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Supplementary Note

Discovery stage GWAS phenotyping

EU-RLS-GENE GWAS: RLS was diagnosed in a face-to-face interview by an expert

neurologist or sleep specialist based on IRLSSG diagnostic criteria.1

RLS was diagnosed in a face-to-face interview by an expert neurologist or sleep specialist

implementing the IRLSSG diagnostic criteria established by the IRLSSG in 2003. RLS cases

had to fulfill all four diagnostic criteria evidence for secondary RLS had to be absent.

INTERVAL GWAS: The Cambridge-Hopkins Restless Legs Questionnaire was used to define

RLS cases and probable and definite cases were combined to form a binary phenotype. This

required participants to answer affirmatively to experiencing uncomfortable

feelings/sensations in their legs when sitting or lying down accompanied by a need or urge to

move their legs. These sensations needed to occur when participants were resting and

typically improve upon movement. Furthermore, they needed not to be equally likely to occur

throughout the day or most/least often in the morning/evening and night. Positional

discomfort/leg cramp (common mimics of RLS) were also ruled out through the requirement

that participants had to state that changing their leg position once was not sufficient to relieve

these sensations and that they are not due to muscle cramps. The distinction between definite

and probable cases was made based on whether these feelings were only present when sitting

and lying/lying only (definite) or only when sitting (probable). Individuals who stated that they

never had experienced uncomfortable feelings/sensations in their legs when sitting or lying

down accompanied by a need or urge to move their legs were defined as controls.

23andMe GWAS: The RLS phenotype was defined by self-reported responses to survey

questions which assessed whether someone has ever been diagnosed with RLS or has ever

received treatment for RLS. Participants were classified as cases if they answered positively

to any of these questions. Participants were classified as controls if they answered negatively.

Participants who answered “I’m not sure” or “I don’t know” to any question were excluded.
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Discovery stage GWAS genotyping quality control

EU-RLS-GENE GWAS: Individuals were removed if they showed a deviation ≥ 4 SD from the

mean of the population MDS, thereby restricting to individuals of European ancestry,

ambiguous sex calls, or an imiss-vs-het score ≥ 3 SD. For each pair of related individuals

(defined as a PIHAT ≥ 0.09375), the sample with lower genotyping quality was removed. SNPs

were excluded if they had a call rate < 98%, a MAF < 0.01, showed > 1 discordant genotype

in duplicate samples, had a p-value for deviation from Hardy-Weinberg-Equilibrium (pHWE) ≤

1 x 10-5 in controls, or were ambiguous.

INTERVAL GWAS: Before variant QC, duplicates and non-European ancestry samples were

removed using autosomal variants with MAF > 0.05, HWE p-value > 1x10−6, and r2 ≤ 0.2.

PLINK's Method-of-Moments IBD approach (PIHAT ≥ 0.9) and PCA (PC1 or PC2 scores < 0)

identified duplicates and non-European ancestries, respectively. Variants were excluded for

HWE deviation (p < 5x10−6), low call rates (< 0.97), or if failing in four or more batches (out of

ten). Sample contamination, assessed by the Jun et al. method2, led to excluding samples

with >10% contamination or 3%-10% contamination with >10 close relatives. Additional

exclusions were made for heterozygosity outliers and samples with phenotypic sex data

issues. For IBD and PCA, ~100,000 high-quality were selected and LD-pruned (r2 < 0.1) to

form an uncorrelated set.

23andMe GWAS: Participants were restricted to a set of individuals of European ancestry who

fulfilled the classification criteria of either a probability > 97% to be European + Middle Eastern

or a probability > 90% to be European, as determined through an analysis of local ancestry.

A maximal set of unrelated individuals was chosen for each analysis using a segmental

identity-by-descent (IBD) estimation algorithm. Individuals were defined as related if they

shared more than 700 cM IBD, including regions where the two individuals shared either one

or both genomic segments IBD. SNPs with PHWE ≤ 1 x 10-20, a call rate < 95%, or with large

allele frequency discrepancies compared to European 1000Genomes reference data were

excluded.
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Heritability analysis

