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Table S1. Participant demographics and Plasmodium spp. infection and serology status, by state. 

 
 Bago (East) Kayah Kayin Total 

No. of samples N=1,147 N=3,872 N=8,575 N=13,594 

No. of villages, (n) 10 38 56 104 

Sex, % (n)     

Male 44.0% (505) 50.5% (1,954) 51.5% (4,412) 50.5% (6,871) 

Risk group, % (n)     

Resident 46.2% (530) 31.6% (1,225) 47.1% (4,042) 42.6% (5,797) 

Migrant 11.2% (129) 2.8% (108) 13.9% (1,196) 10.5% (1,433) 

Resident/Forest 
Dweller 

42.5% (488) 65.6% (2,539) 38.9% (3,337) 46.8% (6,364) 

Age, Median (IQR) 
25.0 (17.0-

40.0) 
20.0 (10.0-

35.0) 
18.0 (9.0-

32.0) 
19.0 (10.0-

35.0) 

PCR, % (n) N=1052 N=3552 N=8074 N=12678 

P. vivax 1.3% (15) 1.6% (61) 1.4% (122) 1.5% (198) 

P. falciparum 1.2% (14) 0.8% (30) 0.9% (76) 0.9% (120) 

Mixed 0.7% (8) 0.6% (24) 0.6% (54) 0.6% (86) 

Anti-SG6 IgG     

OD, Median (IQR) 2.1 (1.5-2.4) 2.1 (1.5-2.4) 2.0 (1.4-2.4) 2.1 (1.4-2.4) 

Seroprevalence, % (n) 62.3% (715) 63.6% (2,464) 57.1% (4,898) 59.4% (8,077) 

Anti-PfCSP IgG     

OD, Median (IQR) 0.3 (0.1-0.7) 0.3 (0.1-0.7) 0.3 (0.1-0.7) 0.3 (0.1-0.7) 

Seroprevalence, % (n) 18.8% (216) 19.0% (737) 18.3% (1,567) 18.5% (2,520) 

Anti-PvCSP IgG N=1037 N=3538 N=7788 N=12363 

OD, Median (IQR) 0.6 (0.3-0.9) 0.5 (0.3-0.9) 0.6 (0.3-0.9) 0.6 (0.3-0.9) 

Seroprevalence, % (n) 19.0% (197) 16.2% (574) 19.6% (1,527) 18.6% (2,298) 

Abbreviations: IQR – interquartile range (indicated by the 25thand 75th percentiles), PCR – 
polymerase chain reaction, OD – optical density. 
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Fig. S1. Overall anti-SG6 IgG levels, (a) P. falciparum and (b) P. vivax transmission dynamics 
(prevalence and anti-CSP IgG) over time. (a) shows the median (IQR) levels of IgG to P. 
falciparum transmission-stage (PfCSP) and the vector salivary (SG6) antigens (left y-axis), as 
well as the prevalence (95%CI) of P. falciparum infection (right y-axis), over the 15-month study 
period. (b) shows the median (IQR) levels of IgG to P. vivax transmission-stage (PvCSP) and the 
vector salivary (SG6) antigens (left y-axis), as well as the prevalence (95%CI) of P. vivax infection 
(right y-axis), over the 15-month study period. Vertical dotted lines indicate season. 
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Fig. S2. Monthly rainfall (mm) and temperature (ºC) for study area. Figure shows the median and 
interquartile range (IQR) of rainfall (56) (left y-axis) and day-time land surface temperature (57) 
(right y-axis) for the study region over time. Vertical dotted lines indicate typical seasonal patterns 
with mosquito icons (from BioRender) indicating the peak densities of Anopheles dirus sensu lato 
(s. l.) and An. minimus (the dominant vector species of Myanmar) as reported in Oo, Storch and 
Becker (29) and Suwonkerd, et al. (18). 
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Supporting Information Discussion 1 

