SUPPLEMENTAL MATERIAL

Enriched function	Count	%	p-value	List Total	Pop Hits	Pop Total	Fold	Bonferroni	Benjamini	FDR
networks							enrichment	p-value	p-value	
Inflammatory	52	16.25	5.55E-29	318	379	16792	7.245	1.45E-25	1.45E-23	9.84E-26
response										
Cell-Cell	44	13.75	1.15E-28	318	254	16792	9.147	3.01E-25	1.5E-25	2.04E-25
signaling										
Positive	54	16.86	1.70E-26	318	466	16792	6.119	4.45E-23	1.11E-23	3.01E-23
regulation of cell										
proliferation										
Monocyte	22	6.86	1.19E-25	318	42	16792	27.660	3.11E-22	6.21E-23	2.11E-22
chemotaxis										
Cellular response	24	7.5	6.21E-18	318	110	16792	11.521	1.62E-14	1.35E-15	1.10E-14
to TNF	•			210		1 (= 0.0	1 < 0.01	1.005.14		
Neutrophil	20	6.25	7.59E-18	318	66	16792	16.001	1.99E-14	1.53E-15	1.35E-14
chemotax1s	1 7	5.01	0.04E 10	210	~ 1	1 (700	10 (10	5 0 5 F 1 0	0.005.11	2 0 7F 10
Cellular response	17	5.31	2.24E-13	318	71	16792	12.643	5.85E-10	2.93E-11	3.97E-10
to IL-1	10	2 75	1 475 10	210	20	1(702	22 (21	2.055.00	1 (05 10	2 (15 00
Lymphocyte	12	3.75	1.4/E-12	318	28	16/92	22.631	3.85E-09	1.68E-10	2.61E-09
chemotaxis	17	5	5 27E 10	210	72	1(70)	11 574	1 405 00	5 40E 10	0.525.00
Positive	10	3	5.3/E-12	318	/3	16/92	11.5/4	1.40E-08	5.40E-10	9.52E-09
regulation of										
inflammatory										
response	12	1.06	1.550.00	210	()	16702	11.072	4.045.06	1 120 07	2 745 06
negative	15	4.00	1.33E-09	318	62	16/92	11.072	4.04E-00	1.12E-07	2./4E-00
regulation of										
angiogenesis										

Table S1. Top enriched gene function networks of the proteomic analysis from porcine coronary sinus blood obtained 3 days after MI.

MI, myocardial infarction; TNF, tumor necrosis factor; IL, interleukin; FDR, false detection rate

Table S2. Network pathway genes.