In LDSC-based heritability analysis, because very large effect sizes can increase LDSC

regression standard errors, we chose a two-step estimator via flag --two-step 80. For LDAK-

based analyses, heritability models, including GCTA/LDSC, LDAK, hybrid and BLD-LDAK,

were specified according to the guidance of the calc-tagging module. The SumHer module

was used to calculate heritability using LDAK, hybrid and BLD-LDAK models, where

multiplicative inflation and additive inflation were controlled by setting the flags --genomic-

control and --intercept both to YES. Additional features included in BLD-LDAK and BLD-

LDAK+alpha models followed the recommendations provided by the LDAK developers

(https://dougspeed.com/technical-details/). In brief, the BLD-LDAK model includes 64

annotations from the Baseline LD model of LDSC, the LDAK LD weightings, and scaling

annotations based on MAF. For BLD-LDAK+alpha, a further parameter is added to allow alpha

to vary.

Prevalence estimates of RLS in European ancestry populations were chosen based on

published studies.3,4

https://dougspeed.com/technical-details/
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Genetic correlation analysis: Sources and filtering criteria for selection of GWAS

summary statistics

We extracted summary statistics for diverse traits and diseases from the University of Bristol

Integrative Epidemiology Unit OpenGWAS server https://gwas.mrcieu.ac.uk), cross-

referencing with GWAS atlas (https://atlas.ctglab.nl/) and augmenting with our own resources

(primarily for GWAS of iron and blood cell traits). The following criteria were used to exclude

studies of low power, non-matching ancestry, or low quality:

1. Exclude studies with non-European ancestry participants contributing to the summary

statistics (even if the number of non-European participants is low or mixed models

were used to account for population stratification).

2. Exclude studies with total n < 5.000.

3. For case-control studies (binary traits), exclude studies with < 1,000 cases.

4. Based on recommendations by LDSC authors and GWAS Atlas, remove traits with a

heritability Z-score < 2.

5. Based on recommendations by LDSC authors and GWAS Atlas, remove traits with

total SNP number < 450,000.

6. For traits with similar phenotype definition (as given in the GWAS atlas file or assumed

based on the fact that the data are from the same consortium), exclude the smaller

study. However, as study sample size and SNP number both play a role – only use

smaller study if SNP number of larger study is lower (compared to smaller study as

well as to average SNP number across all studies which, for the studies left after

filtering steps 1-3, is 8.7 x 106 SNPs, max 34 x 106, min 20,000; median 9.2 x 106).

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
https://atlas.ctglab.nl/
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Gene prioritization in risk loci

For all LD calculations, the European ancestry 1000 Genomes Phase 3 data was used as the

reference panel.

DEPICT: We ran DEPICT (v1.rel194) to first map SNPs to independent loci using the clumping

algorithm in PLINK as described above and then performed gene prioritization in these loci

based on DEPICT’s built-in eQTL data and reconstituted gene sets.5 Genes with an FDR <

0.05 were considered as significant and prioritized.

FUMA: We used the FUMA web platform (https://fuma.ctglab.nl/, v1.3.6a) for three

prioritization schemes to annotate genes in genomic risk loci:6

1) Positional mapping with the maximum distance between SNP and gene set at 10 kb.

2) eQTL mapping using the built-in eQTL datasets,limiting the set of candidate eQTLs to

significant SNP-gene pairs only (FDR < 0.05).

3) Topology-based mapping using the built-in chromatin interaction data, limited to

interactions with an FDR < 1x10-5 only and defining the promoter region window within

250 bp upstream and 500 bp downstream of the transcription start site.

We ran analyses 2) and 3) once including data from all tissues and once limited to CNS-related

studies.

MAGMA: We used MAGMA v1.08 to perform a gene-level GWAS via the test of mean SNP

association.7 Gene locations were based on the NCBI 37.3 annotation provided for MAGMA

(https://ctg.cncr.nl/software/magma). We mapped a SNP to a gene if it resided within the gene

boundaries or 5 kb of either endpoint. Genes with an FDR < 0.05 were considered as

significant and prioritized.

