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Supporting Information Text 43 
 44 

Biodiversity Forecasting with Occurrence Data 45 
 46 

Predicting the impact of climate change on biodiversity has been dominated for the last twenty 47 
years by an approach that associates a species’ occurrence (either presence-absence or 48 
presence-only data) with climate at those locations. The principle is illustrated in Fig. S1 with 49 
respect to a single temperature variable. In practice, this statistical model, known as a species 50 

distribution model (SDM), climate envelope model, or ecological niche model, is created using 51 
many climate (or other predictor) variables at once. Excellent reviews of the methods are found in 52 
(1–3). The statistical model is then used to predict or forecast change in the species’ geographic 53 
distribution with changing climate. In the single-variable example of temperature, with warming, 54 

the species’ probability or rate of occurrence is predicted to increase at relatively cool locations 55 
(the leading edge) and decline at warmer locations (the trailing edge; Fig. S1B).  56 
 57 
Climate responses across scales 58 

 59 
In order for climate envelope or SDM predictions of range dynamics to actually come to pass, 60 
lower-level demographic variables, such as population size or density (abundance), population-61 
level growth rate, or the net effect of individual-level vital rates (including growth, survival, and 62 

birth rates) should respond similarly to changing climate, either matching the entire response, 63 
including breadth (solid lines, Fig. S2), or, if more limited in breadth, they should reflect the local 64 
slope of the species-scale climate response curve (dashed lines, Fig. S2). Ecological theory 65 
supports this assumption: the center-periphery hypothesis predicts that individual-level 66 

performance and population-level growth rate decline from the center to the edge of a species’ 67 
geographic and environmental distribution (Fig. S2). Under the abundant-center hypothesis and 68 
Whittaker’s continuum concept, it is expected that a species’ abundance is greatest at the center 69 
of its ecological niche (i.e., climatic tolerances; Fig. S2). Though we note – these theoretical 70 

expectations concern time-averaged responses to spatial variation in climate (not responses to 71 
time-varying climate). Further, range dynamics in the real world are complicated by the lack of 72 
correspondence between position in geographic and environmental space – climatically average 73 
(or extreme) conditions are found throughout species’ geographic distributions (4–6). 74 

 75 
Climate response curves at different biological scales (individual, population, and species) and in 76 
response to spatial vs. temporal climate variation are influenced by a variety of different 77 
ecological processes. Further, they can take on a variety of shapes beyond a Gaussian, bell-78 
shaped curve (unimodal, symmetric; Fig. S10A).  79 

 80 
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Individual Scale. Focusing on the scale of an individual organism, the phenotypic response of a 81 
single genotype to different environmental conditions is termed by population geneticists its 82 
reaction norm. A time series of an individual’s growth rate is an example of a single genotype 83 

expressing different phenotypes (growth rates) when exposed to different conditions (interannual 84 
climate variation and any other differences between years). This interannual variation in growth is 85 
the result of phenotypic plasticity. Thermal performance curves, plastic responses to different 86 
temperature conditions, have been the subject of heightened interest in the context of 87 

anthropogenic warming (7). They are understood to be bounded at both a minimum and 88 
maximum value – organismal functionality goes to zero below a minimum temperature and above 89 
a maximum temperature (the critical thermal maximum). Between the minimum and maximum 90 
lies an optimum – a temperature at which individual-level physiological functioning reaches its 91 

peak. This thermal response curve may be symmetric (Gaussian) or left- or right-skewed (Fig. 92 
S10A). If skewed, the response may be approximated by a linear function across much of the 93 
range of temperatures to which the organism is regularly exposed and hence adapted (Fig. 94 
S10B). Other climate response curves at the individual scale may be saturating. For example, 95 

performance in plants may be a saturating function of soil moisture – increasing to a plateau, 96 
above which additional soil moisture leads to neither increased nor decreased performance (Fig. 97 
S10A).  98 
 99 

