## SUPPLEMENTAL MATERIAL

## Data S1.

## **Supplemental Methods**

The small molecule drugs were purchased as below: Doxorubicin (S7306, Selleck), Colchicine (S2284, Selleck) and Chloroquine (S6999, Selleck). Plasmid Miniprep Kit (#DK001-01A, novoprotein, China), PrimeScript RT reagent Kit (#RR037A, TAKARA). The antibodies used in this study were as follows: anti-GAPDH (#60004-1-Ig, proteintech); anti-SQSTM1/P62(#ab56416, abcam); anti-LC3B (#ab48394, abcam); anti-phospho-mTOR (Ser2448, #ab109268, abcam); anti-phospho-AMPK (#ab133448, abcam), anti-phospho-ULK1 (Ser757, #14202, Cell Signaling Technology); anti-ATG5 (#ab118327, abcam); anti- phospho-PI3K (Try199, #4228, Cell Signaling Technology); anti-phospho-AKT (Try308, #ab105731, abcam); anti-Beclin1 (#11306, proeintech); anti-TP53 (#60283, proeintech); anti-PINK1 (#23274, proeintech); anti-Parkin (#14060, proeintech); anti-TOM20 (#11802, proeintech); anti-Parkin (#ab7291, abcam); anti- $\beta$ -Tubulin (#sc-5274, santa cruz); anti-rabbit IgG (#ab6721, abcam); anti-mouse IgG (#ab6728, abcam). WB Ultra-Sensitive ECL Luminescent Liquid (#ED0015-B, SparkJade, China).

| Syrian  | PBS     | DOX        | DC0.1      | DC0.5      |
|---------|---------|------------|------------|------------|
| hamster |         |            |            |            |
| n       | 6       | 6          | 6          | 4          |
| FS (%)  | 32.76%± | 21.64%±    | 30.22%±    | 20.83%±    |
|         | 54.16%  | 5.236% (*) | 4.639% (†) | 4.043% (‡) |
| LVEF    | 61.01%± | 43.75%±    | 57.07±     | 42.32%±    |
| (%)     | 7.18%   | 8.854% (*) | 7.271% (†) | 7.555% (‡) |
| LV VOL  | 35.66±  | 48.22±     | 53.79±     | 64.93±     |
| s(µI)   | 6.821   | 12.39      | 21.28      | 34.71      |
| LV VOL  | 92.22±  | 87.44±     | 121.7±     | 109.1±     |
| d(µl)   | 13.37   | 27.74      | 33.18      | 46.54      |
| LVID    | 3.012±  | 3.401±     | 3.525±     | 3.781±     |
| s(mm)   | 0.2459  | 0.3697     | 0.6136     | 0.8653     |
| LVID    | 4.486±  | 4.359±     | 5.025±     | 4.752±     |
| d(mm)   | 0.2803  | 0.5496     | 0.6047     | 0.8988     |
| LVPW    | 1.819±  | 1.739±     | 1.695±     | 1.745±     |
| s(mm)   | 0.0958  | 0.085      | 0.1782     | 0.277      |
| LVPW    | 1.397±  | 1.577±     | 1.377±     | 1.654±     |
| d(mm)   | 0.1363  | 0.1417     | 0.1977     | 0.297      |
| IVS     | 1.884±  | 1.81±      | 1.852±     | 1.872±     |
| s(mm)   | 0.1434  | 0.1616     | 0.1719     | 0.2181     |
| IVS     | 1.346±  | 1.415±     | 1.339±     | 1.37±      |
| d(mm)   | 0.2096  | 0.1928     | 0.2345     | 0.2197     |

Table S1. Echocardiography of hamsters in different groups.

Fraction shortening (FS); left ventricle ejection fraction (LVEF); left ventricle volume in the end-diastole (LV Vol;d) and end-systole period (LV Vol;s). internal dimension of the left ventricle in the end-diastole (LV ID;d) and end-systole period(LV ID;s). LV posterior wall thickness in the end-diastole (LVPW; d) and end-systole period (LVPW; s).; internal septal thickness in the end-diastole (IVS; d) and end-systole period (IVS; s). DOX: Doxorubicin; DC0.1: DOX + Colchicine (0.1mg/kg, daily); DC0.5: DOX + Colchicine (0.5mg/kg, daily) Means  $\pm$  SD, one - way ANOVA (Tukey post- test). \* <0.05 vs. PBS group;  $\ddagger$  <0.05 vs. DOX



Figure S1. Low-dose colchicine alone is well tolerable for Syrian hamsters.