Transcriptome-based association study: We performed genome-wide expression-based gene

mapping using S-PrediXcan followed by S-MultiXcan (MetaXcan package v0.7.4) with GTEx-

v8 data (https://github.com/hakyimlab/MetaXcan).8 We used MASHR (multivariate adaptive

shrinkage in R) models which account for recombination rate and LD structure. Cross-tissue

analysis was performed with S-MulTiXcan and included S-PrediXcan results from all 13 CNS

tissues available in GTEx. Significance threshold was set at FDR < 0.05.

https://fuma.ctglab.nl/
(https:///ctg.cncr.nl/software/magma
https://github.com/hakyimlab/MetaXcan
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Colocalization analysis: We used eCAVIAR (v2.2, https://github.com/fhormoz/caviar) to

assess colocalization for each locus–tissue pair using GTEx v8 CNS tissues and their

respective significant eQTL SNPs (FDR < 0.05).9 A maximum of 5 causal SNPs per locus was

set. Any eGene with a colocalization posterior probability > 0.1 was prioritized as a target

gene.

Fine-mapping of putative causal variants in risk loci: Statistical fine-mapping was performed

with CAVIARBF (v0.2.1, https://bitbucket.org/Wenan/caviarbf/src/master/). We used the 74

baseline annotations as available in stratified LD score regression

(https://alkesgroup.broadinstitute.org/LDSCORE/).10 SNPs within 50 kb of a lead SNP and

with a MAF > 0.01 were considered. The subset of Europeans in the 1000 Genomes Phase 3

reference panel was used to estimate the LD matrix and 0.2 was added to the diagonal as

recommend for reference panel-based estimation with CAVIARBF. The exact Bayes factor

was averaged over prior variances of 0.01, 0.1, and 0.5. The elastic net parameters were

selected via 10-fold cross-validation.

https://github.com/fhormoz/caviar
https://bitbucket.org/Wenan/caviarbf/src/master/
(https://alkesgroup.broadinstitute.org/LDSCORE/).
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Colocalization analysis for SLC40A1

For iron-related traits and the SLC40A1 gene, the sharing of a causal variant was assessed

by colocalization analysis with the coloc R package v5.1.0.11 The coloc.abf function (default

priors) was used to test for sharing a causal variant at this locus under five different

hypotheses: H0: neither trait has a genetic association in the region, H1: only trait 1 has a

genetic association in the region, H2: only trait 2 has a genetic association in the region, H3:

both traits are associated, but with different causal variants, H4: both traits are associated and

share a single causal variant. Posterior probabilities greater than 90% were considered as

suggestive evidence for the respective hypothesis. For this analysis, we used summary

statistics of GWASs on QSM and T2* brain MRI measures available from UK Biobank to

assess brain iron content as well as summary statistics for peripheral iron measures (ferritin,

total iron binding capacity (TIBC), transferrin saturation (TSAT), and serum iron) from a recent

meta-analysis (summary stats used were those excluding the INTERVAL study).12-15
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Tissue and cell-type enrichment analyses

Input datasets: For tissue-level validation with CELLECT, we used the GTEx V8 gene read

counts (https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression).

For cell-type level enrichment, we used the adult/adolescent and developmental mouse CNS

single-cell RNAseq datasets provided on mousebrain.org (level 1 and level 2 annotations).16,17

Human datasets comprised the GSEA MSigDb cell type signature gene sets (MSigDb v7.4,

human collection C8), the DESCARTES human fetal tissue single cell RNAseq dataset, and

the BrainSpan developmental transcriptome.18-21 For the latter two human datasets, we could

compute ES scores and analyze the data with CELLEX and CELLECT.

https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
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Simulation study for gene-environment interaction

The properties of LDSC with omitted covariates are discussed in a simulation study by Omer

et al.22 Their results show that 1) LDSC remains accurate for genetic correlation with omitted

covariates, 2) the neglect of binary covariates causes heritability estimates to be biased

upward. This scenario appears to match the situation of the sex-specific RLS results.

Therefore, an important binary covariate may have been omitted in our female GWAS

analysis.

To model such an influence, we calculate the liability risk level 𝜑, in 𝑁 individuals with 𝑀

SNPs as:

𝜑 = 𝑔0 + 𝑔1 ∘ 𝐸 + 𝜏𝐸 + 𝜖 = 𝛸𝛽 + 𝛸𝜂 ∘ 𝐸 + 𝜏𝐸 + 𝜖（a.1）

Where 𝑔0 is the genetic effect, 𝑔1 is genetic effect interacting with an environmental factor, 𝐸

is an 𝑁 vector of the normalized environmental factor, 𝜏 is effect size of 𝐸, 𝛸 is the 𝑁 × 𝑀

normalized genotype matrix, 𝛽 and 𝜂 are 𝑀 vectors for the genotypic and interaction effect

sizes, respectively, 𝜖 is the random residual, and ∘ represents the Hadamard product.