Seasonal anti-SG6 IgG seroprevalence for Bago (East), Kayah and Kayin.  
As we had access to samples collected over time, we sought to define heterogeneity in anti-SG6 
IgG seroprevalence both spatially and temporally. We were prevented from fitting a 
spatiotemporal that included an autoregressive correlation structure to properly account for 
temporal dynamics due to low rates of monthly sampling in each village. Instead, data were 
partitioned by season and a geostatistical model using the covariates identified as important in 
the non-temporal model (regression coefficients shown in Table S2) was fitted to each dataset 
separately. Fig. S3 shows the predicted posterior mean seroprevalence of anti-SG6 IgG for the 
hot, rainy and cool seasons, with the standard deviation of the pixel-wise predicted probability as 
an indication of uncertainty in our model shown in Fig. S4. Interestingly, the seroprevalence of 
anti-SG6 IgG antibodies is markedly different depending on seasonality (Fig. S3), with the median 
seroprevalence dropping significantly from the hot (65%; range: 10-97%) to the rainy (35%; 
range: 19-60%) season, before increasing to higher levels during the cool season (81%, range: 
41-97%). However, the patterns of spatial heterogeneity in anti-SG6 IgG seroprevalence are 
similar between each season and when considered altogether. 
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Fig. S3. Predicted anti-SG6 IgG seroprevalence for Bago (East), Kayah and Kayin, partitioned by season. Geospatial maps showing the predicted 
posterior mean seroprevalence of anti-SG6 IgG. Data were partitioned and models were fitted separately (hot: n=2,801; rainy: n=6,840; cool: 
n=3,953), with each model adjusting for rainfall, diurnal temperature difference, potential evapotranspiration, distance to water and tree coverage. 
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Fig. S4. Model uncertainty for predicted anti-SG6 IgG seroprevalence for Bago (East), Kayah and Kayin, partitioned by season. Geospatial maps 
showing the standard deviation in the predicted posterior mean probability of anti-SG6 IgG seropositivity. Data were partitioned and models were 
fitted separately, with each model adjusting for rainfall, distance to water, potential evapotranspiration, tree coverage and diurnal temperature 
difference. 
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Table S2. Regression coefficients from seasonally partitioned models of anti-SG6 IgG seroprevalence. 

 Hot  Rainy  Cool 

 OR 95% CrI  OR 95% CrI  OR 95% CrI 

b0 2.26 1.35 3.81  0.78 0.60 1.02  5.99 4.19 8.57 

Rainfall 0.74 0.48 1.15  1.12 0.88 1.43  0.77 0.56 1.06 

Land Surface Temperature Diurnal Difference 0.57 0.38 0.87  1.02 0.78 1.32  0.68 0.45 1.04 

Potential Evapotranspiration 1.11 0.76 1.61  0.96 0.77 1.18  0.91 0.64 1.30 

Distance to water 1.44 0.94 2.21  1.01 0.78 1.30  1.12 0.72 1.73 

Tree Coverage Fraction 0.46 0.28 0.75  0.81 0.61 1.10  0.48 0.31 0.74 

Note. Table shows the odds ratios (OR) and 95% credible interval (95%CrI) from a Bayesian geostatistical model. Data from all villages were 
partitioned and models were fitted separately (hot: n=2,801; rainy: n=6,840; cool: n=3,953), with each model adjusting for covariates: rainfall, 
diurnal temperature difference, potential evapotranspiration, distance to water and tree coverage (scaled for a 1 standard deviation change). 
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Supporting Information Discussion 2 

Anti-SG6 IgG seroprevalence for Bago (East), Kayah and Kayin by risk-group.  
As our study uses samples collected as part of routine delivery of malaria services to residents 
and higher-risk individuals (migrants and forest-goers) living in hard-to-reach villages, we sought 
to determine any differences in the predicted distribution of anti-SG6 IgG seroprevalence by 
participant risk-group. While not usual to include individual-level demographic factors as 
covariates in geospatial models (largely due to a lack of this demographic data for out of sample 
areas), in these investigations we have partitioned our data by participant risk-group (low-risker: 
village residents vs higher-risk: migrants and forest-goers) and fit separate geostatistical models 
to each stratified dataset (with the same covariates identified in the overall model; coefficients 
shown in Table S3) in order to inform the appropriate populations to be targeted for surveillance 
in these hard-to-reach villages. Fig. S5 shows the predicted posterior mean seroprevalence of 
anti-SG6 IgG for our lower (a) and higher-risk (b) participants, with the standard deviation of the 
pixel-wise predicted probability as an indication of uncertainty in our model shown in Fig. S6. 
 