Population scale. Climate response curves at the population scale, involving population size, 100 
density, or growth rate as responses, emerge as the net result of five demographic processes or 101 
vital rates: birth, death, immigration, emigration, and (in structured populations) changes in age, 102 
size, or developmental stage. Different vital rates may be affected by climate differently, even in 103 

an opposite manner – known as demographic compensation. The net effect of a climate variable 104 
on population growth rate is a function of its effect on each vital rate and the sensitivity of 105 
population growth rate to changes in each vital rate. Additionally, population-scale climate 106 
response curves reflect community dynamics, including competition between species, facilitative 107 

or mutualistic interactions, food web (consumer-resource) relationships, disturbance processes, 108 
source-sink dynamics, and community sorting (e.g., priority effects). 109 
 110 
Species Scale. At the scale of a species’ geographic distribution, climate response curves reflect 111 

all the above processes. In addition, it is widely recognized that climatically suitable habitat may 112 
not be occupied because the species’ rate of dispersal may prevent (limit) it from colonizing a 113 
given location (dispersal limitation). In fact, all these processes (plasticity, demography, 114 
competition and other interspecific interactions, disturbance processes, evolution, dispersal, etc.) 115 
operate at all scales all the time. Different sources of data, with different temporal and spatial 116 
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extent and resolution, offer more or less insight into direct cause-effect relationships and which 117 
processes are important influences on pattern at each scale. 118 
 119 

Study species 120 
 121 
Pinus edulis Engelm. (Colorado, common, or two-needle piñon) is a small-statured, slow-growing, 122 
stress-tolerant pine that can survive more than 500 years. It is endemic to the Colorado Plateau 123 

of the southwestern U.S. states of Arizona, Colorado, New Mexico, and Utah, where potential 124 
evapotranspiration exceeds precipitation in most months (8). Because it occurs across a wide 125 
range of elevation (1400-2700 m), P. edulis grows under a wide range of temperature conditions 126 
(mean annual temperature [MAT] of 4-17° C; Fig. S3). There is a gradient of monsoon moisture 127 

(in July and August, Fig. S11) increasing from north to south across P. edulis’ distribution (8).  128 
 129 
Tree-Ring Data 130 
 131 

Tree-ring data were derived from increment cores sampled in the U.S. Forest Service Forest 132 
Inventory and Analysis (FIA) Program’s spatial network of permanent sampling plots, during 133 

forest inventories between 1995 and 2013 (especially 1995-1997; (9, 10). Samples were 134 

processed to generate annually resolved time series at the University of Arizona Laboratory of 135 
Tree-Ring Research and at Utah State University, following standard dendrochronological 136 

protocols (9, 11): mounted on grooved boards, sanded to a fine polish, crossdated to assign a 137 

year of formation to each growth ring, and measured on a calibrated sliding stage micrometer. 138 

Year assignments were verified using COFECHA (12) before any analyses of the ring width time 139 

series. Start dates of the time series ranged from 1530 to 1983, but data analysis was limited to 140 
the period for which gridded climate data products are available (1895-1995).  141 
 142 

Regression modeling of tree-ring width 143 
 144 
We used a Bayesian hierarchical regression model to evaluate the predictions of Hypotheses 1 145 
vs. 2 about patterns of variation in P. edulis’ performance with variation in climate across space 146 

and time. This model predicted the log-transformed width of growth rings as a function of tree size 147 
and climate variables. Tree size (stem diameter at root collar, DRC) was included as a predictor 148 
because ring widths are known to change with tree size – radial growth increments are wide 149 
when a tree is small and become narrower as a tree becomes larger (13). Starting with the DRC 150 

measurement at the time that an increment core was sampled (available from the FIA database), 151 
DRC was back-calculated based on the tree-ring time series, generating an inferred DRC for 152 
every tree in every year. In addition to these fixed effects, we specified random tree effects – i.e., 153 
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a modification of the model intercept specific to each tree – capturing heterogeneity among trees 154 
in average growth rate not explained by site-specific mean annual temperature (MAT) and mean 155 
annual precipitation (MAP) data. 156 

Both spatially varying and spatio-temporally varying climate predictors were included in 157 
models of P. edulis growth, the first to capture how growth varies across spatial gradients of 158 
climate and the second to capture plastic responses to interannual climate variability (i.e., 159 
reaction norms). Both types of climate predictors were created from time series of monthly, 4-km 160 

resolution climate data downloaded from the PRISM Climate Group (14) for the period 1895-161 
2018. Climate normals, which vary strictly across space, were created by averaging monthly 162 
mean temperature and summing monthly precipitation of each year (January-December), then 163 
averaging across years to calculate mean annual temperature (MAT) and mean annual 164 

precipitation (MAP). To make time-varying climate predictors, the time series of monthly climate 165 
data were aggregated across a twelve-month time frame (previous September to current August) 166 
and four biologically relevant seasons: fall (September through October of the previous year), 167 
winter (previous November through the current year’s March), spring (current year April through 168 

