSA level

θkonline ← θk−1
online + η · ∇L

end

Algorithm 2 delayed-I2ADT

Data: IADT clinical data: X (0 : τ)

Input : Predition term: T

X (0 : τ)

Online Patient: M(a; θ0online)

Real Patient: M(a; θoffline)

Output: tM-GLV model: M(a; θonline)

Dosing Policy: A(θA)

Init PPO

θA ← θ0A
Max Iteration ← NA

Update steps ← s

Online updating tM-GLV times: c← 0

Converge Signal: C ← False

while k < NA do
Explore/Exploit Online Patient (M(a; θconline)) .

Decaying-ε greedy search

Updates agent parameters θkA
if PPO agent converges then

c+ = 1

C ← True
end

if C then

a(τ+cT ):(τ+(c+1)T ) ← A(θkA)

X ((τ + cT ) : (τ + (c + 1)T )) ←
M(a(τ+cT ):(τ+(c+1)T ); θoffline) . Offline model

represents the real patient

X (0 : (τ + (c + 1)T )) ← concatenate(X (0 :

τ + cT ),X (τ + cT : (τ + (c+ 1)T )))

θc+1
online ← Algorithm 1(X (0 : (τ + (c + 1)T )), θconline)

. (Algorithm 1)

Updates online tM-GLV model: M(a; θc+1
online) .

Updating the training environment for PPO

C ← 0
end

end

where A12 = A21 := a(t) = 1/(1 + eγt), and both are

positive. The two phenotypes are in direct competition, with

a(t) representing the percentage of resource overlap between

them. The overlap is 100% for identical phenotypes, and

initially set at 50% for distinct phenotypes. By setting the

resistance index γ > 0, a(t) = 1
1+eγt <= a(0), indicating a

decreasing trend in resource overlap. This decrease is attributed

to competition-induced mutations and epigenetic modifications

within the cancer population. As a result, the competition

intensity weakens over time due to fewer shared resources, as

illustrated in Fig 3.b of main text.

The drug-induced decay term in Equation (1) is assumed to

follow a first-order decay process (2) (i.e., a metric of drug

exposure). In our study, this term is defined as the linear

relationship presented in Equation (3). To ensure meaningful

extrapolations for untested dosage regimens per patient, the

pharmacokinetics of both drugs included in our model were

considered. Cyproterone acetate (CPA) was administered twice

daily, and given its half-life of 1.5 days (8), the dynamics

of CPA’s effect remain constant during therapy. Leuprolide

acetate (LEU) was administered intramuscularly at a dosage

of 7.5 mg every 4 weeks in a depot suspension format (9; 10).

D = βd(t), β > 0, (3)

where β is a patient-specific parameter, denoting the first-

order decaying process, and d(t) represents the normalized drug

effects, combining pharmacokinetic knowledge (2). In this case,

d(t) is proportional to serum hormone levels. Clinical studies

(9; 10) have found that serum testosterone initially increases

during the first week, then becomes suppressed to castrate

levels. Consequently, d(t) decreases in the first week and reaches

a stable level after continuous drug administration.

In our proposed method, we employed a non-compartmental

model to estimate drug exposure. Specifically, we assumed

a constant drug concentration in the blood for CPA since

it is taken twice daily. Therefore, a constant drug effect is

assigned to CPA, which is normalized as 1 if taken, otherwise

0. For LEU, we referenced the work of (10) and found that the

drug concentration in blood plasma initially increases and then

decreases to a steady level over the administration course of

a month. The corresponding plasma testosterone level exhibits

similar patterns. For illustration of these findings, please refer

to Fig 1&5 in work (10). The figures show that with depot-

injected LEU, the testosterone level initially increases in the

first week and then decreases to the castrate level by week 4.

Subsequent injections maintain the testosterone level at the

castrate level. It is essential to note that the drug effect for

LEU is not defined by the drug concentration in plasma; rather,

the corresponding plasma testosterone level reflects the actual

drug effects. Based on this information, we have normalized the

drug effect by setting it to negative in the first week, decreasing

linearly from 0 to -0.5. In the following three weeks, the drug

effect gradually increases from -0.5 to 1 linearly with time.