The seroprevalence of anti-SG6 IgG antibodies was higher amongst high-risk populations 
(median: 54%; range: 28.8-87.1%) compared to our village residents (median: 27.6%; range: 4.6-
75.7%) (Fig. S5). However, the patterns of spatial heterogeneity in anti-SG6 IgG seroprevalence 
are similar, with hot spots of higher SG6 seroprevalence in the northern parts of Bago (East), 
north-eastern Kayin and western Kayah evident in both village resident and higher risk participant 
analyses. 
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Fig. S5. Predicted anti-SG6 IgG seroprevalence for Bago (East), Kayah and Kayin, partitioned by 
participant risk group. Geospatial maps showing the predicted posterior mean seroprevalence of 
anti-SG6 IgG. Data were partitioned and models were fitted separately (lower-risk (village 
residents): n= 5,797; higher-risk (migrants and forest-goers): n=7,797), with each model adjusting 
for rainfall, diurnal temperature difference, potential evapotranspiration, distance to water and tree 
coverage. 
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Fig. S6. Model uncertainty for predicted anti-SG6 IgG seroprevalence for Bago (East), Kayah and 
Kayin, partitioned by participant risk-group. Geospatial maps showing the standard deviation in 
the predicted posterior mean probability of anti-SG6 IgG seropositivity. Data were partitioned by 
risk-group (low-risk (village residents); high-risk (migrants and forest-goers)) and models were 
fitted separately, with each model adjusting for rainfall, distance to water, potential 
evapotranspiration, tree coverage and diurnal temperature difference. 
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Table S3. Regression coefficients and 95% credible intervals of covariates fitted in our 
geostatistical model of anti-SG6 IgG seropositivity, partitioned by participant risk-group. 

 Low-risk  High-risk 

Covariate OR 95% CrI  OR 95% CrI 

b0 1.46 1.07 2.00  1.35 1.00 1.81 

Rainfall 0.81 0.62 1.07  0.77 0.59 1.00 

Land Surface Temperature Diurnal Difference 0.73 0.57 0.95  0.97 0.77 1.21 

Distance to Water 1.24 0.92 1.67  0.88 0.69 1.11 

Potential Evapotranspiration 0.84 0.64 1.10  1.18 0.94 1.48 

Tree Coverage Fraction 0.57 0.41 0.79  0.69 0.52 0.93 

Note. Data given as odds ratio (OR) and 95% credible intervals (95%CrI) for a 1 standard 
deviation change in each covariate fitted in a Bayesian geostatistical model of the binomial 
response for the seroprevalence of anti-SG6 IgG antibodies, partitioned by risk-group (low-risk 
(village residents): n= 5,797; high-risk (migrants and forest-goers): n=7,797). 
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Table S4. Regression coefficients from joint model of SG6, CSP and PCR. 
 

OR 95%CrI 

Intercept SG6 1.28 0.71 2.31 

Intercept CSP 0.36 0.32 0.41 

Intercept PCR 0.04 0.04 0.05 

Slope SG6 2.28 1.80 2.90 

Slope CSP 1.13 0.81 1.56 

Slope PCR 1.32 0.82 2.13 

Distance to water 0.83 0.71 0.98 

Topographical wetness index 1.06 0.94 1.20 

Slope 0.89 0.83 0.96 

Tree coverage fraction 0.61 0.46 0.80 

Inaccessibility to cities 1.10 0.93 1.29 

Night-time lights 1.20 1.03 1.40 

Note. Table shows the odds ratios (OR) and 95% credible interval (95%CrI) from a Bayesian 
geostatistical joint model with multiple likelihoods. Models were fitted to participant data from all 
villages who had observations for each outcome (n=11,988), and adjusts for covariates: distance 
to water, topographical wetness index, slope, tree coverage fraction, inaccessibility to cities and 
night-time lights (scaled for a 1 standard deviation change). 
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Supporting Information Discussion 3 

