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ARTICLE

An integrative framework to prioritize genes
in more than 500 loci associated
with body mass index

Daiane Hemerich,1,2 Victor Svenstrup,3,4 Virginia Diez Obrero,3,4 Michael Preuss,1 Arden Moscati,1,5

Joel N. Hirschhorn,6,7,8 and Ruth J.F. Loos1,3,4,*
Summary
Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies

(GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity

risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to

prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed sum-

mary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mu-

tation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted

based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence

score (minimum: 0; max: 28). We identified 292 high-scoring genes (R11) in 264 loci, including genes known to play a role in body

weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g.,

FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a

role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of

body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate

homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer ave-

nues to develop therapeutics for weight loss.
Introduction

Obesity is a major risk factor for chronic diseases, such as

type 2 diabetes, cardiovascular disease, and some cancers.1

The prevalence of obesity has increased steadily over the

past four decades, and most recent reports estimate that

nearly 125 million children and adolescents (7%) and

more than 670 million adults (13%) worldwide have

obesity.2 Besides contributions of the obesogenic environ-

ment, twin and family studies have provided evidence for a

genetic component to obesity, with heritability estimates

ranging between 40% and 70%.3,4

Over the past 15 years, large-scale genome-wide associa-

tion studies (GWASs) have identified hundreds of genetic

loci associated with body mass index (BMI),5 a commonly

used metric to define obesity (BMI R30 kg/m2). Pathway,

tissue, and functional enrichment analyses, based on the

genes located in the GWAS-identified loci, have pointed

to the central nervous system (CNS) as a key player in

body weight regulation,6–8 likely influencing hedonic as-

pects of food intake, such as hunger, satiety, and reward.

However, translating GWAS-identified loci into meaning-

ful biology remains a major challenge, as the most signifi-
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cant variant in a locus is often not causal and almost al-

ways located in a non-coding region of the genome,

likely exerting their effect by acting on genomic elements

that regulate the expression of target genes.9 These so-

called effector genes, in turn, are often not in the immedi-

ate vicinity of the GWAS locus,10 and may be regulated

through distant interactions with enhancers and looping

chromatin.11,12 This regulatory machinery is highly tissue

specific, and for a given locus, effector genes may differ

across tissues.13 Thus, prioritizing effector genes within

obesity-associated GWAS loci is a challenging but crucial

step to inform functional follow-up experiments that

may help us understand the mechanisms that underlie

body weight regulation.

Many gene prioritizationmethods have been developed;

they can be divided into locus-based methods and similar-

ity-based methods.13–18 Combining results across multiple

gene prioritization methods has been shown to increase

confidence in prioritized genes.18

Here, we aim to prioritize genes within each of 536 BMI-

associated loci identified in the latest published GWAS

meta-analysis by the GIANT Consortium.19 To this end,

we use eight gene prioritization methods, including
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locus-based and similarity-based methods. We score and

rank the prioritized genes according to the ability of each

method to identify established obesity genes.20,21 As

such, we generate a catalog of candidate causal genes

(i.e., a gene that likely harbors a causal variant), prioritized

in each GWAS-identified obesity locus. A weighted score

was calculated for each candidate gene, based on the

type and number of prioritization methods that prioritized

it. This catalog may expedite the selection of candidate

genes for functional characterization in experimental

follow up studies, critical to bridge the translational

gap—from variant to function—which has been lacking

in most GWASs.
Material and methods

GWAS-identified BMI-associated loci
We obtained publicly available GWAS summary statistics from

Yengo et al.19 from https://portals.broadinstitute.org/collaboration/

giant/index.php/GIANT_consortium. Their combined GWAS meta-

analysis includes N ¼ �700,000 individuals. Loci were defined as

one or multiple jointly associated SNPs located within a 2 Mb win-

dow (51 Mb of the lead SNP).

Gene prioritization methods
SMR analysis

Briefly, the SMR and HEIDI approach integrates summary-level

data from GWASs and eQTL studies to test whether a transcript

and phenotype are associated because of a shared causal variant

(i.e., pleiotropy). The advantage of SMR when compared with

similar integrative approaches22–24 is the ability to distinguish a

pleiotropic model (i.e., gene expression and phenotype are associ-

ated owing to a single shared genetic variant) from a linkagemodel

(i.e., there are two or more distant genetic variants in LD affecting

gene expression and phenotype independently).25 We considered

as candidate genes those passing a Bonferroni corrected p-SMR and

a p-HEIDI < 0.05, as in similar studies.25

LD data required for the HEIDI test were estimated from geno-

typed data from the UK Biobank (UKB) study,26 including

10,000 randomly selected white British participants (Project

1251; https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id¼263).

Appropriate informed consent was obtained from the participants.

To map the resulting genes to their respective BMI-associated

loci, we identified the lead BMI SNP in high LD (r2 > 0.8) with

the top SNP that passed SMR and HEIDI tests.

Blood eQTL summary statistics were obtained from eQTLGen

Consortium,27 generated on peripheral blood from 31,684

individuals. SMR-formatted data were downloaded from https://

molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/SMR_formatted/

cis-eQTL-SMR_20191212.tar.gz. We used different brain eQTL

summary datasets, including GTEx-brain (n ¼ 72),28 Common

Mind Consortium (CMC) (n ¼ 467),29 ROSMAP (n ¼ 494),30 and

Brain-eMeta (n ¼ 1,194).28 Data from GTEx-brain was generated

via MeCS method by Qi et al.28 to account for sample overlap,

given brain data available on GTEx comes from 10 brain regions.28

CMC and ROSMAP eQTL data for SMR analyses were obtained

from Qi et al.28 Brain-eMeta was generated in the same study

by the MeCS method and is a meta-analysis of GTEx brain,

CMC, and ROSMAP.28 Both CMC and ROSMAP eQTLs were

from a larger set of dorsolateral prefrontal cortex tissue samples.
1036 The American Journal of Human Genetics 111, 1035–1046, Jun
We downloaded SMR-formatted GTEx, CMC, ROSMAP, and

Brain-eMeta from https://yanglab.westlake.edu.cn/software/smr/

#DataResource.

DEPICT analysis

DEPICT is an integrative tool that prioritizes the most likely causal

genes based on predicted gene functions and identifies enriched

pathways, tissues/cell types in which the presumed causal genes

are expressed.17 We used BMI summary statistics from Yengo

et al.19 (https://portals.broadinstitute.org/collaboration/giant/

index.php/GIANT_consortium) as input on DEPICT with default

parameters. DEPICT is built upon 14,461 predefined gene sets

from diverse databases and data types and applies a stepwise

approach that consists of the scoring, bias adjustment, and FDR

estimation steps. Briefly, it first scores the similarity of a given

gene with genes of the 14,461 gene sets by applying a correlation

approach. Next, it controls for biases, such as gene length, by

normalizing the gene score. Finally, FDRs are estimated by

repeating the previous two steps (scoring and bias adjustment)

20 times, based on top SNPs from the precomputed null GWAS.

