Supplementary Information

High performance magnesium-based plastic semiconductors for flexible thermoelectrics

Airan Li¹, Yuechu Wang¹, Yuzheng Li^{1,2}, Xinlei Yang¹, Pengfei Nan³, Kai Liu¹, Binghui Ge³, Chenguang Fu^{1,*}, Tiejun Zhu^{1,2,*}

¹State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, 310058 Hangzhou, China. ²Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China. ³Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China. ^{*}Email: <u>zhutj@zju.edu.cn</u>; <u>chenguang fu@zju.edu.cn</u>. These authors contributed equally: Airan Li, Yuechu Wang

Supplementary Fig. 1 Compressive strain-stress curve of polycrystalline Mg₃Bi₂ with its optical image.

Supplementary Fig. 2 Tensile strain-stress curves of polycrystalline Mg_3Sb_2 and Mg_3Bi_2 .

Supplementary Fig. 3 Fracture surface morphology of polycrystalline $Mg_3Sb_{2-x}Bi_x$ after compression.

Supplementary Fig. 4 Temperature dependence of Seebeck coefficient *S*, electrical conductivity σ and thermal conductivity κ of polycrystalline Te-doped Mg₃Sb_{2-x}Bi_x: Mg₃Sb_{0.5}Bi_{1.498}Te_{0.002}, Mg₃SbBi_{0.99}Te_{0.01}, Mg₃Sb_{1.5}Bi_{0.48}Te_{0.02}.

Supplementary Fig. 5 Compressive strain-stress curve of p-type polycrystalline Mg₃Sb₂, Mg₃Sb_{1.5}Bi_{0.5}, Mg₃SbBi without doping

Supplementary Fig. 6 Charge density differences of Mg_3Sb_2 and Mg_3Bi_2 . The localized electron accumulation can be found between the Mg and Sb/Bi atoms.

Supplementary Fig. 7 CDDs of Mg₃Sb₂ at different relative displacements (RD) along the [100](001) slip direction.

Supplementary Fig. 8 CDDs projection on (001) plane of Mg₃Sb₂ at different RD along the [100](001) slip direction.

Supplementary Fig. 9 CDDs of Mg₃Bi₂ at different relative displacements (RD) along the [100](001) slip direction.

Supplementary Fig. 10 CDDs projection on (001) plane of Mg₃Bi₂ at different RD along the [100](001) slip direction.

Supplementary Fig. 11 ICOHPs of Mg1-Bi, Mg2-Bi and Mg3-Bi with RD = 0 and RD = 0.5.

Supplementary Fig. 12 Dicing images of polycrystalline Mg₃Sb₂, Ag₂(Te,S) and (Bi,Sb)₂Te₃, and Bi₂(Te,Se)₃ with different dimensions.

Supplementary Fig. 13 Dicing images of $(Bi,Sb)_2Te_3$ and $Bi_2(Te,Se)_3$ with dimension of $150 \times 150 \ \mu m^2$.

Supplementary Fig. 14 Different dimensions of polycrystalline $Mg_3Sb_{0.5}Bi_{1.498}Te_{0.002}$ by cutting.

Supplementary Fig. 15 Contact resistance between Mg₃Sb_{0.5}Bi_{1.498}Te_{0.002} and Cu electrode.