Enriched function networks	Genes						
Inflammatory response	RARRES2, S100A8, CXCR3, CXCL10, TNFRSF11B, TNFRSF11A, SERPINA3, SYK, KNG1, LTBR, IL27,						
	ADGRE5, ACKR2, IL26, IL22, TNFAIP6, CCR7, PPBP, CCR4, CCR3, CCR2, NAIP, CCL1, TNFRSF21,						
	CCL3, CSF1, CCL8, PF4, KIT, CCL5, CCL7, CCL26, CALCA, CCL24, TNFRSF1A, CCL22, CCL23, CCL20,						
	ZAP70, THBS1, PTX3, CSF1R, BMP2, IL23R, CCL19, SMAD1, CCL15, EPHA2, CCL17, BMPR1B,						
	IGFBP4, BMP6						
Cell-Cell signaling	FGF18, INSL3, NAMPT, CCL3, PPY, PGF, CTF1, CCL8, TSHB, FGF12, POMC, CCL5, CCL7, SHH, CCL26,						
	TGFB2, CXCL10, NOV, CALCA, CCL24, CCL22, TNFRSF11A, CCL23, CCL20, CTGF, LTB, FGFBP1, IL3,						
	BMP3, BMP2, AVP, NTF3, ADGRE5, IL26, CCL15, IL22, CCL17, TNFAIP6, CD80, EREG, PYY, GDF15,						
	MERTK, XCL1						
Positive regulation of cell	NAMPT, FGF18, FGF8, PDGFB, PGF, CXCR3, PDX1, FER, GDNF, SHH, IL31RA, TGFB2, CXCL10,						
proliferation	EPCAM, TNFRSF11A, CTGF, NRG1, FGF2, MATK, AVP, CST3, DLL1, IL6R, OSM, VEGFD, EREG,						
	PROK1, F2, ERBB4, CTF1, CSF1, KIT, CALR, LIF, IGF1R, KRAS, PTK2B, THBS1, EGF, FGFBP1, CSF1R,						
	IL3, FLT1, TNFSF4, NTF3, TGFBR1, TGFBR2, IGF1, KDR, LEP, NOTCH1, SFRP1, HBEGF, FABP1						
Monocyte chemotaxis	CCL1, CCL3, FLT1, LGALS3, PDGFB, CCL19, CCL8, CX3CL1, IL6R, CCL5, CCL15, CCL7, CCL26,						
	CCL17, CCL24, CALCA, CCL22, CCL23, TNFRSF11A, TNFSF11, CCL20, XCL1						
Cellular response to TNF	CCL1, TNFRSF21, ICAM1, CCL3, ADAMTS13, CCL19, CCL8, CX3CL1, CCL5, CCL15, CCL7, CCL26,						
	CCL17, CCL24, VCAM1, CALCA, CCL22, APOB, CCL23, SFRP1, CCL20, HAMP, THBS1, XCL1						
Neutrophil chemotaxis	CCL1, CCL3, S100A8, LGALS3, CCL8, CX3CL1, CCL5, CCL15, CCL7, CCL26, CCL17, TGFB2, CCL24,						
	CCL22, CCL23, PPBP, CCL20, TREM1, XCL1, SYK						
Cellular response to IL-1	CCL1, ICAM1, CCL3, CCL19, CCL8, CX3CL1, CCL5, CCL15, CCL7, CCL26, CCL17, CCL24, CCL22,						
	CCL23, CCL20, SFRP1, XCL1						
Lymphocyte chemotaxis	CCL24, CCL1, CCL22, CCL3, CCL23, CCL20, CCL8, CCL19, CX3CL1, CCL15, CCL26, CCL17						
Positive regulation of	CCL1, CCL3, TNFSF4, S100A8, CCL8, CX3CL1, CCL5, CCL15, CCL7, CCL26, CCL24, TNFRSF1A,						
inflammatory response	CCL23, CCR2, HSPD1, XCL1						
Negative regulation of	GDF2, SERPINF1, CCR2, APOH, PF4, CXCR3, TIE1, DCN, SPARC, THBS1, EPHA2, CXCL10, ANGPT4						
angiogenesis							

Figure S1. Antibody array target list.