FINEMAP analysis and chromatin conformation mapping

We performed a GWAS on BMI using data of 452,956 European UK

Biobank participants (Project 1251; https://biobank.ndph.ox.ac.

uk/ukb/label.cgi?id¼263), using the same criteria and methods

as described in Yengo et al.19 and used BMI summary statistics as

input on FINEMAP31 with default parameters and selecting a

maximum of 30 causal variants per locus. The output variants

identified as likely causal were mapped to genes using tissue-spe-

cific HiC chromatin conformation capture data.32 We integrated

all HiC data in brain (dorsolateral prefrontal cortex, hippocampus,

neural progenitor cell, adult and fetal cortex, temporal cortex, and

cerebellum) available on FUMA v.1.3.5,33 using the aforemen-

tioned tool (https://fuma.ctglab.nl/). The data available in FUMA

are available at GEO: GSE87112.34We also used FUMA to integrate

chromosomal conformation capture data on neurons, microglia,

and oligodendrocytes from Nott et al.,35 which is available at

dbGaP (accession number phs001373.v2.p2).

Potentially damaging variants

We investigated variants whose amino acid change can lead to

a potentially damaging effect. To retrieve variants in LD with

the lead associated SNPs, we used FUMA v.1.3.6a33 with parame-

ters r2 > 0.8 and MAF > 0, using UKB release 2b 10k European

as the reference panel (https://fuma.ctglab.nl/snp2gene). We

used the variants output on FUMA as input on the Mutation Sig-

nificance Cutoff (MSC) web server (https://itanlab.org/resources/

software/),36 selecting CADD 1.3 (https://cadd.gs.washington.

edu/download)37 and database HGMD (https://www.hgmd.cf.ac.

uk/ac/index.php).38 Genes whose prediction by MSC with 95%

confidence interval of having a high damaging impact were

prioritized. We retrieved minor allele frequencies (MAFs) from

Ensembl Biomart using Ensembl Variation 104 Human Short Var-

iants GRCh37.13 database (https://grch37.ensembl.org/biomart/

martview/8562f843c754417502c69dc46005d6dc), selecting the

‘‘Global minor allele frequency (all individuals)’’ option.

Gene-based analysis with MAGMA

We run gene-based analysis with MAGMA v.1.8 (https://cncr.nl/

research/magma/),39 using BMI summary statistics from Yengo

et al.19 and a reference panel of 10K randomly selected white

British individuals from the UK Biobank (Project 1251; https://

biobank.ndph.ox.ac.uk/ukb/label.cgi?id¼263). We performed

MAGMA on a gene window of 100 KB and applied the Bonferroni

correction as multiple-testing correction method to obtain the

most significant results.
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Transcriptome-wide association study

We used FUSION to identify genes whose cis-regulated expression

is associated with BMI through a transcriptome-wide association

study (TWAS) (http://gusevlab.org/projects/fusion/).24 For a given

gene, a TWAS uses eQTL data to train a gene expression prediction

model that will ‘‘impute’’ the expression across a large cohort of

genotyped individuals, followed by a test of association with a

given trait of disease risk. The TWAS may additionally increase po-

wer versus single SNP association testing, either by reducing the

multiple testing burden or aggregating multiple expression-

altering variants into a single test.40 In our analysis, we included

pre-computed gene expression weights generated in tissues spe-

cific to BMI (brain data from the CMC study29 and GTEx v.7

data on brain amygdala, anterior cingulate cortex, caudate, cere-

bellar hemisphere, cerebellum, cortex, frontal cortex, hippocam-

pus, hypothalamus, nucleus accumbens, putamen, spinal cord

and substantia nigra), excluding the MHC region (we downloaded

FUSION-ready preprocessed data from http://gusevlab.org/

projects/fusion/). We used the COLOC module available on

FUSION to colocalize significant TWAS associations with eQTL

data and retrieved only significant results at PP4 > 0.8. To map

the resulting genes to their respective BMI-associated loci, we iden-

tified the lead BMI SNP in high LD (r2 > 0.8) with the GWAS SNP

that passed TWAS and COLOC tests.

Polygenic Priority Score

Polygenic priority score (PoPS) is built upon data from an exten-

sive set of bulk and single-cell expression datasets, curated biolog-

ical pathways, and predicted protein-protein interactions.18 It as-

signs a priority score to every protein-coding gene according to

enrichments with these datasets. We used Polygenic Priority Score

v.0.1 (https://github.com/FinucaneLab/pops) with a reference

panel of 10,000 randomly selected subjects from the UKB (Project

1251; https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id¼263). We

retrieved the gene with the highest PoPS score in each BMI-associ-

ated loci.18
Scoring and ranking genes
Nine gold standard obesity genes from Hendricks et al.20 and Mar-

enne et al.21 were used to score the eight prioritization approaches.

These obesity genes are LEPR, POMC, PCSK1, LEP, SH2B1, MC4R,

PHIP, DGKI, and ZMYM4. Of these, six are located in BMI-associated

loci (1 MB each side of a lead BMI-associated variant): LEPR, POMC,

PCSK1, DGKI, SH2B1, and MC4R. We counted how many of these

six established obesity genes each method was able to identify in

the BMI-associated loci (Figure 2). We calculated the proportion

of genes identified by each method by dividing the number of

gold standard genes found by the total number of genes found by

the method within BMI-associated loci. We next normalized this

proportion to a scale of 1–8 (given there are eight gene prioritiza-

tion method). The normalized proportions are the final score of

eachmethod (Table 1). Genes were ranked by the sum of the scores

relative to themethod bywhich theywere identified.With this sys-

tem, we prioritized the top 292 high-scoring genes (top 10%, score

>11) as our final list of genes likely implicated in BMI.

The visualization of number of overlapping genes in Figure 1

was generated using package UpSetR.41
Genes targeted by enhancers
We used predicted enhancers and their target genes in 131 cell

types from Nasser et al.42 and 32 cell types from Boix et al.43

(data available on https://personal.broadinstitute.org/cboix/
The America
epimap/links/pergroup/). We examined the overlap between

the lead BMI-associated variants and their proxies (r2 > 0.8) of

the 292 high-scoring candidate genes with enhancers, to assess

the presence of prioritized genes that are potentially regulated

by BMI variants overlapping these tissue-specific regulatory

elements.

Pathway enrichment analyses
We performed pathway enrichment analyses based on the 292

high-scoring candidate genes using the Gene Ontology (GO) data-

base, which contains structured biomolecular annotations that

indicate biological processes, molecular functions, or cellular com-

ponents. This analysis assessed the over/under-representation of

the set of 292 prioritized genes in the curated gene-sets at the

GO database. This analysis was performed with the FUMA

(v.1.3.5) (https://fuma.ctglab.nl/).33

Software and data used
All software and data used in this paper are publicly available.

Links to the software used is in the ‘‘Access’’ column of Table 1. Us-

age of data is in compliance with the data use agreements of each

respective source.
Results

Eight gene prioritization methods implicate 2,778 genes

across 536 BMI-associated loci

Using six locus-based methods (nearest gene, MAGMA, FI-

NEMAPþHiC, MSC, TWASþCOLOC, SMRþHEIDI) and

two similarity-based methods (DEPICT, PoPS), we priori-

tized 2,778 genes across the 536 BMI-associated loci (mate-

rial and methods, Table 1; Figures 1 and 2; Table S1).

MAGMA, a gene analysis method to detect multi-marker

effects,39 prioritized the most candidate genes (Ngenes ¼
2,231) (material and methods, Tables 1, S1, and S2).