According to the central moment theory of standard normal distribution of two independent

random variables 𝐴 and 𝐵:

𝐶𝑜𝑣[𝐴𝐵,𝐴] = 𝔼[𝐴2𝐵] − 𝔼[〖𝐴]〗2𝔼[𝐵] = 𝑉𝑎𝑟[𝐴]𝔼[𝐵] = 0

Therefore, given 𝑋 and 𝐸 are independent:

𝑉𝑎𝑟[𝜑] = 𝑉𝑎𝑟[𝑔0] + 𝑉𝑎𝑟[𝑔1𝐸] + 𝑉𝑎𝑟[𝜏𝐸] + 𝑉𝑎𝑟[𝜖] (a.2)

When there is no interaction, 𝜂 =  0, and 𝐸 is not specified, the model reduces to the standard

form, where:

𝜑 = 𝛸𝛽 + 𝜖 （a.3）

with 𝐸[𝜖] = 0, 𝑉𝑎𝑟[𝜖] = (1−  ℎ2), 𝐸[𝛽] = 0, 𝑉𝑎𝑟[𝑔0] =  h2, and
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𝐸[𝜀] = 0, 𝑉𝑎𝑟[𝜀] = (1 − ℎ2), 𝐸[𝛽] = 0, 𝑉𝑎𝑟[𝑔0] = ℎ2, and

𝐸ൣ𝛸𝑗2൧ = 𝑁 × 𝑉𝑎𝑟[𝛽𝑖] = 𝑁ℎ2𝐼𝑗/𝑀 + 1 = 𝑁ℎ2

𝑀𝑒𝑓𝑓
+ 1

The expectation of 𝛸2-statistics is approximately equal for both linear and logistic regression

at large sample sizes.

Now assume that the true phenotype is given as, 𝜑′ = 𝑋𝛽 + 𝑋 ∘ 𝐸 + 𝜀, which includes a gene-

environment interaction term. Thus, 𝛽𝑗′ = 𝛽𝑗 + 𝜂𝑗𝜔, where 𝜔 is a random coefficient following

the sampling distribution of 𝐸, and 𝑉𝑎𝑟൫𝛽𝑗′൯ = 𝑉𝑎𝑟൫𝛽𝑗൯+ 𝑉𝑎𝑟(𝜂𝜔). In the model (a.3), the

heritability then inadvertently depends on the variance of the interaction term, so that sex-

dependency of 𝐸 results in sex-dependency of the ℎ2, while the GWAS result would not reflect

a sex-differential interaction. In an alternative hypothetical scenario, the difference of

heritability is contributed by the size of the genetic effect, 𝜑′ = 𝑘𝑋𝛽 + 𝜀, where 𝑘 is the ratio of

the effect size between two sexes with 𝛽𝑗′ = 𝑘𝛽𝑗 and 𝑉𝑎𝑟(𝛽′) = 𝑘2𝑉𝑎𝑟(𝛽). This scenario would

also imply sex-dependency of the heritability ℎ2, as described in Lee’s 𝑅2.23 The 𝑘 would have

to be interpreted as a dosage compensation coefficient. However, unlike the case of the X

chromosome, there is no molecular mechanistic basis for assuming a sex-dependent dose

effect overarching all autosomes. Hence, we set out to evaluate different scenarios of

environmental influence being omitted in the GWAS to check whether they can account for

the observed sex-difference in heritability despite similar additive genetic effect sizes in both

sexes. Since logistic regression is not readily accessible for analytic examination, we

performed a simulation study where we generated different scenarios of environmental effects

E with or without sex-specific gene-environment interaction, and then checked which of these

fitted best our GWAS results.

In detail, we performed the following data simulation steps:

1) Assume that the two sexes have the same additive heritability ℎ2, if all environmental effects

have been removed.

2) Generate the random effect 𝜀, a vector from a normal distribution with 𝐸(𝜖) = 0 and

𝑉𝑎𝑟(𝜖) = 1− ℎ2.



12

3) Generate normalized genotypic effect 𝑋 via random sampling M SNPs based PRS, where

M =193, i.e., the number of lead SNPs in the pooled GWAS.

