SUPPLEMENTAL MATERIAL

Variable	12 weeks		1 year			2 years			
	Estimate	95 % CI	p-value	Estimate	95 % CI	p-value	Estimate	95 % CI	p-value
	(β)			(β)			(β)		
Age squared	0.0003	-0.0003,0.0010	0.3153	0.0006	-0.0002,0.0015	0.1350	0.0002	-0.0008,0.0012	0.6972
Age	-0.0734	-0.1451,-0.0018	0.0446	-0.1194	-0.2115,-0.0274	0.0110	-0.0640	-0.1728,0.0449	0.2493
Male sex	0.1063	-0.2199,0.4326	0.5229	-0.7338	-1.1344,-0.3333	0.0003	-1.4051	-1.9180,-0.8922	<0.0001
Log daily insights read	0.0675	-0.0402,0.1753	0.2190	0.0554	-0.0691,0.1800	0.3830	0.2059	0.0496,0.3622	0.0098
Log correlation insights read	-0.6022	-0.7750,-0.4293	<0.0001	-0.8803	-1.0982,-0.6624	<0.0001	-1.0394	-1.3793,-0.6995	<0.0001
Log number of BP measurements	-0.4952	-0.6372,-0.3533	<0.0001	-0.5788	-0.7588,-0.3988	<0.0001	-0.8277	-1.0571,-0.5983	< 0.0001

Table S1. Multiple regression analysis to identify variables associated with change in systolic blood pressure

Negative sign indicates reduction in blood pressure; BP = blood pressure, CI = confidence interval

Variable	12 Weeks			1 Year			2 Years		
	Estimate			Estimate			Estimate		
	(β)	95% CI	p-value	(β)	95% CI	p-value	(β)	95% CI	p-value
Age Squared	0.0002	-0.0002,0.0007	0.3084	0.0004	-0.0001,0.0010	0.1320	0.0005	-0.0002,0.0012	0.1666
Age	-0.0456	-0.0935,0.0022	0.0613	-0.0775	-0.1389,-0.0161	0.0134	-0.0919	-0.1645,-0.0193	0.0131
Male Sex	-0.1491	-0.3667,0.0686	0.1795	-0.4127	-0.6800,-0.1455	0.0025	-0.7104	-1.0526,-0.3682	<0.0001
Log Daily Insights Read	0.0516	-0.0202,0.1234	0.1592	0.09612	0.0131,0.1792	0.0233	0.1022	-0.0021,0.2064	0.0548
Log Correlation Insights Read	-0.4544	-0.5696,-0.3391	<0.0001	-0.6426	-0.7880,-0.4973	<0.0001	-0.6886	-0.9153,-0.4619	<0.0001
Log Number of BP Measurements	-0.3328	-0.4266,-0.2371	<0.0001	-0.4500	-0.5702,-0.3298	<0.0001	-0.5411	-0.6943,-0.3880	<0.0001

Table S2. Multiple regression analysis to identify variables associated with change in diastolic blood pressure

Negative sign indicates reduction in blood pressure; BP = blood pressure, CI = confidence interval

Table S3. Multiple regression analysis to identify variables associated with rate of change in total cholesterol

Variable	Estimate (β)	95 % CI	p value
Age Squared	-0.00004	-0.0009, 0.0001	0.2761
Age	-0.00232	-0.00532, 0.00132	0.4125
Male Sex	-0.03286	-0.04458,-0.01172	0.0238
Rate of Insights Read	-0.06924	-0.10887,-0.02961	0.0094
Rate of Cholesterol Measurement	-0.08721	-0.13640, -0.03802	<0.001
Cholesterol Medication Listed in App	-0.09548	-0.13041, -0.06055	0.00042

To control for variation in the duration between cholesterol measurements, cholesterol measurements were calculated as

measurements per month and number of insights read were calculated as number per day. Rate of insights read included

both daily insights and correlation insights. App = application; CI = confidence interval

Table S4. Multiple regression analysis to identify variables associated with rate of change in LDL-C

