### **Supporting Information**

# End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion

### Yuki Tanaka,<sup>1</sup> Keita Tajima,<sup>1</sup> Ryota Kusumoto,<sup>2</sup> Yasuhiro Kobori,<sup>2,3,4</sup>\* Norihito Fukui,<sup>1,4</sup>\* and Hiroshi Shinokubo<sup>1</sup>\*

<sup>1</sup>Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

<sup>2</sup> Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.

<sup>3</sup> Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.

<sup>4</sup> CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.

<sup>5</sup> PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

E-mail: ykobori@kitty.kobe-u.ac.jp, fukui@chembio.nagoya-u.ac.jp, hshino@chembio.nagoya-

#### u.ac.jp

## **Table of Contents**

| 1.  | Instrumentation and materials               |
|-----|---------------------------------------------|
| 2.  | Experimental procedures and compound data 4 |
| 3.  | NMR spectra 13                              |
| 4.  | Mass spectra                                |
| 5.  | Crystal data                                |
| 6.  | Electrochemical properties                  |
| 7.  | Thermal analysis                            |
| 8.  | DFT Calculations                            |
| 9.  | Photophysical properties                    |
| 10. | References                                  |

#### 1. Instrumentation and materials

<sup>1</sup>H NMR (500 MHz) and <sup>13</sup>C NMR (126 MHz) spectra were recorded on a Bruker AVANCE III HD spectrometer. <sup>1</sup>H NMR (600 MHz) and <sup>13</sup>C NMR (151 MHz) spectra were recorded on a JEOL JNM-ECA600II spectrometer. Chemical shifts were reported as the delta scale in ppm relative to solvent residual signals of CDCl<sub>3</sub> ( $\delta$  = 7.26 ppm), DMSO-d<sub>6</sub> ( $\delta$  = 2.50 ppm), and 1,1,2,2-tetrachroloethane- $d_2$  ( $\delta = 6.0$  ppm) for <sup>1</sup>H NMR and CDCl<sub>3</sub> ( $\delta = 77.16$  ppm), DMSO- $d_6$ ( $\delta$  = 39.52 ppm), and 1,1,2,2-tetrachroloethane- $d_2$  ( $\delta$  = 74.00 ppm) for <sup>13</sup>C NMR. UV/vis/NIR absorption spectra were recorded on a Shimadzu UV-2550 or JASCP V 770 spectrometer. Emission spectra were recorded on a Jasco FP-8550 spectrometer and absolute fluorescence quantum yields were measured by the photon-counting method using an integration sphere. Thermogravimetric analyses were recorded on a NETZSCH STA Regulus. Preparative separations were performed by silica gel column chromatography (Wako gel<sup>®</sup> C-300 or C-400). High-resolution atmospheric pressure chemical ionization time-of-flight (APCI-TOF) mass spectra were taken on a Bruker micrOTOF instrument. X-ray data were obtained using a Rigaku CCD diffractometer (Saturn 724 with MicroMax-007) with Varimax Mo optics. Cyclic voltammograms were obtained under the following conditions: solvent: CH<sub>2</sub>Cl<sub>2</sub>, electrolyte: 0.1 M Bu<sub>4</sub>NPF<sub>6</sub>, working electrode: glassy carbon, counter electrode: Pt, reference electrode: Ag/AgNO<sub>3</sub>, scan rate: 0.05 V/s. Photo-irradiation was conducted by the USHIO OPM2-252HQ lamp house equipped with a super-high pressure mercury lamp (250 W) and an ASAHI SPECTRA LU0350 cut filter (cut range:  $\lambda < 350$  nm) or L38 cut filter (cut range:  $\lambda < 380$  nm).

All calculations were carried out using the Gaussian 16 software package.<sup>1</sup> Initial geometries of **5a**, **5b**, and **5c** were obtained from the X-ray crystal structure. Density functional theory (DFT) calculations were conducted with the restricted B3LYP<sup>2</sup> level, employing basis sets 6-31G(d).

Dry DMF was purchased from Wako Pure Chemical Industries, Ltd. as a dehydrated grade. Compounds **9** and **12** were prepared according to the literature.<sup>3,4</sup> Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

#### 2. Experimental procedures and compound data

#### 2,6-Dimethylphenyl DNDTBI S-oxide 10



Compound **9** (66 mg, 0.10 mmol) and  $CH_2Cl_2$  (5.0 mL) were placed in a round-bottom flask and cooled to 0 °C. To the flask, *m*-CPBA (containing ca. 30 wt% water, 29 mg, 0.12 mmol) was added, and the mixture was stirred for 1 h at 0 °C. The mixture was allowed to warm to room temperature and stirred for 1 h. After the reaction, the solution was separated by silica gel column chromatography (eluent:  $CH_2Cl_2$ /ethyl acetate = 30/1). After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2/CH_3OH$  afforded **10** (50 mg, 74 µmol, 74%) as a yellow solid.

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta = 8.79$  (d, J = 8.0 Hz, 2H), 8.76 (d, J = 8.0 Hz, 2H), 8.62 (d, J = 7.7 Hz, 2H), 8.58 (d, J = 7.7 Hz, 2H), 7.27 (t, J = 7.5 Hz, 2H), 7.22 (d, J = 7.2 Hz, 2H), 7.17 (d, J = 7.3 Hz, 2H), 2.02 (s, 6H), 1.88 (s, 6H) ppm; <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta = 161.9$ , 161.8, 153.4, 138.0, 137.2, 135.42, 135.37, 133.5, 131.9, 130.2, 128.6, 128.2, 124.25, 124.19, 123.6, 17.3, 17.2 ppm (Three signals due to sp<sup>2</sup> carbon are missing due to overlapping.); HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub> 679.1356; Found 679.1332.

#### 2,6-Dimethylphenyl DNDTBI S,S'-dioxide 11



Compound **9** (66 mg, 0.10 mmol), Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O (6.6 mg, 20  $\mu$ mol), phenylphosphonic acid (3.2 mg, 20  $\mu$ mol), MeN(Oct)<sub>3</sub>·HSO<sub>4</sub> (9.3 mg, 20  $\mu$ mol), toluene (2.5 mL), and H<sub>2</sub>O<sub>2</sub> aq. (ca. 30

wt%, 1.0 mL, ca. 9 mmol) were placed in a round-bottom flask. The mixture was stirred under light-shielded conditions for 16 h at 80 °C. After the reaction, the mixture was cooled to room temperature and extracted with water and  $CH_2Cl_2$ . The organic layer was dried over  $Na_2SO_4$ . After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2/CH_3OH$  afforded **11** (50 mg, 73 µmol, 73%) as a yellow solid.

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta$  = 8.78 (d, *J* = 8.0 Hz, 4H), 8.65 (d, *J* = 8.1 Hz, 4H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 7.2 Hz, 2H), 7.17 (d, *J* = 7.3 Hz, 2H), 2.02 (s, 6H), 1.88 (s, 6H) ppm; <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta$  = 161.7, 151.2, 135.4 (overlap), 133.4, 132.0, 129.8, 128.6 (overlap), 128.2, 124.8, 122.6, 122.1, 17.4, 17.3 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 695.1305; Found 695.1294.

#### o-Anisyl DNDTBI 13



Compound **12** (1.8 g, 4.9 mmol) and DMF (0.40 L) were placed in a round-bottom flask. To the flask, Na<sub>2</sub>S (0.70 g, 9.0 mmol) was added. The mixture was stirred for 3 h at room temperature. After the reaction was completed, 1 M HCl aq. was added. After removal of the solvent in vacuo, the residue was collected by filtration. The solid was washed with water, methanol, and Et<sub>2</sub>O, affording a brown solid (1.2 g). The obtained brown solid (1.2 g), propionic acid (14 mL), *N*-methylpyrrolidone (NMP, 14 mL), and *o*-anisidine (2.8 mL, 25 mmol) were placed in a round-bottom flask, and the mixture was refluxed for 3 h at 170 °C. After the reaction mixture was cooled to room temperature, water was added to the mixture. The precipitate was filtered and washed with CH<sub>3</sub>OH and Et<sub>2</sub>O. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, and insoluble yellow solids were removed by filtration. The filtrate was purified by silica gel column chromatography (eluent: CH<sub>2</sub>Cl<sub>2</sub>) to afford **13** (0.20 g, 0.30 mmol, 12%) as a yellow solid. Compound **13** was obtained as the mixture of the rotational isomers due to the *o*-anisyl groups.

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta$  = 8.55–8.45 (m, 8H), 7.49–7.42 (m, 2H), 7.38–7.32 (m, 1H), 7.26–7.13 (m, 3H), 7.13–7.02 (m, 2H), 3.74–3.57 (m, 6H) ppm; HRMS (APCI): [M+H]<sup>+</sup>

Calcd for C<sub>38</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 667.0992; Found 667.0975.

#### o-Hydroxyphenyl DNDTBI 14



Compound **8** (0.83 g, 1.2 mmol) was placed in a round-bottom flask under argon. To the flask,  $CH_2Cl_2$  (0.11 L, dried) was added, and the solution was cooled to 0 °C. BBr<sub>3</sub> (ca.1 M  $CH_2Cl_2$  solution, 15 mL, 15 mmol) was added to the flask under argon. The solution was allowed to warm to room temperature and stirred for 1 h. After the reaction, excess  $NH_3$  aqueous was added. The precipitate was filtered and washed with water and  $CH_3OH$  to afford **14** (0.74 g, 1.2 mmol, 93%) as an orange solid. Compound **14** was obtained as the mixture of the rotational isomers due to the *o*-hydroxyphenyl groups.