June) and monsoon (July through August). These four seasonal climate variables represent two 169 
wet seasons, one warm (monsoon) and one cold (winter), along with two warm, dry seasons 170 
(spring, fall; Fig. S11). Responses to time-varying climate were modeled as linear, which is 171 
traditional in dendrochronology (11, 13). While a few recent analyses of tree-ring data have 172 

shown nonlinearity in responses to climate (15, 16), and some reaction norms (e.g., thermal 173 
response curves) are theoretically expected to peak between minimum and maximum climate 174 
values (7), field-observed values of performance vs. climate may be adequately predicted with a 175 
linear response across the historic, field-observed range of variability of climate, as described 176 

above, in “Climate Responses across Scales” (see Fig. S10B). 177 
Though we had specific hypotheses to test (Fig. 1), it is important to verify that the model 178 

structure corresponding to those hypotheses adequately describes variation in P. edulis 179 
performance across space and time, i.e., is not outcompeted by alternative models. We report 180 

here the fit to data of ten alternative Bayesian hierarchical regression models (Table S2), which 181 
included different combinations of climate predictors (normals, time-varying) and different 182 
methods of scaling during standardization (i.e., centering and scaling of predictors to a mean of 183 
zero and standard deviation of one). Specifically, time-varying climate predictors were 184 

standardized using either global or local scaling. Global scaling compares temperature or 185 
precipitation at a given site each year to the global average for that variable across both space 186 
and time, whereas local scaling compares each year’s climate to the local site average for that 187 
variable. Locally scaled variables thus reflect climate anomalies relative to average conditions at 188 
each site. The hypothesis under global scaling is that a temperature of 10° C and temperature 189 

variation of 1° C has the same effect on all trees throughout the geographic distribution, whereas 190 
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the hypothesis under local scaling is that a temperature of 10° C may be relatively cool at the 191 
warm edge of the distribution and relatively warm at the cool edge of the distribution, and that the 192 
effect of climate variability is best described relative to what trees are adapted to at a given 193 

location. Hence, the fit of data to models with globally vs. locally scaled climate predictors 194 
represents a secondary test comparing the hypotheses that climate responses are best described 195 
at the species scale (Hypothesis 1) vs. population or individual scale (Hypothesis 2). 196 

The ten models are generally ordered from simpler to more complex. Model 1 tested the 197 

hypothesis that the climate normals MAP and MAT alone are sufficient to explain variation in P. 198 
edulis growth. Model 2 repeated Model 1 with the addition of tree size. Model 3 tested the 199 
hypothesis that time-varying climate, in addition to climate normals and tree size, explain growth 200 
variation, using globally scaled, 12-month cumulative precipitation and average temperature. 201 

Models 4-6 tested alternative seasonal time-varying climate predictors (both precipitation and 202 
temperature), which were globally scaled (Table S2). Models 7 and 8 test the hypothesis that the 203 
climate normals MAP and MAT do not significantly influence P. edulis growth (by removing them), 204 
with Model 7 using global scaling and Model 8 local scaling of the time-varying climate predictors. 205 

Model 9 tested the same seasonal climate predictors as Model 6, using local scaling for the time-206 
varying predictors. Model 10 was unique in testing the use of both locally and globally scaled 207 
versions of the time-varying climate predictors of Model 6. All models included all two-way 208 
interactions between predictors, and all but Model 1 included the effect of tree size (Table S2). 209 

Regression modeling was implemented using R, RStudio, and STAN (17), in the 210 
computational environment of VICE and the Discovery Environment of CyVerse 211 
(www.cyverse.org). Markov chain Monte Carlo simulations were run with 3 chains of 5000 212 
iterations each, discarding the first 1000 iterations as warmup, resulting in 12,000 posterior 213 

samples. Convergence was assessed using visual inspection of traceplots and Gelman-Rubin 214 
diagnostics (18). Models were fit with a randomly selected 80% of the growth ring measurements 215 
and were validated with the remaining 20% of these held-out data using the root mean squared 216 
error (MSE) of model-predicted tree-ring width under a 5-fold cross-validation procedure. In 217 

addition, a full data fit using the approximate leave-one-out (elpd) information criterion (19–21); 218 
Fig. S9) was used to evaluate model performance. Model fit was also assessed visually using 219 
posterior predictive checks (18). The model fit statistics showed that seasonal time-varying 220 
climate variables predict P. edulis’s growth variability better than 12-month time-varying climate 221 

variables (Models 5 and higher fit better than Model 4), and that local scaling outperforms global 222 
scaling of the time-varying climate variables (Model 9 compared to Model 6, and Model 8 223 
compared to Model 7; Fig. S9). Further, the inclusion of both climate normals and time-varying 224 
climate variables is supported (Model 9 fit the data better than Models 8 and 7; Fig. S9). Among 225 
the ten models fit to the ring-width data, two rose to the top in terms of low MSE and elpd: Models 226 

