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SUPPLEMENTARY NOTE 1: EXPERIMENT SETUP AND SURFACE ION

TRAP

Supplementary Figure 1 shows the schematic diagram of our experimental setup. The

surface ion trap is fabricated on a sapphire wafer, which has a high transmittance for visible

and near infrared laser. The chip is fixed on a 3D stage and installed in a vacuum chamber.
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Supplementary Figure 1. Schematic diagram of the experimental setup. The surface ion trap

is fixed on a 3D stage and installed in the vacuum chamber. A 532 nm laser beam controlled by

an acousto-optic modulator (AOM) is incident from the bottom to excite diamond NV centers

in a levitated nanodiamond. The photoluminescence (PL) is collected by an objective lens. A

1064 nm laser beam focused by the same objective lens is used to monitor the motion of levitated

nanodiamonds. The PL is separated from the 532 nm laser and the 1064 nm laser by two long-pass

dichroic mirrors (DMLP650 and DMLP1000). PBS: Polarizing beam splitter; λ/2: half-wave plate;

λ/4: quarter-wave plate; BP: band-pass filters
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The AC high voltage signal used to levitate nanodiamonds and the microwave used for

quantum control are combined with a bias tee and delivered to the chip. A 532 nm laser beam

is incident from the bottom to polarize a levitated nanodiamond. The photoluminescence

(PL) is collected by an objective lens with a numerical aperture (NA) of 0.55. A 1064 nm

laser beam focused by the same objective lens is used to monitor the center-of-mass (CoM)

motion and the rotational motion of levitated nanodiamonds. The PL is separated from the

532 nm laser and the 1064 nm laser by two long-pass dichroic mirrors. The count rate and

the optical spectrum of the PL are measured by a photon counter and a spectrometer. Two

cameras monitor the procedure of particles loading and the trapping position of levitated

nanoparticles.

Instead of a surface ring ion trap with concentric rings [1, 2], we use an Ω-shaped circuit to

deliver both a high voltage for trapping and a microwave for controlling NV centers. A blank

hole in the center allows the probing laser to travel through. The planar design conveniently

provides six-directional detection. To theoretically calculate the trapping parameters, in-

cluding the trapping position and the trapping depth, we approximate the surface ion trap

(Supplementary Figure 2(a)) as a perfect ring ion trap (Supplementary Figure 2(b)). The

area a ≤ r ≤ b is connected to an AC high voltage driving signal with a frequency of fd

and an amplitude of Vd, while the remaining parts are grounded. For a surface ion trap, the

motion of particles in z axis (perpendicular to the chip surface) is more critical. The motion

equation of a nanoparticle along the z axis can be approximately written as [1]:

m
d2z

dt2
= −QVd cos (2πfdt) f (a, b) (z − z0) , (1)

where m is the mass of the nanoparticle, Q is the charges, z0 =
√
a4/3b4/3/ (a2/3 + b2/3) is

the trapping position located at the zero field point, and f(a, b) is the geometric factor given

by

f (a, b) =

√√√√ 9(b2/3 − a2/3)
2
(b2/3 + a2/3)

6

a4/3b4/3(a4/3 + a2/3b2/3 + b4/3)
5 . (2)

Eq. 1 shares the same forms as Mathieu equation. The trapping eigenfrequency along z

direction can be solved as:

ωz =
q

2
√
2
2πfd =

QVd

2
√
2πmfd

f (a, b) . (3)
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Supplementary Figure 2. Surface ion trap and CoM motion of a levitated nanodiamond. (a)

Optical image of the surface ion trap. The outer four electrodes are used for compensation of

residual charges on the chip surface. Trapping voltage and microwave can be delivered by a

bias-tee simultaneously. (b) Equivalent surface ion trap with concentric rings design. Ring area

a ≤ r ≤ b is connected to an AC high voltage and the remaining parts are grounded. (c) Theoretical

pseudopotential calculation in z axis of a concentric ring ion trap. The trapping position is located

at z0 = 245 µm and the trapping depth is around 420 eV. The parameters used for this calculation

are listed in Supplementary Table I. (d) Power spectral densities (PSDs) of the CoM motion of the

levitated nanodiamond in three dimensions at the pressure of 0.01 Torr. The radius is about 264

nm by the Lorentzian fitting.

For a regime with small displacement of a levitated nanodiamond, the electric potential

can be approximated as a harmonic potential near the trapping region:

Vp1 (z) =
1

2
mω2

z(z − z0)
2 =

Q2V 2
d

16π2mf 2
d

f 2 (a, b) (z − z0)
2. (4)

Generally, when the levitated nanodiamond moves away from the harmonic region, the

pseudopotential can be written as [1]:

Vp2 (z) =
Q2V 2

d

16π2mf 2
d

∣∣∣∣∣∣∇
 1√

1 + (a/z)2
− 1√

1 + (b/z)2

∣∣∣∣∣∣
2

. (5)
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Supplementary Table I. Parameters for the pseudopotential calculation of equivalent surface ion

trap. qz satisfies the condition of stable 3D trapping.

Q/e R/nm ρ/(kg/m3) Vd/V fd/Hz a/µm b/µm qz

2000 264 3500 300 2π × 1.6× 104 270 450 0.29

The dimension of the surface ion trap is designed as a = 270 µm and b = 450 µm. We

theoretically calculate the trapping potential of a levitated nanodiamond in z axis, as shown

in Supplementary Figure 2(c). The red dash-dotted curve and blue solid curve are calculated

by Eq. 4 and Eq. 5, respectively. All the parameters are summarized in Supplementary

Table I. The theoretical trapping position z0 is 245 µm, which is very close to the simulation

result 253 µm for the current ion trap design. The difference is due to the asymmetric ion

trap design.

The trapping potential is dependent on the eigenfrequency of a levitated particle, which

is proportional to the charge to mass ratio (Q/m). Thus, it is necessary to increase the

charge number carried on particles to achieve stable levitation in an ion trap. In our exper-

iment, the diamond particles were purchased from Adamas Nano and the product model is

MDNV1umHi10mg (1 micron Carboxylated Red Fluorescence, 1 mg/mL in DI Water, 3.5

ppm NV). These particles exhibit an average size of 750 nm. They are created by irradiat-

ing 2-3 MeV electrons on diamonds manufactured by static high-pressure, high-temperature

(HPHT) synthesis and containing about 100 ppm of substitutional N. The nanodiamonds

are first sprayed out by electrospray, which is supplied by a DC high voltage (∼ 2 kV). Then

the nanodiamonds are delivered to the trapping region of the surface ion trap with an extra

linear Paul trap.