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>, 298 K):  $\delta$  = 8.55–8.45 (m, 8H), 7.30–6.80 (m, 8H) ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>36</sub>H<sub>19</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 639.0679; Found 639.0671.

#### **C5-tethered DNDTIBI 15a**



Compound 14 (0.59 g, 0.93 mmol) and  $K_2CO_3$  (0.32 g, 2.3 mmol) were placed in a roundbottom flask under argon. To the flask, DMF (0.75 L, dried) and 1,5-dibromopentane (0.15 mL, 1.1 mmol) were added under argon, and the solution was stirred for 3 days at 40 °C. After removal of the solvent in vacuo, the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and washed with water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent:  $CH_2Cl_2$ /ethyl acetate = 50/1). After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2$ /MeOH afforded **15a** (0.11 g, 0.15 mmol, 17%) as an orange solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.48$  (d, J = 7.7 Hz, 4H), 8.35 (d, J = 7.7 Hz, 4H), 7.45–7.41 (m, 4H), 7.14 (t, J = 7.5 Hz, 2H), 6.87 (d, J = 7.5 Hz, 2H), 3.54 (br, 4H), 0.64 (br, 6H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 163.8$ , 152.7, 142.3, 137.6, 132.4, 131.5, 131.0, 130.5, 130.3, 125.1, 124.0, 120.9, 112.5, 67.0, 29.2, 19.8 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 707.1305; Found 707.1287.

#### C6-tethered DNDTIBI 15b



Compound 14 (0.48 g, 0.76 mmol) and  $K_2CO_3$  (0.26 g, 1.9 mmol) were placed in a roundbottom flask under argon. To the flask, DMF (250 mL, dried) and 1,6-dibromohexane (0.14 mL, 0.91 mmol) were added. The solution was stirred for 3 days at 40 °C. After removal of the solvent in vacuo, the residue was extracted with  $CH_2Cl_2$  and washed with water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent:  $CH_2Cl_2$ /ethyl acetate = 50/1). After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2$ /MeOH afforded **15b** (0.13 g, 0.18 mmol, 24%) as an orange solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.49$  (d, J = 7.7 Hz, 4H), 8.35 (d, J = 7.7 Hz, 4H), 7.46 (t, J = 8.0 Hz, 2H), 7.35 (dd, J = 7.8 Hz, 1.3 Hz, 2H), 7.14 (t, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 3.69 (t, J = 6.3 Hz, 4H), 1.06 (br, 4H), 0.70 (br, 4H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 163.2$ , 153.8, 142.1, 137.6, 132.4, 131.6, 131.0, 130.5, 130.2, 124.3, 124.0, 121.2, 113.8, 69.3, 28.7, 25.6 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 721.1462; Found 721.1445.

#### **C7-tethered DNDTIBI 15c**



Compound 14 (0.16 g, 0.25 mmol) and K<sub>2</sub>CO<sub>3</sub> (84 mg, 0.61 mmol) were placed in a roundbottom flask under argon. To the flask, DMF (200 mL, dried) and 1,7-dibromoheptane (47  $\mu$ L, 0.28 mmol) were added. The solution was stirred for 4 days at 40 °C. After removal of the solvent in vacuo, the residue was extracted with water and CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent: CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 50/1). After removal of the solvent in vacuo, recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane afforded **15c** (65 mg, 89 µmol, 36%) as an orange solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.51$  (d, J = 7.7 Hz, 4H), 8.40 (d, J = 7.7 Hz, 4H), 7.46 (t, J = 7.2 Hz, 2H), 7.41 (dd, J = 7.2 Hz, 1.2 Hz, 2H), 7.15 (t, J = 7.2 Hz, 2H), 6.95 (d, J = 7.2 Hz, 2H), 3.68 (t, J = 4.8 Hz, 4H), 1.01 (q, J = 4.8 Hz, 4H), 0.34 (q, J = 4.8 Hz, 4H), -0.39 (q, J = 4.8 Hz, 4H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 163.6$ , 153.2, 141.6, 137.6, 132.5, 131.5, 130.8, 130.6, 130.1, 124.8, 124.2, 121.0, 113.1, 67.6, 28.6, 27.6, 22.7 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>43</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub>S<sub>2</sub> 735.1618; Found 735.1587.

#### C5-tethered DNDTIBI S,S'-dioxide 4a



Compound **15a** (83 mg, 0.12 mmol), Na<sub>2</sub>WO<sub>4</sub> · 2H<sub>2</sub>O (39 mg, 0.12 mmol), phenylphosphonic acid (19 mg, 0.12 mmol), MeN(Oct)<sub>3</sub> · HSO<sub>4</sub> (55 mg, 0.12 mmol), toluene (80 mL), and H<sub>2</sub>O<sub>2</sub> aq. (ca. 30wt%, 10 mL, 8.8 mmol) were placed in a round-bottom flask. The mixture was stirred under light-shielded conditions for 23 h at 80 °C. The mixture was cooled to room temperature. After removal of the solvent in vacuo, the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and washed with water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent: CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 10/1). After removal of the solvent in vacuo, the solid material was washed with CH<sub>2</sub>Cl<sub>2</sub> (ca. 3 mL), affording **4a** (78 mg, 0.11 mmol, 90%) as a pink solid.

<sup>1</sup>H NMR (600 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.73$  (d, J = 8.2 Hz, 4H), 8.65 (d, J = 8.2 Hz, 4H), 7.46 (td,  $J_1 = 7.7$  Hz,  $J_2 = 1.2$  Hz, 2H), 7.39 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 1.4$  Hz, 2H), 7.15 (t, J = 7.8 Hz, 2H), 6.90 (d, J = 7.8 Hz, 2H), 3.59 (t, J = 6.9 Hz, 4H), 0.77 (quin, J = 6.9 Hz, 4H), 0.60 (quin, J = 6.9 Hz, 2H) ppm; <sup>13</sup>C NMR (150 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 162.8$ , 152.8, 151.3, 132.3, 130.8, 130.1, 130.0, 125.4, 124.2, 122.0, 121.5, 121.0, 112.5, 66.4, 28.4, 19.3 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>27</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub> 739.1203; Found 739.1196.

C6-tethered DNDTIBI S,S'-dioxide 4b



Compound **15b** (0.10 g, 0.14 mmol), Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O (46 mg, 0.14 mmol), phenylphosphonic acid (22 mg, 0.14 mmol), MeN(Oct)<sub>3</sub>·HSO<sub>4</sub> (65 mg, 0.14 mmol), toluene (95 mL), and H<sub>2</sub>O<sub>2</sub> aq. (ca. 30wt%, 12 mL, 11 mmol) were placed in a round-bottom flask. The mixture was stirred under light-shielded conditions for 22 h at 80 °C. The mixture was cooled to room temperature. After removal of the solvent in vacuo, the residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and washed with water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent: CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 20/1). After

removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2/MeOH$  afforded **4b** (64 mg, 85  $\mu$ mol, 61%) as a pink solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.75$  (d, J = 7.9 Hz, 4H), 8.67 (d, J = 7.9 Hz, 4H), 7.48 (td,  $J_1 = 7.8$  Hz,  $J_2 = 1.6$  Hz, 2H), 7.31 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 1.6$  Hz, 2H), 7.15 (td,  $J_1 = 7.8$  Hz,  $J_2 = 1.6$  Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 3.72 (t, J = 6.4 Hz, 4H), 1.13 (br, 4H), 0.78 (br, 4H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 162.3$ , 153.8, 151.0, 132.4, 130.8, 130.0, 129.9, 125.4, 123.7, 122.2, 121.7, 121.2, 113.6, 69.1, 28.6, 25.4 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>29</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub> 753.1360; Found 753.1356.

#### C7-tethered DNDTIBI S,S'-dioxide 4c



Compound **15c** (25 mg, 34  $\mu$ mol), Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O (13 mg, 40  $\mu$ mol), phenylphosphonic acid (5.0 mg, 32  $\mu$ mol), MeN(Oct)<sub>3</sub>·HSO<sub>4</sub> (15 mg, 32  $\mu$ mol), toluene (23 mL), and H<sub>2</sub>O<sub>2</sub> aq. (ca. 30wt%, 4 mL, 2.8 mmol) were placed in a round-bottom flask. The mixture was stirred under light-shielded conditions for 23 h at 80 °C. After the reaction, the mixture was cooled to room temperature and extracted with water and CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvent in vacuo, the residue was separated by silica gel column chromatography (eluent: from CH<sub>2</sub>Cl<sub>2</sub> to CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 25/1). After removal of the solvent in vacuo,

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 8.85$  (d, J = 8.0 Hz, 4H), 8.71 (d, J = 8.0 Hz, 4H), 7.42 (td,  $J_1 = 7.5$  Hz,  $J_2 = 1.8$  Hz, 2H), 7.31 (dd,  $J_1 = 7.5$  Hz,  $J_2 = 1.8$  Hz, 2H), 7.10 (t, J = 7.5 Hz, 2H), 6.95 (d, J = 7.5 Hz, 2H), 3.77 (t, J = 5.5 Hz, 4H), 1.30–1.10 (m, 4H), 0.64 (quin, J = 7.5 Hz, 4H), 0.29 (quin, J = 7.5 Hz, 2H) ppm; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, 298 K):  $\delta = 162.5$ , 153.9, 150.7, 132.2, 130.8, 130.3, 129.9, 126.0, 124.0, 122.6, 122.4, 121.2, 113.6, 68.6, 29.4, 29.0, 24.2 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>43</sub>H<sub>31</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub> 767.1516; Found 767.1480.