9 and 10 (Fig. S9). We selected Model 9 as the preferred best-fit model, which included MAP and 227 
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MAT, four seasonal time-varying climate predictors - spring and fall temperatures and winter and 228 
monsoon precipitation - and all 2-way interactions between fixed effects.  229 

The posterior predictive distribution diagnostics for Model 9 (pointwise posterior 230 

predictive credible intervals, probability integral transform overlay, and probability integral 231 
transform q-q plots; Fig. S12) illustrate a good fit to the bulk of the data but show some evidence 232 
of misfit for very small and very large tree-ring width observations. We plotted model residuals as 233 
a function of each of the time-varying climate predictors to check for systematic misfit that might 234 

result from modeling log-transformed ring widths as a linear response of interannual climate 235 
variation. The residuals showed no trend with respect to spring or fall temperature variation or 236 
monsoon precipitation variation among years, but there was some trend in the residuals with 237 
respect to variation in winter precipitation (blue trend lines, Fig. S13). There is a modest pattern of 238 

more extreme negative residuals at both the lowest and highest observed values of winter 239 
precipitation, indicating that the model tends to over-predict growth ring widths in the driest and 240 
wettest winters, respectively (Fig. S13B). Noticeable in all four panels of Fig. S13 are data points 241 
with strong negative residuals (the cloud of points below most of the rest of the residuals, in each 242 

panel) – these are cases where observed growth ring widths are much smaller than the 243 
predictions of the model. These are the year and tree combinations in which a growth ring was 244 
not produced, which we replaced with 0.001 mm (the smallest non-zero observation in our data), 245 
since the log of zero is undefined. Part of the trend in the residuals in Fig. S13B seems to arise 246 

from the association of the “missing ring” years with low values of winter precipitation. In other 247 
words, missing rings tend to be produced when winter precipitation is low. The trend of negative 248 
residuals at high values of winter precipitation suggests that there may be some leveling off 249 
(saturation) of the response of tree growth to the highest values of winter precipitation, as 250 

discussed above in “Climate Responses across Scales” (see Fig. S10A). Overall, this trend in 251 
residuals is modest and we considered linear responses to climate to be adequate to describe the 252 
variation in the data. A future improvement to modeling tree ring widths would be to use a Tobit or 253 
other mixture model to better capture the conditions that drive the formation of missing rings. 254 

Because Model 9 performed well across predictive metrics and showed good evidence of 255 
fit from the posterior predictive diagnostic plots, the output of Model 9 was used for testing 256 
Hypotheses 1 vs. 2 and to create Fig. 2-3 and Fig. S4-S7. We note that across all ten models, the 257 
effects of climate were consistent in sign and magnitude, lending confidence in the robustness of 258 

these effects to alternative model structures. 259 
 260 
Climate responses 261 
 262 
All estimated fixed effects (including interactions) from Model 9 are shown in Fig. S4. In a soil 263 

moisture-limited species (P. edulis), we expected to see higher-than-average growth in both 264 



cooler-than-average years and locations (Fig. 1D) because lower rates of evaporation with lower 265 
temperatures should weaken soil moisture-limitation of growth. Instead, the negative effect on P. 266 

edulis’ growth of interannual variability in temperature (𝛽𝛽springtemp = -0.0965, 95%CI = -0.1076 – - 267 

0.0857 and 𝛽𝛽falltemp = -0.0723, 95%CI = -0.826 – -0.0618) is contrasted by a positive effect of 268 

spatial variation in mean annual temperature (𝛽𝛽MAT = 0.2083, 95% CI = 0.1661 – 0.2506). Further, 269 

there is a significant positive interaction between the climate normals (fig. S4, 𝛽𝛽MAT*MAP= 0.0438, 270 