After a nanodiamond is trapped, we apply a 1064 nm laser to measure the CoM motion

of the levitated nanodiamond. Supplementary Figure 2(d) is the power spectral densities

(PSDs) of the CoM motion in x, y and z directions at the pressure of 0.01 Torr. The

radius of the levitated nanodiamond is obtained to be about 264 nm based on the fitting of

the PSDs. The experimental trapping frequency in the z direction is about ωz/2π = 1.65

kHz. Using Eq. 3, the charge number is estimated to be about 2000 for this nanodiamond.

The surface ion trap creates an extremely deep potential well of 420 eV (Supplementary

Figure 2(c)). According to our experimental results, the charge number of different levitated
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Supplementary Figure 3. Internal temperature of a levitated nanodiamond. (a) Optically detected

magnetic resonances (ODMRs) of the levitated nanodiamond at different intensities of the 532 nm

laser and the 1064 nm laser at the pressure of 1.3 × 10−5 Torr. (b) Internal temperature as a

function of the intensity of the 532 nm laser. The intensity of the 1064 nm laser is 0.520 W/mm2.

(c) Internal temperature as a function of the intensity of the 1064 nm laser. The intensity of the

532 nm laser is 0.030 W/mm2. Error bars in both (b) and (c) represent the standard deviation

among three times measurements.

nanodiamonds varies from 1,000 to 10,000.

SUPPLEMENTARY NOTE 2: INTERNAL TEMPERATURE OF A LEVITATED

NANODIAMOND

The heating induced by the absorption of the 532 nm laser and the 1064 nm laser af-

fects the stability of the levitated nanodiamond in vacuum. Here we measure the optically

detected magnetic resonances (ODMRs) of the levitated nanodiamond at different optical

intensities of the 532 nm laser (I532) and the 1064 nm laser (I1064), as shown in Supplemen-

tary Figure 3(a). The pressure is fixed to 1.3× 10−5 Torr. First, we adjust the intensity of

the 532 nm laser from 0.015 W/mm2 to 0.03 W/mm2, while keeping I1064 = 0.520 W/mm2.

The internal temperature of the levitated nanodiamond is shown in Supplementary Figure

3(b). Then we measure the temperature when the intensity of the 1064 nm laser is changed

from 0 to 0.520 W/mm2 while the intensity of the 532 nm laser is fixed at I532 = 0.03

W/mm2 (Supplementary Figure 3(c)). The red curves are the fittings by [3, 4]:

Aa = Agasp (T − T0) + Abb

(
T 5 − T 5

0

)
, (6)
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where the first term Aa =
∑

λ ηλIλV is the heating of the excitation laser (λ = 532 nm) and

the probe laser (λ = 1064 nm), ηλ is the absorption coefficient of nanodiamond and Iλ is the

laser intensity, V is the volume of nanodiamond. The second term is the cooling rate caused

by gas molecule collisions, Agas = κπR2v
2T0

γ′+1
γ′−1

, κ ≈ 1 is the thermal accommodation coeffi-

cient of diamond, R = 332 nm is the radius of the nanodiamond used in this temperature

measurement experiment, v is the mean thermal speed of gas molecules, γ′ is the specific

heat ratio (γ′ = 7/5 for air near room temperature), p is the pressure, T0 is the thermal

temperature (298 K). Plug in the parameters, we get the coefficient Agas to be 1.74× 10−12

m3·s−1·K−1 for this nanodiamond. The last term is for cooling due to black-body radiation,

where Abb = 72ζ (5)V k5
B/

(
π2c3h̄4

)
Im

(
ε−1
ε+2

)
, ζ (5) ≈ 1.04 is the Riemann zeta function, kB

is the Boltzmann constant, c is the vacuum light speed, h̄ is the reduced Planck’s constant, ε

is a constant and time-independent permittivity of nanodiamond across the black-body ra-

diation spectrum. Based on the coefficient Agas, we can calculate the absorption coefficients

of 532 nm laser and 1064 nm laser to be 111 cm−1 and 5.87 cm−1, respectively.

SUPPLEMENTARY NOTE 3: ROTATION OF A LEVITATED NANODIA-

MOND DRIVEN BY A ROTATING ELECTRIC FIELD

In our experiment, we use a rotating electric field to drive a levitated nanodiamond to

rotate at a high speed. The four electrodes at the corners are applied with four sinusoidal

signals with the same frequency and amplitude but π/2 phase difference to generate a rotat-

ing electric field. The two grounded electrodes labeled by GND1 and GND2 (Supplementary

Figure 2(a)) are introduced to cancel the z component of the rotating electric field and make

the electric field more symmetric. We simulate the electric fields for both the trapping po-

tential and the rotating field using the COMSOL software. The simulation of the electric

potential in xy-plane at different rotation phases are shown in Supplementary Figure 4. The

rotation phases are changed from 0 to 2π by steps of π/4 in the simulation. The dipole

moment (p) of a levitated nanodiamond is aligned to the direction of the electric field (Exy)

by the torque

Melectric = p× Exy = |p| |Exy| sin β · z, (7)
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Supplementary Figure 4. Simulation of the rotating electric potential in xy-plane generated by

the four electrodes. The rotation phase (ωt) of each figure is changed from 0 to 2π by the step of

π/4, and the direction of corresponding electric field rotate following the rotation phase.

where β is the angle between the dipole moment and the electric field, z is the unit vector

along z direction.