#### **C5-tethered PBIphane 5a**



Compound **4a** (7.2 mg, 9.8 µmol) and  $CH_2Cl_2$  (0.10 L) were placed in a round-bottom flask. The mixture was stirred under photo irradiation ( $\lambda > 350$  nm) for 2 h at room temperature. The crude mixture was directly loaded on silica gel column pre-eluted with  $CH_2Cl_2$ . The mixture was purified by the subsequent elution with  $CH_2Cl_2$ /ethyl acetate (33/1 to 20/1). After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2$ /MeOH afforded **5a** (4.2 mg, 6.5 µmol, 67%) as a red solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.64$  (d, J = 8.5 Hz, 4H), 8.62 (d, J = 8.5 Hz, 4H), 7.72 (dd,  $J_1 = 7.5$  Hz,  $J_2 = 1.5$  Hz, 2H), 7.35 (td,  $J_1 = 7.5$  Hz,  $J_2 = 1.5$  Hz, 2H), 7.13 (t, J = 7.5 Hz, 2H), 6.93 (d, J = 7.5 Hz, 2H), 3.16 (t, J = 8.0 Hz, 4H), 0.37 (br, 2H), -0.53 (br, 4H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 166.7$ , 152.3, 135.3, 132.2, 132.0, 131.9, 130.4, 129.3, 127.5, 124.1 (overlap), 120.8, 111.7, 66.8, 29.6, 19.0 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>41</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub> 643.1864; Found 643.1881.

#### **C6-tethered PBIphane 5b**



Compound **4b** (7.9 mg, 10  $\mu$ mol) and CH<sub>2</sub>Cl<sub>2</sub> (0.10 L) were placed in a round-bottom flask. The mixture was stirred under photo irradiation ( $\lambda > 350$  nm) for 2 h at room temperature. The crude mixture was directly loaded on silica gel column pre-eluted with  $CH_2Cl_2$ . The mixture was purified by the subsequent elution with  $CH_2Cl_2$ /ethyl acetate (50/1 to 30/1). After removal of the solvent in vacuo, recrystallization from  $CH_2Cl_2$ /MeOH afforded **5b** (4.9 mg, 7.5 µmol, 71%) as a reddish orange solid.

<sup>1</sup>H NMR (500 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.67$  (d, J = 8.5 Hz, 4H), 8.65 (d, J = 8.5 Hz, 4H), 7.72 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.20 (t, J = 7.5 Hz, 2H), 6.85 (d, J = 7.5 Hz, 2H), 3.25 (t, J = 6.5 Hz, 4H), 0.26 (br, 4H), -0.08 (br, 4H) ppm; <sup>13</sup>C NMR (126 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 165.9$ , 152.9, 135.0, 131.9, 131.5, 131.3, 130.3, 129.2, 127.0, 123.8, 123.6, 121.7, 115.1, 70.2, 29.6, 26.0 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>42</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> 657.2020; Found 657.1994.

#### **C7-tethered PBIphane 5c**



Compound 4c (7.1 mg, 9.3 µmol) and CH<sub>2</sub>Cl<sub>2</sub> (0.10 L) were placed in a round-bottom flask. The mixture was stirred under photo irradiation ( $\lambda > 350$  nm) for 2 h at room temperature. The crude mixture was directly loaded on silica gel column pre-eluted with CH<sub>2</sub>Cl<sub>2</sub>. The mixture was purified by the subsequent elution with CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate (30/1 to 20/1). After removal of the solvent in vacuo, recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/MeOH afforded 5c (5.2 mg, 7.8 µmol, 84%) as an orange solid.

<sup>1</sup>H NMR (600 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 8.71$  (d, J = 7.8 Hz, 4H), 8.69 (d, J = 7.8 Hz, 4H), 7.70 (dd,  $J_1 = 7.8$  Hz,  $J_2 = 1.2$  Hz, 2H), 7.42 (td,  $J_1 = 7.8$  Hz,  $J_2 = 1.2$  Hz, 2H), 7.21 (t, J = 7.8 Hz, 2H), 6.86 (d, J = 7.8 Hz, 2H), 3.35 (t, J = 7.2 Hz, 4H), 0.30–0.13 (m, 8H), – 0.40 (quin, J = 7.2 Hz, 2H) ppm; <sup>13</sup>C NMR (150 MHz, 1,1,2,2-tetrachroloethane- $d_2$ , 298 K):  $\delta = 165.8$ , 152.6, 135.2, 132.1, 131.4, 131.1, 130.5, 128.9, 127.1, 124.0, 123.9, 121.7, 114.8, 69.3, 32.6, 31.6, 24.3 ppm; HRMS (APCI): [M+H]<sup>+</sup> Calcd for C<sub>43</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub> 671.2177; Found 671.2152.



Figure S1. <sup>1</sup>H NMR spectrum of 10 in DMSO- $d_6$  at 25 °C.



Figure S2. <sup>13</sup>C NMR spectrum of 10 in DMSO- $d_6$  at 25 °C.



**Figure S3.** <sup>1</sup>H NMR spectrum of **11** in DMSO- $d_6$  at 25 °C.



Figure S4. <sup>13</sup>C NMR spectrum of 11 in DMSO-*d*<sub>6</sub> at 25 °C.



**Figure S5.** <sup>1</sup>H NMR spectrum of **13** in DMSO- $d_6$  at 25 °C.



Figure S6. <sup>1</sup>H NMR spectrum of 14 in DMSO-*d*<sub>6</sub> at 25 °C.



**Figure S7.** <sup>1</sup>H NMR spectrum of **15a** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S8. <sup>13</sup>C NMR spectrum of 15a in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S9.** <sup>1</sup>H NMR spectrum of **15b** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S10. <sup>13</sup>C NMR spectrum of 15b in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S11. <sup>1</sup>H NMR spectrum of 15c in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S12. <sup>13</sup>C NMR spectrum of 15c in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S13.** <sup>1</sup>H NMR spectrum of **4a** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S14.** <sup>13</sup>C NMR spectrum of **4a** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S15.** <sup>1</sup>H NMR spectrum of **4b** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S16.** <sup>13</sup>C NMR spectrum of **4b** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S17. <sup>1</sup>H NMR spectrum of 4c in CDCl<sub>3</sub> at 25 °C.



Figure S18.  $^{13}$ C NMR spectrum of 4c in CDCl<sub>3</sub> at 25 °C.



Figure S19. <sup>1</sup>H NMR spectrum of 5a in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S20. <sup>13</sup>C NMR spectrum of 5a in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S21.** <sup>1</sup>H NMR spectrum of **5b** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S22. <sup>13</sup>C NMR spectrum of **5b** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



**Figure S23.** <sup>1</sup>H NMR spectrum of **5c** in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S24. <sup>13</sup>C NMR spectrum of 5c in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.


**Figure S25.** <sup>1</sup>H NMR spectrum of **3**" in 1,1,2,2-tetrachroloethane- $d_2$  at 25 °C.



Figure S26. APCI-TOF mass spectrum of 10.



Figure S27. APCI-TOF mass spectrum of 11.



Figure S28. APCI-TOF mass spectrum of 13.



Figure S29. APCI-TOF mass spectrum of 14.



Figure S30. APCI-TOF mass spectrum of 15a.



Figure S31. APCI-TOF mass spectrum of 15b.



Figure S32. APCI-TOF mass spectrum of 15c.



Figure S33. APCI-TOF mass spectrum of 4a.



Figure S34. APCI-TOF mass spectrum of 4b.



Figure S35. APCI-TOF mass spectrum of 4c.



Figure S36. APCI-TOF mass spectrum of 5a.



Figure S37. APCI-TOF mass spectrum of 5b.



Figure S38. APCI-TOF mass spectrum of 5c.

## 5. Crystal data

| Compound                           | 5a                      | 5b                                                                                | 5c                                             |
|------------------------------------|-------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| Formula                            | $C_{41}H_{26}N_2O_6$    | C <sub>42</sub> H <sub>28</sub> N <sub>2</sub> O <sub>6</sub> , CHCl <sub>3</sub> | $2(C_{43}H_{30}N_2O_6)$                        |
| Formula weight                     | 642.64                  | 776.03                                                                            | 1341.38                                        |
| Crystal system                     | monoclinic              | monoclinic                                                                        | monoclinic                                     |
| Space group                        | <i>I</i> 12/a1 (No. 15) | $P2_1/a$ (No. 14)                                                                 | <i>P</i> 12 <sub>1</sub> / <i>n</i> 1 (No. 14) |
| Crystal color                      | red                     | red                                                                               | red                                            |
| Crystal description                | plate                   | plate                                                                             | block                                          |
| <i>a</i> [Å]                       | 15.7272(6)              | 11.8210(5)                                                                        | 13.6337(3)                                     |
| <i>b</i> [Å]                       | 11.3327(3)              | 24.9798(9)                                                                        | 11.8657(3)                                     |
| <i>c</i> [Å]                       | 20.9939(8)              | 12.1425(5)                                                                        | 19.1562(5)                                     |
| α [°]                              |                         | _                                                                                 |                                                |
| β [°]                              | 109.582(4)              | 106.628(4)                                                                        | 98.107(2)                                      |
| γ [°]                              |                         | _                                                                                 |                                                |
| V[Å <sup>3</sup> ]                 | 3525.4(2)               | 3435.6(2)                                                                         | 3067.99(13)                                    |
| Ζ                                  | 4                       | 4                                                                                 | 2                                              |
| $d_{\rm calcd} [{ m g \ cm^{-3}}]$ | 1.328                   | 1.500                                                                             | 1.452                                          |
| $R_1 (I > 2\sigma(I))$             | 0.0499                  | 0.0619                                                                            | 0.0562                                         |
| $wR_2$ (all data)                  | 0.1238                  | 0.1800                                                                            | 0.1435                                         |
| Goodness-of-fit                    | 1.013                   | 1.146                                                                             | 1.029                                          |
| Temperature [K]                    | 93(2)                   | 93(2)                                                                             | 93(2)                                          |
| CCDC No.                           | 2348376                 | 2348377                                                                           | 2348378                                        |

Table S1. Crystallographic data of 5a, 5b, and 5c.

| Compound                           | 10                                                    | 11                      |
|------------------------------------|-------------------------------------------------------|-------------------------|
| Formula                            | $C_{40}H_{26}N_2O_4S_2,$                              | $C_{40}H_{26}N_2O_6S_2$ |
|                                    | 2.73(CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> ), |                         |
|                                    | 0.27(CH <sub>2</sub> Cl <sub>2</sub> )                |                         |
| Formula weight                     | 593.20                                                | 933.48                  |
| Crystal system                     | triclinic                                             | triclinic               |
| Space group                        | <i>P</i> –1 (No. 2)                                   | <i>P</i> –1 (No. 2)     |
| Crystal color                      | yellow                                                | colorless               |
| Crystal description                | plate                                                 | block                   |
| <i>a</i> [Å]                       | 12.9868(4)                                            | 10.1116(10)             |
| <i>b</i> [Å]                       | 13.0586(5)                                            | 13.6115(9)              |
| <i>c</i> [Å]                       | 14.4262(4)                                            | 15.4513(13)             |
| α [°]                              | 80.800(3)                                             | 83.734(6)               |
| eta [°]                            | 81.409(3)                                             | 73.598(8)               |
| γ [°]                              | 74.562(3)                                             | 68.554(7)               |
| V[Å <sup>3</sup> ]                 | 2313.21(14)                                           | 1898.8(3)               |
| Ζ                                  | 2                                                     | 2                       |
| $d_{\rm calcd} [{ m g \ cm^{-3}}]$ | 1.369                                                 | 1.633                   |
| $R_1 (I > 2\sigma(I))$             | 0.0835                                                | 0.0781                  |
| $wR_2$ (all data)                  | 0.2766                                                | 0.2468                  |
| Goodness-of-fit                    | 1.044                                                 | 1.037                   |
| Temperature [K]                    | 93(2)                                                 | 93(2)                   |
| CCDC No.                           | 2348379                                               | 2348380                 |

 Table S2. Crystallographic data of 10 and 11.

## 6. Electrochemical properties



Figure S39. Cyclic voltammograms of 3', 9, and 11.



Figure S40. Spectroelectrochemical absorption spectra of 11 in  $CH_2Cl_2$  using  $[Bu_4N][PF_6]$  as the supporting electrolyte at -1.2 V (vs Fc/Fc<sup>+</sup>).



Figure S41. Cyclic voltammograms of 3', 5a, 5b, and 5c.



Figure S42. Thermogravimetric analysis (TGA) profiles of 3', 9, 10, and 11.

## 8. DFT Calculations



Figure S43. Calculated molecular orbitals of 3'', 5a, 5b, and 5c (isovalue = 0.02, B3LYP/6-31G(d)).



Figure S44. Energy diagrams of 3", 5a, 5b, and 5c (B3LYP/6-31G(d)).



Figure S45. Hypothetical homodesmotic reactions (B3LYP/6-31G(d)).

**Table S3.** Simulated <sup>1</sup>H NMR chemical shifts calculated at the B3LYP/6-31G(d) level. The chemical shifts were averaged for four equivalent protons.





**Figure S46.** Results of TD-DFT calculations of (a) **5a**, (b) **5b**, (c) **5c**, and (d) **3''**. (B3LYP/6-31G(d)//CAM-B3LYP/6-31G(d)).

| 0 | 6.966945   | -0.002646 | -2.005822 |
|---|------------|-----------|-----------|
| 0 | -6.966827  | -0.001912 | -2.005845 |
| 0 | 5.697872   | -2.288734 | 0.325989  |
| 0 | 5.697776   | 2.289732  | 0.322241  |
| N | -5.707245  | 0.000323  | 0.380448  |
| С | 3.57503    | -1.223641 | 0.345645  |
| 0 | -5.697805  | -2.288948 | 0.325821  |
| 0 | -5.697887  | 2.289522  | 0.32279   |
| N | 5.707226   | 0.000544  | 0.380435  |
| С | 2.862731   | 0.000457  | 0.345739  |
| С | -3.575006  | -1.223774 | 0.34565   |
| С | -2.862753  | 0.000352  | 0.345804  |
| С | 0.735411   | -1.249595 | 0.344822  |
| С | 7.78682    | -0.001175 | -0.919813 |
| С | -7.147641  | 0.000267  | 0.333219  |
| С | -7.786775  | -0.000923 | -0.919882 |
| С | -3.57505   | 1.224449  | 0.343907  |
| С | 1.481747   | -2.429635 | 0.344432  |
| Н | 0.982539   | -3.39126  | 0.344273  |
| С | -9.923338  | 0.00019   | 0.215654  |
| Н | -11.008618 | 0.000155  | 0.160255  |
| C | 3,574983   | 1.224581  | 0.34374   |
| С | -0.735386  | -1.249622 | 0.344823  |
| С | -1.432681  | 0.000377  | 0.344795  |
| C | 7.147621   | 0.000521  | 0.333247  |
| С | 0.735364   | 1.250427  | 0.342928  |
| С | 2.880576   | 2.421526  | 0.340446  |
| Н | 3.443349   | 3.348965  | 0.337632  |
| С | 9.184333   | -0.001204 | -0.970334 |
| Н | 9.700742   | -0.002471 | -1.923152 |
| С | -9.184281  | -0.00096  | -0.97048  |
| Н | -9.700652  | -0.001878 | -1.923318 |
| С | -2.880687  | 2.421421  | 0.340657  |
| Н | -3.443496  | 3.348838  | 0.337951  |
| С | 1.481656   | 2.430493  | 0.340712  |
| Н | 0.982414   | 3.392099  | 0.339096  |
| С | 5.058795   | 1.250232  | 0.342369  |
| С | -5.058861  | 1.250045  | 0.342642  |
| С | -0.735433  | 1.2504    | 0.342969  |
| С | 1.432659   | 0.00043   | 0.344763  |
| С | 9.287508   | 0.00216   | 1.454572  |
| Н | 9.865929   | 0.003453  | 2.373118  |
| С | -9.287587  | 0.001385  | 1.454424  |
| Н | -9.866054  | 0.002293  | 2.372942  |
| С | 5.05884    | -1.249236 | 0.344388  |
| C | -5.058817  | -1.249423 | 0.344342  |
| С | 7.891856   | 0.002175  | 1.5047    |
| H | 7.368462   | 0.003475  | 2.456006  |
| C | -2.880599  | -2.420723 | 0.344153  |
| H | -3 443372  | -3 348164 | 0 342751  |
| C | 9.923328   | 0.00046   | 0.215831  |
| H | 11 008611  | 0.00040   | 0 160494  |
| C | _7 801032  | 0.001417  | 1 504620  |
|   | 1.071752   | 0.001417  | 1.504025  |

Table S4. Cartesian coordinate and geometry of 3".

| Н | -7.368596 | 0.002331  | 2.455967  |
|---|-----------|-----------|-----------|
| С | -1.481768 | 2.430439  | 0.340843  |
| Н | -0.982559 | 3.392062  | 0.33924   |
| С | 2.880666  | -2.420617 | 0.344191  |
| Н | 3.443474  | -3.348037 | 0.34284   |
| С | -1.481679 | -2.42969  | 0.344409  |
| Н | -0.982436 | -3.391297 | 0.344243  |
| С | 7.560131  | -0.004809 | -3.295689 |
| Н | 8.174175  | -0.900734 | -3.453446 |
| Н | 6.730254  | -0.006052 | -4.004392 |
| Н | 8.17408   | 0.890643  | -3.456495 |
| С | -7.559927 | -0.003432 | -3.295751 |
| Н | -8.173965 | 0.892041  | -3.456106 |
| Н | -6.730006 | -0.004191 | -4.004404 |
| Н | -8.173866 | -0.899335 | -3.454046 |

