Supplementary Material

Partitioning into ER membrane microdomains impacts autophagic protein turnover during cellular aging

Simon Prokisch¹ and Sabrina Büttner^{1,#}

¹Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden

Correspondence: Sabrina Büttner, sabrina.buettner@su.se

Including: Supplementary Figures S1-S5 Supplementary Tables S1 and S2

Supplementary Figure S1: Age-dependent reorganization of ER membrane microdomains.

Micrographs of cells endogenously expressing Sec66^{mCherry} as a reference protein and each of the GFP WALPs to visualize ER membranes thickness in young, growing cells (day 0; corresponding to mid-exponential growth phase) and at different time points during cellular aging. The ratio of GFP WALP to Sec66^{mCherry} visualizes the ER membrane regions with specific GFP WALP accumulation. Scale bar: 3 µm.

Supplementary Figure S2: Only a small number of WALP29-decorated microdomains form proximal to ER-Golgi contact sites in aging cells.

(A, B) Confocal micrographs of cells endogenously expressing $^{GFP}WALP29$ and $Nvj2^{mCherry}$ (A) or $Osh1^{mCherry}$ (B) at indicated time points. A central plane and a peripheral plane of the same cells are shown. Scale bars: 3 μ m.

Supplementary Figure S3: Impaired ER-Golgi contact formation via genetic ablation of Nvj2 and Osh1 does not impact the frequency of WALP29-decorated microdomains.

(A) Micrographs of wild type (WT), $\Delta nvj2$, $\Delta osh1$, and $\Delta nvj2\Delta osh1$ cells endogenously expressing Sce66^{mCherry} as a reference protein and ^{GFP}WALP29 to visualize microdomains of increased bilayer thickness in young, growing cells (0 d) and at different time points during cellular aging. Scale bars: 3 μ m. (B) Quantification of the frequency of WALP29-decorated ER microdomains from confocal micrographs as shown in (A). Gray dots represent individual cells from six independent experiments. Colored dots represent the average for each individual experiment (with 20-46 cells per n), and lines represent the grand mean ± s.e.m. of the individual experiments (n = 6).

Supplementary Figure S4: Formation of WALP-decorated foci at the rim of the NVJs does not require NVJ-associated lipid droplet clustering.

(A) Micrographs of cells endogenously expressing Nvj1^{mCherry} and ^{GFP}WALP25, stained with monodansylpentane to visualize lipid droplets (LD) after the diauxic shift (day 1). (B) Micrographs of wild type (WT) cells and cells lacking the NVJ- and LD-associated protein Mdm1 ($\Delta mdm1$), endogenously expressing Nvj1^{mCherry} and ^{GFP}WALP19, ^{GFP}WALP25 or ^{GFP}WALP27, after the diauxic shift (day 1). Scale bars: 3 µm.

Supplementary Figure S5: Full length immunoblots shown in this study.

(A-K) Unprocessed, full length immunoblots corresponding to the cropped immunoblots shown in Figure 3 (A-E), in Figure 4 (F, G) and Figure 5 (H-K). Blots have been probed with antibodies directed against the GFP-epitope, the mCherry-epitope and tubulin as loading control as indicated.

Supplementary Table S1: Yeast strains used in this study.