Based on the simulation as shown in Supplementary Figure 4, the amplitude and the

direction (α) of the electric field in the xy-plane can be calculated, which is displayed in

Supplementary Figure 5(a) and 5(b). α = 0 indicates that the rotating electric field points to

the positive x direction. The blue circles and red squares are the simulations with and with-

out the compensation electrodes GND 1 and GND 2. Ideally, the direction of the rotating

electric field should be α (t) = π/4 − ωt (orange dashed curve). The inset of Supplemen-

tary Figure 5(b) is the asynchrony between the simulation result and an ideal rotation field

with and without the compensation electrodes. The orientation of the electric field does not

perfectly rotate at a constant speed in one period without the compensation electrodes (red

squares). The maximum deviation is 5.5◦. It hurts the stability of the rotational motion of

the levitated nanodiamonds and expands the linewidth of nanodiamond’s rotation signal.

Moreover, the Ez component of the rotating electrical field oscillates with a large amplitude

if no compensation electrode exits (Supplementary Figure 5(c)). The Ez component drives
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Supplementary Figure 5. Simulation of the rotating electric field and the rotational motion of

a levitated nanodiamond. Time evolution of the xy-plane component (a) and direction (b), z

component (c) of the electric field with (blue circles) and without (red squares) the compensation

electrodes of GND1 and GND2. α describes the orientation of the electric field (α = 0 indicates

the electric field points to positive x direction). (d) PSD of the rotational motion at the rotation

frequency of 0.1 MHz. The linewidth is 9.9×10−5 Hz by the fitting (inset). The ratio of the center

frequency to the linewidth is 2× 109. (e) PSDs of the rotational motion of the levitated nanodia-

mond at different pressures, showing the maximum rotation frequency at different pressures. The

rotation frequencies are 0.05 MHz, 0.1 MHz, 0.2 MHz, 0.5 MHz, 1 MHz, 2 MHz, 5 MHz and 10

MHz, respectively. The upper limit of the rotation frequency is inversely proportional to pressure

with the electric field driving. Particles stop rotating above the dashed white line. (f) Simulation

of microwave transmittance of the surface ion trap.

a levitated nanodiamond to oscillate in the z direction, causing the loss of the levitated nan-

odiamond in high vacuum. The two compensation electrodes effectively solve these issues.

The transmittance of a microwave through the Ω-shaped circuit is simulated (Supplemen-

tary Figure 5(f)) to ensure the microwave has low loss for frequencies from 2.6 GHz to 3.1

GHz.

Then we drive a levitated nanodiamond to rotate using the rotating electric field. The
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PSD of the rotational motion at the rotation frequency of 0.1 MHz is shown in Supplementary

Figure 5(d). The linewidth of the rotation signal is about 9.9×10−5 Hz based on a Lorentzian

fitting (inset of Supplementary Figure 5(d)). Thus, the ratio of the center frequency to the

linewidth is 2 × 109, demonstrating the rotational motion is ultra-stable with easy control

by this method.

Meanwhile, the rotational motion of the levitated nanodiamond is damped by the in-

teraction with the remaining gas molecules in vacuum chamber. The damping torque of a

sphere is [5, 6]

Mgas = −Iωrγd, (8)

where I is the moment of inertia of the nanodiamond, ωr is the angular velocity, γd =

40η′pR2/3mv is the damping rate of rotational motion, η′ ≈ 1 is the accommodation factor

accounting for the efficiency of the angular momentum transferred onto the nanodiamond

by gas molecule collisions, p is the pressure, R and m are the radius and the mass of the

particle, v is the mean thermal speed of gas molecules. Thus, the rotational motion equation

can be written as:

I
dωr

dt
= Melectric +Mgas. (9)

The maximum rotation frequency of the levitated nanodiamonds is obtained at Melectric =

−Mgas and β = π/2, which is limited by the pressure in the vacuum chamber. The maximum

rotation frequency at a certain pressure is:

ωr,max = |p| |Exy| /Iγd. (10)

We measure the upper limit of the rotation frequency at different pressures (Supple-

mentary Figure 5(e)). The PSDs as functions of air pressure are measured at the rotation

frequencies of 0.05 MHz, 0.1 MHz, 0.2 MHz, 0.5 MHz, 1 MHz, 2 MHz, 5 MHz and 10 MHz.

The levitated nanodiamond stops rotating when the pressure is too large for that rotation

frequency. The maximum rotation frequency is inversely proportional to the pressure (white

dashed curve). The dipole moment of the nanodiamond (R = 264 nm) is estimated to be

|p| = 3.13×10−25 C·m (1.96 e·µm). We can adjust and lock the rotation of the levitated nan-

odiamond at arbitrary frequency and pressure in the region below the white dashed curve.

The maximum rotation frequency is ωr = 2π× 20 MHz in this experiment, which is limited
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Supplementary Figure 6. Berry phase induced by a rotating nanodiamond. (a) Theoretically

calculated ODMR of NV centers with different orientations at the rotation frequency of 20 MHz.

The blue solid and red dashed lines are calculated at θ = 0 and θ = 45◦, respectively. (b)

Theoretically calculated FWHM of the ODMR as a function of rotation frequency. The blue solid

curve and the red dashed curve are calculated for θ = 0 and θ = 45◦, respectively. (c) Experimental

results of the frequency shift due to the Berry phase induced by counterclockwise rotation (blue

circles), and theoretical calculated resonance frequency as a function of the rotation frequency at

θ = 21.5◦ (red curve). Error bars show the standard deviation among three measurements.

by the π-phase shifter (Mini-Circuits, ZFSCJ-2-2-S) used to generate the signals on the

four electrodes. Under favorable conditions, the rotational motion can achieve a frequency

exceeding 10 GHz at the pressure of 10−6 Torr based on the dashed line in Supplementary

Figure 5(e).