Sum of electronic and thermal free energies = -2021.807876 Hartree

| 0 | -3.60828  | 1.697052  | -0.000915 |
|---|-----------|-----------|-----------|
| 0 | 3.608299  | 1.697071  | -0.000842 |
| 0 | -5.291216 | -0.545418 | 2.284631  |
| 0 | -5.29172  | -0.545629 | -2.284193 |
| Ν | 5.19382   | -0.389193 | -0.000097 |
| С | -3.460201 | -1.626067 | 1.224832  |
| 0 | 5.291689  | -0.546081 | 2.28428   |
| 0 | 5.291235  | -0.545012 | -2.284551 |
| С | 0.000015  | 2.846974  | -0.000249 |
| Н | 0.000245  | 3.504342  | 0.880833  |
| Н | -0.000206 | 3.504334  | -0.881337 |
| N | -5.19383  | -0.389193 | 0.000215  |
| С | -2.789115 | -1.859369 | 0.00003   |
| С | 3.460339  | -1.626236 | 1.224546  |
| С | 2.789106  | -1.859372 | -0.000211 |
| С | -0.734322 | -2.380918 | 1.250594  |
| С | -4.935664 | 2.015595  | -0.000203 |
| С | 5.818537  | 0.910688  | 0.000112  |
| С | 1.262959  | 1.966427  | -0.000598 |
| Н | 1.247884  | 1.309193  | -0.879135 |
| Н | 1.248032  | 1.30865   | 0.877537  |
| С | 4.935702  | 2.015616  | -0.000263 |
| С | -2.598305 | 2.711803  | -0.000163 |
| Н | -2.70556  | 3.347026  | 0.890526  |
| Н | -2.704836 | 3.347618  | -0.89053  |
| С | 3.460184  | -1.625817 | -1.224973 |
| С | -1.48267  | -2.313415 | 2.428285  |
| Н | -1.002875 | -2.462522 | 3.388752  |
| С | 6.845163  | 3.490285  | 0.000849  |
| Н | 7.244338  | 4.500989  | 0.001089  |
| С | -3.460351 | -1.625986 | -1.224683 |
| С | 0.734423  | -2.380973 | 1.250514  |
| С | 1.416623  | -2.246552 | -0.000202 |
| С | -5.818537 | 0.91069   | 0.000212  |
| С | -1.262966 | 1.966462  | 0.000054  |
| Н | -1.248004 | 1.308752  | -0.878128 |
| Н | -1.247939 | 1.309181  | 0.878549  |
| С | -0.73444  | -2.380756 | -1.25081  |
| С | -2.828451 | -1.927468 | -2.419347 |
| Н | -3.366034 | -1.769263 | -3.348402 |
| С | -5.457495 | 3.309666  | -0.000048 |
| Н | -4.797082 | 4.170064  | -0.000418 |
| С | 5.45755   | 3.309664  | 0.000066  |
| Н | 4.797164  | 4.170075  | -0.000281 |
| C | 2.828168  | -1.927153 | -2.419607 |
| Н | 3.365633  | -1.768764 | -3.348704 |
| C | -1 482924 | -2.313204 | -2.428411 |
| H | -1.003236 | -2.462243 | -3.38894  |
| C | -4.728927 | -0.859353 | -1.248794 |
| C | 4 728683  | -0.859028 | -1 249103 |
| C | 0 734315  | -2 380695 | -1 250886 |
| C | _1 416633 | -2.365673 | -0.000065 |
| C | _7 711017 | 2.240044  | 0.000005  |
|   | /./11/1/  | 2.400137  | 0.000000  |

Table S5. Cartesian coordinate and geometry of 5a.

| Н | -8.78662  | 2.552998  | 0.001301  |
|---|-----------|-----------|-----------|
| С | 7.711957  | 2.400087  | 0.001312  |
| Н | 8.786665  | 2.552921  | 0.00197   |
| С | -4.728724 | -0.859283 | 1.249098  |
| С | 4.728937  | -0.859592 | 1.24879   |
| С | 2.598284  | 2.711775  | -0.000427 |
| Н | 2.705115  | 3.347528  | -0.890801 |
| Н | 2.70516   | 3.347071  | 0.890259  |
| С | -7.190069 | 1.102585  | 0.000715  |
| Н | -7.840923 | 0.234554  | 0.001032  |
| С | 2.828424  | -1.927897 | 2.419156  |
| Н | 3.366011  | -1.769866 | 3.348243  |
| С | -6.845093 | 3.490315  | 0.000489  |
| Н | -7.244244 | 4.501028  | 0.000617  |
| С | 7.190069  | 1.102537  | 0.000955  |
| Н | 7.840906  | 0.234492  | 0.001338  |
| С | 1.482661  | -2.31295  | -2.428566 |
| Н | 1.002867  | -2.461863 | -3.389062 |
| С | -2.828181 | -1.92763  | 2.419406  |
| Н | -3.365642 | -1.769443 | 3.34854   |
| С | 1.48289   | -2.313594 | 2.428139  |
| Н | 1.003172  | -2.462744 | 3.388637  |
|   |           |           |           |

Sum of electronic and thermal free energies = -2138.443104 Hartree

| 0 | -3.81405  | 1.63562   | -0.157626 |
|---|-----------|-----------|-----------|
| 0 | 4.150358  | 1.946422  | -0.259296 |
| 0 | -5.548973 | -0.353018 | 2.247532  |
| 0 | -5.489376 | -0.852852 | -2.291855 |
| Ν | 5.114665  | -0.586462 | -0.018498 |
| С | -3.682506 | -1.503579 | 1.333846  |
| 0 | 5.08447   | -0.189118 | 2.23563   |
| 0 | 5.246456  | -1.180151 | -2.228557 |
| С | -0.277563 | 2.973344  | -0.004593 |
| Н | -0.452377 | 3.745466  | 0.759614  |
| Н | -0.243408 | 3.502203  | -0.9682   |
| Ν | -5.416627 | -0.437992 | -0.038846 |
| С | -2.99531  | -1.862527 | 0.149236  |
| С | 3.254983  | -1.413382 | 1.350553  |
| С | 2.597496  | -1.848073 | 0.174581  |
| С | -0.942921 | -2.18005  | 1.465432  |
| С | -5.139334 | 1.953552  | -0.251565 |
| С | 6.048127  | 0.493089  | -0.207941 |
| С | 1.092202  | 2.316665  | 0.261957  |
| Н | 1.303376  | 1.562622  | -0.506793 |
| Н | 1.054068  | 1.779984  | 1.221089  |
| С | 5.51731   | 1.793031  | -0.297392 |
| С | -2.816045 | 2.66238   | -0.184767 |
| Н | -3.004645 | 3.383591  | 0.623111  |
| Н | -2.865151 | 3.201797  | -1.141461 |
| С | 3.29411   | -1.861635 | -1.058015 |
| С | -1.702598 | -1.996102 | 2.622914  |
| Н | -1.228707 | -2.024792 | 3.597386  |
| С | 7.761788  | 2.647352  | -0.591324 |
| Н | 8.427626  | 3.491752  | -0.747505 |
| С | -3.657468 | -1.783871 | -1.099851 |
| С | 0.524169  | -2.138035 | 1.47068   |
| С | 1.217506  | -2.204885 | 0.22102   |
| С | -6.031213 | 0.857584  | -0.187788 |
| С | -1.456229 | 1.984409  | -0.002825 |
| Н | -1.327447 | 1.242763  | -0.801126 |
| Н | -1.475646 | 1.42807   | 0.943058  |
| С | -0.923945 | -2.507685 | -1.014012 |
| С | -3.009407 | -2.210271 | -2.246428 |
| Н | -3.53825  | -2.163815 | -3.192622 |
| С | -5.653014 | 3.242826  | -0.401979 |
| Н | -4.988927 | 4.098397  | -0.455108 |
| С | 6.38784   | 2.868842  | -0.49153  |
| Н | 5.98512   | 3.872602  | -0.587898 |
| С | 2.663605  | -2.336864 | -2.195674 |
| Н | 3.221263  | -2.369289 | -3.12574  |
| С | -1.66076  | -2.582201 | -2.198254 |
| Н | -1.170335 | -2.836167 | -3.13085  |
| С | -4.934685 | -1.041036 | -1.222408 |
| С | 4.62785   | -1.22869  | -1.178595 |
| С | 0.544362  | -2.526812 | -1.000245 |
| С | -1.617084 | -2.221495 | 0.204442  |
| С | -7.911875 | 2.34386   | -0.425154 |

Table S6. Cartesian coordinate and geometry of 5b.

| Н | -8.984127 | 2.498811  | -0.493378 |
|---|-----------|-----------|-----------|
| С | 8.280362  | 1.35443   | -0.508456 |
| Н | 9.34932   | 1.184965  | -0.594684 |
| С | -4.964947 | -0.764953 | 1.259614  |
| C | 4.555477  | -0.712367 | 1.265776  |
| С | 2.233356  | 3.347922  | 0.30377   |
| Н | 2.338074  | 3.829744  | -0.677445 |
| Н | 1.963825  | 4.143852  | 1.013595  |
| С | -7.399719 | 1.051397  | -0.274588 |
| Н | -8.055216 | 0.18837   | -0.224033 |
| С | 2.600787  | -1.480898 | 2.568879  |
| Н | 3.12859   | -1.163591 | 3.462085  |
| С | -7.037589 | 3.426161  | -0.487283 |
| Н | -7.428333 | 4.433361  | -0.604761 |
| С | 7.4166    | 0.275596  | -0.320673 |
| Н | 7.793805  | -0.73974  | -0.256364 |
| С | 1.304753  | -2.669864 | -2.162956 |
| Н | 0.830662  | -2.965786 | -3.091701 |
| С | -3.057421 | -1.650762 | 2.56034   |
| Н | -3.608933 | -1.401128 | 3.460699  |
| С | 1.255354  | -1.85781  | 2.627601  |
| Н | 0.762244  | -1.834728 | 3.592361  |
| С | 3.605152  | 2.83354   | 0.738287  |
| Н | 4.281084  | 3.68421   | 0.882626  |
| Н | 3.545782  | 2.289614  | 1.691052  |