The mutation significance cutoff (MSC) method priori-

tizes genes based on the damaging impact of lead variants

or their proxies located in those genes36 (material and

methods). With this approach, we prioritized 235 genes

in which lead variants or proxies had a predicted high

damaging impact (Tables S1 and S3), of which 20 variants

in 10 genes (DNALI1, GNL2, GRID1, GPR61, ISL1, MC4R,

SLC39A8, SNIP1, TNRC6C, and UBAP2) are of low fre-

quency (minor allele frequency [MAF] < 5%), of which

one (in GPR61) was rare (MAF < 1%) (material and

methods, Tables 1, S1, and S3).

The nearest gene method consists of retrieving the pro-

tein-coding gene nearest to the lead variant. It is a com-

mon and simple strategy for gene prioritization and is

considered reasonably effective.18 We identified 547 genes

that are near or overlapping the 536 lead BMI-associated

variants (material and methods, Tables 1 and S1), with

twelve variants overlapping with more than one gene. Of

the 536 variants, 186 are intergenic, whereas the others

are either intronic (N¼ 320), exonic (N¼ 16), or fall within

an untranslated region, UTR3 (N ¼ 11) or UTR5 (N ¼ 3), of

one, and sometimes more, genes. The average distance to

the nearest gene is 98,200 bp, with the furthest gene
n Journal of Human Genetics 111, 1035–1046, June 6, 2024 1037
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Table 1. Methods used for the gene prioritization, and number of genes they prioritize

Method Description Access Reference

# of genes
prioritized
in the 536
BMI-associated
loci

# of established
obesity genes
identified (max 6)a

% of established
genes identified
relative to total
genes prioritized

Standardized
weights

Locus-based methods

Mutation significance
cutoff (MSC)

provides gene-level and gene-specific
phenotypic impact cutoff values,
as opposed to a single significance
cutoff value across all genes

https://lab.rockefeller.edu/
casanova/MSC

Itan et al.36 235 3 1.30% 8

Nearest gene gene nearest to lead variant – – 547 3 0.50% 3.7

Transcriptome-wide
association
study (TWAS) þ COLOC

TWAS leverages expression imputation
(pre-computed gene expression
weights generated from individuals
for whom both gene expression
and genetic variation have been
measured) to test for significant
genetic correlation between cis
expression and GWAS; the
imputed expression can be viewed
as a linear model of genotypes
with weights based on
the correlation between SNPs
and gene expression in the training
data while accounting for LD
among SNPs; COLOC further estimates
the posterior probability of
colocalization, where colocalization is
defined as one (or more)
shared causal variants between the
expression and GWAS

http://gusevlab.org/
projects/fusion/

Gusev et al.24 &
Giambartolomei et al.22

160 1 0.60% 3.2

Multi-marker analysis
of GenoMic
annotation (MAGMA)

MAGMA first computes a gene-based
p value based on the mean association
of variants in the gene, accounting for
LD between variants; then,
competitive gene-set and/or continuous
covariate p values are calculated,
based on the association of the
gene-based p values with the
category of interest

https://ctg.cncr.nl/
software/magma

de Leeuw et al.39 2,231 6 0.30% 2.6

FINEMAP þ HiC FINEMAP uses a Bayesian approach
to determine which are the most likely
causal variants in a locus; candidate
causal variants identified by FINEMAP
are mapped to genes using chromatin
conformation capture HiC data,
which represents loops of DNA
where regions of the genome interact

http://www.christianbenner.com Benner et al.31 51 0 0% 1

(Continued on next page)
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Table 1. Continued

Method Description Access Reference

# of genes
prioritized
in the 536
BMI-associated
loci

# of established
obesity genes
identified (max 6)a

% of established
genes identified
relative to total
genes prioritized

Standardized
weights

Summary-data-based
Mendelian
randomization (SMR) þ
heterogeneity
in dependent
instruments (HEIDI)

integrates summary-level data from
GWASs with data from eQTL studies to
identify genes whose expression levels
are associated with a complex trait
because of pleiotropy; the methodology
can be interpreted as an analysis to
test if the effect size of an SNP on the
phenotype is mediated by gene expression;
the HEIDI method then uses multiple SNPs
in a cis-eQTL region to distinguish
pleiotropy from linkage

https://cnsgenomics.com/
software/smr/

Zhu et al.25 65 0 0% 1

Similarity-based methods

Polygenic priority
score (PoPS)

uses gene-level associations computed from
GWAS summary statistics to learn
joint polygenic enrichments of gene features
derived from gene expression,
biological pathways, and protein-protein
interactions (PPI), assigning a
priority score to every protein-coding gene

https://github.com/
FinucaneLab/pops

Weeks et al.18 486 4 0.80% 5.3

Data-driven expression
prioritized
integration for complex
traits (DEPICT)

employs annotated gene sets (including
manually curated pathways, molecular
pathways from protein-protein interaction
screens, and phenotypic gene sets
from mouse gene knock-out studies). By
calculating, for each gene, the likelihood
of membership in each gene set (based on
similarities across expression data),
14,461 ‘reconstituted’ gene sets were
generated. Using these precomputed gene
functions and a set of trait-associated loci,
DEPICT assesses whether any of the
14,461 reconstituted gene sets are significantly
enriched for genes in the associated
loci, and prioritizes genes that share
predicted functions with genes from the other
associated loci more often than
expected by chance.

https://github.com/
perslab/depict

Pers et al.17 252 1 0.40% 3.2

a‘‘Established genes’’ refers to the nine gold standard obesity genes from Hendricks et al.20 and Marenne et al.21 (LEPR, POMC, PCSK1, LEP, SH2B1, MC4R, PHIP, DGKI, and ZMYM4).
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(ADGRL3) being 1.8 Mb away from the lead variant

(rs925421).

In the combined transcriptome-wide association study

(TWAS) and COLOC method, TWAS integrates predicted

gene expression levels with GWAS summary statistics to

identify genes whose cis-regulated expression is associated

with a complex trait,24 whereas COLOC tests the colocali-

zation of the association signals.22 As such, we identified

160 genes across the 536 loci for which the BMI-associated

lead SNP or a proxy variant is associated with its gene

expression across different tissues (material and methods,

Tables 1, S1, and S4). Since tissues related to the central ner-

vous system have been shown to be enriched among

GWAS-identified BMI loci, we focused on eQTL datasets

from brain tissue.

In the combined summary-data-based Mendelian

randomization (SMR) and HEIDI method, we test whether

the association between the lead variant (or its proxy) and

BMI is mediated through an eQTL of a gene nearby.25 As

we did for a TWAS, we focused on eQTL datasets from brain

tissue, but we also considered data from blood, for which

datasets generated from bigger sample sizes were available

(material andmethods). This approach prioritized 27 genes

in blood and 43 genes in brain tissue. Five genes were prior-

itized in both tissues (Tables 1, S1, and S5), resulting in a

total of 65 prioritized genes.

Using FINEMAP,31 a Bayesian approach to pinpoint the

likely causal variant(s) in a locus,we prioritized 81 candidate

causal variants (material andmethods, Tables 1, S1, and S6).

We were able to map 26 variants to 51 genes using brain tis-

sue-specific HiC chromosomal conformation data (material

andmethods). This approach showed the least overlap with

otherapproaches,withonly20(39%)of the51genesalsobe-

ing identified by other approaches (Figure S1).