Model validation procedures for joint modelling of SG6, CSP and PCR-detectable 
Plasmodium spp. prevalence.  
Here we describe the procedures employed to validate the novel joint modelling framework 
presented in Fig. 3. Fig. S7 shows a weak positive correlation between the observed SG6 and 
CSP IgG seroprevalence, and weak negative correlations between the observed prevalence of 
Plasmodium infections and anti-SG6 and CSP IgG seroprevalence. However, when using a joint 
model with multiple likelihoods, we observe shrinkage in the spread of the data and the 
emergence of a stronger association between anti-SG6 and CSP IgG, and weak positive 
correlations between Plasmodium prevalence and anti-SG6 and CSP IgG. Fig. S8 shows the 
models’ goodness of fit, with the observed vs predicted mean probabilities of each of our 
outcomes at each village, and Fig. S9 and Fig. S10 show two kinds of model validation. The first, 
shown in Fig. S9, withholds the observed SG6, CSP and PCR data, and the second, shown in 
Fig. S10, withholds only the SG6 data. Allowing the model to fit to CSP and PCR data in the 
additional 10% of villages only marginally improved the model performance.  
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Fig. S7. Associations between outcomes of interest (SG6, CSP, PCR) in each village, both before (observed) and after (fitted) joint modelling. 
Pearson correlation used to estimate r. 
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Fig. S8. Joint model of SG6, CSP and PCR - goodness of fit. Observed vs model fitted 
prevalence of each outcome in each village: SG6 IgG, CSP and PCR. Pearson correlation used 
to estimate r.  
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Fig. S9. Joint model validation procedure 1. The model is trained using the observed SG6, CSP 
and Plasmodium prevalence data from 90% of villages. The predicted and observed 
seroprevalence (with 95% credible intervals) are given for each of the omitted 10% of villages (20 
repeats) represented by pink crosses and for omitted sites grouped in a series of bins (deciles) by 
predicted seroprevalence (black dots). Pearson correlation used to estimate: SG6 r = 0.926, CSP 
r = 0.723 and Plasmodium prevalence r = 0.615 
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Fig. S10. Joint model validation procedure 2. The model is trained using the observed SG6 data 
from 90% of villages, and the CSP and PCR data from all villages. The predicted and observed 
seroprevalence (with 95% credible intervals) are given for each of the omitted 10% of villages (20 
repeats) represented by pink crosses and for omitted sites grouped in a series of bins (deciles) by 
predicted seroprevalence (black dots). Pearson correlation used to estimate: SG6 r = 0.923, CSP 
r = 0.955 and Plasmodium prevalence r = 0.679 
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Supporting Information Discussion 3 

Model validation procedures for joint modelling of SG6, Pf- and Pv-CSP and PCR-
detectable P. falciparum and P. vivax prevalence. 
Given innate differences in the biology of Plasmodium falciparum and P. vivax malaria as they 
relate to transmission and the establishment of infection (i.e. P. vivax infections can be caused 
from relapsing hypnozoites rather than new infectious bites), here we present the novel joint 
modelling approach for each species. Fig. S11 shows the predicted seroprevalence of antibodies 
against the Anopheles salivary antigen SG6 and P. falciparum sporozoite antigen PfCSP, as well 
as the prevalence of PCR-detectable P. falciparum infections. While Fig. S14 indicates the 
predicted seroprevalence of anti-SG6 and anti-PvCSP IgG antibodies, as well as the predicted 
prevalence of P. vivax infections across the region of Southeast Myanmar. The foci of 
transmission identified are similar between joint models. Table S5 and Table S6 indicates the 
regression coefficients for variables identified using respective stepwise model selection 
procedures for P. falciparum and P. vivax transmission. Fig. S12 and Fig. S15 indicate the 
recovery of positive associations between each of outcomes after joint modelling and Fig. S13 
and Fig. S16 show good predictive power of these joint models. 
 