95% CI = 0.0097 – 0.0775), indicating that as mean annual temperature increases, the positive 271 

influence of mean annual precipitation (𝛽𝛽MAP = 0.2355, 95% CI = 0.1940 – 0.2771) on growth 272 

increases (and vice versa). Hence, growth rates of P. edulis are greatest at warmer-than-average 273 

sites, but especially those that are also wetter-than-average (blue lines, Fig. 2C-D). This may best 274 
be interpreted in terms of Liebig’s law of the minimum. Among wetter-than-average sites, where 275 
soil moisture is less limiting, the influence of another limiting factor becomes evident: trees at cold 276 
but relatively wet sites are still unable to grow rapidly (blue lines, Fig. 2A-B), whereas those at 277 

warm but relatively wet sites can. We summarize P. edulis’ observed climate-growth relationships 278 
in abstract form in Figure S8B, in contrast to the predicted climate-growth relationships in fig. 279 
S8A.  280 

Finally, negative model-predicted responses to greater-than-average winter precipitation 281 

are seen at a very small number of cold, wet locations (e.g., blue lines, Fig. 3A; Fig. S6C), which 282 
may represent high-elevation sites where a year of deep snowpack can limit the growing season 283 
and hence tree growth.  284 

  285 
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 374 

Fig. S1. Conceptual illustration of (A) a species’ climate envelope, inferred from presence-375 
absence or presence-only data, with respect to a single dimension of climate (a temperature 376 
variable). This species-level climate response is then used to project (B) the effect of climate 377 
change (warming) on the species’ rate or probability of occurrence.  378 

 379 
  380 



 381 

 382 

Fig. S2. Responses to temperature variability at the (A) individual, (B-C) population, and (D) 383 
species scale. The use of climate envelope models to forecast change in species’ distributions 384 
effectively assumes that climate responses are the same across scales, as illustrated here. Solid 385 
lines indicate a scenario in which individual- and population-scale climate responses are equal in 386 
breadth to the species-scale response; dashed lines indicate the case where individual- and 387 
population-scale climate tolerances are narrower than species-scale climate tolerances, but they 388 
match in local slope (the sign of the response). Ecological theories that support the assumption of 389 
scale-invariant climate responses are placed above the biological scale axis. 390 

 391 
  392 



 393 

 394 

Fig. S3. Location in (A) geographic and (B) climate space of the 977 U. S. Forest Service Forest 395 
Inventory and Analysis (FIA) plots in the U. S. states of Arizona, New Mexico, Colorado, and Utah 396 
where Pinus edulis increment cores were collected. Green in panel A is the geographic 397 
distribution of Pinus edulis, as defined in the atlas of U. S. trees (22).   398 

https://www.zotero.org/google-docs/?ajmy7G


 399 

                     400 

Fig. S4. Estimates of effects from a multiple regression model of P. edulis growth (model 9 in 401 
Table S2). Each dot-whisker shows the Bayesian posterior distribution of a model parameter 402 
(posterior mean +/- 95% central density). Predictors were centered and scaled, with the exception 403 
of tree size. Main effects are color-coded into three groups: climate normals (green), time-varying 404 
climate variables (blue), and tree size (pink). Two-way interaction effects are color-coded 405 
accordingly both in the y-axis label and the dot-whisker.    406 



 407 

 408 

Fig. S5. Model-predicted responses to fall temperature variability of all 1,558 common pinon trees 409 
in the dataset, at locations that vary from cool to warm (quantiles of mean annual temperature 410 
[MAT], averaged over the period 1895-2018), with each response colored by the mean annual 411 
precipitation (MAP) at that location, from dry (red) to wet (blue). Fall temperature is the average of 412 
monthly average temperatures September-October of the previous calendar year, locally scaled, 413 
i.e., anomalies relative to site-specific average fall temperature. Responses are plotted for a 414 
constant tree size of 20 cm. 415 
  416 



                  417 

Fig. S6. Histograms of the sensitivity of the growth of 1,558 Pinus edulis trees to four time-418 
varying climate predictors: (A) spring and (B) previous fall temperature, and (C) winter and (D) 419 
monsoon precipitation. These sensitivities correspond to the slopes of the lines in Fig. 2, Fig. S5, 420 
Fig. 3, and Fig. S7, respectively, although here the slope is change in log-transformed growth-ring 421 
width in response to variation in each climate predictor.  422 



 423 

 424 

Fig. S7. Model-predicted responses to monsoon precipitation variability of all 1,558 common 425 
pinon trees in the dataset, at locations that vary from cool to warm (quantiles of mean annual 426 
temperature [MAT], averaged over the period 1895-2018), with each response colored by the 427 
mean annual precipitation (MAP) at that location, from dry (red) to wet (blue).  Monsoon 428 
precipitation is the sum of precipitation in July and August of the current calendar year, locally 429 
scaled, i.e., anomalies relative to site-specific average monsoon precipitation. Responses are 430 
plotted for a constant tree size of 20 cm.  431 