4) Generate the additive genetic effect 𝐺 = 𝑋𝛽, where β corresponds to the effect sizes of the

pooled GWAS so that 𝑉𝑎𝑟(𝐺) =  ℎ2.

5) Obtain liability risk 𝜑 = 𝐺 + 𝜀 as the base model.

6) Obtain disease status 𝑜 = 𝐼𝜑 > 𝜑𝑐𝑢𝑡𝑜𝑓𝑓  with 𝜑𝑐𝑢𝑡𝑜𝑓𝑓 = 𝛷-1(1− 𝑝𝑟𝑒𝑣) where 𝐼 is the

indicator function, 𝛷−1 is the inverse of the standard normal cumulative distribution function,

and prev = 0.06 is the empirical European RLS prevalence.

7) Simulate a random vector 𝐸 and environmental effects 𝜂and 𝜏 as unobserved additive and

interactive environmental effects. 𝐸 follows a normal distribution (when simulating a

continuous covariate scenario) or a Bernoulli distribution (binary covariate scenario) with

probability p=1 - pchildlessness, where pchildlessness = 0.21 is the proportion of females without

children.

8) For optimized (see below) 𝐸, 𝜂, and 𝜏, obtain liability risk 𝜑′ = 𝑋𝛽 + 𝑋 ∘ 𝐸 + 𝜏𝐸 + 𝜀 with 𝑋𝛽

as in (4), 𝐸(𝜀) = 0, and 𝑉𝑎𝑟(𝜀) = 1− (𝑉𝑎𝑟(𝑋𝛽) + 𝑉𝑎𝑟(𝑋𝜂 ∘ 𝐸) + 𝑉𝑎𝑟(𝜏𝐸)) in accordance with

eq(a.2).

9) Obtain disease status 𝑜′ = 𝐼𝜑′ > 𝜑𝑐𝑢𝑡𝑜𝑓𝑓) as in (6) with 𝜑′𝑐𝑢𝑡𝑜𝑓𝑓  = 𝜑𝑐𝑢𝑡𝑜𝑓𝑓 , assuming that

the liability threshold of the disease is independent of environmental influence.

10) For the simulations in (5,6) and (8,9) estimate 𝐸-omitting GWAS summary statistics 𝛽̂, 𝛽′෡ ,

𝑧̂ and 𝑧′෡  with models 𝑙𝑜𝑔𝑖𝑡൫𝑃(𝑜)൯~𝛸 and 𝑙𝑜𝑔𝑖𝑡൫𝑃(𝑜′)൯~𝛸, respectively.

11) Calculate 𝛾𝑏 = 𝛽̂ 𝛽′෡⁄ , representing the mean male-to-female effect size ratio (coefficient).

12) Calculate liability scaled ℎ2 and ℎ′2, representing males and females, respectively.

Overall, we simulated four scenarios, including continuous or discrete environment factors,

and with or without the inclusion of interactions.

Based on the real GWAS summary statistics, the actually observed heritabilities and mean

male-to-female effect size ratio, ℎ𝑚2 ~ 𝑁(0.13,  0.014), ℎ𝑓2~ 𝑁(0.32,  0.029), and
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𝛽𝑜𝑏𝑠𝑚
𝛽𝑜𝑏𝑠𝑓
൘ ~ 𝑁(0.91, 0,12), were used to find an optimal selection of scenario, 𝐸, 𝜂, and 𝜏 by

an adaptive MCMC method, DRAM within the R package BayesianTools v0.0.10

(https://github.com/florianhartig/BayesianTools).

https://github.com/florianhartig/BayesianTools
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Risk prediction: Creation of a synthetic population for prediction evaluation

The GWAS study based on case-control design aims to estimate genetic effects. The artificial

selection bias in the experiment, such as population stratification, sex, and age, was added to

the model in the form of covariates and eliminated. Under the conditional independence

assumption, PRS can be used to predict the genetic risk of disease. On the other hand, the

risk of RLS is closely related to many factors such as sex, age, and obesity. In real-world

practice, ignoring these factors may cause a loss of predictive power. However, due to

selection bias, the effects of these factors as well as potential interaction effects cannot be

estimated from the case-control design.

To better predict the risk of RLS and evaluate the contribution of genetic factors, we created

a synthetic population as simplified microscopic representation of the actual population. The

synthetic population is restricted to meet the sex and age distribution of the demographic data

for Germany as aggregate-level information.