Number	Name	Number	Name	Number	Name	Number	Name	Number	Name	Number	Name	Number	Name
1	6Ckine	74	ONTF R alpha	147	FGF-19	220	IGF8P-4	295	IL-22 BP	366	MMP-24	439	Shh-N
2	Activin A	75	#3	148	PGF-20	221	IGF8P-6	294	IL-32 R	567	MMP-25	440	SPARC
3	Activin B	76	CRIM 1	149	FGF-21	222	iGF8P-rp1	295	11-23	368	Musk	.441	Spinesin
4	Activin C	77	Cripto-3	150	PGF-23	225	UGF-I	296	IL-23 R	369	MSP8	642	TACI
5	Activin RIA	78	CRTH-2	151	FLRG	224	IGF-LR	297	11-24	370	MICA	443	Tarc
6	Activin RIB	79	Cryptic	152	Fit-3 Ligand	225	ISF-II	298	15-26	371	NAP-2	444	TCCR
7	EYA2	00	CTACK	155	Follistatin	226	IGF-II R	299	51-27	372	NCAM-1	645	TECK
0	Adjournation	81	CTAR	124	Poststeining a	1287	IL-1 hate	300	0.20	373	Neuropi	440	Trificalaba
10	Auge	82	01/2	155	Fractalaine	228	10-1 0008	201	14-29	274	Neuropilie-3	847	TOLAsta 1
11	ALCAM	84	CICI14	157	Frittlad-3	250	11-1 66	305	IL-31 PA	\$76	Neurfurie	640	TCF-beta 2
12	Angiogenia	85	00116	158	Frizzled-4	231	IL-1.F2	304	BACE-1	377	NGF 8	450	TGF-beta 5
13	Angiopoletin-1	86	CHCRI	159	Frizzled-5	232	IL-1 FR	105	FACK	378	NOV	451	ATP281
14	Anelopoletin-2	87	CHCR2	160	Frizzled-6	255	11-1 F9	306	insulin	379	GGF2	452	TGF-beta RI
15	Angiopoletin-4	88	CKCR3	161	Friggled-7	234	IL-1 F10	307	trisiglin R	380	Nidogen-1	453	TGF-beta RII
16	ANGPTL1	89	CHCR4	162	Galectin-5	235	11-1 85	308	Insulysin	381	NrCam	454	Grb2
17	ANGPTL2	90	CKCR5	163	GASP-1	236	IL-1.84	309	IP-10	382	NRG2	455	TGF-beta RIII
18	ANGPTL7	91	CXCR6	164	GASP-2	237	14-1-86	310	I-TAC	385	NRG3	456	Thrombopoletin
19	Angiostatin	92	D6	165	GCP-2	238	11-1 #8	\$11	Kininostatin	384	NT-3	457	Thyroid Peroxidase
20	AP1	93	DAN	166	GCSF	239	4-1 R9	312	Kremen-1	385	NT-4	458	Thrombospondin-1
21	Amphiregulin	94	DANCE	167	G-CSF R	240	IL-1 rm	313	Kremen-2	386	Orexin A	459	Thrombospondin-2
22	APRIL	95	DcR3	168	GDF1	241	it-1 RI	314	Lek	387	Orexin 8	460	Thrombospondin-4
23	Actemin	96	Decorin	169	GDF3	242	IL-1 RH	315	LTSP1	388	OSM	461	Thymopoletin
24	Aal	97	Dick-1	170	GDF5	243	11-2	316	LBP	589	Osteoactivin	462	Tie-1
25	87-1	98	Dkk-3	171	GD/8	244	IL-2 R slpha	317	LECT2	590	Osteocrin	463	Tie-2
26	BAPP R	99	Dido-4	172	GDF9	245	IL-2 R beta	318	Lefty-A	391	Osteoprotegerin	464	TIMP-1
27	BCMA	100	DR3	175	GOF11	246	IL-2 R gamma	319	Leptin R	592	OK40 Ligand	465	TIMP-2
28	80-1	101	DR6	174	60P-15	247	11-3	320	Leptin	393	PARC	400	TIMP-5
29	BONF	102	Dix	175	GONP	248	IL-3 K alpha	321	UFA-1 alpha	394	PD-ECGP	467	TIMP-4
30	Deca-Laten in	104	EDAR	170	GER alpha-1	299	10-4	522	Lif Baisha	395	PUGF K Siphs	460	TIPI
33	bate NCE	105	EDMA.	178	CER alpha 3	151	11.4	262	LICHT	330	POOP & DEG	400	1983
- 24	Lind True	100	100-1	478	Creationard	202	10.0	225	Light 1	297	PL001-005	470	1942
33	84	100	Eldr RCE D	1/9	Grie alpha-a	494	IL-5 K alpha	345	Lipocatin-1	238	PUGP-AB	475	TLR3
34	DLL BARD, 5	107	EUF R	160	CITRILIPAN	455	100	837	100.6	400	PLAFIES	472	TANKED
22	84.60.0	100	Exten.u	183	2801	200	11.7	3.18	1. Talastia	401	BDCE-D	47.0	TANKERS
87	RAAD Th	110	ENA-78	145	Glutt	356	H-7 2 alpha	320	tinocalin-3	403	PECAM-1	475	Thisalpha
	8165.0	110	Endering	18.5	Chat	167	1.4	100	Concerned and a state	408	Bestaniak	474	This balls