SUPPLEMENTARY NOTE 4: BERRY PHASE OF ROTATING NV ELECTRON

SPINS

A. Without an external magnetic field

In a rotating diamond, the embedded NV centers follow the rotation of the particle with

an angular frequency of ωr. Considering an arbitrary NV center in a diamond at the time

of t, the angle between the NV axis and z axis is θ, and the azimuth angle is ϕ(t) = ωrt

relative to x axis. In the absence of an external magnetic field and neglecting strain effects,
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the Hamiltonian of the rotating NV center in the laboratory frame can be written as [7]

H0,lab =
1
h̄
R (t)DS2

zR
† (t) = 1

h̄
e−iϕSze−iθSyDS2

ze
iθSyeiϕSz

= Dh̄


cos2θ + sin2θ

2
e−iϕ cos θ sin θ√

2
e−2iϕsin2θ

2

eiϕ cos θ sin θ√
2

sin2θ − e−iϕ cos θ sin θ√
2

e2iϕsin2θ
2

− eiϕ cos θ sin θ√
2

cos2θ + sin2θ
2


, (11)

where D is the zero-field splitting, R (t) = Rz (ϕ (t))Ry (θ) is the rotation transformation,

and Ry (θ) = exp (−iθSy) (Rz (ϕ) = exp (−iϕSz)) expresses the rotation of spin around

the y (z) axis in terms of θ (ϕ), S is the spin operator. The Hamiltonian possesses three

eigenstates |ms, t⟩lab = R (t) |ms, 0⟩lab (ms = 0,±1),

|1, t⟩lab = R (t)


1

0

0

 =


e−iϕcos2 θ

2

sin θ√
2

eiϕsin2 θ
2



|0, t⟩lab = R (t)


0

1

0

 =


− e−iϕ sin θ√

2

cos θ

eiϕ sin θ√
2



|−1, t⟩lab = R (t)


0

0

1

 =


e−iϕsin2 θ

2

− sin θ√
2

eiϕcos2 θ
2



. (12)

For a quantum system in an eigenstate, the system remains in the eigenstate and acquires

a phase factor during an adiabatic evolution of the Hamiltonian. This factor arises from both

the state’s time evolution and the variation of the eigenstate with the changing Hamiltonian.

The second term specifically corresponds to the Berry phase. Hence, the expression for the

time-dependent spin state is [8]

eiγmse−iH0,labt/h̄|ms, t⟩lab = eiγmse−iH0,labt/h̄e−iϕSze−iθSy |ms, 0⟩lab, (13)

where γms is the Berry phase. Here, the diamond particle rotates around the z axis with a

constant θ, the Berry phase can be calculated as [8]

γms = i
∫ t

0
lab ⟨ms, t

′| ∂

∂t′
|ms, t

′⟩labdt
′ = msωrt cos θ. (14)

The Berry phase of Eq. 14 is calculated for an open-path, which is gauge-dependent.

However, for a closed loop, the Berry phase is gauge-invariant and can be expressed as

ms [−2π (1− cos θ)]. The result is equivalent to Eq. 14 of ms (2π cos θ).
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The spin state of the NV center is observed through the interaction with a microwave

magnetic field. In our experiment, the direction of the microwave is in the yz-plane and

forms a slight angle θ′ relative to the z axis, resulting from the asymmetric design of the

waveguide. The Hamiltonian of the microwave in the laboratory frame can be written as

HMW,lab = gµBBMW cos (ωMW t) (Sz cos θ
′ + Sy sin θ

′) = HMW,z,lab +HMW,y,lab, (15)

which contains two components, the longitudinal termHMW,z,lab = gµBBMW cos (ωMW t)Sz cos θ
′

and the transverse term HMW,y,lab = gµBBMW cos (ωMW t)Sy sin θ
′. First, we consider the

longitudinal term HMW,z,lab. The expected value of the spin states can be expressed as

lab ⟨±1, t| eiH0,labt/h̄e−iγ±1HMW,z,labe
iγ0e−iH0,labt/h̄|0, t⟩lab

= gµBBMW cos (ωMW t) cos θ′lab ⟨±1, 0| eiθSyeiϕSzeiH0,labt/h̄e−iγ±1Sze
iγ0e−iH0,labt/h̄e−iϕSze−iθSy |0, 0⟩lab

= gµBBMW cos (ωMW t) cos θ′e−i(γ±1−γ0)ei(E±1−E0)t/h̄
lab ⟨±1, 0| eiθSyeiϕSzSze

−iϕSze−iθSy |0, 0⟩lab
= 1

2
gµBBMW cos θ′ (eiωMW t + e−iωMW t) e∓iωrt cos θeiDt

lab ⟨±1, 0| eiθSySze
−iθSy |0, 0⟩lab

= 1
2
gµBBMW cos θ′

[
ei(ωMW∓ωr cos θ+D)t + ei(−ωMW∓ωr cos θ+D)t

]
lab

⟨±1, 0| eiθSySze
−iθSy |0, 0⟩lab

≈ 1
2
gµBBMW cos θ′ei(−ωMW+D∓ωr cos θ)t

lab ⟨±1, 0| eiθSySze
−iθSy |0, 0⟩lab

,

(16)

where the Ems is the corresponding eigenvalue of the Hamiltonian H0,lab for the spin

state |ms, t⟩. According to Eq. 16, the transformation of spin states from |ms = 0⟩lab
to |ms = ±1⟩lab can be driven by a microwave operating at the resonance frequency of

D ∓ ωr cos θ, where the frequency shift ∓ωr cos θ is attributed to the Berry phase.

Regarding the second part of the Hamiltonian in the transverse direction, HMW,y,lab, the

interaction between the microwave and the spin states can be formulated as

lab ⟨±1, t| eiH0,labt/h̄e−iγ±1HMW,y,labe
iγ0e−iH0,labt/h̄|0, t⟩lab

= gµBBMW cos (ωMW t) sin θ′lab ⟨±1, 0| eiθSyeiϕSzeiH0,labt/h̄e−iγ±1Sye
iγ0e−iH0,labt/h̄e−iϕSze−iθSy |0, 0⟩lab

= gµBBMW cos (ωMW t) sin θ′e−i(γ±1−γ0)ei(E±1−E0)t/h̄
lab ⟨±1, 0| eiθSyeiϕSzSye

−iϕSze−iθSy |0, 0⟩lab
= 1

2
gµBBMW sin θ′ (eiωMW t + e−iωMW t) e∓iωrt cos θeiDt

×lab ⟨±1, 0| eiθSy 1
2i
(S+e

iωrt − S−e
−iωrt) e−iθSy |0, 0⟩lab

.