Assuming that the collection of patients in the EU-RLS-GENE dataset is unbiased, the

incidence can be estimated based on Bayes' theorem. Following the denomination of survival

analysis, the event rate at age a is

ℎ(𝑎) = − 𝑆′(𝑎)
𝑆(𝑎) (1)

where 𝑆(𝑎) is the survival function and 𝑆′(𝑎) is the survival event density. To accommodate

the sampling strategy for our dataset, we use the sampling probability to represent the hazard

function. As for an individual 𝑖, the event rate at age 𝑎 is

𝑝𝑖(𝑟𝑙𝑠 = 1|𝑎𝑔𝑒 = 𝑎) = ℎ(𝑎) (2)

the age distribution at age 𝑎 is

𝑝𝑖(𝑎𝑔𝑒 = 𝑎) = 𝑔(𝑎) (3)

In the cohort data, 𝑔(𝑎) is the survival density function 𝑆′(𝑎). Whereas in our data, it does not

vary with 𝑎, if the retrospective process is synchronous, such as not affected by memory or

disease progression (assumption A1),

𝑝𝑖
𝑦(𝑎𝑔𝑒 = 𝑎) = 1 𝑦⁄    (A1)



15

where 𝑦 is the age of 𝑖 when the individual is collected. The cumulative risk for the collected

individual 𝑖 is

𝑝𝑖
𝑦(𝑟𝑙𝑠 = 1) = ෍ 𝑝𝑖

𝑦(𝑎𝑔𝑒 = 𝑎, 𝑟𝑙𝑠 = 1)
𝑦

𝑎=1

                                           = ෍ 𝑝𝑖
𝑦(𝑟𝑙𝑠 = 1|𝑎𝑔𝑒 = 𝑎)  ∙ 𝑔𝑦

𝑦

𝑎=1
(𝑎)

                                                                             = ∑ ℎ(𝑎)𝑔𝑦(𝑎)𝑦
𝑎=1              (4)

According to Bayes' theorem, for individual 𝑖, who currently or previously suffered from RLS,

the distribution of age at onset is

𝑝𝑖
𝑦(𝑎𝑔𝑒 = 𝑎|𝑟𝑙𝑠 = 1) =  ℎ(𝑎) ∙ 𝑔(𝑎,𝑦) ∑ ℎ(𝑎)𝑔𝑦(𝑎)𝑦

𝑡=1⁄  (5)

which could be estimated by empirical distribution function,

𝑝𝚤
𝑦෢(𝑎𝑔𝑒 = 𝑎|𝑟𝑙𝑠 = 1) = 𝑛𝑎

𝑦 𝑁𝑦⁄                 (6)

where 𝑛𝑎
𝑦 is the number of cases with age 𝑦 at collection and age a at onset, 𝑁𝑦 is the total

number. Combining equations (5) and (6), we have the estimated hazard function as

ℎ෠(𝑎) = 𝑛𝑎
𝑦

𝑁𝑦
∙
∑ ℎ(𝑎)𝑔𝑦(𝑎)𝑦
𝑎=1

𝑔𝑦(𝑎)
                          (7)

Thus, we have the relative risk ratio as

ℎ෡ (𝑗)
ℎ෡(𝑘)

=
𝑛𝑗
𝑦

𝑛𝑘
𝑦 ∙

𝑔𝑦(𝑘)
𝑔𝑦(𝑗)

                                    (8)

Given assumption (A1),

ℎ෡ (𝑗)
ℎ෡(𝑘)

=
𝑛𝑗
𝑦

𝑛𝑘
𝑦                                                    (9)

Thus, for age at collection 𝑦, ℎ𝑎 is proportional to 𝑛𝑎
𝑦 in the case group. To sum up the risk

proportions over all different ages 𝑌 at collection, we use weighted sum relative risk ratio

matrix,

𝑅෠𝑗,𝑘 = ℎ෡(𝑗)
ℎ෡(𝑘)

= ∑
𝑛𝑗
𝑦+𝑛𝑘

𝑦

𝑁𝑗+𝑁𝑘
𝑌
𝑦 (𝑛𝑗

𝑦 𝑛𝑘
𝑦ൗ )                                 (10)

where 𝑁𝑗 and 𝑁𝑘 is the total number of cases with age at onset 𝑗 or 𝑘.