Finally, we used DEPICT and PoPS, two similarity-based

algorithms for gene prioritization. DEPICT (data-driven

expression-prioritized integration for complex traits),17

which aims to systematically prioritize the most likely

causal genes in a locus based on predicted gene functions,

prioritized 252 candidate causal genes (material and

methods, Tables 1, S1, and S7). PoPS (polygenic priority

score),18 which leverages both polygenic and locus-specific

genetic signals by combining results across multiple gene

prioritization methods, identified 486 genes (material

and methods, Tables 1, S1, and S8). PoPS integrates more

layers of information on gene expression, generated using

next-generation sequencing techniques, compared to

DEPICT, and where PoPS uses genome-wide summary sta-

tistics, DEPICT uses only summary statistics in the

genome-wide significant loci.

The eight prioritization methods combined prioritized

2,778 unique genes across the 536 BMI-associated loci (Fig-

ures 1 and S1). While no genes were prioritized by seven or

more methods, six genes were prioritized by six methods

(ANKRD26, BPTF, GGNBP2, KAT8, YWHAZ, and ZNF131)

and 35 genes were prioritized by five methods (Figure 1;

Table S9).
1040 The American Journal of Human Genetics 111, 1035–1046, Jun
Ranking of prioritized genes and catalog of obesity

genes

We next built a prioritization score that weighs each of the

eight methods based on whether or not they prioritized

one or more of the six established obesity genes located

in any of the 536 BMI-associated loci (i.e., LEPR, POMC,

PCSK1, DGKI, SH2B1, and MC4R). MAGMA identified all

six, while PoPS identified four, MSC and the nearest gene

strategy each identified three, TWAS and DEPICT each

identified one, and SMR and FINEMAP did not identify

any of the six established obesity genes and was given

the lowest priority weight of 1 (Table 1). We calculated

the percentage of established genes that were prioritized

by a given method, relative to the total number of genes

prioritized across all BMI-associated loci (Table 1). We

then converted these percentages into a continuous scale

of 1–8, consistent with the number of prioritization

methods used (Table 1). Next, we assigned a prioritization

score to each of the 2,778 genes implicated by the eight pri-

oritization methods by summing the weight of each

method by which the gene had been prioritized (Table S9).

The prioritization score across the 2,788 genes ranged

from 1 to 24.8, whereas the theoretical max, i.e., when a

gene is identified by all 8 methods, is 28. The average score

is 5; 292 (10.5%) of the 2,788 prioritized genes scoredmore

than 11, of which 99 (3.6%) scored more than 15

(Table S9). Two genes (ANKRD26 and BPTF) reached the

highest prioritization score (24.8). Several of the high-

scoring genes (score R 11) are known to be implicated in

obesity (such as DGKI [score: 22.8], MC4R [19.6], BDNF

[19.6], MTOR [16.8], SH2B1 [14.8], GIPR [14.3], AKT3

[11.6], and LEPR [11.6]). For other high-scoring genes,

there is mounting evidence, but more research is needed

to establish their role (such as for ANKRD26 [24.8], NPC1

[23.8], NCOR1 [22.8], BMAL1 [22.8], KAT8 [22.7], GSK3B

[20.2], ISL1 [19.6], PRKN [19.6], MST1R [18.5], PDS5B

[17.5], FGFR1 [17], and VPS13C [15.9]). However, for

many other high-scoring genes, a role in body weight regu-

lation remains to be determined.

We also tested whether the BMI-associated variants or

their proxies overlap with an enhancer predicted to target

the 292 high-scoring genes. In total, BMI-associated vari-

ants (and their proxies) in/near 217 of the 292 prioritized

genes overlap enhancers (material and methods,

Table S10), suggesting potential mechanisms by which

these genes are affected in BMI-associated loci. Of the

292 high-scoring genes, 135 link to BMI-associated vari-

ants that overlap enhancers in the brain, the main tissue

implicated in obesity-associated loci.

Pathway enrichment analyses applied to the 292 high-

scoring prioritized genes implicate gene sets and pathways

related to the central regulation of body weight (material

and methods, Table S11), such as the neurotrophin

signaling pathway44 (including BDNF, AKT3, RPS6KA5,

MAP2K5, SH2B1, MAP3K3, BCL2, GSK3B, FOXO3, RAC1,

and YWHAZ), which regulates appetite,45 and the PI3K/

AKT pathway (including AKT3, FOXO3, GSK3A, GSK3B,
e 6, 2024



MTOR, and YWHAZ),46 which is involved in central and

peripheral appetite regulation and is implicated in the

development of insulin resistance in peripheral tissues.47

Besides the many pathways that act in the brain, other en-

riched pathways and gene sets implicate circadian rhythm

(BMAL1, NCOR1, PPP1CB, ZFHX3, and HDAC3), insulin

secretion (HMGB1, MTOR, PDE1C, CADPS, and ZBTB20),

adipocyte differentiation (NCOR1, KAT8, KDM4C, CCDC

171, PPP1CB, RPS6KA5, HMGB1, VPS13C, and ESRRA),

and glucose and carbohydrate homeostasis (MAP4K4,

GSK3B, PPP1CB, MAP2K5, FGFR1, MTOR, CREB1, and

GSK3A) in the control of body weight.
Discussion

Using abroad range of eight geneprioritizationmethods,we

identified 2,778unique genes across 536BMI-associated loci

prioritized by at least one method. We ranked these candi-

date genes based on the number ofmethods that prioritized

a givengene,weightedby the ability of eachmethod to iden-

tify established obesity genes in GWAS loci. We prioritized

292 high-scoring candidate genes for obesity, enriched in

neuron-relatedpathways, synapses, signaling, andbehavior,

but also genes implicated in peripheral biology and ex-

pressed in metabolically active tissues.

We found several high-scoring genes for which extensive

evidence on their role in obesity already exists, such as

MC4R,48–51 BDNF,52–54 GIPR,55–57 DGKI,21 MTOR,58,59

AKT3,60 and LEPR61,62 (Table S9). For other genes, a link

with body weight regulation was available, but more

research to further establish them as obesity genes is

needed. For example, KAT8,63 KDM4C,64 PPP1CB,65 and

RPS6KA566 have been linked to adipocyte differentiation

(Table S9).

For most other high-ranking genes, however, the current

evidence for a link with obesity is weak or non-existent.

Nevertheless, some of these genes with weaker evidence

were also prioritized in two other studies that aimed to

identify candidate genes in BMI-associated loci, providing

independent supporting evidence.67,68 The first study,

which focused on 97 BMI-associated genes (a subset of

the 536 GWAS loci studied here) of an earlier GWAS

meta-analysis, established a functional genomics pipeline

that integrates a comprehensive regulatory map in adipose

and hypothalamic neurons and a massively parallel assay

to connect each of the 97 lead variants to putative candi-

date genes.67 Eight of the 19 genes that scored high with

the functional genomics pipeline also scored high using

our integrated bioinformatic approach; these genes

include NPC1 (score: 23.8), CCDC171 (19.5), MAP2K5

(17.5), SH2B1 (14.8), NUP88 (14.3), POC5 (14.3), TUFM

(11.8), and ATXN2L (11.1). The second study, which

focused on the same BMI-associated loci as in our study,

built a pipeline to map non-coding variants with nearby

effector genes by integrating chromatin structure and tran-

scriptomics data at three developmental stages during hy-
The America
pothalamic differentiation.68 Of the 67 genes implicated

for BMI, nine overlapped with high-scoring genes in our

study, including MLLT10 (22.8), BDNF (19.6), SETBP1

(19.6), FGFR1 (17), CAST (14.3), TUFM (11.8), GABRB3

(11.6), MAD1L1 (11.6), and THRA (11.1).68 Even though

for most of these genes, their role in body weight regula-

tion is unknown, the convergence of evidence across the

two prioritization approaches strengthens their candidacy

in the locus.

Other high-scoring genes for which the connection to

obesity and body weight regulation remains to be deter-

mined include BPTF69 (score: 24.8), RSRC170,71 (22.8),

and AUTS272 (19.6), three genes in which mutations or

chromosomal rearrangements have been linked to intellec-

tual disability and neurodevelopmental anomalies. Others

among the top 10% high-scoring genes with an unknown

role in the context of obesity include ERC2 (23.8), ZNF131

(23.8), NLGN1 (22.8), MLTT10 (22.8), RERE (22.8), and

PDCH9 (22.8). Investigating the role of these genes in the

pathophysiology of obesity might reveal regulatory path-

ways in obesity, some of which may provide new anti-

obesity therapeutic targets.

Pathway enrichment analyses highlight the central ner-

vous system as a key organ in body weight regulation,

which is consistent with previous observations,6–8 but

this might be influenced by the fact that for three of

the prioritization methods (TWAS/Coloc, SMR, and

FINEMAP), the underlying molecular datasets we used

were solely from the brain. Nevertheless, we believe the po-

tential bias is limited by the fact that these three prioritiza-

tion methods contributed the least to the scoring of prior-

itized genes. Furthermore, several of the high-scoring

genes have been implicated in peripheral pathways and

gene sets, related to adipocyte differentiation (NCOR1

[22.8], KAT8 [22.8], KDM4C [19.6], CCDC171 [19.5],

PPP1CB [19.0], RPS6KA5 [17.5], HMGB1 [17.5], VPS13C

[15.9], and ESRRA [14.3]), circadian rhythm (BMAL1

[22.8], NCOR1 [22.8], PPP1CB [19], ZFHX3 [14.8], and

HDAC3 [11.1]), insulin secretion (HMGB1 [17.5], mTOR

[16.8], PDE1C [15.8], CADPS [14.8], and ZBTB20 [14.8]),

and glucose and carbohydrate homeostasis (MAP4K4

[22.8], GSK3B [20.2], PPP1CB [19], MAP2K5 [17.5], FGFR1

[17], MTOR [16.8], CREB1 [11.6], and GSK3A [11.1]). The

ability to capture known pathways involved in the patho-

physiology of obesity suggests that our list of ranked prior-

itized genes are likely enriched for true effector genes and

can therefore be used to identify regulatory pathways

implicated in the pathophysiology of obesity and its

comorbidities.

For 29 loci, at least two prioritized genes were high

scoring (Table S9). For example, in the locus of lead BMI-

associated SNP rs1549293, KAT8 (22.7), the nearest gene,

ZNF646 (14.8), and ZNF668 (11.6) were prioritized. Other

examples of loci that with multiple high-scoring genes

include the loci represented by rs1075901 with NCOR1

(22.8) and TTC19 (13.7), rs1106908 with GGNBP2 (22.7)

and DHRS11 (15.8), and rs8075273 with MAP3K3 (21.7)
n Journal of Human Genetics 111, 1035–1046, June 6, 2024 1041



Figure 1. Number of genes prioritized in
536 BMI-associated loci by the eight
methods
Right side shows one method only; far left
shows six methods at the same time. Y-axis
shows number of prioritized genes overlap-
ping between the methods.
and DDX42 (15.8). These results highlight that in a given

locus, more than one gene can be causal, as is the case

for the FTO locus for which a comprehensive analysis of

the genetic and functional architecture showed that multi-

ple variants in the locus overlap with enhancers that target

IRX3 and IRX5.73

Our gene prioritization pipeline also identified genes en-

coding known therapeutic targets for obesity and its co-

morbidities, such as the glucose-dependent insulinotropic

polypeptide (GIP) receptor, GIPR (14.3), and the fibroblast

growth factor 21 (FGF21) co-receptor, FGFR1 (17), and a

gene encoding a subunit in the NMDA receptor, GRIN3A

(14.3). The GIPR, together with the glucagon-like peptide

1 receptor (GLP-1R), is a target of the incretin dual-

agonist, tirzepatide. This drug has been shown in

clinical trials to provide substantial and sustained

weight loss in individuals suffering from obesity.74,75 In

addition, it is FDA approved for the treatment of type 2 dia-

betes. Pharmaceutical companies are currently evaluating

FGFR1 agonists and FGF21 analogous for the treatment
Figure 2. Number of genes prioritized by one to eight methods
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of dyslipidemia and non-alcoholic stea-

tohepatitis (NASH), which have been

shown to reduce body weight, improve

lipid profiles, reduce liver fat content,

and reduce liver fibrosis in individuals
with NASH, and resolve NASH in clinical trials.76–78

GRIN3A encodes a subunit in the NMDA receptors, which

is implicated in appetite and food preference regulation.79

The NMDA antagonist, memantine, has been shown to

reduce body weight in preclinical studies.80 The ability of

our gene prioritization approach to identify genes encod-

ing well-known therapeutic targets for the treatment of

obesity and its comorbidities highlights the opportunity

to identify anti-obesity therapeutics targets using this inte-

grative framework of gene prioritization methods.

Our study demonstrates the value of the integration of a

range of methods for gene prioritization in loci associated

with complex diseases, consistent with a recent effort

that showed that combining the results of several gene pri-

oritizationmethods achieves better precision in gene prior-

itization, specifically combining different methods such as

locus-based and similarity-based algorithms.18 Future vali-

dation of the prioritized genes is needed, both with other

computational methods (possibly integrating more layers

of epigenetic data and expression) and also taken further



to in vitro and in vivo experimental approaches. Such

methods could include the deletion of candidate regulato-

ry elements affected by the BMI-associated variants via

CRISPR techniques.81,82 Furthermore, it is important to

note that the prioritization and scoring of genes depend

on the availability and quality of data used by each of

the prioritization methods as well as the accuracy of

the methods themselves. As more reference maps of

gene expression, regulatory elements, and protein levels

(among other -omics) become available for more cell types

and tissues and for larger sample sizes and more represen-

tative populations, the prioritization of potential causal

genes in GWAS-identified loci may improve.83

In summary, we generated a catalog of candidate causal

genes prioritized in each GWAS-identified BMI locus,

which may expedite their functional characterization in

experimental follow-up studies, critical to bridging the

translational gap—from variant to function—which has

been lacking in most GWASs.
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27. Võsa, U., Claringbould, A., Westra, H.J., Bonder, M.J., Deelen,

P., Zeng, B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al.

(2021). Large-scale cis- and trans-eQTL analyses identify thou-

sands of genetic loci and polygenic scores that regulate blood

gene expression. Nat. Genet. 53, 1300–1310.

28. Qi, T., Wu, Y., Zeng, J., Zhang, F., Xue, A., Jiang, L., Zhu, Z.,

Kemper, K., Yengo, L., Zheng, Z., et al. (2018). Identifying

gene targets for brain-related traits using transcriptomic and

methylomic data from blood. Nat. Commun. 9, 2282.

29. Fromer, M., Roussos, P., Sieberts, S.K., Johnson, J.S., Kavanagh,

D.H., Perumal, T.M., Ruderfer, D.M., Oh, E.C., Topol, A., Shah,

H.R., et al. (2016). Gene expression elucidates functional

impact of polygenic risk for schizophrenia. Nat. Neurosci.

19, 1442–1453.

30. Ng, B., White, C.C., Klein, H.U., Sieberts, S.K., McCabe, C.,

Patrick, E., Xu, J., Yu, L., Gaiteri, C., Bennett, D.A., et al.

(2017). An xQTL map integrates the genetic architecture of

the human brain’s transcriptome and epigenome. Nat. Neuro-

sci. 20, 1418–1426.

31. Benner, C., Spencer, C.C.A., Havulinna, A.S., Salomaa, V., Ri-

patti, S., and Pirinen, M. (2016). FINEMAP: efficient variable

selection using summary data from genome-wide association

studies. Bioinformatics 32, 1493–1501.

32. Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan,

Y., and Dekker, J. (2012). Hi-C: a comprehensive technique

to capture the conformation of genomes. Methods 58,

268–276.

33. Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma,

D. (2017). Functional mapping and annotation of genetic as-

sociations with FUMA. Nat. Commun. 8, 1826.

34. Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y.,

Lin, S., Lin, Y., Barr, C.L., and Ren, B. (2016). A Compendium

of Chromatin Contact Maps Reveals Spatially Active Regions

in the Human Genome. Cell Rep. 17, 2042–2059.

35. Nott, A., Holtman, I.R., Coufal, N.G., Schlachetzki, J.C.M., Yu,

M., Hu, R., Han, C.Z., Pena, M., Xiao, J., Wu, Y., et al. (2019).

Brain cell type-specific enhancer-promoter interactome maps

and disease-risk association. Science 366, 1134–1139.

36. Itan, Y., Shang, L., Boisson, B., Ciancanelli, M.J., Markle, J.G.,

Martinez-Barricarte, R., Scott, E., Shah, I., Stenson, P.D., Glee-

son, J., et al. (2016). The mutation significance cutoff: gene-

level thresholds for variant predictions. Nat. Methods 13,

109–110.

37. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M.,

and Shendure, J. (2014). A general framework for estimating

the relative pathogenicity of human genetic variants. Nat.

Genet. 46, 310–315.

38. Stenson, P.D., Mort, M., Ball, E.V., Evans, K., Hayden, M., Hey-

wood, S., Hussain, M., Phillips, A.D., and Cooper, D.N. (2017).
e 6, 2024

http://refhub.elsevier.com/S0002-9297(24)00131-9/sref10
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref10
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref11
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref11
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref12
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref12
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref12
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref13
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref13
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref13
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref13
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref13
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref14
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref14
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref14
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref14
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref15
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref15
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref15
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref15
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref15
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref16
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref16
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref16
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref16
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref17
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref17
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref17
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref17
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref17
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref18
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref18
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref18
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref18
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref18
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref19
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref20
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref20
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref20
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref20
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref20
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref21
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref22
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref22
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref22
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref22
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref22
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref23
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref23
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref23
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref23
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref23
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref24
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref24
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref24
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref24
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref25
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref25
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref25
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref25
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref25
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref26
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref26
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref26
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref26
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref27
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref27
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref27
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref27
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref27
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref28
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref28
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref28
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref28
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref29
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref29
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref29
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref29
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref29
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref30
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref30
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref30
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref30
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref30
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref31
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref31
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref31
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref31
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref32
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref32
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref32
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref32
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref33
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref33
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref33
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref34
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref34
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref34
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref34
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref35
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref35
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref35
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref35
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref36
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref36
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref36
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref36
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref36
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref37
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref37
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref37
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref37
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38


The Human Gene Mutation Database: towards a comprehen-

sive repository of inherited mutation data for medical

research, genetic diagnosis and next-generation sequencing

studies. Hum. Genet. 136, 665–677.

39. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D.

(2015). MAGMA: generalized gene-set analysis of GWAS

data. PLoS Comput. Biol. 11, e1004219.

40. Gusev, A., Lawrenson, K., Lin, X., Lyra, P.C., Jr., Kar, S.,

Vavra, K.C., Segato, F., Fonseca, M.A.S., Lee, J.M., Pejovic,

T., et al. (2019). A transcriptome-wide association study of

high-grade serous epithelial ovarian cancer identifies new

susceptibility genes and splice variants. Nat. Genet. 51,

815–823.

41. Conway, J.R., Lex, A., and Gehlenborg, N. (2017). UpSetR: an

R package for the visualization of intersecting sets and their

properties. Bioinformatics 33, 2938–2940.

42. Nasser, J., Bergman, D.T., Fulco, C.P., Guckelberger, P.,

Doughty, B.R., Patwardhan, T.A., Jones, T.R., Nguyen, T.H.,

Ulirsch, J.C., Lekschas, F., et al. (2021). Genome-wide

enhancer maps link risk variants to disease genes. Nature

593, 238–243.

43. Boix, C.A., James, B.T., Park, Y.P., Meuleman,W., and Kellis, M.

(2021). Regulatory genomic circuitry of human disease loci by

integrative epigenomics. Nature 590, 300–307.

44. Bae-Gartz, I., Janoschek, R., Breuer, S., Schmitz, L., Hoffmann,

T., Ferrari, N., Branik, L., Oberthuer, A., Kloppe, C.S., Appel, S.,

et al. (2019). Maternal Obesity Alters Neurotrophin-

Associated MAPK Signaling in the Hypothalamus of Male

Mouse Offspring. Front. Neurosci. 13, 962.

45. Rios, M. (2013). BDNF and the central control of feeding: acci-

dental bystander or essential player? Trends Neurosci. 36,

83–90.

46. Huang, X., Liu, G., Guo, J., and Su, Z. (2018). The PI3K/AKT

pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 14,

1483–1496.

47. Wen, X., Zhang, B., Wu, B., Xiao, H., Li, Z., Li, R., Xu, X., and

Li, T. (2022). Signaling pathways in obesity: mechanisms and

therapeutic interventions. Signal Transduct. Targeted Ther.

7, 298.

48. Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H.,

Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston,

B.A., Cone, R.D., et al. (1997). Targeted disruption of the

melanocortin-4 receptor results in obesity in mice. Cell 88,

131–141.

49. Yeo, G.S., Farooqi, I.S., Aminian, S., Halsall, D.J., Stanhope,

R.G., and O’Rahilly, S. (1998). A frameshift mutation in

MC4R associated with dominantly inherited human obesity.

Nat. Genet. 20, 111–112.

50. Vaisse, C., Clement, K., Guy-Grand, B., and Froguel, P. (1998).

A frameshift mutation in human MC4R is associated with a

dominant form of obesity. Nat. Genet. 20, 113–114.

51. Farooqi, I.S., Keogh, J.M., Yeo, G.S.H., Lank, E.J., Cheetham,

T., and O’Rahilly, S. (2003). Clinical Spectrum of Obesity

and Mutations in the Melanocortin 4 Receptor Gene.

N. Engl. J. Med. 348, 1085–1095.

52. Gray, J., Yeo, G.S.H., Cox, J.J., Morton, J., Adlam, A.L.R.,

Keogh, J.M., Yanovski, J.A., El Gharbawy, A., Han, J.C.,

Tung, Y.C.L., et al. (2006). Hyperphagia, severe

obesity, impaired cognitive function, and hyperactivity

associated with functional loss of one copy of the brain-

derived neurotrophic factor (BDNF) gene. Diabetes 55,

3366–3371.
The America
53. Kernie, S.G., Liebl, D.J., and Parada, L.F. (2000). BDNF regu-

lates eating behavior and locomotor activity in mice. EMBO

J. 19, 1290–1300.

54. Xu, B., Goulding, E.H., Zang, K., Cepoi, D., Cone, R.D., Jones,

K.R., Tecott, L.H., and Reichardt, L.F. (2003). Brain-derived

neurotrophic factor regulates energy balance downstream of

melanocortin-4 receptor. Nat. Neurosci. 6, 736–742.

55. Killion, E.A., Wang, J., Yie, J., Shi, S.D.H., Bates, D., Min, X.,

Komorowski, R., Hager, T., Deng, L., Atangan, L., et al.

(2018). Anti-obesity effects of GIPR antagonists alone and in

combination with GLP-1R agonists in preclinical models.

Sci. Transl. Med. 10, eaat3392.

56. Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K.,

Zhou, H., Fujimoto, S., Oku, A., Tsuda, K., Toyokuni, S.,

et al. (2002). Inhibition of gastric inhibitory polypeptide

signaling prevents obesity. Nat. Med. 8, 738–742.

57. Liskiewicz, A., Khalil, A., Liskiewicz, D., Novikoff, A., Grandl,

G., Maity-Kumar, G., Gutgesell, R.M., Bakhti, M., Bastidas-

Ponce, A., Czarnecki, O., et al. (2023). Glucose-dependent in-

sulinotropic polypeptide regulates body weight and food

intake via GABAergic neurons in mice. Nat. Metab. 5,

2075–2085.

58. Cota, D., Proulx, K., Smith, K.A.B., Kozma, S.C., Thomas, G.,

Woods, S.C., and Seeley, R.J. (2006). Hypothalamic mTOR

signaling regulates food intake. Science 312, 927–930.

59. Inhoff, T., Stengel, A., Peter, L., Goebel, M., Taché, Y., Bannert,
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(2010). Novel insight in distribution of nesfatin-1 and phos-

pho-mTOR in the arcuate nucleus of the hypothalamus of

rats. Peptides 31, 257–262.

60. Ding, L., Zhang, L., Biswas, S., Schugar, R.C., Brown, J.M., By-

zova, T., and Podrez, E. (2017). Akt3 inhibits adipogenesis and

protects from diet-induced obesity viaWNK1/SGK1 signaling.

JCI Insight 2, e95687.

61. Chung, W.K., Power-Kehoe, L., Chua, M., Chu, F., Aronne, L.,

Huma, Z., Sothern, M., Udall, J.N., Kahle, B., and Leibel, R.L.

(1997). Exonic and intronic sequence variation in the human

leptin receptor gene (LEPR). Diabetes 46, 1509–1511.

62. Wu-Peng, X.S., Chua, S.C., Okada, N., Liu, S.M., Nicolson, M.,

and Leibel, R.L. (1997). Phenotype of the obese Koletsky (f) rat

due to Tyr763Stopmutation in the extracellular domain of the

leptin receptor (Lepr): evidence for deficient plasma-to-CSF

transport of leptin in both the Zucker and Koletsky obese

rat. Diabetes 46, 513–518.

63. Burrell, J.A., and Stephens, J.M. (2021). KAT8, lysine acetyl-

transferase 8, is required for adipocyte differentiation

in vitro. Biochim. Biophys. Acta, Mol. Basis Dis. 1867, 166103.

64. Lizcano, F., Romero, C., and Vargas, D. (2011). Regulation of

adipogenesis by nuclear receptor PPARgamma is modulated

by the histone demethylase JMJD2C. Genet. Mol. Biol. 34,

19–24.

65. Cho, Y.L., Min, J.K., Roh, K.M., Kim,W.K., Han, B.S., Bae, K.H.,

Lee, S.C., Chung, S.J., and Kang, H.J. (2015). Phosphoprotein

phosphatase 1CB (PPP1CB), a novel adipogenic activator, pro-

motes 3T3-L1 adipogenesis. Biochem. Biophys. Res. Com-

mun. 467, 211–217.

66. Carnevalli, L.S., Masuda, K., Frigerio, F., Le Bacquer, O., Um,

S.H., Gandin, V., Topisirovic, I., Sonenberg, N., Thomas, G.,

and Kozma, S.C. (2010). S6K1 plays a critical role in early

adipocyte differentiation. Dev. Cell 18, 763–774.

67. Joslin, A.C., Sobreira, D.R., Hansen, G.T., Sakabe, N.J., Aneas,

I., Montefiori, L.E., Farris, K.M., Gu, J., Lehman, D.M., Ober,
n Journal of Human Genetics 111, 1035–1046, June 6, 2024 1045

http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref38
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref39
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref39
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref39
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref40
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref41
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref41
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref41
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref42
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref42
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref42
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref42
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref42
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref43
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref43
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref43
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref44
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref44
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref44
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref44
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref44
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref45
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref45
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref45
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref46
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref46
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref46
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref47
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref47
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref47
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref47
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref48
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref48
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref48
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref48
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref48
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref49
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref49
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref49
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref49
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref50
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref50
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref50
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref51
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref51
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref51
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref51
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref52
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref53
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref53
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref53
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref54
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref54
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref54
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref54
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref55
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref55
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref55
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref55
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref55
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref56
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref56
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref56
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref56
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref57
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref58
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref58
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref58
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref59
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref59
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref59
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref59
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref59
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref60
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref60
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref60
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref60
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref61
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref61
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref61
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref61
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref62
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref63
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref63
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref63
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref64
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref64
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref64
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref64
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref65
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref65
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref65
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref65
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref65
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref66
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref66
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref66
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref66
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref67
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref67


C., et al. (2021). A functional genomics pipeline identifies plei-

otropy and cross-tissue effects within obesity-associated

GWAS loci. Nat. Commun. 12, 5253.