3.0	0445.C	44.0	Enderslin	144	C1.45	100	1.4	331	170	404	Bernachie	473	This Di
22	0007.2	110	Entropyin	102	0105	150	10.9	224	1780	100	reisephin		That BU
40	80/0/-0	113	Endostatin	100	Giuto	499	10-10	232	LIDA	400	PTG	478	TREAD
41	BMP-7	114	EN-RAGE	187	Glypican 3	260	IL-10 H alpha	335	MAC/1	406	PIGP	479	TRADO
- 62	BMP-8	115	Eotaxin	188	Glypican 5	201	IL-SO'R beta	334	MCP-1	407	PLUNC	- 680	TRAIL
43	BMP-15	116	Eotaxin(2	189	GM-CSF	262	30-11	335	MCP-2	408	Pret-1	481	TRAIL R1
- 44	BMPR-LA	117	Eotaxin-3	190	GM-CSF R alpha	263	16-12 p40	336	MCP-3	409	Progranulin	482	TRAIL R2
- 45	SIMPR-IB	118	Epiregulin	191	Granzyme A	264	IL-12 p70	337	MCP-4	410	Prolactin	483	TRAIL RS
46	BMPR-SI	119	Er682	192	GREMUN	265	IL-12 R beta 1	538	M-CSF	411	P-selectin	484	TRAIL R4
47	87C	120	Erb83	195	GRD	266	IL-12 R beta 2	339	M-CSF R	412	RAGE	485	TRANCE
48	Cardiotrophin-1	121	Erb84	194	GRD-a	267	16-13	340	MDC	413	RANK	486	TREM-1
49	CCL14	122	Erythropoletin	195	GH	268	IL-13 R alpha 1	343	MFG-E8	414	RANTES	487	TROY
. 50	CCL28	123	E-Selectin	196	GHR	269	IL-13 R alpha 2	342	MFRP	415	RELM bets	488	T\$G-6
51	CCR1	124	Endothelin	197	HB-EGF	270	16-15	343	MIF	416	RELT	489	TSLP R
52	CCR2	125	FADD	198	HCC-4	271	IL-15 R alpha	544	MIG	417	R0804	490	TWEAK
53	CCR3	126	FAM38	199	HCR	272	8-16	345	MIP-18	418	\$100 A8/A9	491	TWEAK R
54	CCR4	127	Fet	200	Hepassocin	273	14-17	346	MIP-1b	419	\$100A10	492	Ubiguitin+1
55	CORS	128	Fas Ligand	201	610-1	274	11/178	347	MIP-14	420	SAA	493	UPA
56	CCR6	129	FGF Basic	202	HGF	275	16-178 P	348	MIP 2	621	SCF	494	UPAR
57	CC87	130	FCF-80	205	HOFE	276	8:170	340	MIP-3 alpha	422	SCF B	495	Vasorio
8.0	0000	181	BCE P3	104	uprusioke	177	11.170	550	ARID-S hate	419	SDE.1	444	WALL1
10	0000	100	ACE DA	205	Here bets	378	11.175	851	Anter-p ciela	434	-100.1	497	W.Catherin
508	CLAS	124	PUT Ne	200	HRU-Dete 1	218	10-175	201	NUMP-1	424	1780-1		ve-caphenin
60	CD14	133	PGPRS	206	HVEM	279	11-17#	352	MMP-2	425	SPRP-3	498	VEGF
61	CD27	134	FGF-4	207	1-509	280	R-178	353	MMP-3	426	1/8P-4	499	VEGF R2
62	CD30	135	FGF-5	208	ICAM-1	281	IL-17RC	354	MMP-7	427	sgp130	500	VEGF R3
63	CDSO Ligand	136	FGF-6	209	ICAM-2	282	IL-17RD	355	MMP-8	428	SIGIRR	501	VEGP-8
64	CD40	137	FGF-7	210	ICAM-5	283	10-18-8Pa	356	MMP-9	429	Siglec-5	502	VEGP-C
65	CD40 Ligand	138	FGF-8	211	ICAM-5	284	IL-18 R alpha	357	MMP-10	430	Siglec-9	503	VEGP-D
66	CO 163	139	FGF-9	212	IFN-alpha/beta R1	285	IL-18 R bets	358	MMP-11	431	SLPI	504	VEGI
67	Cerberus 1	140	FGF-10	213	iFN-alpha/beta #2	286	16-19	359	MMP-12	432	Smed 1	505	WiF-1
68	Chem R23	141	FGF-11	214	IFN-beta	287	10-20	360	MMP-13	435	Smad 4	506	WISP-1
69	Chordin-Like 1	142	FGF-12	215	IFN-gamma	288	IL-20 R alpha	361	MMP-14	434	Smad 5	507	XEDAR
70	Chordin-Like 2	143	FGF-11-18	216	IFN-gamma 81	289	IL-20 R heta	342	MMP-15	435	Smad 7		10000110
71	Cali	144	PCF-S6	217	IGE8P-1	290	10.51	34.8	MMP-14	436	Smad 8		
79	01	145	865.17	310	105890-1	201	8.21.0	364	AMAD.10	417	Profes		
78	CATE	144	805.18	210	ician a	202	1.11	144	1000.00	410	fam.1	-	
12	CALL	140	7527-18	212	14/0/-2	1 444	10.22	1 203	00~100	1 938	3000714		