20 

 

 

Fig. S11. Predicted seroprevalence of anti-SG6 and PfCSP IgG antibodies and predicted prevalence of PCR-detectable P. falciparum infections, 
after joint modelling. Estimated using a geospatial model that adjusts for land surface temperature (diurnal difference), potential 
evapotranspiration, topographical wetness index, distance to water, slope, tree coverage fraction and night-time lights. 
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Table S5. Regression coefficients from joint model of SG6, PfCSP and Pf-PCR prevalence. 

 OR 95% CrI 

Intercept SG6 1.26 0.75 2.12 

Intercept PfCSP 0.19 0.17 0.21 

Intercept Pf-PCR 0.04 0.03 0.05 

Slope SG6 1.66 1.30 2.11 

Slope PfCSP 1.23 0.86 1.77 

Slope Pf-PCR 1.49 0.86 2.57 

Land Surface Temperature (Diurnal Difference) 0.78 0.63 0.98 

Potential Evapotranspiration 1.14 0.92 1.41 

Distance to water 0.84 0.69 1.02 

Topographical wetness index 1.07 0.93 1.23 

Slope 0.90 0.82 0.99 

Tree coverage fraction 0.58 0.43 0.78 

Night-time lights 1.17 1.01 1.34 

Note. Table shows the odds ratio (OR) and 95% credible interval (95%CrI) from a Bayesian geostatistical joint model with multiple likelihoods. 
Models were fitted to participant data from all villages who had observations for each outcome (n=11,988), with each model adjusting for 
covariates: land surface temperature (diurnal difference), potential evapotranspiration, topographical wetness index, distance to water, slope, tree 
coverage fraction and night-time lights (scaled for a 1 standard deviation change). 
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Fig. S12. Associations between outcomes of interest (SG6, PfCSP, Pf-PCR) in each village, both before (observed) and after (fitted) joint 
modelling.  Pearson correlation used to estimate r. 
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Fig. S13. Model validation procedure. The model is trained using the observed SG6 data from 
90% of villages, and the PfCSP and P. falciparum PCR data from all villages. The predicted and 
observed seroprevalence (with 95% credible intervals) are given for each of the omitted 10% of 
villages (20 repeats) represented by pink crosses and for omitted sites grouped in a series of bins 
(deciles) by predicted seroprevalence (black dots).  Pearson correlation used to estimate: SG6: r 
= 0.930, PfCSP: r = 0.932, Pf-PCR: r = 0.910. 



24 

 

 

Fig. S14. Predicted seroprevalence of SG6 and PvCSP IgG antibodies and predicted prevalence of PCR-detectable P. vivax infections, after joint 
modelling. Estimated using a geospatial model that adjusts for rainfall, land surface temperature (diurnal difference), potential evapotranspiration, 
distance to water, slope and tree coverage fraction, accessibility to cities and night-time lights. 
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Table S6. Regression coefficients from joint model of SG6, PvCSP and Pv-PCR prevalence. 