 432 

 433 

Fig. S8. Predicted vs. observed relationships between tree growth and interannual temperature 434 
variability across the distribution of a (A) hypothetical soil moisture-limited species (as in Fig. 1E), 435 
and (B) Pinus edulis. 436 
  437 



 438 

 439 

Fig. S9. Fit of ten alternative regression models to Pinus edulis tree-ring width data, with respect 440 
to (A) root mean squared error (MSE) and (B) approximate leave-one-out information criterion 441 
(elpd). All ten models are detailed in Table S2.  442 



 443 

 444 

Fig. S10. Climate responses (A) may take a variety of shapes, from symmetric to skewed to 445 
saturating. (B) A skewed response may be fit to field-collected data with a line, i.e., across the 446 
range of climate variability to which an organism is regularly exposed and therefore adapted.   447 



 448 

 449 

Fig. S11. Average monthly temperature and precipitation at U. S. Forest Service Forest Inventory 450 
and Analysis plot locations where Pinus edulis is present, based on PRISM 4-km resolution 451 
climate data.   452 



 453 

 454 

Fig. S12. Posterior predictive diagnostics for Model 9. (A) The 50% and 90% posterior predictive 455 
intervals for a subset of log tree-ring widths, ordered by posterior predictive mean (yexp). Dark 456 
points are the observed log ring widths (y), which mostly fall within the 50% or 90% posterior 457 
predictive intervals. (B) Smoothed density of posterior predictive samples of log ring width in light 458 
blue and a smoothed density of observed log ring widths in dark blue. (C) Leave-one-out quartile-459 
quartile plot of posterior predictive mean vs. observed log ring width.  460 



 461 

 462 

Fig. S13. Residuals of model 9 plotted against the four time-varying climate predictors: (A) 463 
monsoon precipitation, (B) winter precipitation, (C) spring temperature, and (D) previous fall 464 
temperature. A generalized additive model fit to the residuals in each panel, shown with a blue 465 
line, evaluates trend in model residuals.  466 



Table S1. Corroborating evidence of scale-dependent climate responses: mismatches between 467 
individual-level vital rates (e.g., growth, survival, fertility, recruitment), population-level growth rate 468 
or abundance, and species-level occurrence, probability of occurrence, or climatic suitability 469 
derived from occurrence data in the recent literature. The citation is followed by a description of 470 
the scope of the data (organism, spatial and temporal replication, location), then the type of data 471 
analyzed, or variables estimated from data, then a description of the mismatch, reproduced from 472 
the title or abstract of the citation or summarized succinctly. Where possible, we list (in 473 
parentheses) whether the study considered spatial vs. temporal variation in the individual- and 474 
population-level variables. Species-level variables (e.g., climatic suitability) vary only across 475 
space (with some exceptions). Citations are grouped into four categories: those addressing 1) the 476 
abundant center hypothesis or 2) center-periphery hypothesis, those 3) analyzing individual-level 477 
performance variation across space and time and fitting a demographic model to estimate 478 
population-level growth rate, and 4) those that explicitly consider distinct variation across space 479 
vs. time. This list of citations is surely incomplete, and alternative placement of a given paper into 480 
a different category is possible.481 



 482 
Citation Study organism, 

sample size, 
(location) 

Individual population species Description of mismatch 

Abundant center hypothesis     

Dallas et 
al. 2017 
(23) 

1109 bird species, 
81 mammal 
species, 63 fish 
species, 166 tree 
species (the 
Americas) 

 abundance 
(spatial) 

geographic 
distribution, 
climatic 
niche 

species are not most abundant in the 
center of their geographic distribution or 
climatic niche 

Dallas & 
Hastings 
2018 (24) 

246 mammal 
species, 148 tree 
species (USA) 

 abundance 
(spatial) 

climatic 
suitability 

climatic suitability estimated by niche 
models is largely unrelated to species 
abundance 

Center-Periphery Hypothesis    

McGill 
2012 (25) 

15 tree species 
(eastern North 
America) 

growth (spatial 
variation in 46-
yr average 
rate)  

abundance 
(spatial) 

 trees are rarely most abundant where they 
grow best 

Midolo et 
al. 2021 
(26) 

66 tree species 
(North America) 

growth (spatial 
variation) 

 probability 
of 
occurrence 

individual fitness is decoupled from 
coarse-scale probability of occurrence 

Oldfather 
& Ackerly 
2017 (27) 