Subsequent doses maintain the testosterone at the castrate level

with a drug effect of 1. If no maintenance dosage is present, the

LEU drug effect resets to 0.

For further information on drug pharmacokinetics, please

refer to (9; 10; 11; 12) for LEU, and (8) for CPA.

Regarding the mathematical relationship between prostate

cancer cell count and serum PSA levels, it is widely assumed

that PSA level dynamics can be simplified as shown in Equation

(4):

dP

dt
= ρ

∑
i

x− φP, (4)

where ρ denotes the rate at which PSA is released from

cancer cells, and φ represents the decomposition rate of serum

PSA. The PSA decay rate is set as a population-wide uniform

parameter, with φ = 0.25(day−1), given that the serum PSA

half-life is 2.5 days (13; 14; 15).
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By combining Equations (1 ∼ 4), the mathematical model

for simulating the prostate cancer cell (PCaC) environment is

presented as system (5):
dx

dt
=RX(1− (K

−1
A(t)x)

α −D),

dP

dt
=ρ

∑
i

x− φP.
(5)

S3. Learning an adaptive dosing policy by
reinforcement learning

S3.1 Details about PPO algorithm

Reinforcement learning (RL) is a continuous process where an

agent interacts with an environment at discrete time steps. At

each time step, the agent receives the environment’s state (st)

and selects an action (at). The environment responds with a

new state (st+1) and a reward (rt+1) associated with the action.

After each cycle, the agent updates the value function V (s) or

action-value function Q(s, a) based on a certain policy π, where

π maps states s ∈ S to actions a ∈ A, i.e., π : S → A : a = π(s)

(16; 17).

In RL problems with large state-action spaces, it can be

cumbersome to store a separate value function for every possible

state. Policy gradient methods were proposed as an alternative,

which estimate the policy gradient and plug it into a stochastic

gradient ascent algorithm. The gradient estimator has the form:

ĝ = Êt[∇θ log πθ(at|st)Ât] (6)

where πθ is a stochastic policy parameterized by θ, and Ât

is an estimator of the advantage function at time step t.

PPO is a type of policy gradient method that uses a clipped

surrogate objective function, which includes an estimator of the

advantage function. The clipped surrogate objective function is

defined as:

L
CLIP

(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (7)

where θ represents the parameters of the policy, rt(θ) is the

ratio of the new policy to the old policy, and Ât is the estimated

advantage function at time step t, which in our algorithm we

use monte carlo method to estimate. The clipping parameter

ε controls the maximum deviation of the new policy from the

old policy, which is set as 0.2 in our algorithm. PPO’s clipped

surrogate objective function balances the trade-off between

exploration and exploitation, and prevents the policy from

deviating too far from the previous policy, leading to stable

and effective learning in RL problems.

In addition to the surrogate objective, PPO also includes

loss values for learning the critic functions and entropy to

encourage exploration. The critic functions estimate the value

function, which is the expected total discounted reward starting

from a given state and following the current policy. The value

loss is defined as the mean squared error between the estimated

value and the actual value. The entropy loss encourages the

policy to explore by adding a term that penalizes policies with

low entropy, which measures the randomness of the policy

distribution. The total loss function is a linear combination of

the clipped surrogate objective, the value loss, and the entropy

loss, with hyperparameters that control the relative weight of

each term. The objective function is optimized using stochastic

gradient descent or a variant of it, such as Adam or RMSprop,

to update the policy parameters θ.

S3.2 Details about states, action spaces, and the reward
assignment

Learning policies from model-free algorithms need a We

introduce the states and action spaces, and the reward

assignment in this section. The neural network architecture of

the algorithm and the hyperparameter setting are given section

1.7.

In section 1.2, two phenotypes of the prostate cancer cells

and the biomarker indicator (serum PSA level) were included

in the system (5). Hence, at each time step t, an observation

of cell counts (xt,1 and xt,2) and PSA level (pt) was made

as the current states st = (xt,1, xt,2, pt). Additional feature

combinations of st can provide more information for model

training. In a precise manner, the instant growth/decay rates ṡt

are indicative of the PCaC environment, reflecting the current

drug and competition pressures, which can be obtained directly

from the current states st. Moreover, time t was also included in

the states. Hence, the states for PCaC environment was given

by St = (st, ṡt, t).