**A.** Schematic of *in vivo* colchicine administration experimental protocol. **B.** Kaplan–Meier survival analysis hamsters in different groups. (n=5 per group, none died during the performance), means ± SD, *P* value was determined by log-rank (Mantel–Cox) test. **C-E**. Representative M-mode echocardiographic images and LVEF, FS measurements of Syrian hamsters treated with PBS, 0.1mg/kg and 0.5mg/kg colchicine (Col-0.1 and Col-0.5). **F-H.** Representative

gross morphology of the hearts from different groups, and measurements of body weight (BW), heart weight/body weight (HW/BW). Data of (**D**, **E**, **G** and **H**) are analyzed by one-way ANOVA (Tukey post- test), means  $\pm$  SD. I-J. Representative hematoxylin and eosin (H&E) and Masson's trichrome staining of heart sections from different groups, similar results were found in more than three different hamsters for each group. For **D-H**, data were presented as means  $\pm$  SD, 2-tailed Student *t* test.



Figure S2. DOX induced heart failure and impaired autophagy in Syrian hamsters.

**A**. Schematic of *in vivo* DOX induced heart failure experimental protocol. **B**. Gross morphology of the heart from PBS and DOX treated hamsters. **C-D**. Heart weight (HW) and ratios of heart weight to tibia length (HW/TL). **E-G**. Representative M-mode echocardiographic images and LVEF, FS measurements of Syrian hamsters treated with PBS or DOX. For above data, n=5 each group. **H-I**. Representative Masson' trichrome staining and measurements of fibrosis. **J-M**. Representative WB analysis and quantification of the expression of P62, LC3 and ATG5. (n=4 per group). **N**. Representative TEM images showing AVs marked by white arrow. **O**. Measurements of the autophagic vacuoles (AVs) per100  $\mu$ m<sup>2</sup>(3 random fields per sample, n=3 per group). DOX indicates doxorubicin; AVs indicates autophagic vacuole. For all data were represented as means ± SD, 2-tailed Student t test.



Figure S3. DOX induced damaged mitochondrial and ROS overload in hamster hearts.

**A**. Representative immunofluorescence staining for labeling reactive oxygen species (ROS). Left, dihydroethidium (DHE); middle, DAPI; right, Merge. **B**. Quantification of the ROS level (n=4 per group). **C-D**. Representative TEM images for labeling mitochondrial and quantitative analyses of mitochondrial cristae (3 random fields per sample, n=3 per group). **E-F**. Quantitative q-PCR analysis of ANP and BNP mRNA expression (n=4 per group). **G**. Kaplan–Meier survival analysis of hamsters in different groups. (n=8-12 per group), means ± SD, *P* value was determined by log-rank (Mantel–Cox) test. ANP indicates atrial natriuretic peptide, BNP, brain natriuretic peptide. For all data were represented as means ± SD, 2-tailed Student t test, *P* > 0.05, non-significant (ns), \* *P* < 0.05, \*\* *P* < 0.001, \*\*\* *P* < 0.001.



Figure S4.  $\alpha$ -Tubulin immunocytochemistry analysis for the microtubule network in hiPSC-CMs.

DC5 indicates doxorubicin + colchicine (5nM). Col5, Col10 indicates colchicine 5nM,10nM respectively.



Figure S5. Low-dose colchicine rebalanced cellular homeostasis in Syrian hamsters.

**A-B.** Representative WB analysis and quantification of the LC3B-II. **C.** Representative TEM images showing AVs marked by black arrow. **D.** Measurements of the AVs per100  $\mu$ m<sup>2</sup> (3 random fields per sample). **E-F.** Representative TEM images for labeling mitochondrial and quantitative analyses of mitochondrial cristae (3 random fields per sample). (For **B**, **D** and

**F** n=3 per group). **G**. Representative immunofluorescence staining for labeling reactive oxygen species (ROS). Upper, dihydroethidium (DHE); middle, DAPI; down, Merge. **H**. Quantification of the ROS level (n=4 per group). For above data, means ± SD, one - way ANOVA (Tukey post- test). *P* > 0.05, non-significant (ns), \* *P* < 0.05, \*\* *P* < 0.01, \*\*\* *P* < 0.001, \*\*\*\* *P* < 0.0001. DC: DOX+ 0.1mg/kg colchicine daily.