Sum of electronic and thermal free energies = -2177.735372 Hartree

| 0 | 5.533952  | -0.871727 | -2.288384 |
|---|-----------|-----------|-----------|
| 0 | -5.533814 | -0.867552 | 2.288808  |
| 0 | -5.534158 | -0.872258 | -2.288239 |
| 0 | -4.643618 | 1.661017  | -0.002126 |
| 0 | 5.534016  | -0.867958 | 2.288691  |
| 0 | 4.643577  | 1.660923  | -0.000353 |
| Ν | 5.51733   | -0.777917 | 0.000086  |
| Ν | -5.51723  | -0.777845 | 0.000191  |
| С | -2.836824 | -1.722271 | 0.000975  |
| С | -4.933361 | -1.084896 | -1.248115 |
| С | -0.735214 | -2.038152 | -1.249084 |
| С | -1.427121 | -1.955265 | 0.001152  |
| C | -6.000898 | 1.589223  | -0.00202  |
| С | 6.509833  | 0.271197  | -0.000845 |
| С | -0.735172 | -2.036123 | 1.251497  |
| С | -2.863762 | -1.771186 | -2.418714 |
| Н | -3.417025 | -1.676076 | -3.347082 |
| С | 4.933334  | -1.082612 | 1.248913  |
| С | -3.535374 | -1.582824 | -1.222887 |
| С | -7.875048 | 0.042781  | -0.000583 |
| Н | -8.239526 | -0.979304 | 0.000397  |
| С | 2.836852  | -1.722252 | 0.000892  |
| С | -6.880463 | 2.670741  | -0.003096 |
| Н | -6.501949 | 3.687687  | -0.004137 |
| С | 0.735245  | -2.036148 | 1.251469  |
| С | 4.933276  | -1.084666 | -1.248259 |
| С | 2.863686  | -1.771011 | -2.418808 |
| Н | 3.416901  | -1.675806 | -3.347195 |
| С | 3.53534   | -1.582692 | -1.222997 |
| С | 1.483719  | -2.000099 | 2.43006   |
| Н | 0.992125  | -2.092707 | 3.391451  |
| С | -3.535319 | -1.580659 | 1.224626  |
| С | 2.8638    | -1.767207 | 2.420646  |
| Н | 3.417047  | -1.670524 | 3.348862  |
| С | 0.735199  | -2.038121 | -1.249111 |
| С | 3.535404  | -1.58075  | 1.224518  |
| С | -6.509805 | 0.271193  | -0.000775 |
| С | -2.863671 | -1.767046 | 2.420739  |
| Н | -3.416874 | -1.670284 | 3.348974  |
| С | -1.483669 | -2.004002 | -2.427741 |
| Н | -0.992057 | -2.098086 | -3.388978 |
| С | -8.759513 | 1.12716   | -0.00162  |
| Н | -9.830911 | 0.952485  | -0.001472 |
| С | -8.258739 | 2.427264  | -0.002865 |
| Н | -8.943043 | 3.27145   | -0.003712 |
| C | -1.483597 | -1.99999  | 2.430114  |
| Н | -0.991971 | -2.092547 | 3.391494  |
| C | 1.483607  | -2.003901 | -2.427795 |
| Н | 0.991964  | -2.097979 | -3.389018 |
| С | -4.933215 | -1.082451 | 1.249032  |
| С | 6.000859  | 1.5892    | -0.001263 |
| C | 7.875088  | 0.042844  | -0.001556 |
| Н | 8.239587  | -0.979232 | -0.001255 |

Table S7. Cartesian coordinate and geometry of 5c.

| С | 1.427149  | -1.955254 | 0.001103  |
|---|-----------|-----------|-----------|
| C | -3.916113 | 2.893148  | -0.002053 |
| Н | -4.169311 | 3.484818  | 0.888781  |
| Н | -4.165913 | 3.482789  | -0.895207 |
| C | 6.880382  | 2.670755  | -0.002465 |
| Н | 6.501838  | 3.687689  | -0.002857 |
| C | 8.258667  | 2.427337  | -0.003168 |
| Н | 8.942927  | 3.271559  | -0.004097 |
| C | 8.759507  | 1.127258  | -0.002709 |
| Н | 9.830914  | 0.952638  | -0.003282 |
| C | -2.460791 | 2.429611  | 0.001264  |
| Н | -2.338322 | 1.77653   | -0.872303 |
| Н | -2.340404 | 1.781612  | 0.878908  |
| C | -1.330823 | 3.470616  | -0.000678 |
| Н | -1.39765  | 4.118269  | -0.885923 |
| Н | -1.400417 | 4.125037  | 0.879353  |
| C | 3.916048  | 2.893047  | -0.001091 |
| Н | 4.166135  | 3.482263  | -0.894441 |
| Н | 4.168955  | 3.48513   | 0.889553  |
| C | 2.460735  | 2.429512  | 0.002014  |
| Н | 2.338431  | 1.776221  | -0.871418 |
| Н | 2.340137  | 1.781737  | 0.879791  |
| С | -0.000026 | 2.699196  | 0.004272  |
| Н | 0.000057  | 2.02678   | -0.865955 |
| Н | -0.000135 | 2.037042  | 0.88232   |
| С | 1.330799  | 3.470562  | -0.000404 |
| Н | 1.397899  | 4.118081  | -0.885728 |
| Н | 1.400186  | 4.125105  | 0.879551  |
|   |           |           |           |

| NT /*       | C    |        |        |   |
|-------------|------|--------|--------|---|
| Negative    | treo | mency  | = zerc | ٦ |
| 1 veguti ve | 1100 | lacito | 2010   | ' |

Sum of electronic and thermal free energies = -2217.032475 Hartree

| 0 | -7.461078 | -1.006329 | 0.000235  |
|---|-----------|-----------|-----------|
| 0 | 7.142053  | 0.735386  | -0.000094 |
| 0 | -5.740397 | 1.009149  | -2.289423 |
| 0 | -5.740214 | 1.010575  | 2.289107  |
| N | 5.419825  | -1.341834 | 0.000121  |
| С | -3.658487 | 0.595929  | -1.224093 |
| 0 | 5.422029  | -1.281999 | -2.289171 |
| 0 | 5.422102  | -1.281099 | 2.289389  |
| N | -5.737918 | 1.070418  | -0.000177 |
| С | -2.960862 | 0.451682  | -0.000096 |
| С | 3.340232  | -0.868211 | -1.223903 |
| С | 2.642664  | -0.723338 | 0.000044  |
| С | -0.879018 | 0.014089  | -1.250074 |
| С | -8.039856 | 0.223902  | 0.000005  |
| С | 6.839577  | -1.590852 | 0.000149  |
| С | 7.979659  | 1.892285  | -0.000152 |
| Н | 8.625842  | 1.882933  | 0.889492  |
| Н | 8.625906  | 1.8828    | -0.889748 |
| С | 7.721424  | -0.494496 | 0.00004   |
| С | -8.298473 | -2.162767 | 0.000385  |
| Н | -8.944786 | -2.154658 | -0.889343 |
| Н | -8.944799 | -2.154424 | 0.890104  |
| С | 3.340278  | -0.867701 | 1.224025  |
| С | -1.610135 | 0.164304  | -2.430073 |
| Н | -1.121971 | 0.05988   | -3.391708 |
| С | 9.579438  | -2.045605 | 0.000201  |
| Н | 10.653037 | -2.214088 | 0.000222  |
| С | -3.658391 | 0.596684  | 1.223867  |
| С | 0.560744  | -0.28647  | -1.250035 |
| С | 1.243051  | -0.42979  | 0.00001   |
| С | -7.157576 | 1.319865  | -0.000201 |
| С | -0.878934 | 0.01479   | 1.249986  |
| С | -2.979315 | 0.451946  | 2.420854  |
| Н | -3.53075  | 0.56493   | 3.348234  |
| С | -9.418242 | 0.462836  | -0.000026 |
| Н | -10.11928 | -0.363469 | 0.000129  |
| С | 9.099906  | -0.733046 | 0.00007   |
| Н | 9.800702  | 0.093453  | -0.000017 |
| С | 2.661272  | -0.72242  | 2.420977  |
| Н | 3.212768  | -0.834954 | 3.348374  |
| С | -1.609951 | 0.165767  | 2.429951  |
| Н | -1.121708 | 0.061949  | 3.391612  |
| С | -5.111135 | 0.899516  | 1.249273  |
| С | 4.793064  | -1.170473 | 1.249487  |
| С | 0.560806  | -0.285879 | 1.25002   |
| C | -1.561254 | 0.158089  | -0.000061 |
| С | -9.020741 | 2.857491  | -0.000447 |
| H | -9.398091 | 3.875303  | -0.000617 |
| C | 8.703221  | -3.127866 | 0.000305  |
| H | 9.080922  | -4,145549 | 0.000408  |
| C | -5,111236 | 0.898738  | -1.24957  |
| C | 4.793022  | -1.170972 | -1.249294 |
| C | -7.644719 | 2.61946   | -0.000422 |
|   | ,         | 2.01710   | 0.000122  |

Table S8. Cartesian coordinate and geometry of 5a+CH<sub>3</sub>CH<sub>3</sub>.