Variables	Estimate (β)	95 % CI	p value
Age squared	-0.00004	-0.00012, 0.00004	0.20772
Age	-0.00117	-0.00327, 0.00127	0.24758
Male sex	-0.00653	-0.01172, -0.00134	0.01646
Rate of Insights read	-0.04023	-0.07481,- 0.00565	0.03628
Rate of cholesterol measurement	-0.15293	-0.20065, -0.10521	<0.001
Cholesterol medication listed in the app	-0.03947	-0.05692, -0.02202	0.00623

To control for variation in the duration between cholesterol measurements, cholesterol measurements were calculated as measurements per month and number of insights read were calculated as number per day. Rate of insights read included both daily insights and correlation insights. App = application; CI = confidence interval, LDL-C = low-density lipoprotein cholesterol

Variable	Estimate (β)	95% CI	p-value
Age Squared	-0.00001	-0.00003, 0.00001	0.67142
Age	-0.00242	-0.00642, 0.00242	0.11623
Male Sex	0.016902	0.012761, 0.021043	<0.001
Rate of Insights Read	-0.01683	-0.02391, -0.00975	<0.001
Rate of Weight Measurements	-0.05659	-0.06982, -0.04336	<0.001

Table S5. Multiple regression analysis to identify variables associated with rate of change in weight

To control for variation in the duration between weight measurements, number of weight measurements per day and number of insights read per day were calculated. Rate of insights read included both daily insights and correlation insights. CI = confidence interval

Figure S1. Patient flow chart

Participants were included in the BP cohort if they had at least two BP readings available, including one at baseline and one at any one of the follow-up time points (for 12 week follow-up, BP measurement made during weeks 11 – 12; for 1 year follow-up, BP measurement during weeks 48 to 55; for 2 years follow-up, BP measurements during weeks 96 to 111). Participants were included in the cholesterol cohort if they had at least two cholesterol test results available that were at least 30 days apart, including a baseline cholesterol value defined as a TC or LDL-C test result available up to six months before or one month after the registration in the program. Participants were included in the weight cohort if they had at least two weight measures available that were at least 30 days apart during the study period, including a baseline weight measure defined as weight measurement entered up to one month before or one month after the registration in the program.

BP = blood pressure; LDL-C = low-density lipoprotein cholesterol; TC = total cholesterol

Figure S2. Example of daily insights

About 9 hours ago

New

Hey Jessica, last week you walked for 54 minutes, an **average of 8 walking minutes a day**. Physical activity is part of getting your blood pressure under control. Keep up the good work!

We're all pretty busy, but try to add 2 more walking minutes to your daily average. Walk around the room while you're on the phone or take a quick stroll outside!

View your Activity Tracker

 Production
 Production

 Image: Constraint of the state of the stat

May 08, 2023

Overnight oats are a great, easy breakfast. Just add some apples, cinnamon, low-fat milk, and oats to a bowl and stick it in the fridge overnight. In the morning you'll have a tasty, cholesterolfriendly breakfast!

New

Helpful 🖓 Not helpful

May 08, 2023

If you can't sustain exercise for 30 minutes at a time, break the activity up into more manageable thirds. A 10-minute walk sounds totally doable, right?

🖒 Helpful 🖓 Not helpful

Figure S3. Example of correlation insights showing relationship between increase in physical activity and

reduction in systolic blood pressure

Hey Jessica, it looks like the more you walk, the more you reduce your blood pressure.

Take a look at your weekly average systolic blood pressure and walking minutes over 4 weeks:

Take your headphones, put on the music you love most, and take a 10minute walk around the block today. It'll also help you relax!

Figure S4. Example of correlation insight showing relationship between addition of antihypertensive medication

and reduction in systolic blood pressure

Hey Melton, we've got a great update!

On Oct 7, 2020, you added a medication called <u>Lisinopril</u>. When you started taking it, your blood pressure went down and has stayed steady since.

Here's a look at your average monthly blood pressure:

