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Supporting Information Text 

Materials and Methods 

Fossils 
Fossil records were compiled for the woolly rhinoceros (Coelodonta antiquitatis) for the Late 

Pleistocene and Holocene in Eurasia. All records were obtained from the literature and publicly 
available databases (CARD (1), Stage3 (2)). For each record, we obtained information on the 
geolocation, age, material dated (e.g. bone, collagen), and method of radiocarbon (14C) dating. 
Records were excluded from further analysis if geolocation data was not available, if fossils were 
indirectly dated, or if the quality of dates was poor.  

The quality of each record was scored according to type of dated material, stratigraphic 
association, and dating method (3). All high-quality records (Barnosky score > 10) were retained 
and calibrated using OxCal (4) and the IntCal13 calibration curve (5). For some older fossils with 
no associated radiocarbon dating error, we used the mean error of all fossils in the nearest 
10,000-year time bin. We did this to avoid truncation in estimates of the potential realised climatic 
niches of woolly rhinoceros (6), described below. Importantly, none of these records (with inferred 
dating error) were used for any direct inference regarding extinction time or extinction location. 
Following compilation and quality control there were a total of 288 14C dated fossil records for 
woolly rhinoceros (Fig. S14; Dataset S1). 

Climate data 
Paleoclimate data were accessed using a high resolution (0.5° x 0.5°) terrestrial climate 

dataset for the period 60,000 BP to present (1950 C.E.) (7). These data were generated by 
temporally linking 42 discrete snapshot simulations from the HadCM3B-M2.1 coupled general 
circulation model (8). The HadCM3B-M2.1 model has a nominal atmospheric resolution of 3.75° x 
2.75° and is run as a series of snapshots at 1000-year intervals between 0 (1950 C.E.) and 
22,000 BP and 2000-year intervals between 22,000 and 60,000 BP. The HadCM3B-M2.1 model 
has been shown to accurately represent different aspects of the climate system in land and sea 
surface temperatures, precipitation, and ocean circulation (8). The snapshot simulations were 
linked using splines based on monthly climatologies, and then imposing interannual and 
millennial scale variability (e.g. Dansgaard-Oeschger (9) and Heinrich (10) events). The data 
were then bilinearly downscaled to 0.5° x 0.5° and bias-corrected using a simple delta (change-
factor) method (7). Validation of the downscaled, bias corrected climate data utilised here shows 
good agreement with ice-core reconstructions of regional temperatures, particularly for the 
Bølling-Allerød and Younger Dryas (7). The data also show good agreement against observed 
data for annual mean standard deviations (SD) for both temperature and precipitation, particularly 
over Eurasia, with the major patterns of climate well represented (7). Ice-sheet dynamics are 
simulated in HadCM3B-M2 using the ICE-5G model (11). While, choice of ice-sheet 
reconstruction can influence millennial scale climate variability (12), the ICE-5G model is 
commonly used to reconstruct climate change from the last interglacial (13) and to identify 
biological responses to this climatic change (14). 

We extracted monthly data for precipitation, temperature, latent heat flux, and snow depth 
(as snow water equivalent; SWE) for our study region (Fig. 1). This data was then used to 
generate 30-year averages of five climate variables at 17-year time steps (generation length for 
woolly rhinoceros; see below): (i) Annual total precipitation; (ii) Boreal summer (JJA) average 
temperature; (iii) Boreal winter (DJF) average temperature; (iv) total evapotranspiration during 
Boreal spring and summer (MAM + JJA); and (v) Boreal winter average snow depth. These 
variables were chosen due to having likely ecological roles in the range dynamics of Eurasian 
megafauna (15, 16), including woolly rhinoceros. For example, woolly rhinoceros is thought to 
have preferred colder and drier areas with light snow cover and open steppe-tundra floral 
communities (17-19). Spatiotemporal information on evapotranspiration was considered because 
it is a proxy for plant growth (20).  

Evapotranspiration was calculated by dividing the average monthly latent heat flux by the 
latent heat of vaporisation based on average monthly temperatures: 
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 ET (mm/month) = (
heat flux

(2.501 – 0.00237 × tas) × 1e6
) × 86400 × 30 Eq. 1 

Where heat flux and tas are the modelled monthly heat flux (W m2) and temperature (°C) for each 
month from Armstrong, Hopcroft and Valdes (7).  

Boreal winter average snow depth was converted from snow water equivalent to metres by 
multiplying the values by 4, assuming an average density of lying snow of 250 kg/m3. Snow depth 
was then bias-corrected using monthly mean snow depth data (21). 100-year climatological 
monthly averages were calculated for the period 1850 – 1950 C.E. for both the Armstrong, 
Hopcroft and Valdes (7) and Compo, et al. (21) datasets, before a multiplicative change factor 
correction was applied. The bias correction scaling of snow depth was capped at three times the 
modelled value (7). 

Information for both summer and winter temperatures was considered due to the broad 
geographical range of the species meaning that it was likely exposed to broad climatic conditions 
across its range, and that woolly rhinoceros was likely capable of some level of ecological 
plasticity (22). Furthermore, tolerance to winter temperatures is a major determinant of 
geographic range for northern hemisphere herbivores (23-25). Precipitation was considered 
because warmer, and wetter conditions are likely have negatively affected survival of woolly 
rhinoceros during the last deglaciation, resulting in a decline in suitable habitat, causing a 
downward pressure on abundance (26). Precipitation is also correlated with plant growth and thus 
food availability in temperate, boreal, and tundra ecosystems across Eurasia (27, 28). Boreal 
spring and summer evapotranspiration was considered because it is the time of year when plant 
growth is highest in forested, grassland, and tundra systems in Eurasia (29-31). Snow depth was 
considered because of the morphology of the woolly rhinoceros, where a large body and 
relatively short legs meant that it was not well adapted to deep snow cover (32, 33). While its 
front horn is likely to have been used to expose grazing vegetation covered in shallow loose 
snow, it is unlikely that it could have been used to access food under or to plough through deep 
or icy snow (34). 

Dynamic Spatial Structure 
Climate suitability was used to define the initial spatial structure for our process-explicit 

model. This was done by first reconstructing the ecological niche of woolly rhinoceros, using a 4-
dimensional hypervolume (35) and multi-temporal approach (36). Our multi-temporal approach 
captured occurrence climate relationships over a long period of time (> 50,000 years), including 
periods when modern humans were low in abundance in Eurasia (37). This limited environmental 
suitability from being truncated owing to human-driven local extinctions in otherwise suitable 
areas (6). Directly accounting for uncertainties in fossil ages in the climate co-occurrence data 
resulted in a wide representation of climate conditions in the 4-dimensional hypervolume (38-40), 
providing a purposely broad prediction of the potential climatic niche of the woolly rhinoceros — 
the climatic space where the species could have lived (36). 

 
Woolly rhinoceros niche 

We ‘merged’ fossil records where there was spatiotemporal overlap within each 1 x 1 grid-

cell. To do this, longitude and latitude values for fossils (Data S1) were rounded to one decimal 
place (retaining ~11.1 km of accuracy) and grouped. Each record was then checked for temporal 
overlap with all other records in the same group. Temporal overlap was defined as overlapping 
confidence intervals for the calibrated radiocarbon ages (Calibrated Age ± 1 S.D.). Where 
temporal overlap occurred, the confidence intervals were merged for all overlapping records 
resulting in a single record with an expanded age interval (38). For example: 

 
at site X there are 3 records with calibrated ages of: record 1 = 19,213 – 16,933; record 2 = 
19,638 – 18,366; and record 3 = 14,706 – 13,888 B.P. There is overlap in the confidence 
intervals for records 1 and 2. Removing the temporal overlap thus results in only 2 records 
at site X – the 2 remaining records would have calibrated ages of: record [1 & 2] = 19,638 – 
16,933 and record 3 = 14,706 – 13,888 BP.  
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Pre-processing the collated fossil records using this approach reduced the number of records for 
modelling the climatic niche from 288 to 244 for woolly rhinoceros (Fig. S15). 

We intersected each georeferenced fossil with climate data (for the five variables described 
above) for the period ± 1 SD around the estimated calibrated 14C age of the fossil (39). This was 
done to ensure that each fossil had a time series of climate data associated with it for the window 
of uncertainty surrounding its calibrated 14C date. Climate variables were calculated as the 
average values from the cell containing the fossil and the 8-surrounding cells. The 9-cell 
averaging approach was chosen to minimise fine scale artificial accuracy/biases introduced 
during the bias correction and downscaling of the climate data (7). The resulting climatic 
information represents the climate history over which woolly rhinoceros was likely to have been 
present at the fossil sites (38, 39). 

Woolly rhinoceros was not adapted to surviving in areas of deep snow (32, 33), particularly 
as extreme winter conditions limit access to food, reduce fecundity, and increase mortality (24, 
25). Exploratory analysis between fossil locations and areas of deep snow (>1.5 m) suggested 
that the inclusion of snow as an additional fifth hypervolume parameter would show little 
improvement in the modelled niche of the species. Therefore, we opted to rather use snow depth 
as a friction layer for dispersal within our simulations (17, 41). 

This fossil-climate data was used to generate a multi-temporal approximation of the full 
potential niche of the woolly rhino using the hypervolume package for R (42) and the “gaussian” 
hypervolume method (43), with bandwidths, number of standard deviations, and the probability 
threshold tuned through cross-validation. Gaussian hypervolumes were built by defining a 
Gaussian kernel density estimate on an adaptive grid of random n-dimensional points around the 
original data points. The bandwidth, number of standard deviations, and the probability threshold 
controlled the size and configuration of the kernel density estimate (42, 43). The resulting 
hypervolume of climate suitability was exhaustively subsampled, allowing the realised niche of 
the woolly rhino to be identified using process-explicit macroecological modelling (see below). 

To do this we exhaustively subsampled the full multi-temporal niche hypervolume by 
subsampling ‘boxes’ with different widths (from 0.5 to 0.95, every 0.05), moving throughout the 4-
dimensional space. To obtain unique niche subsamples, the climate variables were rounded to 1 
decimal place and subsampled niches that were identical in all 4 dimensions were removed. This 
process generated 54,124 unique niche subsamples, each representing a conceivable realised 
niche for the woolly rhinoceros. All niche subsamples were constrained to the 4-dimensional 
space of the full (multi-temporal) potential climatic niche. 

Based on (44) we calculated the marginality of each unique niche subsample using the 
ade4 R package (45). Here, marginality is a measure of climatic specialisation, calculated using 
the distance between the climate conditions of the niche subsample and the mean conditions of 
the full potential climatic niche (38). High marginality values correspond to niche subsamples that 
have less common climatic conditions compared to the full potential climatic niche and its 
background, while low values represent non-marginal niches with climates that are typical of the 
full potential climatic niche and its background. Niche volume was calculated as the volume of the 
gaussian hypervolumes (43). Measures of marginality and niche volume were then used to 
further subset the 54,124 niche subsamples, ensuring even representation of both metrics. To do 
this we transformed both measures of niche marginality and volume from their original values to a 
uniform distribution by (i) ranking the raw values, (ii) converting to a probability, and then (iii) 

mapped the probabilities to a uniform distribution (ρ = U(0, 1)). We subsampled (without 

replacement) 2,999 niche cuts, ensuring that both the original and uniform distribution of values 
was maintained (Fig. S16). The full potential climatic niche was included, giving 3,000 potentially 
plausible realized ecological niche models for woolly rhinoceros. 

 
Climate suitability projections 
Spatiotemporally explicit projections of probability density (hereafter, habitat suitability) were 

then created at generational time steps using each plausible ecological niche model (n = 3,000) 
from 60 ka BP to 8.0 ka BP for woolly rhinoceros. The approach assumes that the distribution of a 
given species is a spatial indicator of its ecological requirements (46). Projections were created 
using the hypervolume package (43). Comparisons between spatial projections of habitat 
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suitability from the hypervolume package, and more common maximum entropy methods (47) 
have shown comparable results (43). 

Cross-validation was used to validate the full multi-temporal ecological niche model and to 
tune the two parameters that effect habitat suitability: (i) weight.exponent, and (ii) 
edges.zero.distance.factor. These two parameters control the rate and distance at which habitat 
suitability reduces to 0 from its empirical maximum. Cross-validation folds were defined as10 
unique subsets of the fossil record across space and time. For each cross-validation fold we did a 
grid search over both parameters (edges.zero.distance.factor range = 1:10; weight.exponent 
range = -1:-3), extracted values of habitat suitability at fossil locations (temporally explicit), and 
then calculated the Boyce Index (48, 49). The Boyce index is a presence-only evaluation 
measure used to discriminate how much projections of habitat suitability at presence locations 
differ from random expectation. Higher Boyce values indicate greater habitat suitability at 
presence locations than expected by chance. Final parameters were chosen based on the 
combination of parameters that maximised the Boyce Index (mean Boyce Index = 0.87 (±0.13)) 
and consequently habitat suitability at fossil locations through time. Following cross-validation the 
weight.exponent was set to -3 and edges.zero.distance.factor was set to 5. These settings were 
then used for each of the 3,000 ecological niche models. 

Since the outputs of the hypervolume_project function are not bound by [0, 1] (42, 43), each 
of the projections of habitat suitability was then rescaled to the range 0-1 using the formula: 

 xr = 
x-min(x)

P95%(x > 0) - min(x)
 Eq. 2 

Where xr is the rescaled suitability value, x is the original value, min(x) is the smallest value for x, 
and P95% is the 95th percentile of all x values > 0. We opted to rescale based on the 95th 
percentile of suitability values (exc. 0) due to the number of cells with habitat suitability values of 
zero, and the extreme right skew of the suitability values inflating the maximum value. Projections 
of habitat suitability were then reprojected using bilinear interpolation to a Lambert Azimuthal 
Equal Area projection centred on 104° east and 60° north, with a resolution of 100 km x 100 km. 

To ensure that models of climate suitability captured the tolerance of woolly rhinoceros to 
warm temperatures, we generated projections at the Eemian (last interglacial) – a period when 
temperatures at high latitudes were as warm or warmer then today (50). Projections (based on 
the full potential climatic niche) showed that our multi-temporal niche modelling approach 
sufficiently captured upper temperature tolerance in its projections of climatic suitability, with vast 
areas of the landscape having suitable habitat for the woolly rhinoceros at 120 ka BP (Fig. S11). 
Further tests, using process-explicit models also confirmed that our quantification of climatic 
tolerance for woolly rhinoceros enables survival during past warm events that it persisted through 
(see below). 

Human density 
We modelled the peopling of Eurasia using the Climate Informed Spatial Genetic Model 

(CISGeM), where human density (modelled as local effective population size; Ne) is forced by 
paleoclimatic reconstructions of net primary productivity (NPP), genetic history, and local 
demography (51, 52). CISGeM has accurately reconstructed the arrival times of anatomically 
modern humans and contemporary distributions of global and regional genetic diversity (51, 52). 
Furthermore, it has been coupled to macroecological models to explore megafauna-human 
interactions (38-40). 

CISGeM models the globe on a 100 km (10,000 km2) equal area hexagonal grid. The 
carrying capacity of each grid cell is determined by reconstructions of paleo temperature and 
precipitation which are used to predict NPP values using the Miami NPP model (53). The Miami 
NPP model provides a good first order characterisation of ecosystem productivity, despite not 
accounting for seasonality or the explicit effects of CO2, humidity, or plant and soil types. NPP 
from the Miami model is defined as the minimum of temperature and precipitation limited rates of 
annual NPP: 
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 NPP = min(NPPt, NPPp) 

with, 

NPPt= 3000×(1 + exp(1.315 - 0.119 × tas))
-1

 

NPPp= 3000×(1 - exp(-0.000664 × prec)) 

Eq. 3 

Where, tas is equal to the annual average air temperature (°C), and prec is the total annual 
precipitation (mm) for a given grid cell.  

For the period 120 ka BP to 60 ka BP, we utilised the previous global NPP reconstructions 
generated with the HadCM3 model (51), from 60 ka BP to 0 BP we blended the previous 
reconstructions with NPP calculated using the paleoclimate reconstructions from Armstrong, 
Hopcroft and Valdes (7) for the northern hemisphere. As the Armstrong, Hopcroft and Valdes (7) 
data starts at 60 ka BP, to generate a seamless transition between the simulated NPP values at 
this time we calculated anomalies on annual average NPP over a 100-generation (2,500 year) 
period of overlap (60 – 57.5 ka BP) between the previous reconstructions and our modelled NPP. 
The anomalies were then applied to the Armstrong, Hopcroft and Valdes (7) data to keep values 
consistent with those estimated from the HadCM3 model which had been used previously (Fig. 
S17). A similar approach has been used elsewhere (54). 

CISGeM allows inhabited cells to grow at rate r until the local carrying capacity is reached. 
Once carrying capacity is reached, migrants are sent to other inhabited cells at rate m, or allowed 
to colonise nearby previously uninhabited cells at rate c. The relationship between carrying 
capacity and the demographic parameters underlying CISGeM have previously been determined 
(51) using Approximate Bayesian Computation (55) in a pattern-oriented framework (56). 

Using the ABC fit from Eriksson, et al. (51), we took the best 4,900 parameter combinations 
and reconstructed human Ne through time for modelling the human impact on woolly rhinoceros 
(39). For each grid-cell in our study region we used CISGeM to calculate a time-series of 
population size from 120 – 0 ka BP at 25-year time steps. To account for parameter uncertainty in 
spatiotemporal projections of Ne we ran 4,900 different models using the previously established 
parameters (51). We calculated the mean and standard deviation for population size in each grid 
cell at each time point from 60 ka BP. The mean and standard deviation of Ne were then 
reprojected to the same 100km × 100km equal area projection as our reconstructions of habitat 
suitability. Ne values were scaled between 0 and 1 (using the 95th percentile of maximum values 
as the upper bound; 38). The CISGeM outputs at their original 25-year timesteps were then 
linearly interpolated to annual timesteps, so that we could generate 30-yr averages at 17-year 
steps to match the temporal resolution of the habitat suitability projections. We then generated 
45,000 plausible reconstructions of human population abundance, by sampling within ± 1 SD of 
Ne using a log-normal distribution. Stochasticity in human abundances in our simulations is 
therefore the result of sampling established ranges for demographic parameters in CISGeM. 

Woolly rhino-climate-human interactions 
Ecological niche models of habitat suitability and CISGeM estimates of human abundance 

were coupled with stochastic demographic models to simulate climate-human- woolly rhino 
interactions. Driver-state relationships simulated the effects of climate change and hunting by 
humans on key ecological processes of extinction: niche lability, dispersal, population growth and 
Allee effect. The spatially explicit population models (SEPMs) were built using the R packages 
poems (57) and paleopop (58), using a framework developed to identify drivers and ecological 
processes of megafauna extinctions (39). Here scalar-type SEPMs centred on ‘best estimates’ for 
demographic processes (population growth rate and its variance, dispersal, Allee effect), 
environmental attributes (niche breadth and climatic specialisation) and threats (human 
abundance and rates of exploitation) are simulated across wide but plausible ranges. Pattern-
oriented modelling (56) is used to evaluate different model versions and parameterisation, by 
cross-matching simulations with inferences from paleo-archives (39). Code to run an example 
population model is available here: https://osf.io/6F5MD/. 

https://osf.io/6F5MD/
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Population model 
Below we describe estimates of demographic parameters and their ranges (Table S1) used 

in the woolly rhinoceros SEPM. 
 
Generation lengths  
The SEPM simulates climate-human-woolly rhino interactions at 17-year generational time 

steps. Our estimate of a generation length of 17 years for the woolly rhinoceros is based on 
generation lengths for the most closely related extant species (Sumatran rhinoceros; Dicerorhinus 
sumatrensis) (59), and the closest extant species with a comparable body size (white rhinoceros; 
Ceratotherium simum). The generation length for the two related species is estimated to be 15–
20 years for Sumatran rhinoceros and 15–19 years for the White Rhinoceros (60, 61), depending 
on how generation length is calculated. 

 
Upper abundances  
The upper abundance (i.e. carrying capacity) of each grid-cell in our models was based on 

habitat suitability (62). We converted habitat suitability to carrying capacity by assuming that the 
maximum area of suitable habitat in any given grid-cell was 2,500 km2 and not 10,000 km2. This 
approach was necessary to address the mismatch between the spatial scale of the model (100 
km × 100 km) and how megafauna are likely to have used the landscape (39). We allowed 
maximum upper abundance to vary between 75 and 32,500 rhinos (corresponding to .03 
rhinos/km2 and 13 rhinos/km2, assuming that only 25% of a cell is useable). These values, for 
extant species (Sumatran rhinoceros, white rhinoceros), come from monitored populations in 
areas of high habitat suitability (63-67). 

 
Population growth and variance  
Generational population growth rate in the scalar SEPM was estimated using a vortex 

model for Sumatran rhinoceros (66), where maximum annual growth rate was estimated to vary 

between 0.008 to 0.031. We calculated generational Rmax using exp(r)
17 (where 17 is equal to the 

generation length of the species) and treated this as an upper estimate of Rmax in the model. 
Generational Rmax based on the Sumatran rhinoceros therefore ranged from 1.146 – 1.694. We 
also used allometry to estimate Rmax. The upper and lower bounds were subsequently set at 1.00 
– 2.00. 

To estimate variability in population growth we built an aspatial annual-scalar population 
model with a Ricker logistic population function (68). The Ricker-logistic function was chosen 
because it assumes an almost exponential growth rate when population abundances are small 
and predicts a decrease in population growth rate when populations approach carrying capacity, 
reflecting competition for resources at carrying capacity. We set Rmax to 0.031 and the standard 
deviation in growth rate to 0.05 (66) and ran the model for 1,700 years (100 generations). 
Population abundances were extracted at generational timesteps (i.e., year 17, 34, 51, etc.), 
which we then used to calculate growth rate, variance, and standard deviation at generational 
timesteps. This process was repeated 1,000 times before calculating the mean SD in 
generational growth rates (mean generation S.D. = 0.184). The upper and lower bounds for S.D. 
R0 were subsequently set at 0 to 0.35 accounting for allometry and uncertainty. A similar 
approach has been used to reconstruct variation in the growth rate of woolly mammoth (39) and 
muskox (38).  

 
Dispersal 
Dispersal information is lacking for the most closely related species of woolly rhinoceros. 

Maximum published estimates for white rhinoceros’ dispersal are ~250km (69), with published 
estimates for comparable sized extinct megafauna ~300km (39). Due to uncertainty in estimates 
of maximum dispersal for extant and extinct megaherbivores, we fixed it to 500km and varied 
mean dispersal between 0 – 250km (Fig. S12). We varied the proportion of dispersers from 0.5 – 
25% of the population within each grid-cell. Dispersal was modelled using the following equation: 
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mij = {
p  exp (

-D

b
) , D ≤ Dmax

0, D > Dmax

 Eq. 4 

Where movement (m) between cell i and j is a function of the parameters p, b, D, and Dmax (fixed 
at 500km). The parameter p represents the proportions of dispersers, b represents the dispersal 
breadth (i.e. the average dispersal distance), and d represents the dispersal distance between 
cell i and j. This approach prevents large dispersal rates to closely neighbouring cells (i.e., the 
drainage effect) by pre-calculating a fixed proportion of individuals that should move to a given 
cell based on p, b, Dmax and Dij. Consequently, when mean dispersal is low and/or proportion of 
dispersers is low, maximum dispersal is also low.  

We modelled snow limited dispersal using established relationships for other large, cold 
adapted but snow averse, Arctic ungulates (70). We estimated two-thirds of the chest height for a 
woolly rhinoceros to be 50cm, and dispersal to become more difficult when snow depths 
exceeded this height (17). This approach meant that dispersal between patches of suitable 
habitat across the landscape was more costly in areas of relatively deep snow (Fig. S18). 
Importantly, the relationship never decays to 0, permitting some level of dispersal even under 
very heavy snow. To convert snow depth to a friction layer suitable for modelling snow dispersal 
limitation we generated a logistic equation relating snow depth to ease of movement: 

 
Ease of movement = 

c

(1+ exp (
e - depth

b
))

 
Eq. 5 

Where c is the asymptote, e is the depth of snow at the inflection point, and b equals -1/slope at 
the inflection point. A negative b value indicates that as snow depth increases, then ease of 
movement decreases. 

 
Allee effect 
Allee effects have previously been detected for extinct megaherbivores (71). We set a local 

quasi-extinction threshold (72) which made cell abundance zero if abundance fell below the Allee 
threshold. Due to lack of information on Allee effect for woolly rhinoceros, we slightly expanded 
ranges that have been predicted for woolly mammoth (39). The range of values for the Allee 
effect were 0 (i.e., no Allee effect) to 150 individuals per grid cell corresponding to a density of 
0.015 animals/km2 (Table S1).  

 
Environmental correlation 
This was a fixed parameter in our models that was set to b = 850 km where b is the decay 

constant of an exponential decline model. Our fixed parameter estimate has been used in other 
process-explicit macroecological models (73), including those for Eurasia during the Pleistocene-
Holocene transition (38, 39). This parameter accounts for similarity in environmental fluctuations 
for populations located close together versus further apart. 

 
Human harvesting 
Woolly rhinoceros co-existed with Neanderthals (Homo neanderthalensis) and humans for 

long periods of time before going extinct, and there is evidence they were exploited for food in 
some regions(74-76). Consequently, we modelled human hunting of woolly rhinoceros as a 
function of the timing of the arrival and abundance of anatomically modern humans in a given grid 
cell (see Human density above), with maximum offtake rates varying from 0 – 20% of woolly 
rhinoceros population abundance (39) and harvesting following a Type II to a Type III functional 
response. We chose not to model a direct numerical response because human populations in 
Eurasia were not obligate hunters of woolly rhinoceros, and it is not apparent how many 
rhinoceroses were actively hunted and consumed by humans despite making up to 30% of their 
protein intake (76). Furthermore, fluctuations in human population during this time have been 
linked to climate and associated societal responses, including altered food-procurement 
strategies involving a wide variety of sources (77). 
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We varied exploitation of woolly rhinoceros by humans between 0 – 20% at equilibrium 
abundance (i.e., maximum abundance in a grid cell with HS = 1, and maximum human density). 
Harvesting was modelled using the following functional response: 

 Functional response =
(F  P

z
)

(G + P
z
)
 Eq. 6 

Where P is the density of prey population (current population size, divided by maximum 
population size), F is the maximal predation rate, G is a constant equal to the prey density at 
which predation is half-maximal, and z is a measure of the departure from maximal predation. 
Functional response gives the number of prey killed per predator per year.  

The harvest rate (H, proportion of the prey population killed) was calculated by dividing eq. 
3 by the current prey density: 

 
H = 

(
F  P

z

G + P
z)

P
 

Eq. 7 

The parameterisation (above) is based on considering all of the human population in a 
particular grid cell at maximal density as 1 predator. Thus, to get harvest rate at a particular time 
and grid cell, Eq. 7 was multiplied by the human population density (i.e., current human 
population, divided by maximum human population) at that time and grid cell: 

 
H

`
=

(
N  F  P

z

G + P
z )

P
 

Eq. 8 

Where N is the human population density. G was set to 0.4 (39), and F varied from 0 to 0.25.  
Previously Alroy (78) modelled hunting success of megafauna by setting z = 1 in the above 

equation. This resulted in a type II functional response. We modelled z as a variable parameter 
ranging from 1 to 2 (38, 39, 78). At z = 1 the function is monotonic, under which predation is 
modulated only by prey density and predator satiation, implying complete naivety of prey. At z 
>1.5 hunting success takes on an increasingly sigmoidal Type III functional response, under 
which prey become harder to hunt at low densities. This might result from prey adaptation 
(evolved or learned behaviour), prey switching by hunters or prey being located in refugia (79, 
80).  
 

Latin Hypercube Sampling 
We generated 45,000 process-explicit macroecological models using combinations of 

values for demographic parameters and environmental attributes based on their plausible ranges 
(Table S1) (39, 57). This was done using Latin Hypercube sampling and uniform distributions, 
providing a robust coverage of the multi-dimensional parameter space (81). Each conceivable 
model – with its different combinations of demographic parameter values – was run as a single 
replicate (39, 82) for ~51,500 years (the equivalent of 3,030 generations). 

All models were initialised at carrying capacity (as defined by the relevant Latin Hypercube 
sample) in all areas except North America, where habitat suitability (and thus, carrying capacity) 
was forced to zero during model burn-in (100-generations, 1,700 years). Following burn-in, cells 
in North America were allowed to be colonised if habitat suitability and dispersal conditions 
permitted this to happen. We did this because no fossilised remains of woolly rhinoceros have 
been discovered on the North American side of the Beringian land bridge (19). 

Pattern-oriented modelling 
We used pattern-oriented modelling techniques and Approximate Bayesian Computation 

(ABC) (55) to determine models that did well at replicating the range dynamics of woolly 
rhinoceros during the late Pleistocene and Holocene. The approach provides a systematic way of 
assessing support for different model versions and parameterisations based on validation 
datasets, given some prior beliefs about how likely they are (83). Specifically, we used ABC to 
compare the simulated outputs against five observational targets: occurrence at fossil site at the 
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correct time (14C age ± 1 SD); timing of regional extirpation (corrected for the Signor-Lipps effect; 
84) for Europe, west Siberia, and east Siberia; and period of occurrence in North America 
equalling zero (19). A test of approximate sufficiency (85) suggested excluding the North 
American occurrence target resulted in a less informative model. We did this using the R package 
‘abc’ (86). The summary and target statistics were treated collectively in the ABC modelling (i.e., 
using a multi-variate target), meaning that models were assessed on the capability to 
simultaneously replicate a suite of key aspects of the extinction dynamics of woolly rhinoceros. 

We used the default rejection method to select models that exceeded a critical distance 
from the idealised targets. With the rejection method, Euclidian distances are calculated between 
simulated summary statistics and the validation targets. Following van der Vaart, Beaumont, 
Johnston and Sibly (83), we scaled the summary statistics by their standard deviations (SD), and 
not the median absolute deviation (MAD, the default), before calculating Euclidean distances. The 
SD was chosen as a scaling factor because the MAD of one summary statistic (extinction penalty 
of North America) was zero, leading to an undefined distance. For each round of ABC model 
selection, 1000 folds of cross-validation was done to choose the tolerance value that minimised 
the root-mean-square-error of the demographic parameters in the selected simulations (86). 

We assessed the skill of an initial run of 25,000 simulations using our pattern-oriented 
modelling method. To further refine the parameter distributions and to improve the ability of the 
models to hit the validation targets, we ran an additional 10,000 simulations using informed priors. 
For each demographic parameter, we generated values under appropriate truncated distribution 
types (e.g. truncated normal, truncated negative binomial, etc.) constrained to the 90% CI of the 
posterior parameter distributions (i.e. the 90% CI from the selected simulations). We compared 
each of the informed distributions to the original posterior parameter distribution by calculating 

AIC values and the delta AIC (AIC). Based on the distribution which provided the lowest AIC 

for each parameter, we generated 10,000 uniformly distributed Latin-Hypercube samples, before 
transforming the margins of the hypercube to the desired distributions (87). These parameters 
were used to inform additional process-explicit models. Niches for the new runs were selected 
based on the range of OMI and volume of the niches selected from the ABC. In this way we 
avoided refining the niche to a single reconstruction, but still permitted refinement of the niche 
space. 

After each run of simulations, we repeated the ABC validation to extract the best models. 
We used Bayes Factors to estimate demographic parameter convergence after each run using a 
90% region of practical equivalence (88). If the prior and posterior distribution of each parameter 
did not converge (Bayes Factors > 1), we repeated the process of sampling new informed priors, 
running the simulations and validating the simulations with ABC. If the prior and posterior 
distributions had converged, samples were fixed at the values from the previous set of 
simulations. Following demographic parameter refinement and simulation, we then used ABC to 
compare the ability of each of all simulations from each round (i.e. not the multi-model ensemble 
from each round), to hit spatiotemporal fossil targets within each region (i.e. Europe, west Siberia, 
east Siberia). Analysis of Variance and post-hoc tests of significance were used to identify if each 
round had improved with regards to its ability to hit a more refined regional fossil target. We 
repeated this process a total of three times, giving a total of 45,000 simulations. 

After the final round of ABC model selection, we extracted additional summary statistics to 
test the ability of the selected models to recreate the most recent estimates of woolly rhinoceros 
extinction (89). For each of the selected models (n = 100, 100, and 75 respectively for each 
round), we calculated the weighted distance of the final extinction event of the simulation to the 
last known location of woolly rhinoceros, the number of grid-cells in eastern Siberia that had 
populations during the revised extirpation window (9.8 ka BP ± .2 ka), and whether or not 
extinction in the simulation occurred after 10 ka BP. Goodness of fit tests where then done to 
check for differences between the ability of each simulation round to recreate the independent 
extinction date. Analysis of Variance and post-hoc tests of significance confirmed no difference in 
the ability of each round of the simulation to hit the independent validation targets (Fig. S19). 

The top 100 feasible parameterisations (0.2 %) of 45,000 woolly rhinoceros–climate–human 
interactions were retained and used to generate weighted ensemble averaged estimates of 
spatial abundance, extirpation time, total population size, population fragmentation, and harvest 
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rates. Estimates were weighted by the inverse of the Euclidean distance of the model from the 
idealised targets, giving higher weights to models that best reproduced our multi-variable target. 

Eemian (last interglacial) simulation 
We tested whether the process-explicit model was able to reconstruct persistence of woolly 

rhinoceros during ancient warm events that it survived in the past. Specifically, we used the best 
process-driven models of woolly rhinoceros–climate–human interactions (according to POM) to 
simulate population abundance at the last interglacial. This involved running our model under 
climate and environmental conditions at 120 ka BP, according to HadCM3B-M2.1. We ran the 
models for 101 generations focused on 120 ka BP climate and environmental conditions with 
populations initiated at carrying capacity. Results of these simulations are shown as a map and a 
time series of abundance. The data and scripts required to run the simulations at the last 
interglacial are available here: https://osf.io/6F5MD/. 

 

Counterfactual simulation 

We ran a counterfactual scenario to determine the spatiotemporal role of human hunting on the 
range collapse and extinction of the woolly rhinoceros. To do this we set human hunting of woolly 
rhinoceros to zero after 21 ka BP for the best selected models. We then compared the model 
output with that generated from models with best estimates of harvest during this period. This 
allowed us to check the importance of hunting of woolly rhinoceros after the Last Glacial 
Maximum on its extinction dynamics. 

 

Sensitivity analysis 
Bayesian linear meta models (90) were used to test the global sensitivity of each of the 

demographic parameters in our process-driven simulation model. These models identified which 
demographic model parameters had the largest influence on minimising the Euclidian distance 
between simulated and inferred demographic change. We tested for main effects and two 
interactions: maximum density and maximum harvest, and maximum harvest and humans 
multiplier. These two-way interactions were included to test for additional effects of woolly 
rhinoceros density and the number of humans on the landscape. Models were constructed with 
uniform priors (𝛽𝑘~ 𝑅2(0.5)) and 10 chains, each with 50,000 samples, with the first 10,000 

samples being discarded as burn-in. Model convergence was checked using Gelman-Rubin 
statistics. We tested for effective sample size, and visually examined trace-plots. All model 
diagnostics showed excellent model convergence with all parameters having Gelman-Rubin 
statistics of 1.0 and high effective sample sizes (mean = 437,722, S.D = 95,665). Finally, all 
assumptions of linear models were checked and satisfied before doing posterior predictive 
checks to evaluate the model predictive accuracy relative to the observed data. Posterior 
predictive checks showed excellent model agreement between our observed data and that 
generated by the Bayesian models.  

Using a Bayesian sequential effect existence and significance testing framework (91) the 
existence, significance, and size of the effect of each parameter was then checked. We report 
(Table S1) the 90% CI (Highest Density Interval), along with the probability of direction (P(D), the 
probability of significance (P(S)), and the probability of being large (P(L)). The thresholds beyond 
which the effect is considered as significant (i.e., non-negligible) and large are |0.07| and |0.40|. 
These thresholds were chosen as 0.05 × SDy and 0.3 × SDy for significant and large effects, 
respectively (88). Where y is the Euclidean distance for each simulation from the idealized target.  

 

Post simulation analysis 
To determine the spatiotemporal processes and drivers that are likely to have caused the 

extinction of woolly rhinoceros, we discretised results from our multi-model ensemble projection 
of range collapse, population decline and extinction into 12 distinct glacial/interglacial periods (19, 
92). For each of our fossil sites (n = 288) we identified unique grid-cells (n = 157) and extracted 

https://osf.io/6F5MD/
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continuous estimates of abundance and harvest from 60 ka BP, and reconstructions of annual 
average temperature, precipitation, and winter average snow-depth (7).  

Spatiotemporal predictive-process generalized linear mixed effects models were then used 
to quantify spatiotemporal determinants of abundance. Models were fit using the sdmTMB 
package for R (93). Climatic variables were checked for collinearity using Kendalls Tau (τ). 
Temperature and precipitation values were positively correlated (τ > 0.7), but there was no 
correlation with either variable and snow depth (τ = 0.08 and 0.18, respectively). We then used 
generalised linear mixed models to explore the ability of temperature and precipitation to explain 
trends in woolly rhinoceros abundance through time. This analysis suggested that temperature 

had more explanatory power ( AIC > 3), and subsequently was used in more detailed analyses. 

Due to the varying sample sizes across each of our time periods (n = 12), it was necessary 
to define a separate triangular analysis mesh for each period using all samples from the 
respective period. The mesh is used to define the spatial components in the models as random 
fields, with the vertices used to approximate the spatial variability in observations (93). The mesh 
included barriers designed to prevent the spatial effect “leaking” information across areas outside 
the study region (94), with the barrier defined as the maximum extent of our study region (i.e. 
information was contained to areas that could have been occupied by the simulations). In this 
way, our models implemented a non-stationary Gaussian random field ensuring that the spatial 
effects propagated with the topology of the study region (94). 

Following mesh delineation, all models (n = 12) had abundance regressed against main 
effects of snow depth, temperature, relative harvest rates, and year of simulation, with spatially 
varying intercepts and coefficient estimates for snow depth, temperature, and relative harvest 
rates (95). We opted not to model temporal variation in the coefficients (with explicit temporal 
coefficients) (93) and instead to assume that the temporal response for the covariates was 
constant within each time period. Each model contained an additional random-walk 
spatiotemporal random effect to account for unobserved biotic and abiotic factors that could have 
been changing through time and space and were not accounted for by our covariates (e.g. 
vegetation change; Fig. S13). The spatial range for the spatially varying coefficients and 
spatiotemporal random fields components were estimated independently, using weakly 
informative priors (93). Models were fit with a negative binomial distribution using a half-normal 
non-informative prior distribution for the dispersion parameter (96, 97). Model residuals were 
checked for normality (Fig. S20), before spatially explicit model residuals were checked for spatial 
autocorrelation using Local Moran’s I (98). Local Moran’s I suggested there was no spatial 
clustering of model residuals (Fig. S21). Model performance was then assessed using the 
correlation between the observed and predicted abundances (Fig. S22). 
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Fig. S1. Density plots of prior and posterior of model parameters. The posterior distribution from 
the best simulations following pattern-oriented modelling with Approximate Bayesian Computation 
(ABC) are shown in blue (demographic parameters), red (harvest and human abundance 
parameters), and green (ecological niche requirements). The uniform prior distributions are 
shown in yellow. Demographic parameters are Allee effect, carrying capacity, mean dispersal 
distance, proportion of natal dispersers, maximum (max) growth rate, and variation (Var) in 
growth rate. Harvest parameters were maximum harvest rate, extent to which harvest follows a 
Type II or Type III functional response (harvest z). Human parameters are maximum human 
density and variability in human density within grid-cells. Ecological niche requirements are 
breadth of the climatic conditions that can be occupied and their marginality, measured as the 
distance between average climatic conditions of the occupied and the fundamental niche. 
Unscaled prior and posterior values can found in Table S1. 

 
  



 
 

14 
 

 

Fig. S2. Relative human density across the study region during major stadial/interstadial 
boundaries for process-driven model of climate-human-woolly rhinoceros interactions that 
validated well. Maps show the expansion and change in relative human density across the study 
region. Black points on the maps indicate the locations of fossils from within the corresponding 
time period. Densities reflect effective population size, ranging from 0 to 2126 people per 100km 
x 100km grid cell.   
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Fig. S3. Spatial effects of harvest on abundance during major stadial/interstadial boundaries. 
Maps show the contributing effect of relative harvest offtake on site-level abundance through 
space and time. 
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Fig. S4. Spatial effects of temperature on abundance during major stadial/interstadial boundaries. 
Maps show the contributing effect of changes in temperature on site-level abundance through 
space and time. 
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Fig. S5. Spatial effects of snow depth on abundance during major stadial/interstadial boundaries. 
Maps show the contributing effect of snow depth on site-level abundance through space and 
time. Maps of snow depth across the entire study region are shown in Fig. S7. 
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Fig. S6. Counterfactual scenario without hunting by humans. Yellow trajectories show 
reconstructions of population size according to the selected best 100 models. Blue trajectories 
show reconstructions of population size according to these same best models without hunting of 
woolly rhinoceroses by humans after 21 ka BP. Dashed lines show mean abundances from the 
selected best models. 
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Fig. S7. Average snow depth during major stadial/interstadial boundaries. Maps show changes in 
the annual average snow depth (m) across the study region. The woolly rhinoceros was not 
adapted for dispersing through heavy snow, and after retreating to climatic refugia, populations 
became trapped as snow depth increased after ~17.5 ka BP. Black points on the maps indicate 
the locations of fossils from within the corresponding time period.  
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Fig. S8. Average annual temperature conditions during major stadial/interstadial boundaries. 
Maps show the changes in annual mean temperature across the study region. Significant 
warming after ~17.5 ka BP forced the woolly rhinoceros to retreat into refugia in the south of the 
range, and north east Siberia. Black points on the maps indicate the locations of fossils from 
within the corresponding time period. 
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Fig. S9. Average annual total precipitation conditions during major stadial/interstadial boundaries. 
Maps show the changes in annual mean total precipitation across the study region. The woolly 
rhinoceros retreated into refugia in the south of the range, and north east Siberia as a result of 
drier and warmer (Fig. S8) conditions after ~17.5 ka BP. Black points on the maps indicate the 
locations of fossils from within the corresponding time period. 
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Fig S10: Map (A) shows the mean population abundance simulated during the Last Interglacial 
for the best selected models. All simulations were initialized at carrying capacity and simulated for 
101 timesteps (B). All simulations (grey lines) had stable total abundances across the last 
interglacial, with mean abundance shown by the dashed black line. Each timestep represents a 
generation. 
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Fig. S11. Habitat suitability at the Last Interglacial. Map (A) shows the mean habitat suitability 
during the Last Interglacial across the selected models. Hatched areas indicate areas of 
moderate (0.6 – 1.5m, blue) and deep (> 1.5m, black) winter snow. The pairwise distribution of 
sampling points for the four climate variables used to define the niche of woolly rhinoceros (B). 
Blue points represent the selected niches, yellow the full potential climatic niche, with the black 
line representing the minimum convex expectation environmental background (43). 