Moreover, the action space was discreetly composed by the

doses of two drugs in time step t and can be formulated as

At = (It,l, It,c).

For the purposes of this work, a successful treatment

policy is defined as one in which resistance cancer cells, being

suppressed, are co-living with response cancer cells to provide

as long as high-quality survival time for patients. Within this

measure of success optimality is defined as a trade-off between

the highest survival time and the lowest expected cumulative

dosing over the course of the treatment.

Using the combination of features St in the non-BlackBox

model can help provide treatment information, which helps

model training. Moreover, an additional feature combination

of model-informed learning, which is the related information of

states St provided by the system (5), can support the reward

assignment.

In determining the explicit formulation of the reward

function, the key is to describe the drug efficacy and the

competition intensity in the PCaC environment. Drugs are

assumed to affect the response population solely; thus, the

change of the response population concentration c1,t provides

a direct indicator of the drug efficacy, as follows:

rdrug,t = d1(1− c1,t). (8)

, where d1 is a constant.

Furthermore, long-term control of prostate cancer involves

the survival and development of resistant cancer cells. The

only prohibited factor to the resistance population is the

competition pressure from the response population. Hence,

the competition intensity is included in the reward function,

denoted as rcomp,t = d2(1 − c2,t), where c2,t denotes the

resistance population concentration and d2 is constant. To

guide a low dosing and intermittent administration strategy,

a penalty of continuous historic dosage was then assigned to

the step reward:

pdrug,t =
∑
α

t∑
i=t−t̂

η
t−i

wα
Iα,i

Iα,max
, (9)

where t̂ denotes the continuous administration time, η is the

decaying penalty ratio for the historical drug administration,

and wα is the drug-specific penalty parameter. Eventually, the
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reward function was assigned as follows:

rstep,t = rdrug,t + rcomp,t − pdrug,t. (10)

With limited resources in the tumor microenvironment, if

insufficient dosages were administered, the responsive cancer

cells proliferated and quickly reached their carrying capacity,

making the system stay in an unwanted state with a high tumor

level. The reward function (10), based on changes from one

decision step to the next, provides an insufficient penalty. On

the one hand, the penalty of the drug pdrug,t is relatively

low because of the small dosage. On the other hand, the

rcamp,t reaches its maximal value when the response population

reaches the carrying capacity. Hence, the reinforcement learning

agent may continue to apply a low-dosing strategy rather than

increase the dosage to escape the high tumor level. This low-

dosing strategy leads to the zero-dosing problem eventually

after the model converges. To address this problem, we assign

a progression-free time reward to the step reward function and

adopt a metastasis probability model as EOS to avoid the high

concentration of the response population.

S4. Proof of ultimate boundedness
From Equations (1, 3), we could rewrite Equation (1) as

ẋ = Xf(t, x), (11)

where x(t) ∈ <2
+ denotes the cell counts for two phenotypes

(responsive and resistant separately) and X = diag{x1, x2}.
And f(t, x) is a 2-dimensional function: <+ × <2

+ → <2 is

sufficiently smooth for the definition of A(t) in Equation (3).

Hence, we claim that the Equation (11) has a unique solution

x(t; t0, x0) for all initial conditions (t0,x0) ∈ <+ × <2
+.

For the convenience of analysis, we rewrite Equation (11) as

follows:

ẋ = X(R(1−D) + (−R(A(t)K
−1

x)
α

))

= X(a(t, x) + A
′
(t, x)x),

(12)

where a(t, x) = d(t) = R(1 − D) : <+ → <2, and A
′
(t, x) =

−RXα−1K−αA(t)α : <+ × <2
+ → <

2×2
+ is a 2 × 2 functional

matrix and R = diag{r1, r2},K = diag{K1, K2}.
Let us first give the definition of ultimate boundedness

(following (18; 5)) as follows:

Definition 1 The solutions x(t; t0, x0) of system (12) are said

to be ultimately bounded with respect to the region <2
+ if there

exists a compact region Ω ∈ <2
+ and a finite time t1 = t1(t0, x0)

such that for any (t0, x0) ∈ <+ × <2
+ we have x(t; t0, x0) ∈ Ω

for all t ≥ t1.

Second, from theorem (2.7) in (5) which is stated as,

Theorem 1 The solutions x(t; t0, x0) of system (12) are said

to be ultimately bounded with respect to the region <2
+ if there

exists a diagonal matrix D and a positive number η such that

the matrix B(t, x) defined below satisfies the inequality in 13,

and a(t, x) = d(t) is bounded from above as sure.

Hence, to prove the ultimately bounded property for system

(12), we first note that since a(t, x) = d(t) in our case, which

is bounded for sure. Then we have to find whether there exists

a constant positive diagonal matrix D = diag{d1, d2} and a

positive number η such that the 2×2 symmetric matrix B(t, x)

satisfies the three conditions in Formula (13). We know that

d(t) is bounded since D denotes the drug effect in our scenario.


B(t, x) = −

1

2
([A

′
(t, x)]

T
D +DA

′
(t, x)),

min{λ1, λ2} ≥ η;λm,m = {1, 2} is eigenvalues of B(t, x),

∀(t, x) ∈ <+ × <2
+.

(13)

Since A(t) =

{
1 1

1+eγt

1
1+eγt 1

}
, with a(t) = 1

1+eγt ∈ (0, 0.5),

by eigendecomposition, A(t) = QΛ(t)Q−1, where

Q =

{
1 1

1 −1

}
,Λ(t) =

{
1 + a(t) 0

0 1− a(t)

}
. (14)

Then let Γ(x) = RXα−1K−α = diag{ r1x
α−1
1

Kα
1
,
r2x

α−1
2

Kα
2
},

A
′
(t, x) = −RXα−1

K
−α
A(t)

α

= −RXα−1
K
−α
QΛ

α
Q
−1

= −Γ(x)QΛ
α
Q
−1
.

(15)

Let D = diag{ Kα
1

r1K
α−1
1

,
Kα

2

r2K
α−1
2

}, then

B(t, x) = −
1

2
([A

′
(t, x)]

T
D +DA

′
(t, x)),

B(t, c) = −
1

2
(Q
−1

Λ
α
Qdiag{cα−1

1 , c
α−1
2 }

+ diag{cα−1
1 , c

α−1
2 }QΛ

α
Q
−1

)

= −
1

2
((1 + a(t))

α
+ (1− a(t))

α
)

{
2cα−1

1 b(t, c)

b(t, c) 2cα−1
2

}
,

(16)

where b(t, c) = (1+a(t))α−(1−a(t))α
(1+a(t))α+(1−a(t))α (cα−1

1 + cα−1
2 ), with ci =

xi
Ki
, i = 1, 2.

Since a(t) = 1
1+eγt with γ > 0 and a(t) → 0 as t → ∞, we

have b(t, c)→ 0 as t→∞, indicating that we could always

find a T , satisfying when t > T, 4(c1c2)α−1 − b(t, c)2 > 0.

Hence, |B(t, x)| > 0 as t > T , proving that B(t, x) is positive-

definite when t > T . This proves the conditions are satisfied.

S5. Initial value setting for System (5)
To address the initial value problem, it is necessary to establish

patient-specific and plausible initial values for system (5).

However, due to limited patient-specific information, such

as pre-treatment/post-treatment prostate volume, determining

the true initial cell counts for each patient is challenging.

Fortunately, the average prostate volume for all patients

included in reference (7) is available. Consequently, we utilize

Equation (17) to establish the initial values for system (5).

x1(0) = c1K1,

x2(0) = c2K2,

K1 =
c3V̄ Pmax

P̄Vcell
,

K2 = c4K1.

(17)

Here, ci, i ∈ 1, 2, 3, 4 are constants, while V̄ and P̄ represent

the average prostate volume and average initial PSA level for
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all patients, respectively. Pmax denotes the maximum empirical

PSA level for the patients, and Vcell refers to the volume of a

single cell.