RayBiotech Label-Based (L-Series) Human L507 Array Membrane Kit: Antibody array target list.

Figure S2. Additional angiograms of the porcine MI model to highlight anatomical consistency.

(A-H) Images displayed at baseline (left panels) and following balloon inflation distal to the first diagonal branch of the LAD (right panels). MI, myocardial infarction; LAD, left anterior descending.

Figure S3. Structural Comparison of Human and Porcine TNF-α using ChimeraX (University of California, San Francisco) and BLAST (NCBI, Bethesda, MD).

(A) Alpha fold was used to predict the three-dimensional structure of both human (AF-P01375-F1) and porcine (AF-P23563-F1) TNF- α . Matchmaker was used within ChimeraX to align the two structures. (B) BLAST was used to align the two sequence and determine homology of antigenic residues of TNF- α involved in Infliximab binding. Residues interacting with Infliximab are displayed in red. Method: Compositional matrix adjust. Identities:202/233(87%), Positives:215/233(92%), Gaps:1/233(0%).

Figure S4. Protein data distribution density curves.

Protein data distribution density curves highlighting the difference between control (top row) and treated samples (bottom row).

Figure S5. Protein array data in control and treated porcine coronary sinus samples collected from the great cardiac vein at 3-days postinfarction.

(A) Correlation scatter plot of protein data in control and treated samples. (B) Principal component analysis based on all protein expression profiles reveals a good separation of control and treated samples. (C) Hierarchical clustering highlights the difference between control and treated groups. (D) Correlation heatmap confirms the difference between Treated and Control and similarity within each group.

Figure S6. Coronary aspirate differentially expressed proteins.

Top 6 differentially expressed proteins in the coronary aspirate samples are delineated with (A) Angiostatin, (B) Chemokine ligand 25 (CCL-25), (C) Angiopoietin like-4 (ANGPTL-4), and (D) Matrix metalloproteinase-3 (MMP-3), all significantly upregulated in vulnerable. (E) Neutrophil Activating Peptide-2 (NAP-2) and (F) Transforming Growth Factor alpha (TGFa) significantly downregulated in vulnerable. (G) Corresponding receiver operating characteristic curve (ROC) for each of the biomarkers provided, showing a high degree of correspondence with outcomes.

Figure S7. Differential expressed proteins involved in the top 10 enriched function pathways.

Individual genes involved in top 10 pathways. Overlapped genes are in charge of the crosstalk between different pathways.

Figure S8. Heat map.

Heatmap of 323 significantly differential proteins obtained from coronary sinus blood 3 days after myocardial infarction in infliximab-treated (n=4) and control (n=3) cohorts.

Figure S9. Representative histological cross sections.

Additional representative histological cross-sections of pig hearts 4-weeks post infarction stained with Masson's Trichrome to visualize collagen (blue) and myocardium (red/purple) in (A) Control (n=7) and (B) Infliximab-treated (n=4) cohorts. Scale bar represents 10 mm.

Supplemental Video Legends:

Video S1. Structural Comparison of Human and Porcine TNF- α . 3D reconstruction of the TNFa comparing human versus porcine structure and its infliximab binding region as defined in Figure S3. Best viewed with Windows Media Player.

Video S2. Reconstruction of untreated porcine heart. 3D reconstruction of hearts using serial crosssectional histology documents a larger scar territory in the untreated porcine hearts versus those treated with infliximab. Cross sectional short axis images were digitally superimposed (26 slices for untreated heart) and given a 5 mm dimensional digital width in the Zeiss Zen software. Blue represents collagen and red muscle as per the Masson's trichome staining pattern. Digitized images were rendered as a z-stack and a movie was generated from manipulation of the z-stacked image. Best viewed with Windows Media Player.

Video S3. Reconstruction of infliximab-treated porcine heart. 3D reconstruction of hearts using serial cross-sectional histology documents a smaller scar territory in the hearts treated with infliximab versus in the untreated porcine hearts. Cross sectional short axis images were digitally superimposed (20 slices for infliximab treated heart) and given a 5mm dimensional digital width in the Zeiss Zen software. Blue represents collagen and red muscle as per the Masson's trichome staining pattern. Digitized images were rendered as a z-stack and a movie was generated from manipulation of the z-stacked image. Best viewed with Windows Media Player.