68. Pahl, M.C., Doege, C.A., Hodge, K.M., Littleton, S.H., Leonard,

M.E., Lu, S., Rausch, R., Pippin, J.A., De Rosa, M.C., Basak, A.,

et al. (2021). Cis-regulatory architecture of human ESC-

derived hypothalamic neuron differentiation aids in variant-

to-gene mapping of relevant complex traits. Nat. Commun.

12, 6749.

69. Stankiewicz, P., Khan, T.N., Szafranski, P., Slattery, L., Streff, H.,

Vetrini, F., Bernstein, J.A., Brown, C.W., Rosenfeld, J.A., Red-

nam, S., et al. (2017). Haploinsufficiency of the Chromatin Re-

modeler BPTF Causes Syndromic Developmental and Speech

Delay, Postnatal Microcephaly, and Dysmorphic Features.

Am. J. Hum. Genet. 101, 503–515.

70. Perez, Y., Menascu, S., Cohen, I., Kadir, R., Basha, O., Shorer,

Z., Romi, H., Meiri, G., Rabinski, T., Ofir, R., et al. (2018).

RSRC1 mutation affects intellect and behaviour through aber-

rant splicing and transcription, downregulating IGFBP3. Brain

141, 961–970.

71. Scala, M., Mojarrad, M., Riazuddin, S., Brigatti, K.W., Am-

mous, Z., Cohen, J.S., Hosny, H., Usmani, M.A., Shahzad,

M., Riazuddin, S., et al. (2020). RSRC1 loss-of-function vari-

ants cause mild to moderate autosomal recessive intellectual

disability. Brain 143, e31.

72. Schneider, A., Puechberty, J., Ng, B.L., Coubes, C., Gatinois, V.,

Tournaire,M., Girard,M., Dumont, B., Bouret, P., Magnetto, J.,

et al. (2015). Identification of disrupted AUTS2 and EPHA6

genes by array painting in a patient carrying a de novo

balanced translocation t(3;7) with intellectual disability and

neurodevelopment disorder. Am. J. Med. Genet. 167A,

3031–3037.

73. Sobreira, D.R., Joslin, A.C., Zhang, Q., Williamson, I., Hansen,

G.T., Farris, K.M., Sakabe, N.J., Sinnott-Armstrong, N., Bozek,

G., Jensen-Cody, S.O., et al. (2021). Extensive pleiotropism

and allelic heterogeneity mediate metabolic effects of IRX3

and IRX5. Science 372, 1085–1091.

74. Jastreboff, A.M., Aronne, L.J., Ahmad, N.N.,Wharton, S., Con-

nery, L., Alves, B., Kiyosue, A., Zhang, S., Liu, B., Bunck, M.C.,

et al. (2022). Tirzepatide Once Weekly for the Treatment of

Obesity. N. Engl. J. Med. 387, 205–216.
1046 The American Journal of Human Genetics 111, 1035–1046, Jun
75. de Mesquita, Y.L.L., Pera Calvi, I., Reis Marques, I., Almeida

Cruz, S., Padrao, E.M.H., Carvalho, P.E.d.P., da Silva, C.H.A.,

Cardoso, R., Moura, F.A., and Rafalskiy, V.V. (2023). Efficacy

and safety of the dual GIP and GLP-1 receptor agonist tirzepa-

tide for weight loss: a meta-analysis of randomized controlled

trials. Int. J. Obes. 47, 883–892.

76. Talukdar, S., Zhou, Y., Li, D., Rossulek, M., Dong, J., Somayaji,

V., Weng, Y., Clark, R., Lanba, A., Owen, B.M., et al. (2016). A

Long-Acting FGF21 Molecule, PF-05231023, Decreases Body

Weight and Improves Lipid Profile in Non-human Primates

and Type 2 Diabetic Subjects. Cell Metabol. 23, 427–440.

77. Bhatt, D.L., Bays, H.E., Miller, M., Cain, J.E., 3rd, Wasilewska,

K., Andrawis, N.S., Parli, T., Feng, S., Sterling, L., Tseng, L.,

et al. (2023). The FGF21 analog pegozafermin in severe hyper-

triglyceridemia: a randomized phase 2 trial. Nat. Med. 29,

1782–1792.

78. Loomba, R., Sanyal, A.J., Kowdley, K.V., Bhatt, D.L., Alkhouri,

N., Frias, J.P., Bedossa, P., Harrison, S.A., Lazas, D., Barish, R.,

et al. (2023). Randomized, Controlled Trial of the FGF21

Analogue Pegozafermin in NASH. N. Engl. J. Med. 389,

998–1008.

79. Sasaki, T., Matsui, S., and Kitamura, T. (2016). Control of

Appetite and Food Preference by NMDA Receptor and Its

Co-Agonist d-Serine. Int. J. Mol. Sci. 17, 1081.

80. Deng, S.N., Yan, Y.H., Zhu, T.L., Ma, B.K., Fan, H.R., Liu, Y.M.,

Li, W.G., and Li, F. (2019). Long-Term NMDAR Antagonism

Correlates Weight Loss With Less Eating. Front. Psychiatr.

10, 15.

81. Gupta, R.M., Hadaya, J., Trehan, A., Zekavat, S.M., Roselli, C.,

Klarin, D., Emdin, C.A., Hilvering, C.R.E., Bianchi, V., Mueller,

C., et al. (2017). A Genetic Variant Associated with Five

Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene

Expression. Cell 170, 522–533.e15.

82. Gasperini, M., Hill, A.J., McFaline-Figueroa, J.L., Martin, B.,

Kim, S., Zhang, M.D., Jackson, D., Leith, A., Schreiber, J., No-

ble, W.S., et al. (2019). A Genome-wide Framework for Map-

ping Gene Regulation via Cellular Genetic Screens. Cell 176,

1516–2390.e319.

83. Kreitmaier, P., Katsoula, G., and Zeggini, E. (2023). Insights

from multi-omics integration in complex disease primary tis-

sues. Trends Genet. 39, 46–58.
e 6, 2024

http://refhub.elsevier.com/S0002-9297(24)00131-9/sref67
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref67
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref67
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref68
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref69
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref70
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref70
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref70
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref70
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref70
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref71
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref71
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref71
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref71
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref71
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref72
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref73
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref73
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref73
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref73
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref73
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref74
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref74
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref74
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref74
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref75
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref76
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref76
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref76
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref76
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref76
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref77
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref77
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref77
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref77
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref77
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref78
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref78
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref78
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref78
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref78
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref79
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref79
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref79
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref80
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref80
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref80
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref80
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref81
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref81
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref81
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref81
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref81
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref82
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref82
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref82
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref82
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref82
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref83
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref83
http://refhub.elsevier.com/S0002-9297(24)00131-9/sref83


The American Journal of Human Genetics, Volume 111
Supplemental information
An integrative framework to prioritize genes

in more than 500 loci associated

with body mass index

Daiane Hemerich, Victor Svenstrup, Virginia Diez Obrero, Michael Preuss, Arden
Moscati, Joel N. Hirschhorn, and Ruth J.F. Loos



 

 

 
 

 

 
 

 

 
Figure S1. Flowchart of pipeline, number of genes prioritized and contribution (weights) of each method to the overall scoring 
of prioritized genes. 
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