Strain	Genotype	Source
WT (BY4741)	MAT a , his3 Δ 1, leu2 Δ 0, met15 Δ 0, ura3 Δ 0	Euroscarf
WT GFPWALP19	BY4741 GFP-WALP19::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP21	BY4741 GFP-WALP21::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP23	BY4741 GFP-WALP23::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP25	BY4741 GFP-WALP25::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP27	BY4741 GFP-WALP27::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP29	BY4741 GFP-WALP29::His3MX	Prasad <i>et al.,</i> 2020
WT GFPWALP19 Sec66 ^{mCherry}	BY4741 GFP-WALP19::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP21 Sec66 ^{mCherry}	BY4741 GFP-WALP21::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP23 Sec66 ^{mCherry}	BY4741 GFP-WALP23::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP25 Sec66 ^{mCherry}	BY4741 GFP-WALP25::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP27 Sec66 ^{mCherry}	BY4741 GFP-WALP27::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP29 Sec66 ^{mCherry}	BY4741 GFP-WALP29::His3MX, SEC66-mCherry::kanMX	This study
WT GFPWALP19 Nvj1 ^{mCherry}	BY4741 GFP-WALP19::His3MX, NVJ1-mCherry::kanMX	This study
WT GFPWALP21 Nvj1 ^{mCherry}	BY4741 GFP-WALP21::His3MX, NVJ1-mCherry::kanMX	This study
WT GFPWALP23 Nvj1 ^{mCherry}	BY4741 GFP-WALP23::His3MX, NVJ1-mCherry::kanMX	This study
WT GFPWALP25 Nvj1 ^{mCherry}	BY4741 GFP-WALP25::His3MX, NVJ1-mCherry::kanMX	This study
WT GFPWALP27 Nvj1 ^{mCherry}	BY4741 GFP-WALP27::His3MX, NVJ1-mCherry::kanMX	This study
WT GFPWALP29 Nvj1 ^{mCherry}	BY4741 GFP-WALP29::His3MX, NVJ1-mCherry::kanMX	This study
∆nvj1 ^{GFP} WALP21	BY4741 GFP-WALP21::His3MX, nvj1∆::hphNT1	This study
∆nvj1 ^{GFP} WALP29	BY4741 GFP-WALP29::His3MX, nvj1∆::hphNT1	This study
∆nvj1∆atg39 ^{GFP} WALP21	BY4741 GFP-WALP21::His3MX, nvj1 Δ ::hphNT1, atg39 Δ ::kanMX	This study
$\Delta nv j1 \Delta atg 39$ GFP WALP 29	BY4741 GFP-WALP29::His3MX, nvj1∆::hphNT1, atg39∆::kanMX	This study
$\Delta atg39$ GFPWALP21	BY4741 GFP-WALP21::His3MX, atg39∆::kanMX	This study
$\Delta atg39$ GFPWALP29	BY4741 GFP-WALP29::His3MX, atg39∆::kanMX	This study
$\Delta\Delta ubc6/7$ GFPWALP21	BY4741 GFP-WALP21::His3MX, ubc6 Δ ::hphNT1, ubc7 Δ ::kanMX	This study
$\Delta\Delta ubc6/7$ GFPWALP25	BY4741 GFP-WALP25::His3MX, ubc6 Δ ::hphNT1, ubc7 Δ ::kanMX	This study
$\Delta\Delta ubc6/7$ GFPWALP27	BY4741 GFP-WALP27::His3MX, ubc6∆::hphNT1, ubc7∆::kanMX	This study
$\Delta\Delta ubc6/7$ GFPWALP29	BY4741 GFP-WALP29::His3MX, ubc6∆::hphNT1, ubc7∆::kanMX	This study
WT GFPWALP29 Nvj2 ^{mCherry}	BY4741 GFP-WALP29::His3MX, NVJ2-mCherry::kanMX	This study
WT GFPWALP29 Osh1 ^{mCherry}	BY4741 GFP-WALP29::His3MX, OSH1-mCherry::kanMX	This study
WT GFPWALP29 Rtn1 ^{mCherry}	BY4741 GFP-WALP29::His3MX, RTN1-mCherry::kanMX	This study
WT GFPWALP29 Tcb3 ^{mCherry}	BY4741 GFP-WALP29::His3MX, TCB3-mCherry::kanMX	This study
$\Delta mdm1$ GFPWALP19	BY4741 GFP-WALP19::His3MX, mdm1∆:: hphNT1	This study
∆ <i>mdm1</i> ^{GFP} WALP25	BY4741 GFP-WALP25::His3MX, mdm1∆:: hphNT1	This study
$\Delta mdm1$ GFPWALP27	BY4741 GFP-WALP27::His3MX, mdm1∆:: hphNT1	This study
<i>∆osh1</i> ^{GFP} WALP29 Sec66 ^{mCherry}	BY4741 GFP-WALP29::His3MX, osh1∆:: LEU2, SEC66- mCherry::kanMX	This study
∆nvj2 ^{GFP} WALP29 Sec66 ^{mCherry}	BY4741 GFP-WALP29::His3MX, nvj2∆:: natNT2, SEC66- mCherry::kanMX	This study
∆ <i>nvj2∆osh1</i> ^{GFP} WALP29 Sec66 ^{mCherry}	BY4741 GFP-WALP29::His3MX, nvj2∆:: natNT2, osh1∆:: LEU2, SEC66-mCherry::kanMX	This study

Supplementary Table S2: Oligonucleotides used in this study.