16 populations of 
a perennial plant, 
years 2014-2017 
(one mountain 
range, California, 
USA) 

growth, 
survival, and 
recruitment 
(spatial and 
temporal 
variation) 

population 
growth rate 
(spatial and 
temporal 
variation) 

 vital rates and population growth rate do 
not decline from the center to the edges of 
the species’ elevational range 

Pironon et 
al. 2017 
(4) 

review of 248 
empirical studies 
(all taxa) 

genetic 
variation, 
growth, 
survival, 
recruitment 

genetic 
variation, 
abundance, 
population 
growth rate 

geographic 
distribution, 
climatic 
niche 

demographic vital rates, population size, 
and population growth rate follow center-
periphery expectations in only 20-30% of 
studies 

Bohner & 
Diez 2019 
(28) 

59 tree species 
(western USA) 

growth, 
survival, and 
recruitment 
(spatial 
variation in 10-
yr average 
rates) 

population 
density 
(spatial) 

probability 
of 
occurrence 

extensive mismatches between peak 
probability of occurrence and peak 
population density or individual-level 
demographic rates  

Demographic (vital) rates     

Baer and 
Maron 
2020 (29) 

11 populations of 
a perennial plant, 
years 2013-2016 

growth, 
survival, 
fecundity, 

abundance, 
population 
growth rate 

climatic 
suitability 

positive (but nonlinear) relationship 
between a) climatic suitability vs. b) 
abundance and demographic performance 

https://www.zotero.org/google-docs/?S5s4mw
https://www.zotero.org/google-docs/?OHk68x
https://www.zotero.org/google-docs/?ELaB4j
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(Utah and Idaho, 
USA) 

germination 
(spatial and 
temporal 
variation) 

(spatial and 
temporal 
variation) 

(latitudinal gradient, range center to range 
edge) 

Bernal-
Escobar 
et al. 
2022 (30) 

37 species of 
trees, 558 
populations 
(eastern North 
America) 

growth (spatial 
and temporal 
variation, 
moving 
window 30-
year average 
growth rate)  

 climatic 
suitability 
(spatial and 
temporal 
variation, 
moving 
window 30-
year 
probability 
of 
occurrence)  

changes in individual growth rate were 
negatively correlated with changes in 
climatic suitability 

DeMarche 
et al. 
2021 (31) 

3 species of 
perennial plants, 
5-7 populations 
per species, years 
2015-2018 
(Oregon and 
Washington, USA) 

growth, 
survival, 
fecundity, 
recruitment 
(spatial and 
temporal 
variation 
treated as 
equivalent) 

population 
growth rate 
(spatial and 
temporal 
variation) 

 latitudinal gradients in performance are not 
predictive of either local or species-wide 
responses to climate; population growth 
rate is lower at cool and wetter locations, 
but is lower in warmer and drier years; 
opposite response across space vs. time 
(latitudinal gradient from center to northern 
edge of their distributions) 

Diez et al. 
2014 (32) 

perennial plant, 6 
populations (one 
watershed, 
eastern USA) 

growth, 
survival, and 
recruitment 
(spatial and 
temporal 
variation 
treated as 
equivalent)  

abundance, 
population 
growth rate 
(spatial 
variation) 

occurrence demographic suitability did not predict 
occurrence, but demographic suitability 
and abundance were positively correlated 

      
Oldfather 
et al. 
2021 (33) 

perennial plant, 9 
populations  
(elevation 
gradient, one 
mountain range, 
California, USA) 

growth, 
survival, 
recruitment 
(spatial and 
temporal) 

population 
growth rate 
(spatial and 
temporal) 

 lack of concordance between spatial 
patterns of population growth rate with 
climate gradients and the response of 
population growth rate to experimental 
climate manipulations; cool-edge 
populations did not respond positively to 
warming 

Pagel et 
al. 2020 
(34) 

26 perennial plant 
species (South 
Africa) 

3,617 records 
of survival, 
fecundity, and 
recruitment 

population 
growth rate 
(spatial) 

occurrence mismatches between demographic 
suitability (population growth rate) and 
observed geographic distributions 

Pironon et 
al. 2018 
(6) 

2 short-lived 
herbaceous 
plants; 11 and 20 
populations per 
species (Europe, 

growth, 
survival, 
fecundity, 
recruitment 
(spatial and 

population 
growth rate 
(spatial and 
temporal) 

occurrence occurrence and performance niches 
cannot be assumed to be the same 
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California, USA) temporal) 
Thuiller et 
al. 2014 
(35) 

