SUPPORTING INFORMATION

In silico assisted identification, synthesis and in vitro pharmacological characterization of

potent and selective blockers of the epilepsy-associated KCNT1 channel

Nunzio Iraci, ^{‡,#}Lidia Carotenuto,^{¶,#}Tania Ciaglia,^{T,#} Giorgio Belperio,^{¥#} Francesca Di Matteo, [†]Ilaria Mosca,[†]Giusy Carleo,[¶] Manuela Basilicata,[^] Paolo Ambrosino,[¥] Rita Turcio, [†]Deborah Puzo,[†]Giacomo Pepe,[†] Isabel Gomez-Monterrey,[§] Maria Virginia Soldovieri,[†] Veronica Di Sarno,[†] Pietro Campiglia,[†] Francesco Miceli,[¶] Alessia Bertamino,[†] Carmine Ostacolo,^{†,*} Maurizio Taglialatela.^{¶,*}

^T Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, SA, Italy

[^] Department of advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza L. Miraglia 2, 80138, Naples, Italy

[¥]Department of Science and Technology, University of Sannio, Via F. De Sanctis, 82100, Benevento, Italy

¹Department of Medicine and Health Science, University of Molise, Via C. Gazzani, 86100, Campobasso, Italy

[§] Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy

*Corresponding authors (Maurizio Taglialatela : maurizio.taglialatela@unina.it; Carmine Ostacolo : costacolo@unisa.it) #Equal contribution

Table of content:

1. 2.	Table S1: Characterizing chemical-physical parameters of the tested moleculesS2-S7 Figures S1-S22: NMR spectra and CD spectra of the newly synthesized compounds
3.	Figures S23-S42: HPLC traces of all the tested compounds
4.	Figure S43: Docking poses of CPK4 (A), CPK13 (B), CPK16 (C), CPK18 (D),
	CPK20 (E) and quinidine (F) on HMhKCNT1 ₉₈₋₃₅₄ S50
5.	Figure S44: Ligand interaction diagrams of CPK4 (A), CPK13 (B), CPK16 (C),
	CPK18 (D), CPK20 (E) and quinidine (F) in complex with HMhKCNT1 ₉₈₋₃₅₄ S51
6. 7. 8. 9.	Figure S45: Functional and pharmacological properties of KCNT1F346S channelsS52 Figure S46:Pharmacological characterization of selected CPK compounds on KCNT1 or KCNT1 F346S channels
10.	Figure S48: Compound CPK18 main metabolites
11.	Figure S49: Molecular structures of compound CPK18 main oxidized metabolitesS56 Figure S50: Molecular structures of compound CPK18 glucuronic metabolitesS57
14	, right 550, molecular subcules of compound CI K10 gluculonic metabolics

[‡] Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy

[¶] Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via S. Pansini, 5, 80131, Naples, Italy

Compound	Chemical structure	Docking score (kcal/mol)	MW	SASA ^{a, c}	PSA ^{a, d}	HBDs ^{a,} e	HBAs ^{a, e}	LogP ^{a, f}	Chiral centers	Rotatable bonds ^{a, b}
CPK1 ⁵⁰		-11.200	472.395	692.726	101.373	2	5	4.738	2	2
СРК2		-12.444	524.702	956.515	53.335	1	4.75	7.966	1	12
СРК3		-11.033	379.458	680.787	86.184	2	5.75	3.517	1	5
CPK4 ⁵¹		-10.328	355.454	683.486	49.646	2	3	4.261	0	5

Compound	Chemical structure	Docking score (kcal/mol)	MW	SASA ^{a, b}	PSA ^{a, c}	HBDs ^{a,} d	HBAs ^{a, d}	LogP ^{a, e}	Chiral centers	Rotatable bonds ^{a, f}
СРК5		-11.173	715.039	1067.831	142.171	1.25	9.75	6.901	1	10
CPK6 ⁵²	O N H NH ₂ NH ₂ NH ₂	-11.388	357.47	740.999	73.336	3.5	4.5	4.586	0	11
CPK7	C C N C C N C	-13.156	578.755	1011.543	3.400	0	0	12.737	0	8
СРК8		-12.576	598.718	960.68	167.577	5	8.5	5.442	3	11

Compound	Chemical structure	Docking score (kcal/mol)	MW	SASA ^{a, b}	PSA ^{a, c}	HBDs ^{a,} d	HBAs ^{a, d}	L ^{a, e}	Chiral centers	Rotatable bonds ^{a, f}
CPK9 53	S N N N N N H F F F F F F F O F F F O F F F O F F O F F F F O F F F O F F F F O F F F O F F F O F F F F O F F F O F F F F F O F F F F F F F F F O F	-10.434	595.583	845.541	111.409	1	9	4.985	1	6
CPK10		-12.710	696.18	1020.559	110.388	1.25	9.5	7.354	1	11
CPK11 ⁵⁴	S N N N N N N N N N N N N N N NO2	-10.744	538.62	887.828	107.651	1	4	6.684	0	11
CPK12 55		-10.828	402.483	682.372	76.427	1	7.5	3.374	0	4