(17)
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The expected values are written as

lab ⟨+1, t| eiH0,labt/h̄e−iγ+1HMW,y,labe
iγ0e−iH0,labt/h̄|0, t⟩lab

= 1
4i
gµBBMW sin θ′

[
ei(ωMW−ωr cos θ+D+ωr)t + ei(−ωMW−ωr cos θ+D+ωr)t

]
×lab ⟨+1, 0| eiθSyS+e

−iθSy |0, 0⟩lab
≈ 1

4i
gµBBMW sin θ′ei(−ωMW+D+ωr−ωr cos θ)t

lab ⟨+1, 0| eiθSyS+e
−iθSy |0, 0⟩lab

, (18)

lab ⟨−1, t| eiH0,labt/h̄e−iγ−1HMW,y,labe
iγ0e−iH0,labt/h̄|0, t⟩lab

= − 1
4i
gµBBMW sin θ′

[
ei(ωMW+ωr cos θ+D−ωr)t + ei(−ωMW+ωr cos θ+D−ωr)t

]
×lab ⟨−1, 0| eiθSyS−e

−iθSy |0, 0⟩lab
≈ − 1

4i
gµBBMW sin θ′ei(−ωMW+D−ωr+ωr cos θ)t

lab ⟨−1, 0| eiθSyS−e
−iθSy |0, 0⟩lab

. (19)

Utilizing Eq. 18 and Eq. 19, the resonance frequency of microwave for transforming the spin

state from |ms = 0⟩lab to |ms = ±1⟩lab is D ± ωr (1− cos θ). In addition to the frequency

shift of ∓ωr cos θ caused by the Berry phase, there is another term of ωr coming from the

rotational Doppler effect [8]. In our experiment, the angle θ′ of the microwave relate to the

z axis is approximately 8.5◦. Consequently, the dominant transition probability arises from

the longitudinal component, characterized by a frequency shift of ∓ωr cos θ due to the Berry

phase.

The energy levels of NV centers with four orientations are degenerate in the absence of

an external magnetic field. When the nanodiamond undergoes rotation, the electron spin

resonance frequency experiences a shift due to the Berry phase, and this shift depends on the

angle θ between the NV axis and the rotation axis. The electron spin resonance frequencies of

NV spins along different orientations become non-degenerate. The ODMR of NV at different

orientations are theoretically calculated by Eq. 16 at the rotation frequency of 20 MHz

(Supplementary Figure 6(a)). The orientations corresponding to the blue solid curve and

the red dashed curve are θ = 0◦ and θ = 45◦, respectively. The intrinsic linewidth is 2π× 19

MHz, and the strain effect splitting E is 2π× 6.7 MHz. The eight dips are not separated in

the ODMR spectrum at a rotation frequency of a few MHz because of the large linewidth.

Here we use the FWHM parameter of the ODMR spectrum to indicate the frequency shift by

the Berry phase of a rotating NV center. The FWHM of the ODMR is mainly determined by

the splitting of the NV centers that have the smallest θ. Supplementary Figure 6(b) shows

the FWHM of the ODMR as a function of rotation frequency. The NV centers, which have

the smallest θ, show the highest sensitivity of the frequency shift due to the Berry phase.
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B. With an external magnetic field

To precisely measure the frequency shift induced by the Berry phase of a rotating NV

center, an external magnetic field B along the z direction can be applied. This serves to

distinguish the energy levels of NV centers in four different orientations. The Hamiltonian

of a NV center in the laboratory frame with the external magnetic field can be expressed as

Hlab = H0,lab + gµBBSz =
1
h̄
e−iϕSze−iθSyDS2

ze
iθSyeiϕSz + gµBBSz

= Dh̄


cos2θ + sin2θ

2
+ gµBB

D
e−iϕ cos θ sin θ√

2
e−2iϕsin2θ

2

eiϕ cos θ sin θ√
2

sin2θ − e−iϕ cos θ sin θ√
2

e2iϕsin2θ
2

− eiϕ cos θ sin θ√
2

cos2θ + sin2θ
2

− gµBB
D


. (20)

In the rotating frame, the Hamiltonian of the NV center can be calculated by a unitary

transformation,

Hrot = UHlabU
† + i∂tUU † = eiθSyeiϕSzHlabe

−iϕSze−iθSy + i∂te
iθSyeiϕSze−iϕSze−iθSy

= h̄


D + gµBB cos θ −gµBB sin θ√

2
0

−gµBB sin θ√
2

0 −gµBB sin θ√
2

0 −gµBB sin θ√
2

D − gµBB cos θ

+ h̄


−ωr cos θ

ωr sin θ√
2

0

ωr sin θ√
2

0 ωr sin θ√
2

0 ωr sin θ√
2

ωr cos θ


,

(21)

where the unitary operator is defined as U = eiθSyeiϕSz . The second term on the right side

of Eq. 21 represents Zeeman interaction arising from the pseudo-magnetic field due to the

rotation of the NV center. In the case of an adiabatic process, ωr ≪ D − gµBB cos θ, the

second term is significantly weaker than the first term, and can be treated as a perturbation.

We neglect the off-diagonal terms in the first component since gµBB ≪ D, which are too

small to induce significant mixing of the NV spin states.

Hrot ≈ h̄


D + gµBB cos θ 0 0

0 0 0

0 0 D − gµBB cos θ

+ h̄


−ωr cos θ

ωr sin θ√
2

0

ωr sin θ√
2

0 ωr sin θ√
2

0 ωr sin θ√
2

ωr cos θ

 . (22)
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Therefore, the Hamiltonian in the rotating frame possesses three eigenstates, |ms⟩rot (ms =

0,±1):

|+1⟩rot =


1

0

0



|0⟩rot =


0

1

0



|−1⟩rot =


0

0

1



, (23)

and the corresponding eigenvalues are h̄ (D + gµBB cos θ), 0, h̄ (D + gµBB cos θ), respec-

tively. The new Hamiltonian in the laboratory frame can be transformed by applying the

rotation transformation R (t) = e−iϕSze−iθSy ,

Hlab = RHrotR
† + i∂tRR† = e−iϕSze−iθSyHrote

iθSyeiϕSz + i∂te
−iϕSze−iθSyeiθSyeiϕSz

= h̄


D 1+cos2θ

2
+ gµBBcos2θ e−iϕ(D+gµBB) cos θ sin θ√

2
e−2iϕDsin2θ

2

eiϕ(D+gµBB) cos θ sin θ√
2

Dsin2θ − e−iϕ(D−gµBB) cos θ sin θ√
2

e2iϕDsin2θ
2

− eiϕ(D−gµBB) cos θ sin θ√
2

D 1+cos2θ
2

− gµBBcos2θ


. (24)