108 tree species 
(western USA, 
Quebec, France, 
Switzerland) 

basal area 
(spatial and 
temporal) 

population 
growth rate, 
carrying 
capacity, 
and 
abundance 

probability 
of 
occurrence 

population growth rate was negatively 
correlated with probability of occurrence, 
while carrying capacity and abundance 
were positively correlated with probability 
of occurrence 

Space vs. Time not equivalent    

Amburgey 
et al. 
2018 (36) 

one species of 
frog, 746 
populations at 27 
locations, 3-22 
years (North 
America) 

fertility (spatial 
and temporal) 

population 
growth rate 
(spatial and 
temporal) 

climatic 
distribution 

sensitivity of population growth rate to 
interannual climate variability changes in 
sign across the climatic distribution for 
some climate variables and not others 

Bradter et 
al. 2022 
(37) 

39 bird species, 
1756 survey 
routes, years 
1996-2018 
(Fennoscandia) 

 abundance 
(spatial and 
temporal) 

 the assumption of equivalent species’ 
response to spatial and temporal variation 
in climate was seldom met 

Gaüzère 
& Devictor 
2021 (38) 

124 bird species, 
2133 sites, years 
2001-2012 
(France) 

 abundance 
(spatial and 
temporal) 

 quantified and mapped differences 
between spatial vs. temporal variation in 
abundance 

La Sorte 
et al. 
2009 (39) 

227 bird species, 
404 locations, 26 
years (North 
America) 

 body mass 
(spatial and 
temporal) 

occupancy 
(spatial and 
temporal) 

trends of species richness, body mass, 
and occupancy through time differed 
significantly from spatially derived 
predictions, questioning space-for-time 
substitution 
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https://www.zotero.org/google-docs/?hKVnPw
https://www.zotero.org/google-docs/?sinccD
https://www.zotero.org/google-docs/?og7Lwz
https://www.zotero.org/google-docs/?PaXS8v
https://www.zotero.org/google-docs/?YiRg0y


Table S2. Ten regression models predicting growth ring width variation of Pinus edulis as a 484 
function of tree size and climate variables. A numerical label and all main effects are listed for 485 
each model, as well as the type of scaling used for time-varying predictors (G for global scaling or 486 
L for local scaling). Seasons were defined as monsoon (m; Jul-Aug), winter (w; Nov-Mar), spring 487 
(s; Apr-Jun), and fall (f; Sep-Oct). Values of the model fit statistics root mean squared error (MSE) 488 
and leave-one-out (elpd) validation are shown in Fig. S9. 489 

  490 

Model Tree 
Size 

Climate 
Normals 

Time-varying Climate Scaling 

1   🗸🗸     

2 🗸🗸 🗸🗸     

3 🗸🗸 🗸🗸 12-month precip and 
temp 

G 

4 🗸🗸 🗸🗸 12-month temp, mw 
precip 

G 

5 🗸🗸 🗸🗸 mw precip, mw temp G 

6 🗸🗸 🗸🗸 mw precip, sf temp G 

7 🗸🗸   mw precip, sf temp G 

8 🗸🗸   mw precip, sf temp L 

9 🗸🗸 🗸🗸 mw precip, sf temp L 

10 🗸🗸 🗸🗸 mw precip, sf temp G, L 
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Table S3. Model-fit statistics (deviance and AIC) for generalized additive models (GAMs) of Pinus 496 
edulis’ occurrence in the U.S. Forest Inventory and Analysis plots of Arizona, Colorado, New 497 
Mexico, and Utah as a function of the climate conditions at plot locations (variables listed). GAMs 498 
were fit with five, four, and three knots (k). 499 

  500 

Climate Variable Deviance AIC 

  k=5 k=4 k=3 k=5 k=4 k=3 

Mean Annual 
Temperature 

252.85     254.76 254.47 288.96 289.32 287.7 

Mean Annual 
Precipitation 

294.76 296.05 299.84 331.09 331.67 334.4 

Monsoon 
Precipitation 

289.94 302.46 302.98 327.88 337.39 337.68 

Winter Precipitation 299.73 302.46 302.98 336.14 337.39 337.68 

Fall Temperature 257.7 258.14 257.85 293.28 292.83 291.21 

Spring Temperature 257.54 258.02 257.85 292.65 292.21 290.63 
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