| Н | -6.936766  | 3.44275   | -0.000572 |
|---|------------|-----------|-----------|
| С | 2.661181   | -0.723425 | -2.420889 |
| Н | 3.212648   | -0.836318 | -3.348259 |
| С | -9.897349  | 1.775547  | -0.000252 |
| Н | -10.970887 | 1.944389  | -0.000271 |
| С | 7.327118   | -2.890284 | 0.000277  |
| Н | 6.619428   | -3.713803 | 0.000357  |
| С | 1.291893   | -0.436272 | 2.430012  |
| Н | 0.803702   | -0.33201  | 3.391653  |
| С | -2.979506  | 0.450453  | -2.421044 |
| Н | -3.531019  | 0.562843  | -3.348449 |
| С | 1.291795   | -0.437319 | -2.429991 |
| Н | 0.803569   | -0.333447 | -3.391656 |
| С | 7.07684    | 3.117879  | -0.000275 |
| Н | 6.423514   | 3.07233   | -0.881171 |
| Н | 6.423413   | 3.072425  | 0.880551  |
| С | 7.869377   | 4.431451  | -0.0003   |
| Н | 8.528839   | 4.461419  | 0.878538  |
| Н | 8.529027   | 4.461276  | -0.879003 |
| С | -7.39581   | -3.388644 | 0.000551  |
| Н | -6.743651  | -3.342117 | -0.879994 |
| Н | -6.743426  | -3.34168  | 0.880907  |
| С | -8.196451  | -4.694683 | 0.000981  |
| Н | -7.527273  | -5.561208 | 0.000899  |
| Н | -8.838496  | -4.771557 | 0.886833  |
| Н | -8.83903   | -4.771826 | -0.884465 |
| С | 6.965526   | 5.66849   | -0.000498 |
| Н | 6.3179     | 5.685593  | 0.884346  |
| Н | 7.555423   | 6.591751  | -0.000499 |
| н | 6 219109   | 5 685450  | 0.885407  |

Sum of electronic and thermal free energies = -2218.256126 Hartree

| 0 | 7.323942   | 0.654976  | 0.000139  |
|---|------------|-----------|-----------|
| 0 | -7.323815  | -0.655177 | 0.000015  |
| 0 | 5.544969   | -1.309376 | -2.289395 |
| 0 | 5.544853   | -1.310072 | 2.289145  |
| N | -5.540967  | 1.370182  | -0.000004 |
| С | 3.476231   | -0.834671 | -1.22407  |
| 0 | -5.544999  | 1.310145  | -2.289282 |
| 0 | -5.545038  | 1.309776  | 2.289264  |
| N | 5.540803   | -1.370158 | -0.000135 |
| С | 2.783185   | -0.669704 | -0.000098 |
| С | -3.476297  | 0.835204  | -1.223994 |
| С | -2.783291  | 0.669953  | -0.000037 |
| С | 0.715111   | -0.171159 | -1.250101 |
| С | 7.86656    | -0.591552 | -0.000001 |
| С | -6.952732  | 1.661071  | 0.000009  |
| С | -8.195239  | -1.786801 | 0.000045  |
| Н | -8.840882  | -1.75826  | 0.889674  |
| Н | -8.840908  | -1.758289 | -0.889565 |
| С | -7.866609  | 0.591278  | 0.00002   |
| С | 8.195536   | 1.786465  | 0.000235  |
| Н | 8.841202   | 1.7579    | -0.889375 |
| Н | 8.841174   | 1.757776  | 0.889863  |
| С | -3.476322  | 0.834986  | 1.223935  |
| С | 1.441445   | -0.343123 | -2.430082 |
| Н | 0.956526   | -0.224582 | -3.391725 |
| С | -9.677981  | 2.196579  | 0.000033  |
| Н | -10.746128 | 2.396735  | 0.000045  |
| С | 3.476172   | -0.835029 | 1.223859  |
| С | -0.715163  | 0.17175   | -1.250086 |
| С | -1.392935  | 0.335259  | -0.000052 |
| С | 6.952533   | -1.661218 | -0.000143 |
| С | 0.71506    | -0.171483 | 1.249951  |
| С | 2.801677   | -0.67022  | 2.420834  |
| Н | 3.349555   | -0.799329 | 3.348216  |
| С | 9.237364   | -0.870883 | -0.000006 |
| Н | 9.962341   | -0.065489 | 0.0001    |
| С | -9.237455  | 0.87042   | 0.000037  |
| Н | -9.962319  | 0.064927  | 0.000056  |
| С | -2.801859  | 0.669938  | 2.420894  |
| Н | -3.349766  | 0.79884   | 3.348287  |
| С | 1.441334   | -0.34381  | 2.429917  |
| Н | 0.956367   | -0.225554 | 3.391571  |
| С | 4.919371   | -1.180609 | 1.249271  |
| С | -4.919534  | 1.180509  | 1.249378  |
| С | -0.715199  | 0.171488  | 1.249966  |
| С | 1.392835   | -0.334981 | -0.000083 |
| С | 8.769736   | -3.252866 | -0.000286 |
| Н | 9.117061   | -4.281313 | -0.000395 |
| C | -8.770152  | 3.252467  | 0.000015  |
| H | -9.11762   | 4.280866  | 0.000009  |
| C | 4.919435   | -1.180231 | -1.249513 |
| C | -4.91951   | 1.180719  | -1,249406 |
| C | 7 401281   | -2 974546 | -0 000283 |
|   | /.101201   | 2.97 1040 | 0.000205  |

Table S9. Cartesian coordinate and geometry of 5b+CH<sub>3</sub>CH<sub>3</sub>.

| Н | 6.669466  | -3.776703 | -0.00039  |
|---|-----------|-----------|-----------|
| C | -2.801808 | 0.670368  | -2.420968 |
| Н | -3.3497   | 0.79942   | -3.34835  |
| С | 9.677708  | -2.197105 | -0.000148 |
| Н | 10.745829 | -2.397402 | -0.000149 |
| С | -7.401662 | 2.974338  | 0.000003  |
| Н | -6.669959 | 3.776597  | -0.000009 |
| С | -1.44151  | 0.343551  | 2.429947  |
| Н | -0.956569 | 0.225099  | 3.391591  |
| С | 2.801794  | -0.669513 | -2.421029 |
| Н | 3.34972   | -0.798337 | -3.348422 |
| С | -1.441454 | 0.344004  | -2.430051 |
| Н | -0.956495 | 0.225718  | -3.391706 |
| С | -7.329076 | -3.038564 | 0.000047  |
| Н | -6.674705 | -3.012476 | -0.880865 |
| Н | -6.674573 | -3.012377 | 0.880857  |
| С | -8.160187 | -4.328081 | 0.000186  |
| Н | -8.820205 | -4.338393 | 0.879058  |
| Н | -8.82048  | -4.338419 | -0.878479 |
| С | 7.32956   | 3.038357  | 0.000301  |
| Н | 6.67525   | 3.012455  | -0.880662 |
| Н | 6.674988  | 3.012174  | 0.88106   |
| С | 8.16086   | 4.327753  | 0.000642  |
| Н | 8.820794  | 4.337886  | 0.879578  |
| Н | 8.82124   | 4.338087  | -0.877959 |
| С | -7.293397 | -5.591355 | 0.000066  |
| Н | -6.646514 | -5.627553 | 0.884877  |
| Н | -7.910391 | -6.49673  | 0.000191  |
| Н | -6.646816 | -5.62759  | -0.884964 |
| С | 7.294246  | 5.591149  | 0.000557  |
| Н | 6.647767  | 5.627564  | -0.88454  |
| Н | 6.647272  | 5.627344  | 0.885301  |
| Н | 7.911364  | 6.49644   | 0.000845  |

Sum of electronic and thermal free energies = -2257.543294 Hartree

| 0 | 7.530352    | 0.518102  | -0.001002 |
|---|-------------|-----------|-----------|
| 0 | -7.160304   | -0.225245 | -0.001152 |
| 0 | 5.676285    | -1.373451 | -2.287579 |
| 0 | 5.675351    | -1.377835 | 2.29094   |
| N | -5.298905   | 1.728396  | 0.002455  |
| С | 3.627146    | -0.820332 | -1.222179 |
| 0 | -5.304556   | 1.671477  | -2.286898 |
| 0 | -5.306074   | 1.664964  | 2.291633  |
| N | 5.669348    | -1.435874 | 0.001614  |
| С | 2.940708    | -0.629946 | 0.001832  |
| С | -3.2561     | 1.115519  | -1.221698 |
| С | -2.570324   | 0.92215   | 0.002214  |
| С | 0.893509    | -0.051334 | -1.248051 |
| С | 8.023791    | -0.748692 | 0.000032  |
| С | -6.698146   | 2.074576  | 0.00248   |
| С | -8.075774   | -1.321719 | -0.003322 |
| Н | -8.720064   | -1.269121 | 0.886138  |
| Н | -8.719388   | -1.266161 | -0.89309  |
| С | -7.653462   | 1.041601  | 0.000579  |
| С | 8.445555    | 1.614609  | -0.003713 |
| Н | 9.088829    | 1.559161  | -0.893781 |
| Н | 9.090339    | 1.562313  | 0.885459  |
| С | -3.256886   | 1.112127  | 1.226215  |
| С | 1.612907    | -0.250126 | -2.428071 |
| Н | 1.133034    | -0.112346 | -3.389683 |
| С | -9.400139   | 2.717087  | 0.002491  |
| Н | -10.459569  | 2.959195  | 0.002483  |
| С | 3.626622    | -0.822797 | 1.225752  |
| С | -0.522508   | 0.346384  | -1.247953 |
| С | -1.193847   | 0.534305  | 0.002118  |
| С | 7.06864     | -1.781803 | 0.001503  |
| С | 0.892909    | -0.054079 | 1.252     |
| С | 2.958705    | -0.633304 | 2.422763  |
| Н | 3.501052    | -0.78412  | 3.350122  |
| С | 9.382642    | -1.081388 | -0.000167 |
| Н | 10.13855    | -0.304955 | -0.001365 |
| С | -9.012257   | 1.374597  | 0.000602  |
| Н | -9.768308   | 0.598306  | -0.00084  |
| С | -2.589629   | 0.919743  | 2.423128  |
| Н | -3.132463   | 1.068396  | 3.350549  |
| С | 1.61185     | -0.255073 | 2.431925  |
| Н | 1.131591    | -0.119135 | 3.393606  |
| С | 5.055474    | -1.223588 | 1.251086  |
| С | -4.685717   | 1.513049  | 1.251729  |
| С | -0.523228   | 0.34321   | 1.252095  |
| С | 1.564203    | -0.242187 | 0.001927  |
| С | 8.822236    | -3.443261 | 0.002811  |
| H | 9.129108    | -4.484495 | 0.003926  |
| C | -8.45141    | 3,736377  | 0.004366  |
| H | -8,758085   | 4 777669  | 0.005827  |
| C | 5.055986    | -1.221131 | -1.247697 |
| C | -4.684892   | 1.516589  | -1.247018 |
| C | 7.465711    | -3,11168  | 0.002923  |
|   | /. 100 / 11 | 5.11100   | 0.002725  |