The eigenstates of the Hamiltonian in the laboratory frame also can be calculated through

the rotation transformation,

|+1, t⟩lab = R (t) |+1⟩rot =


e−iϕcos2 θ

2

sin θ√
2

eiϕsin2 θ
2



|0, t⟩lab = R (t) |0⟩rot =


− e−iϕ sin θ√

2

cos θ

eiϕ sin θ√
2



|−1, t⟩lab = R (t) |−1⟩rot =


e−iϕsin2 θ

2

− sin θ√
2

eiϕcos2 θ
2



, (25)
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which are same as the eigenstates of the Hamiltonian without the external magnetic field

(Eq. 12). Thus, the Berry phase of the rotating NV center is:

γms = msωrt cos θ (26)

.

Similarly, the interaction between microwave and the time-dependent spin states is still

divided into two components. For the longitudinal component, it can be expressed as

lab ⟨±1, t| eiHlabt/h̄e−iγ±1HMW,z,labe
iγ0e−iHlabt/h̄|0, t⟩lab

= gµBBMW cos (ωMW t) cos θ′lab ⟨±1, 0| eiθSyeiϕSzeiHlabt/h̄e−iγ±1Sze
iγ0e−iHlabt/h̄e−iϕSze−iθSy |0, 0⟩lab

= gµBBMW cos (ωMW t) cos θ′e−i(γ±1−γ0)ei(EB,±1−EB,0)t/h̄
lab ⟨±1, 0| eiθSyeiϕSzSze

−iϕSze−iθSy |0, 0⟩lab
= 1

2
gµBBMW cos θ′ (eiωMW t + e−iωMW t) e∓iωrt cos θei(D±gµBB cos θ)t

lab ⟨±1, 0| eiθSySze
−iθSy |0, 0⟩lab

= 1
2
gµBBMW cos θ′

[
ei(ωMW∓ωr cos θ+D±gµBB cos θ)t + ei(−ωMW∓ωr cos θ+D±gµBB cos θ)t

]
×lab ⟨±1, 0| eiθSySze

−iθSy |0, 0⟩lab
≈ 1

2
gµBBMW cos θ′ei(−ωMW+D±gµBB cos θ∓ωr cos θ)t

lab ⟨±1, 0| eiθSySze
−iθSy |0, 0⟩lab

,

(27)

where the EB,ms is the eigenvalue of the Hamiltonian Hlab for the spin state |ms, t⟩lab. The

spin resonance frequency, transformed from |ms = 0⟩lab to |ms = ±1⟩lab is D± gµBB cos θ∓

ωr cos θ. The frequency shift due to the Berry phase is ∓ωr cos θ.

The transverse component can be expressed as

lab ⟨±1, t| eiHlabt/h̄e−iγ±1HMW,y,labe
iγ0e−iHlabt/h̄|0, t⟩lab

= gµBBMW cos (ωMW t) sin θ′lab ⟨±1, 0| eiθSyeiϕSzeiHlabt/h̄e−iγ±1Sye
iγ0e−iHlabt/h̄e−iϕSze−iθSy |0, 0⟩lab

= gµBBMW cos (ωMW t) sin θ′e−i(γ±1−γ0)ei(EB,±1−EB,0)t/h̄
lab ⟨±1, 0| eiθSyeiϕSzSye

−iϕSze−iθSy |0, 0⟩lab
= 1

2
gµBBMW sin θ′ (eiωMW t + e−iωMW t) e∓iωrt cos θei(D±gµBB cos θ)t

×lab ⟨±1, 0| eiθSy 1
2i
(S+e

iωrt − S−e
−iωrt) e−iθSy |0, 0⟩lab

.

(28)

The expected values are written as

lab ⟨+1, t| eiHlabt/h̄e−iγ+1HMW,y,labe
iγ0e−iHlabt/h̄|0, t⟩lab

= 1
4i
gµBBMW sin θ′

[
ei(ωMW−ωr cos θ+D+gµBB cos θ+ωr)t + ei(−ωMW−ωr cos θ+D+gµBB cos θ+ωr)t

]
×lab ⟨+1, 0| eiθSyS+e

−iθSy |0, 0⟩lab
≈ 1

4i
gµBBMW sin θ′ei(−ωMW−ωr cos θ+D+gµBB cos θ+ωr)t

lab ⟨+1, 0| eiθSyS+e
−iθSy |0, 0⟩lab

,

(29)
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lab ⟨−1, t| eiHlabt/h̄e−iγ−1HMW,y,labe
iγ0e−iHlabt/h̄|0, t⟩lab

= − 1
4i
gµBBMW sin θ′

[
ei(ωMW+ωr cos θ+D−gµBB cos θ−ωr)t + ei(−ωMW+ωr cos θ+D−gµBB cos θ−ωr)t

]
×lab ⟨−1, 0| eiθSyS−e

−iθSy |0, 0⟩lab
≈ − 1

4i
gµBBMW sin θ′ei(−ωMW+ωr cos θ+D−gµBB cos θ−ωr)t

lab ⟨−1, 0| eiθSyS−e
−iθSy |0, 0⟩lab

.

(30)

The transformation resonance frequency is D ± gµBB cos θ ± ωr (1− cos θ) between the

|ms = 0⟩lab state and |ms = ±1⟩lab state. The corresponding frequency shift duo to the

Berry phase also is ±ωr cos θ, and the frequency shift induced by the rotational Doppler

effect is ωr. Similar to the case of zero external magnetic field, the predominant transition

probability arises from the longitudinal component, characterized by a frequency shift of

∓ωr cos θ due to the Berry phase.

Supplementary Figure 6(c) shows the frequency shift induced by the Berry phase in a

levitated nanodiamond rotating counterclockwisely (viewed from the positive z direction

unless otherwise specified). The external magnetic field along the z direction is about 100

G. The resonance frequency transition between |ms = 0⟩lab state and |ms = +1⟩lab state

decreases with an increasing of the rotation frequency, in contrast to the behavior observed

in the levitated nanodiamond rotating clockwise. The red curve is the theoretical calculation

for the angle of θ = 21.5◦ between the NV axis and the rotating axis. The experimental data

is in good agreement with the theoretical calculation, suggesting a consistent orientation of

the NV centers at various rotation frequencies.