Modification	Primer	Oligonucleotide (5'-3')	Template
Tagging of SEC66	Sec66 S2	AACACTGAACGAGCGAATACATATCTTTGCACACAGTA GGCACTAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Sec66 S3	AAAGAGTGGGAGCTGAAAATAAATAATGATGGAAGA TTAGTCAATCGTACGCTGCAGGTCGAC	
	Control	AGTGACGTTATGGATGGTAG	
Tagging of NVJ1	Nvj1 S2	CTCGTTGTAAGTGACGATGATAACCGAGATGACGGAA ATATAGTACATTAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Nvj1 S3	CTAGATGCACAAGTGAACACTGAACAAGCATACTCTCA ACCATTTAGATACCGACGCTGCAGGTCGAC	
	Control	CTATTGACCACATAATCCTTAG	
Tagging of <i>NVJ2</i>	Nvj2 S2	GCATATAGCTTCAAGTGATATTTATTTATTTTAATATA GTACCGTGGACTCAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Nvj2 S3	CGGCTTTTTCAAGCAAGATTTAGAATTTGAAGAACAGC GAGAGCCCAAACTGCGTACGCTGCAGGTCGAC	
	Control	ATATTCACACTGTACTAGAT	
Tagging of OSH1	Osh1 S2	AATGGATACAAATGAACGAGTGTTATTGTGACTACATT GCACAGCTTAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Osh1 S3	GTATTGGAACAAAAGAAAAAATCATGACTTTAAAGAT TGTGCTGATATTTTCCGTACGCTGCAGGTCGAC	
	Control	GTATCGGCTTTGAATCCATG	
Tagging of <i>TCB3</i>	Tcb3 S2	CACACCAAATGTGCCCTTATTGAGCGTATAAAAGAATA GTTTTCACTGTTTATTAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Tcb3 S3	CAAGAATGGTCAGGTACCTCCCGTGCCAGAAGTTCCTC AAGAATACACGCAGCGTACGCTGCAGGTCGAC	
	Control	CCACTGGTGGTTTAAAGAAAG	
Tagging of <i>RTN1</i>	Rtn1 S2	GAGACAAAAGTTAGCTATTCTTGTTTGAAATGAAAAAA AAAAAGCACTCAATCGATGAATTCGAGCTCG	pSB89; pYM-C (kanMX) mCherry linker from pYM25 (Janke <i>et al.,</i> 2004)
	Rtn1 S3	GAAGAAAAGTACAAAAAACTTGCAAAATGAATTGGAA AAAAACAACGCTCGTACGCTGCAGGTCGAC	
	Control	CAGTCATCTCGAGCAAAATCCC	
Deletion of NVJ1	Nvj1 S1	TGTGCATAATATCAAAAAAGCTACAAATATAATTGTAA AATATAATAAGCATGCGTACGCTGCAGGTCGAC	pFA6a-hphNT1 (Janke <i>et al.,</i> 2004)
	Nvj1 S2	CTCGTTGTAAGTGACGATGATAACCGAGATGACGGAA ATATAGTACATTAATCGATGAATTCGAGCTCG	
	Control	CTATTGACCACATAATCCTTAG	

	Atg39 S1	GCAGTGACGATAATAGAGACTAGTAAAACAGTCGAGT TGTCGGACCTAAAATGCGTACGCTGCAGGTCGAC	
Deletion of ATG39	Atg39 S2	CGTTTTTTTTTTTTTTTGTTAATTTCATTCTTCATGCTGG GTTTTGGATGATCTAATCGATGAATTCGAGCTCG	pFA6a-kanMX (Bähler <i>et al.,</i> 1998)
	Control	GCTGCATATTTGCTTTCGCCG	
Deletion of UBC6	Ubc6 S1	ACCGCATTCGCAAATTGCAAACAAAGTACGTACAATA GTAATGCGTACGCTGCAGGTCGAC	pFA6a-hphNT1 (Janke <i>et al.,</i> 2004)
	Ubc6 S2	GTGTTGTCAAAATTTATCTAAAGTTTAGTTCATTTAATG GCTTCAATCGATGAATTCGAGCTCG	
	Control	ACCCTAGCGCCAATGCAAGA	
	Ubc7 S1	GGAACTTCCCTAGTAATAGTGTAATTTGGAAGGGCAT AGCATGCGTACGCTGCAGGTCGAC	
Deletion of UBC7	Ubc7 S2	GTTAAAAGGAAGACCAAATGATCATTAACCTGCTACCT GCTTTCAATCGATGAATTCGAGCTCG	pFA6a-kanMX (Bähler <i>et al.,</i> 1998)
	Control	CCAAAGATTTCCATAATGAT	
	Nvj2 S1	ACACATCGAAGAGCAGAACAGCAAGAGAAAAGTAGC ATTAAAAGACCATAATGCGTACGCTGCAGGTCGAC	
Deletion of NVJ2	Nvj2 S2	GCATATAGCTTCAAGTGATATTTATTTATTTTAATATA GTACCGTGGACTCAATCGATGAATTCGAGCTCG	pFA6a-natNT2 (Janke <i>et al.,</i> 2004)
	Control	GTTCAATGTAGGTAATGATG	
	Mdm1 S1	GAAAGCGCCATAAGTGCGCGTGTTTGTGCCTTCTGATA TGATATCGTATGCGTACGCTGCAGGTCGAC	
Deletion of <i>MDM1</i>	Mdm1 S2	CAATTACACTTTTTTTTAGATTGTTCGGTACTTAGTC AAGTTTTATTTTCAATCGATGAATTCGAGCTCG	pFA6a-hphNT1 (Janke <i>et al.,</i> 2004)
	Control	CGTCAAGGGTATCAGCAGAG	
	Osh1 S1	TAAAAAGGGAAAAGTTTAAACATCAAAGTACACCTTTC ACCCCTCCACACACCATGCGTACGCTGCAGGTCGAC	
Deletion of OSH1	Osh1 S2	AATGGATACAAATGAACGAGTGTTATTGTGACTACATT GCACAGCTTAATCGATGAATTCGAGCTCG	pFA6a-LEU2 (this study)
	Control	GTATCGGCTTTGAATCCATG	

References

Bähler, J. *et al*. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. *Yeast* **10**, 943-51 (1998)

Janke, C. *et al*. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. *Yeast* **21**, 947–962 (2004).

Prasad, R., Sliwa-Gonzalez, A. & Barral, Y. Mapping bilayer thickness in the ER membrane. *Sci Adv* **6**, eaba5130 (2020).