The parameter settings used in our simulation were

determined based on a plausible configuration, with the

constant c set to c = (0.8, 10−4, 1.25, 0.25). Initially,

responsive cancer cells constituted the majority of the tumor

microenvironment, while resistant cancer cells accounted for a

small fraction (O(10−5)) of the population. Nevertheless, our

simulation revealed that improved results could be obtained by

configuring c2 and c4 as learnable parameters.

Note that the initial values are set accordingly. In the

clinical trial’s first treatment cycle, the average prostate volume

decreased from a baseline of 24.7cm3 to 14.7cm3 (1). We

assumed that cancer cells accounted for 50% of the prostate

volume decline, resulting in an estimated average volume of

V̂ = 5cm3. The average pre-treatment PSA value was P̂ =

22.1µg/L (7), and the volume of a single cancer cell was

calculated as Vcell = 4
3π(5× 10−4cm)3 = 5.236× 10−10cm3.

S6. Patient selection from the clinical trial data
Data of 91 patients in the clinical trial (1) were obtained from

https://www.nicholasbruchovsky.com/clinicalResearch.html .

For simplicity, in our simulation we only consider dual-drug

effects. 19 patients in the folder ”Shaw et al” were excluded

because no drug information was available. We excluded 10

patients who were administrated with more than two drugs

(patients 014, 022, 026, 028, 039, 041, 055, 064, 081, and 109).

Eventually, we have 62 patients for our analysis.

S7. Neural network architecture and hyperparameter
setting
Because the state space is continuous while the action space is

discrete, we apply PPO Algorithms proposed by (6). The Q-

network has four layers of fully-connected linear networks, for

both the actor and the critic networks. Weights and bias were

initialized randomly. Note that, applying more complicated

networks such as the recurrent neural network and the gated

recurrent units will not benefit the performance. No batch

normalization was used at hidden layers, but features were re-

scaled prior to being added to the replay buffer in the following

manner, where Ki denotes the capacity for cell kind i and xi

is the corresponding cell counts, ẋi is the growth rate.

xi →
log(xi + 1)

log(Ki)
,

ẋi →



log(ẋi) + 1

log(Ki)
, xi > 1,

log(−ẋi)− 1

log(Ki)
, xi < −1,

ẋi

log(Ki)
, otherwise.

(18)

Adam optimization is applied with an initial learning rate

of 3 × 10−5 for the actor network and 1 × 10−5 for the critic

network. We apply the clipping gradient, a decaying learning

rate, and the normalization of rewards to stabilize the training.

Other parameter settings for PPO are adapted from the original

paper, please refer to our GitHub page for details.

S8. Avoid the zero-dosing sub-optimal policy
To circumvent the zero-dosing issue, we employ two strategies.

First, we propose a straightforward probability model of

metastasis. Based on observations and experiments in (19;

20; 21), we adopt a probability model of cell concentration

to simulate the metastasis process. Initially, we define

sub-metastasis as occurring with a probability when the

concentration of cancer cells c exceeds the threshold ĉ (sub-

metastasis occurs when msub(t) = 1, otherwise 0). The

probability is proportional to c2/3, where c represents the

concentration of cancer cells. We assume the tumor lesion

to be spherical, with only cells on the surface capable of

detaching from the lesion and transferring to other organs.

Given the carrying capacity in Equation (17), K ∼ 1/Vcell,

rcell ∼ K−1/3. Consequently, the surface area is proportional

to c2/3.

Taking into account the micro-environmental changes,

prostate cancer cells transferred during sub-metastasis have

a relatively low survival rate in other organs. Therefore, the

confirmation of final metastasis (denoted as mfinal = 1)

occurs when sub-metastasis takes place n times, and the final

metastasis serves as an additional criterion for the end of the

study (EOS), defined as follows:

mfinal := δ(
∑

msub < n) =

0, if
∑

msub < n

1, otherwise,
(19)

Here, δ(·) represents a binary-valued function, and

msub ∼

Bernoulli(c
2/3

), if ĉ < c

0, otherwise
(20)

With this metastasis model, if the agent administers an

insufficient drug dosage to patients, responsive cancer cells will

rapidly reach their capacity, and metastasis will occur swiftly,

resulting in a low reward.

Second, to encourage the agent to optimize its performance,

we provide a linearly increasing instant reward as follows:

rsupp,t = t× (1− c2,t), (21)

where c2,t denotes the cell concentration of the resistant

population at time t, and t represents time in months, also

the number of steps during one episodic sampling.

By employing these two strategies, the agent can effectively

avoid the sub-optimal zero-dosing policy.

S9. Leave-pair-out cross validation
To further assess the prediction accuracy of our proposed tM-

GLV model, we train the model for each patient 10 times by

randomizing the longitudinal data into validation and training

sets (20% for validation and 80% for training). The 95%

confidence interval (CI) for the patient-specific parameters can

be found in Supplementary File 1. The average value, along

with the 95% CI for all parameters for all patients, is provided

in Supplementary File 2.

In order to better establish the resistance index as the

threshold for distinguishing resistant patients from responsive

patients, we employed a leave-pair-out cross-validation,

separating responsive and resistant groups. The thresholds

were determined to maximize sensitivity and specificity in

the training set. Using these thresholds, the model classified

https://www.nicholasbruchovsky.com/clinicalResearch.html
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patients in the testing set as either responsive or resistant. The

overall accuracy achieved an average score of 85.7%, with a

narrow 95% CI ranging between 83.7% and 87.7%. Specificity

ranged between 91.7% and 92.5%, while sensitivity varied

between 91.7% and 92.3%.

Supplementary File 1: 95% CI for all the patient-specific

parameters.

Supplementary File 2: The population means for all

parameters and their 95% CI.

S10. Comparison of the I2ADT-derived adaptive
dosing policies of resistant and response patients
Upon analyzing the results of I2ADT, we identified two notable

differences between the resistant and responsive populations.

For responsive patients, an ascending drug administration

pattern emerged as drug pressure on responsive cancer cells

increased throughout the therapy. For the overall responsive

patients, the treatment off-to-on ratio, daily CPA dosage, and

monthly LEU dosage can be found in Supplementary Fig 1. As

therapy progressed, a decreasing pattern in the treatment off-

to-on ratio was observed. A significant increase in drug dosing

was evident in I2ADT, while a decreasing pattern was apparent

in standard IADT.

For resistant patients, a descending policy was observed,

with the treatment off-to-on ratio increasing over time. The

average off-to-on treatment ratio and daily CPA and monthly

LEU dosages across time are presented in Supplementary Fig

2. During the course of treatment, an increasing pattern

in the treatment off-to-on ratio was observed, while the

CPA/LEU pattern remained relatively flat compared to the

standard IADT, which exhibited an increasing pattern. This

insignificancy may due to the number of patients in the

resistance population is only 11.

S11. Other supplementary files
Supplementary File 3: Justify the choice of γ as resistance

index. We use all the parameters calibrated with the clinical

data as the classify. The results of AUC and confusion matrix

are shown in this supplementary file. Except the parameter

alone, we also show the results with r2/r1 as classify. From

AUC and confusion matrix, we empirically claim that γ has

the best power to differ the resistance from response.
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Fig. 1. The treatment off/on ratio, daily CPA dosing, and monthly LEU dosing of the I2ADT (left) and the standard IADT (right) for responsive

patients.
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Fig. 2. The treatment off/on ratio, daily CPA dosing, and monthly LEU dosing of the I2ADT (left) and the standard IADT (right) for resistance

patients.



Supplementary Information 9

Fig. 3. The episodic reward for training and evaluation reward/survival month with greedy strategy.

Fig. 4. This figure illustrates the use of all parameters, along with the r2/r1 ratio, as classifiers to differentiate between responsive and resistant cases.

Apart from γ and α, the remaining parameters demonstrate no predictive power in classification.
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Fig. 5. This figure shows the three patients’ evolutionary dynamics for response group with traditional IADT (left) and I2ADT (right) separately.
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Fig. 6. This figure shows the three patients’ evolutionary dynamics for resistance group with traditional IADT (left) and I2ADT (right) separately.
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