  



 
 

24 
 

Fig. S12. Long distance dispersal function in our woolly rhinoceros–climate–human models. 
Lines show the exponential decay on the proportion of dispersers from each population. Grey 
lines show all simulations, red lines show the 100 best models, and the black line shows the 
ensemble weighted average dispersal. 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

25 
 

Fig. S13. Spatiotemporal random effects during major stadial/interstadial periods. These 
represent biotic and abiotic factors that are changing through time and space and are not 
accounted for in our predictive-process models (e.g. vegetation change). 
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Fig. S14. Location of the study site, fossil locations, and radiocarbon dates across Eurasia. (A) 
Map shows the location of radiocarbon dated fossils records for C. antiquitatis, along with the 
median calibrated age of the fossil (A). The blue diamond in east Siberia shows the final 
extinction location as estimated by the fossil record. The purple diamond in north-east Siberia 
shows the location of the final extinction as estimated from aDNA (9.8 ka BP ± .2 ka BP; 89). 
Barplot shows the number of samples within major stadial and interstadial boundaries (92), with 
percentages showing the %-contribution of each time bin to the full fossil record (B). Note that the 
sample from <11.7 ka BP is from sedimentary aDNA (89). 
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Fig. S15. The four-dimensional multi-temporal “fundamental” niche hypervolume generated for 
woolly rhinoceros across Eurasia. The pairwise distribution of sampling points for the four climate 
variables used to define the fundamental niche of woolly rhinoceros (A). Dark purple points 
represent conditions at fossil sites, with light purple points representing background points. 3D 
plot of the environmental space woolly rhinoceros occupied for the n = 244 fossil records, with 
points coloured by fossil age with points coloured by evapotranspiration (B). Points are sampled 
across the temporal span of each fossil (mean age ± 1 SD). Green = high evapotranspiration, 
red = low evapotranspiration. 
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Fig. S16. Results of subsampling the niche cuts for woolly rhinoceros. The original hypervolume 
volume (breadth) (A) and OMI (marginality) measurements (B), and the values once transformed 
to uniform distributions (C-D). Values for all niche cuts are shown by the dotted lines in A-D; solid 
lines show the distribution of the 3,000 subsampled niche cuts. 
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Fig. S17. Annual mean global net primary productivity used by CISGeM. The light purple line 
shows the previous NPP reconstruction used by (51). Following (54), we blended a higher 
temporal resolution NPP construction (7) (orange line), for the period 60ka – 0 BP. The 
Armstrong, Hopcroft and Valdes (7) data was blended to the original reconstruction using a 
multiplicative bias correction to prevent any step changes. The original NPP data for the period 
60 ka – 0 BP is shown by the dark purple line. Whilst generational variability in NPP is much 
higher in our dataset, the values are of a similar magnitude. 
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Fig. S18. The logistic curve relating snow depth to ease of movement for dispersal. As snow 
depth increased, the cost of movement rapidly increased following a critical depth. Importantly, 
the ease of movement never reaches zero permitting some level of dispersal even under adverse 
conditions. 
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Fig. S19. Post-hoc testing for multiple simulation rounds. Post-hoc testing suggested significant 
differences between simulation round 1 to additional rounds of simulation with large differences in 
the ability to hit the number of fossils (%) within each region (A). However, there was no 
difference between rounds 2 and 3 suggesting convergence. Further testing on independent 
validation data showed that all three simulation rounds were able to effectively recreate the 
extirpation pattern from estimates of aDNA (16), with no significant pairwise differences (B). 

  



 
 

32 
 

Fig. S20. Histograms of standardised model residuals for each time period. Model residuals were 
normally distributed suggesting correct model specification. 
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Fig. S21. Spatially explicit model residuals from our spatiotemporal GLMM’s. Local indicator of 
spatial autocorrelation suggested there was no clustering of model residuals. 
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Fig. S22. Predicted versus observed abundances for each time period from our spatiotemporal 
GLMM’s. Model performance was excellent across each of our time periods. 
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Table S1. Prior and posterior ranges for the best selected models. Prior ranges were chosen 
to represent wide, but plausible parameter ranges based on estimates from the literature. 
Posterior ranges are minimum and maximum values from the 100 best selected simulations. 
Posterior means are weighted means based on distances from idealized targets. BF = Bayes 
factors. BF greater than 1 suggest the posteriors are significantly different from the priors. BF 
indicates that posterior distributions for the final round of simulations had converged for all but 
two parameters, suggesting no difference in posterior values for simulation round 2 and 3, and 
that further refinement would likely result in overfitting (38). 90% CI = 90% confidence interval 
(from the posterior highest density interval) of the parameter estimate from the Bayesian meta-
model. P(D), P(S), and P(L) are the probability of the effect of a given variable being constrained 
to the direction (D) of the parameter estimate, the size (S) of the parameter effect, and if the 
effect is large (L) (91) 

Parameter 
Prior 
range 

Post. 
range 

Post. 
mean 

BF 90% CI P(D) P(S) P(L) 

Allee effect 10, 150 30, 145 93 1.100 0.03, 0.09 1.00 0.46 0.00 

Carrying capacity 
75, 

32,500 
1,300, 
30,000 

9,500 0.307 -0.24, -0.18 1.00 1.00 0.00 

Mean dispersal 
distance (km) 

0, 250 3, 114 30 0.047 0.06, 0.13 1.00 0.93 0.00 

Proportion of natal 
dispersers 

0.005, 
0.25 

0.01, 0.22 0.08 0.611 0.03, 0.09 1.00 0.34 0.00 

Maximum growth 
rate 

0.00, 
0.69 

0.09, 0.65 0.38 0.617 -0.57, -0.52 1.00 1.00 1.00 

Variability in growth 
rate 

0.00, 
0.30 

0.02, 0.27 0.11 0.979 0.12, 0.17 1.00 1.00 0.00 

Maximum harvest 
rate 

0.00, 
0.20 

0.03, 0.18 0.10 1.050 0.37, 0.44 1.00 1.00 0.58 

Harvest z 
1.00, 
2.00 

1.05, 1.91 1.43 0.610 -0.69, -0.63 1.00 1.00 1.00 

Maximum human 
density 

0.00, 
1.00 

0.05, 0.92 0.53 0.635 -0.17, -0.12 1.00 1.00 0.00 

Variability in human 
density 

0.00, 
1.00 

0.10, 0.90 0.45 0.524 0.43, 0.48 1.00 1.00 1.00 

Niche breadth 
0.00, 
1.00 

0.65, 1.00 0.88 N/A -1.30, -1.22 1.00 1.00 1.00 

Niche marginality 
0.00, 
1.00 

0.01, 0.64 0.25 N/A 0.50, 0.57 1.00 1.00 1.00 
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Movie S1 (separate file). Estimates of relative abundance of woolly rhinoceros from the best 
selected simulations. Red diamonds show location and timing of radiocarbon dated fossils with 
high-quality dates. 

Movie S2 (separate file). Weighted average habitat suitability from the best selected simulations. 
Red diamonds show location and timing of radiocarbon dated fossils with high-quality dates. 

Dataset S1 (separate file). Fossil database for woolly rhinoceros, including metadata.   

Software S1 (separate file). Code and data necessary to reproduce the best selected 
simulations: https://osf.io/6F5MD/ 
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