C. Pseudo-magnetic field due to rotation

The Berry phase observed in the laboratory frame is equivalent to the pseudo-magnetic

field (called the Barnett field in [8]) in the rotational frame. In our experiment, the mircowave

source is fixed in the laboratory frame. Only the levitated nanodiamond is rotating. Thus,

we observe the effect of the Berry phase [8]. It will be beneficial to also consider this system

in the rotational frame. The electron spin resonance frequency shift of the rotating NV center

involves the combination of the pseudo-magnetic field and the rotational Doppler effect in

the rotating frame. As expressed in Eq. 21, the Hamiltonian of the pseudo-magnetic field in
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the rotating frame, induced by the rotation of a diamond particle, can be given by

Hωr = h̄


−ωr cos θ

ωr sin θ√
2

0

ωr sin θ√
2

0 ωr sin θ√
2

0 ωr sin θ√
2

ωr cos θ

 ≈ h̄


−ωr cos θ 0 0

0 0 0

0 0 ωr cos θ

 , (31)

where the off-diagonal terms also can be ignored. So the Hamiltonian of the NV center in

the rotating frame can be expressed as

Hrot = h̄


D + gµBB cos θ − ωr cos θ 0 0

0 0 0

0 0 D − gµBB cos θ + ωr cos θ

 . (32)

The corresponding eigenvalues are h̄ (D + gµBB cos θ − ωr cos θ), 0, h̄ (D − gµBB cos θ + ωr cos θ)

for spin state |+1⟩rot, |0⟩rot and |−1⟩rot, respectively.

The Hamiltonian describing the interaction of the microwave term with the NV center in

the rotating frame can be expressed as

HMW,rot = UHMW,labU
† = eiθSyeiϕSzHMW,labe

−iϕSze−iθSy

= gµBBMW cos (ωMW t) eiθSyeiϕSz (Sz cos θ
′ + Sy sin θ

′) e−iϕSze−iθSy = HMW,z,rot +HMW,y,rot

,

(33)

where the longitudinal component isHMW,z,rot = gµBBMW cos (ωMW t) eiθSyeiϕSzSz cos θ
′e−iϕSze−iθSy ,

and the transverse component isHMW,y,rot = gµBBMW cos (ωMW t) eiθSyeiϕSzSy sin θ
′e−iϕSze−iθSy .

The expected value of the spin state, interacting with the longitudinal component of mi-

crowave, can be expressed as

rot ⟨±1| eiHrott/h̄HMW,z,rote
−iHrott/h̄|0⟩rot

= gµBBMW cos θ′ cos (ωMW t)rot ⟨±1| eiHrott/h̄eiθSyeiϕSzSze
−iϕSze−iθSye−iHrott/h̄|0⟩rot

= gµBBMW cos θ′ cos (ωMW t) ei(E±1,rot−E0,rot)t/h̄
rot ⟨±1| eiθSyeiϕSzSze

−iϕSze−iθSy |0⟩rot
= 1

2
gµBBMW cos θ′ (eiωMW t + e−iωMW t) ei(D±gµBB cos θ∓ωr cos θ)t

rot ⟨±1| eiθSySze
−iθSy |0⟩rot

= 1
2
gµBBMW cos θ′

[
ei(ωMW+D±gµBB cos θ∓ωr cos θ)t + ei(−ωMWD±gµBB cos θ∓ωr cos θ)t

]
×rot ⟨±1| eiθSySze

−iθSy |0⟩rot
≈ 1

2
gµBBMW cos θ′ei(−ωMWD±gµBB cos θ∓ωr cos θ)t

rot ⟨±1| eiθSySze
−iθSy |0⟩rot

,

(34)

where the Ems,rot is the eigenvalue of the Hamiltonian Hrot for the spin state |ms⟩rot in

the rotating frame. The transformation resonance frequency is D ± gµBB cos θ ∓ ωr cos θ,
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and the last term ∓ωr cos θ is the frequency shift due to the pseudo-magnetic field. The

transverse component can be expressed as

rot ⟨±1| eiHrott/h̄HMW,y,rote
−iHrott/h̄|0⟩rot

= gµBBMW sin θ′ cos (ωMW t)rot ⟨±1| eiHrott/h̄eiθSyeiϕSzSye
−iϕSze−iθSye−iHrott/h̄|0⟩rot

= gµBBMW sin θ′ cos (ωMW t) ei(E±1,rot−E0,rot)t/h̄
rot ⟨±1| eiθSyeiϕSzSye

−iϕSze−iθSy |0⟩rot
= 1

2
gµBBMW sin θ′ (eiωMW t + e−iωMW t) ei(D±gµBB cos θ∓ωr cos θ)t

×rot ⟨±1| eiθSy 1
2i
(S+e

iωrt − S−e
−iωrt) e−iθSy |0⟩rot

. (35)

The expected values are written as

rot ⟨+1| eiHrott/h̄HMW,y,rote
−iHrott/h̄|0⟩rot

= 1
4i
gµBBMW sin θ′

[
ei(ωMW+D+gµBB cos θ−ωr cos θ+ωr)t + ei(−ωMW+D+gµBB cos θ−ωr cos θ+ωr)t

]
×rot ⟨+1| eiθSyS+e

−iθSy |0⟩rot
≈ 1

4i
gµBBMW sin θ′ei(−ωMW+D+gµBB cos θ−ωr cos θ+ωr)t

rot ⟨+1| eiθSyS+e
−iθSy |0⟩rot

,

(36)

rot ⟨−1| eiHrott/h̄HMW,y,rote
−iHrott/h̄|0⟩rot

= − 1
4i
gµBBMW sin θ′

[
ei(ωMW+D−gµBB cos θ+ωr cos θ−ωr)t + ei(−ωMW+D−gµBB cos θ+ωr cos θ−ωr)t

]
×rot ⟨−1| eiθSyS−e

−iθSy |0⟩rot
≈ − 1

4i
gµBBMW sin θ′ei(−ωMW+D−gµBB cos θ+ωr cos θ−ωr)t

rot ⟨+1| eiθSyS+e
−iθSy |0⟩rot

.