Based on the relative risk ratio matrix, the age dependent risks were solved by maximum

likelihood estimation (MLE). The estimated age dependent risks were expected to produce a
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relative risk matrix that will maximize the similarity to the estimated 𝑅෠ (eq 10) shown above.

The log-likelihood function is

𝐿൫ℎ෠ ,𝑅෠൯ = −∑ log ቀ 1
√2𝜋

𝑒−
1
2 (ℎ෡𝑗 ℎ෡𝑘⁄ −𝑅෠𝑗,𝑘)2ቁ𝑗>𝑘                      (11)

The MLE was solved by a quasi-Newton method, BFGS in R package stats4 v4.1.0. Without

loss of generality, ℎ෠𝑎=10 is set to 1, and the solved 𝑟𝑎 is equal to the absolute value ℎ෠𝑎 divided

by ℎ෠𝑎=10.

To estimate the absolute ℎ෠, the scale factor s can be estimated by fitting to the prevalence,

𝑝2012(𝑅𝐿𝑆 = 1) = 10%

= ∑ ൫𝑝2012(𝑎𝑔𝑒  =  𝑦)  ∙   ∑ 𝑠𝑦
𝑎=1   ∙  𝑟𝑎൯𝑌

𝑦=1 ,

where 𝑝2012 = (𝑎𝑔𝑒 = 𝑦) is the population age distribution of Germany in 2012.

Following the method shown above, age-dependent risks were estimated for males and

females separately. Distributions of ages and sexes in Germany were based on World

Population Prospects of United Nations, Department of Economic and Social Affairs, and were

downloaded from https://www.populationpyramid.net/germany.

In the previous step of fitting the prevalence, the proportion of cases and controls for each sex

in each age group was derived. The synthetic population is generated by resampling our

GWAS dataset to match these sex and age distributions. Besides, for each resampled case,

we prioritize the matched controls that have the most similar population stratification, which

was measured by the Euclidean distance of the top 10 MDS.

For the evaluation dataset from INTERVAL study, we assume that the data were collected

from the same cohort and the age at onset information was obtained in the questionnaire for

all people. The matched case/control dataset were reconstructed with following procedure:

https://www.populationpyramid.net/germany
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For each i in ages:

  [incidence at i] = [number of cases with aao = i] /

                      ([number of cases with aao >= i] +

                       [number of controls with age >= i])

  [prevalence at i] = [sum of incidences from 0 to i]

  [expected number of control with age at i ] =

                     (1-[prevalence at i] / [prevalence at i]) *

                      [number of cases with aao = i]

resampling {control with age at i} with replacement to [expected number of control with age at i ]

resampling {cases with aao at i} with replacement to [number of cases with aao = i]

To avoid data leakage, the data were first randomly split into two parts, 50% for calibration

and 50% for testing, before establishing case/control matches. In the procedure, the

resampling with replacement was repeated 10 times for bootstrap-based error estimation.

ages were split to 7 bins in between the ages 0,20,30,40,50,60,70,70+.
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URLs for software

PLINK (v1.90b6.7): https://www.cog-genomics.org/plink/1.9/

SNPTEST (v2.5.4) https://www.chg.ox.ac.uk/~gav/snptest/

SAIGE (0.35.8.8): https://github.com/saigegit/SAIGE

N-GWAMA (v1.2.6) https://github.com/baselmans/multivariate_GWAMA;

METAL (release 2011-03-25): https://csg.sph.umich.edu/abecasis/metal/index.html

METASOFT (v2.0.1): https://web.cs.ucla.edu/~eeskin/

GCTA (v1.93.0beta): https://yanglab.westlake.edu.cn/software/gcta/#Overview

LDSC (v1.0.1): https://github.com/bulik/ldsc

LDAK (v5.0): https://dougspeed.com/ldak/

LHC-MR (v0.0.0.9000): https://github.com/LizaDarrous/lhcMR

DEPICT (v1 rel194): https://github.com/perslab/depict

FUMA (v1.3.6a): https://fuma.ctglab.nl/

MAGMA (v1.08) https://cncr.nl/research/magma/

MetaXcan (v0.7.4) https://github.com/hakyimlab/MetaXcan

eCAVIAR (v2.2): https://github.com/fhormoz/caviar

CAVIARBF (v0.2.1): https://bitbucket.org/Wenan/caviarbf/src/master/

CELLECT (v1.3.0) and CELLEX (v1.2.1): https://github.com/perslab/CELLECT

MAGMA_celltyping (v2.0.0): https://github.com/neurogenomics/MAGMA_Celltyping

pycox (v0.2.1): https://github.com/havakv/pycox

PyTorch (v1.6.0): https://github.com/pytorch/pytorch

H2O autoML (v3.36.0.2): https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

Sanger imputation server: https://imputation.sanger.ac.uk/

EAGLE2 (v2.0.5): https://alkesgroup.broadinstitute.org/Eagle/

PBWT (v3.1): https://github.com/richarddurbin/pbwt

Minimac3: https://genome.sph.umich.edu/wiki/Minimac3

R (v4.0.4 and v4.0.2): https://cran.r-project.org/

Rrvgo package (v1.2.0):https://bioconductor.org/packages/release/bioc/html/rrvgo.html

WGCNA package (v1.69): https://cran.r-project.org/web/packages/WGCNA/index.html

TwoSampleMR package (v0.5.6): https://mrcieu.github.io/TwoSampleMR/index.html

Coloc package (v5.1.0) https://chr1swallace.github.io/coloc/

BayesianTools package (v0.0.10): https://github.com/florianhartig/BayesianTools

Bigsnpr package (v1.12.2), implements LDpred2: https://privefl.github.io/bigsnpr/

gwasvcf package (v0.1.0): https://github.com/MRCIEU/gwasvcf

randomForestSRC package (v3.0.1): https://www.randomforestsrc.org/

https://www.cog-genomics.org/plink/1.9/
https://www.chg.ox.ac.uk/~gav/snptest/
https://github.com/saigegit/SAIGE
https://github.com/baselmans/multivariate_GWAMA;%20PLINK1.9
https://csg.sph.umich.edu/abecasis/metal/index.html
https://web.cs.ucla.edu/~eeskin/
https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://github.com/bulik/ldsc
https://dougspeed.com/ldak/
https://github.com/LizaDarrous/lhcMR
https://github.com/perslab/depict
https://fuma.ctglab.nl/
https://cncr.nl/research/magma/
https://github.com/hakyimlab/MetaXcan
https://github.com/fhormoz/caviar
https://bitbucket.org/Wenan/caviarbf/src/master/
https://github.com/perslab/CELLECT
https://github.com/neurogenomics/MAGMA_Celltyping
https://github.com/havakv/pycox
https://github.com/pytorch/pytorch
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://imputation.sanger.ac.uk/
https://alkesgroup.broadinstitute.org/Eagle/
https://github.com/richarddurbin/pbwt
https://genome.sph.umich.edu/wiki/Minimac3
https://cran.r-project.org/
https://bioconductor.org/packages/release/bioc/html/rrvgo.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://mrcieu.github.io/TwoSampleMR/index.html
https://chr1swallace.github.io/coloc/
https://github.com/florianhartig/BayesianTools
https://privefl.github.io/bigsnpr/
https://github.com/MRCIEU/gwasvcf
https://www.randomforestsrc.org/
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Supplementary Figure 1

Comparison of different cell-type enrichment approaches (MAGMA_celltyping and

CELLECT)

Pairwise correlation chart between prioritization pipelines showing correlation between p-

values obtained with the different methods: The x and y-axes show nominal -log10(p-value);

MCT_linear stands for MAGMA_Celltyping linear mode, where the specificity score is

grouped in 40 quantile bins. MCT_top10 stands for MAGMA_Celltyping top10 mode;

MCT_linearRaw stands for MAGMA_Celltyping using raw specificity score (EWCE); lower-

diagonal cells show scatter plot and local regression (lowess)-based fitted line; upper-

diagonal cells show Pearsons's correlation coefficient with the corresponding p-value (one-

sample two-sided Z-test). Diagonal cells show a histogram of the -log10(p-value) obtained

with each pipeline (one-sided tests). We ran MAGMA_celltyping in its linear as well as its

top10% enrichment mode and ES scores calculated with EWCE as recommended

(https://github.com/neurogenomics/MAGMA_Celltyping). The analyses were performed

using the level 2 mousebrain developmental dataset (http://mousebrain.org/development/).16

https://github.com/neurogenomics/MAGMA_Celltyping
http://mousebrain.org/development/
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