Table S10. Cartesian coordinate and geometry of 5c+CH<sub>3</sub>CH<sub>3</sub>.

| Н | 6.703106  | -3.884623 | 0.004096  |
|---|-----------|-----------|-----------|
| С | -2.588079 | 0.926442  | -2.41871  |
| Н | -3.130292 | 1.077762  | -3.346064 |
| С | 9.770783  | -2.423806 | 0.001222  |
| Н | 10.830255 | -2.665723 | 0.001072  |
| С | -7.094951 | 3.404531  | 0.004347  |
| Н | -6.332193 | 4.177325  | 0.005781  |
| С | -1.242794 | 0.541419  | 2.432108  |
| Н | -0.763055 | 0.403181  | 3.393721  |
| С | 2.959725  | -0.628492 | -2.419093 |
| Н | 3.502436  | -0.777562 | -3.346521 |
| С | -1.241282 | 0.547986  | -2.427873 |
| Н | -0.760919 | 0.412438  | -3.389558 |
| С | -7.259538 | -2.60663  | -0.005134 |
| Н | -6.604278 | -2.603846 | -0.885667 |
| Н | -6.605113 | -2.606874 | 0.876027  |
| С | -8.141272 | -3.861838 | -0.007709 |
| Н | -8.802936 | -3.849126 | 0.871107  |
| Н | -8.801872 | -3.846253 | -0.887276 |
| С | 7.629268  | 2.899447  | -0.005277 |
| Н | 6.973465  | 2.897416  | -0.885506 |
| Н | 6.975151  | 2.900695  | 0.876211  |
| С | 8.510466  | 4.155265  | -0.008429 |
| Н | 9.17145   | 4.141171  | 0.869666  |
| Н | 9.169587  | 4.138055  | -0.887866 |
| С | -7.332065 | -5.165462 | -0.009347 |
| Н | -6.67203  | -5.181516 | 0.869253  |
| Н | -6.670925 | -5.178629 | -0.887164 |
| С | 7.694078  | 5.451672  | -0.00986  |
| Н | 7.048321  | 5.511753  | -0.894193 |
| Н | 7.050229  | 5.514907  | 0.875644  |
| Н | 8.346242  | 6.332051  | -0.01213  |
| С | -8.211737 | -6.419492 | -0.011961 |
| Н | -7.605316 | -7.332203 | -0.01308  |
| Н | -8.859921 | -6.451456 | 0.872451  |
| Н | -8.858809 | -6.448547 | -0.897288 |

Sum of electronic and thermal free energies = -2296.830740 Hartree
| Tabl | e S11. | Cartesian | coordinate | and | geometry | of ethane. |
|------|--------|-----------|------------|-----|----------|------------|
|------|--------|-----------|------------|-----|----------|------------|

| С | 0         | 0         | 0.765306  |
|---|-----------|-----------|-----------|
| Н | -0.510273 | 0.884352  | 1.16449   |
| Н | 1.021008  | -0.000267 | 1.16449   |
| Н | -0.510735 | -0.884085 | 1.16449   |
| С | 0         | 0         | -0.765306 |
| Н | 0.510735  | -0.884085 | -1.16449  |
| Н | -1.021008 | -0.000267 | -1.16449  |
| Н | 0.510273  | 0.884352  | -1.16449  |

Negative frequency = zero

Sum of electronic and thermal free energies = -79.776601 Hartree

## 9. Photophysical properties

Method to determine quantum yields of the triplet generations: To obtain quantum yields of the intersystem crossings (ISC), we conducted transient absorption (TA) spectroscopic analysis of **5b** and **5c** (Figure SX). The nanosecond transient absorption data were obtained using a nanosecond time-resolved optical absorption spectrometer system (UNISOKU, TSP-1000-KK) at room temperature. For the light excitation of 532 nm light, a Nd: YAG laser (Continuum Minilite II, fwhm = 5 ns, pulse energy = 0.3 mJ/pulse, pulse repetition frequency = 10 Hz) was employed. The excitation wavelength was the second harmonics (532 nm) of the 1064 nm pump laser. The sample solutions were deoxygenated by the freeze-pump-thaw cycle in the CH<sub>2</sub>Cl<sub>2</sub> solutions.



**Figure S477.** TA spectra of **5b** and **5c** by the 532 nm laser irradiations. Time profiles of the absorbance changes in the 480–500 nm regions are shown in the right panels.



Figure S488. TA spectra of 5b and 5c at 1 µs after the 532 nm laser irradiations.

The TA spectra In Figure S47 are almost identical with the reported TA spectra<sup>5</sup> of the excited triplet states of **3**<sup>*m*</sup>. Thus, these bands originate from the triplet exatons generated by the ISC.

The optical densities of the 532 nm absorptions are determined from the light pathlengths of l = 0.1 [cm] in the UV-VIS measurements and the actual path (0.45 cm) employed with the TA measurements. The absorbances were  $A_{532} = 0.1128$  (**5b**) and 0.1259 (**5c**) in the UV-VIS. Thus, for the TA experimental setups, the following absorbances were obtained:

$$A_{532nm,5b} = 0.56655$$
$$A_{532nm,5c} = 0.5076$$

The S<sub>1</sub> state concentration [S<sub>1</sub>] is determined using the numbers (mol) of the laser photons  $(N_{Ph} = 8.0346... \times 10^{14})$  per pulse and the rate of the absorption  $(1 - 10^{-A_{532nm}})$  by the followings:

$$N_{S1,5b} = \frac{N_{Ph} \times (1 - 10^{-A_{532}nm,5b})}{N_A} = \frac{8.0346... \times 10^{14} \times (1 - 10^{-0.56655})}{6.022 \times 10^{23} [mol^{-1}]}$$
$$= 9.7256024... \times 10^{-10} [mol]$$
$$N_{S1,5c} = \frac{N_{Ph} \times (1 - 10^{-A_{532},5c})}{N_A} = \frac{8.0346... \times 10^{14} \times (1 - 10^{-0.5076})}{6.022 \times 10^{23} [mol^{-1}]}$$
$$= 9.1991906... \times 10^{-10} [mol]$$

 $[S_1]$  is thus obtained as,

$$[S_1]_{5b} = N_{S1,5b}/V = 3.05754 \dots \times 10^{-5}[M]$$
$$[S_1]_{5c} = N_{S1,5c}/V = 2.89204 \dots \times 10^{-5}[M]$$

where irradiation volume (V) is estimated from the irradiation path (0.45[cm]) and the radius of the laser spot, as,  $V = \pi r^2 l = \pi \times 0.15[cm] \times 0.15[cm] \times 0.45[cm] = 3.18086... \times 10^{-5} [L^{-1}].$ 

From Figure S49, the absorbance peak tops around 500 nm are  $Abs.(T1)_{5b} = 0.0005$  and  $Abs.(T1)_{5c} = 0.001$ , respectively. Using the reported difference of the molar excitation coefficients ( $\varepsilon_T - \varepsilon_{S0}$ )  $\approx 40000 [M^{-1}cm^{-1}]$  between the triplet state and the ground state absorption<sup>5</sup>, the triplet concentrations are estimated as follows:

$$[T]_{5b} = \frac{Abs. (TT)_{5b}}{(\varepsilon_T - \varepsilon_{50}) \times l} = \frac{0.0005}{40000 \times 0.45 \ [cm]} = 2.8 \times 10^{-8} [M]$$
$$[T]_{5c} = \frac{Abs. (TT)_{5c}}{(\varepsilon_T - \varepsilon_{50}) \times l} = \frac{0.001}{40000 \times 0.45 \ [cm]} = 5.6 \times 10^{-8} [M]$$

Thus, the triplet yields in Table 2 are estimated as follows:

$$\Phi_{T,5b} = \frac{[T]_{5b}}{[S_1]_{5b}} = \frac{2.8 \times 10^{-8} [M]}{3.05754 \dots \times 10^{-5} [M]} \approx 0.0009$$
$$\Phi_{T,5c} = \frac{[T]_{5c}}{[S_1]_{5c}} = \frac{5.6 \times 10^{-8} [M]}{2.89204 \dots \times 10^{-5} [M]} = \approx 0.0019$$

## 10. References

- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785.
- 3. Tanaka, Y.; Tajima, K.; Fukui, N.; Shinokubo, H. Asian J. Org. Chem. 2021, 10, 541
- 4. Uersfeld, D.; Stappert, S.; Li, C.; Müllen, K. Adv. Synth. Catal. 2017, 359, 4184.
- 5. Ford, W. E.; Kamat, P. V. J. Phys. Chem. 1987, 91, 6373.