(37)

The transformation resonance frequency between the |ms = 0⟩rot state and |ms = ±1⟩rot
state is D±gµBB cos θ±ωr (1− cos θ). The frequency shift of ±ωr (1− cos θ) is induced by

both the pseudo-magnetic field and the rotational Doppler effect [8] in the rotating frame.

SUPPLEMENTARY NOTE 5: QUANTUM MEASUREMENT OF LEVITATED

DIAMOND NV CENTERS

The power of 532 nm laser for NV initialization is very weak to minimize laser heat-

ing in high vacuum, leading to a long NV polarization time. The measured initialization

time, shown in Supplementary Figure 7(a), is 1.05 ms at the 532 nm laser intensity of 0.113

W/mm2. We measure the spin relaxation time (T1) of the levitated nanodiamond in Supple-

mentary Figure 7(c), indicating T1 = 3.60 ms. It is three times longer than the initialization

time. The T ∗
2 and T2 are measured, as shown in Supplementary Figure 7(c) and (d). The
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Supplementary Figure 7. Quantum measurement of NV centers in a levitated nanodiamond.

(a) Initialization time of levitated Nv centers when the 532 nm laser intensity is 0.113 W/mm2.

The initialization time is 1.05 ms. (b) Experimental result of T1 measurement of the levitated

nanodiamond. The insert is the sequence of T1 measurement. The T1 is 3.6 ms. (c) Ramsey

measurement and its corresponding sequence with a T ∗
2 of 40 ns. (d) Spin Echo measurement and

its corresponding sequence with a T2 of 0.52 µs. The oscillation is induced by the misalignment of

the magnetic field with the rotation axis. In the sequences, the green and orange regions represent

the pulses of the 532 nm laser and the microwave, respectively. The black lines are the rotation

phase.

T ∗
2 is 40 ns and the T2 is 0.52 µs. In the spin echo measurement, the oscillation is a result

of the misalignment of the magnetic field with the rotation axis [9].

Due to the Ω-shape design of the microwave antenna, the orientation of the magnetic

component of microwave is located in yz-plane and slightly away from the z axis with an

angle about θ′ = 8.5◦. Thus, the effective magnetic field B⊥
MW of the microwave acting on

NV spins keeps varying at different rotation phase ϕ(t) of the levitated nanodiamond. We

set the direction of a NV spin to be nNV = (sin θ, 0, cos θ) in the xz-plane at initial time
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(t = 0), and then rotate it around the z axis. The rotation matrix is:

rz =


cosϕ (t) − sinϕ (t) 0

sinϕ (t) cosϕ (t) 0

0 0 1

 . (38)

After a rotation time of t, the direction of the NV spin is changed to

n′
NV = (cosϕ (t) sin θ, sinϕ (t) sin θ, cos θ) . (39)

The unit vector of the direction of the magnetic field of microwave is nMW = (0,− sin θ′, cos θ′).

So the angle between the NV spin and the microwave is arccos (cos θ cos θ′ − sinϕ (t) sin θ sin θ′).

The effective magnetic field of microwave is

B⊥
MW = BMW

√
1− (cos θ cos θ′ − sinϕ (t) sin θ sin θ′)2. (40)

Rabi frequency is proportional to the effective magnetic field of microwave, ΩRabi ∝ B⊥
MW .

Therefore, it is necessary to synchronize the measurement cycle and the rotation signal of the

levitated nanodiamond, and apply microwave pulse at the same rotation phase in repeated

Rabi oscillation measurements.

SUPPLEMENTARY NOTE 6: NANODIAMOND FIXED ON GLASS

To compare with a levitated nanodiamond, we carry out the quantum measurement of a

nanodiamond fixed on a glass cover slip, with a thickness of 300 µm. The glass cover slip

is placed at the center of the surface ion trap to keep the direction and power of microwave

unchanged compared to a levitated nanodiamond. Supplementary Figure 8(a) is the ODMR

of the nanodiamond. The linewidth is smaller than that of a levitated nanodiamond. The

initialization time are measured at I532 = 0.126 W/mm2 (blue circles) and I532 = 31.8

W/mm2 (red squares in Supplementary Figure 8(b)) for comparison. The initialization

times are 0.469 ms and 1.77 µs, respectively. T1 of the nanodiamond on glass surface is 2.34

ms (Supplementary Figure 8(c)), which is close to that of a levitated one. We measure Rabi

oscillation at weak 532 nm laser (I532 = 0.126 W/mm2), which is similar to the intensity

used for a levitated nanodiamond in high vacuum (Supplementary Figure 8(d)). We get

the similar result with high intensity of 532 nm laser (I532 = 31.8 W/mm2). The Rabi

frequency is 1.99 MHz and the decay time TRabi
2 are 0.845 µs and 0.904 µs, respectively.
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Supplementary Figure 8. Quantum measurement of NV centers in a nanodiamond fixed on a

glass. (a) ODMR of the fixed NV centers. (b) Initialization of the nanodiamond Nv centers when

the 532 nm laser intensity is 0.126 W/mm2 (blue circles) or 31.8 W/mm2 (red squares). The

initialization times are 0.469 ms and 1.77 µs, respectively. (c) Experimental T1 measurement of

the nanodiamond. The T1 is 2.34 ms. (d) Rabi oscillations of the nanodiamond when the 532 nm

laser intensity is 0.126 W/mm2 (blue circles) or 31.8 W/mm2 (red squares). The Rabi frequencies

are both 1.99 MHz and the decay times T rabi
2 are 0.845 µs and 0.904 µs, respectively. The blue

curve is shifted 2% to separate the curves. (e) Experimental Ramsey measurement. The T ∗
2 of the

nanodiamond NV centers fixed on a glass is 80 ns. (f) Spin Echo measurement, which indicates a

T2 of 2.98 µs.

Supplementary Figure 8(e) shows the Ramsey measurement, while Supplementary Figure

8(f) is the spin echo measurement. The corresponding values for T ∗
2 and T2 are 80 ns and

2.98 µs, respectively.
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