 OR 95% CrI 

Intercept SG6 1.42 1.09 1.85 

Intercept PvCSP 0.16 0.14 0.19 

Intercept Pv-PCR 0.03 0.03 0.04 

Slope SG6 2.35 1.73 3.18 

Slope PvCSP 1.15 0.82 1.61 

Slope Pv-PCR 1.49 1.04 2.15 

Rainfall 0.82 0.65 1.04 

Land Surface Temperature (Diurnal Difference) 0.96 0.79 1.17 

Potential Evapotranspiration 1.22 1.02 1.46 

Distance to water 0.97 0.81 1.15 

Slope 0.88 0.82 0.96 

Tree coverage fraction 0.77 0.61 0.98 

Accessibility to cities 1.08 0.93 1.25 

Night-time lights 1.12 1.00 1.26 

Note. Table shows the odds ratio (OR) and 95% credible interval (95%CrI) from a Bayesian geostatistical joint model with multiple likelihoods. 
Models were fitted to participant data who had observations for each outcome (n=11,988), with each model adjusting for covariates: rainfall, land 
surface temperature (diurnal difference), potential evapotranspiration, distance to water, slope and tree coverage fraction, accessibility to cities 
and night-time lights (scaled for a 1 standard deviation change). 
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Fig. S15. Associations between outcomes of interest (SG6, PvCSP, Pv-PCR) in each village, both before (observed) and after (fitted) joint 
modelling. Pearson correlation used to estimate r.   
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Fig. S16. Model validation procedure. The model is trained using the observed SG6 data from 
90% of villages, and all of the PvCSP and P. vivax PCR prevalence data. The predicted and 
observed seroprevalence (with 95% credible intervals) are given for each of the omitted 10% of 
villages (20 repeats) represented by pink crosses and for omitted sites grouped in a series of bins 
(deciles) by predicted seroprevalence (black dots). Pearson correlation used to estimate: SG6: r 
= 0.919, PvCSP: r = 0.982, Pv-PCR: r = 0.614.  
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Supporting Information Methods 

Study location 
This study uses data from a stepped-wedge cluster randomised controlled trial assessing the 
effectiveness of personalised insect repellent delivered by village health volunteers performing 
routine malaria services. The study was performed in 114 hard to reach villages from three states 
(Kayin, Kayah and Bago (East)) in Southeast Myanmar. Geolocations (longitude and latitude) of 
villages were determined retrospectively using Place codes (Pcodes) from the Myanmar 
Information Management Unit (MIMU) database which links Pcodes with GPS coordinates. In 
instances where a villages’ Pcode could not be matched or MIMU did not provide GPS 
coordinates for a Pcode (35 villages), we arranged with the original conductors of the study to 
revisit villages and were able to retrieve GPS coordinates for an additional 29 villages. In total, 
data were collected for 104 villages (Fig. S17). 
 
 
 

 

Fig. S17. Location of 104 study villages from Kayin, Kayah and Bago (East) states in Southeast 
Myanmar. Map was generated in ArcMap using shapefiles from Malaria Atlas Project and base 
maps from OpenStreetMap. 

 

 
Anopheles salivary antibody detection.  
Detection of total IgG antibodies against Anopheles salivary antigen gSG6 was performed by 
adapting previously published ELISA protocols, and optimising them into a high-throughput 
protocol outlined below. Spectraplates (Perkin Elmer) were coated with 0.5μg/mL of synthetic An. 
gambiae salivary peptide (gSG6-P1) (Genscript) resuspended in autoclaved MilliQ water and 
diluted in PBS, and incubated for 3 hours at 37ºC. Plates were washed and blocked for one hour 
at 37ºC with Blocking Buffer (Pierce, Thermo Scientific USA). After a subsequent wash step, sera 
were added at a desired concentrations (diluted in 10% Blocking Buffer with PBS) and incubated 
overnight at 4ºC. Following sera incubation, plates were washed and HRP-conjugated goat anti-
human IgG (Millipore) was added at a 1:500 dilution. Plates were incubated at 37ºC for 1.5 hours 
and then washed. ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) substrate was 
added to each well, covered and left to develop at room temperature, then stopped with 1% 
sodium dodecyl sulphate (SDS), and the optical density (OD) was read in a spectrophotometer at 
405nm. 
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Statistical analysis.  
Validation analyses to assess the models’ goodness of fit and predictive accuracy were 
performed by Pearson correlation of observed versus predicted data and hold out procedures, 
respectively. Specifically, the models were trained using observed data from a subset of 90% of 
the villages, and then used to predict the prevalence in the withheld villages (i.e. the test dataset, 
10% of villages). This process was repeated 20 times with different subsets, and the observed vs 
predicted prevalence were compared (using Pearson correlation) for each omitted site in the test 
dataset and for a series of bins (deciles) by the predicted prevalence.  