Compound	Chemical structure	Docking score (kcal/mol)	MW	SASA ^{a, b}	PSA ^{a, c}	HBDs ^{a,} d	HBAs ^{a, d}	LogP ^{a, e}	Chiral centers	Rotatable bonds ^{a, f}
CPK13 55	HN HO HO	-10.154	316.402	607.332	44.605	3	2.25	4.109	0	6
CPK14 ⁵⁶	F H H H	-12.02	477.623	830.959	17.447	1	3	8.157	1	9
CPK15 57	CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C	-10.178	608.064	887.55	128.404	0	9.25	5.548	2	6
CPK16 57		-10.139	495.774	649.802	91.815	1	8	3.712	2	3

Compound	Chemical structure	Docking score (kcal/mol)	MW	SASA ^{a, b}	PSA ^{a, c}	HBDs ^{a,} d	HBAs ^{a, d}	LogP ^{a, e}	Chiral centers	Rotatable bonds ^{a, f}
CPK17 ⁵³	C H H	-11.027	366.462	670.154	40.916	1	4	4.971	1	3
CPK18	NH NH NH NH NH NH NH NH NH NH NH NH NH N	-13.347	475.589	809.766	63.395	3	4.5	5.778	1	10
CPK19	HO OH	-11.721	410.419	706.564	92.584	4	5.5	2.816	2	5
СРК20 ⁵¹	F_3C	-10.733	506.505	736.689	47.879	1	5.5	5.409	0	5

Table S1: Characterizing chemical-physical parameters of the tested molecules. ^a Calculated by mean of QikProp [**Schrödinger Release 2019-1**: QikProp, Schrödinger, LLC, New York, NY, 2019.]; ^b Total solvent accessible surface area in square angstroms (probe radius 1.4 Å); ^c Polar surface area in square angstroms (probe radius 1.4 Å); ^d Hydrogen bond donors (HBDs) and acceptors (HBAs) counts are averaged over different states, so they can be non-integer; ^e QikProp-predicted octanol/water partition coefficient; ^f Trivial and hindered rotatable bonds are excluded from the count; The number in superscript represent the references to the synthesis of the corresponding derivatives reported in the main text.

Figure S1: ¹H NMR spectra for compound CPK2

Figure S2: qDEPT NMR spectra for compound CPK2

Figure S3: CD spectra for compound CPK2

Figure S4: ¹H NMR spectra for compound CPK3

Figure S6: CD spectra for compound CPK3

Figure S7: ¹H NMR spectra for compound CPK5

Figure S8: qDEPT NMR spectra for compound CPK5

Figure S9: CD spectra for compound CPK5

Figure S10: ¹H NMR spectra for compound CPK7

Figure S11: qDEPT NMR spectra for compound CPK7

Figure S12: ¹H NMR spectra for compound CPK8

Figure S13: qDEPT NMR spectra for compound CPK8

Figure S14: HSQC NMR spectra for compound CPK8

Figure S15: COSY NMR spectra for compound CPK8

Figure S16: ROESY NMR spectra for compound CPK8

Figure S17: ¹H NMR spectra for compound CPK10

Figure S18: qDEPT NMR spectra for compound CPK10

Figure S19: CD spectra for compound CPK10

Figure S20: ¹H NMR spectra for compound CPK18

Figure S21: qDEPT NMR spectra for compound CPK18

Figure S22: CD spectra for compound CPK5

Figures S23: HPLC traces of compound CPK1

Figures S24: HPLC traces of compound CPK2

Figures S25: HPLC traces of compound CPK3

Figures S26: HPLC traces of compound CPK4

Figures S27: HPLC traces of compound CPK5

Figures S28: HPLC traces of compound CPK6

Figures S29: HPLC traces of compound CPK7

Figures S30: HPLC traces of compound CPK8

Figures S31: HPLC traces of compound CPK9

Figures S32: HPLC traces of compound CPK10

Figures S33: HPLC traces of compound CPK11

Figures S34: HPLC traces of compound CPK12

Figures S35: HPLC traces of compound CPK13

Figures S36: HPLC traces of compound CPK14

Figures S37: HPLC traces of compound CPK15

Figures S38: HPLC traces of compound CPK16

Figures S39: HPLC traces of compound CPK17

Figures S40: HPLC traces of compound CPK18

Figures S41: HPLC traces of compound CPK19

Figures S42: HPLC traces of compound CPK20

Figure S43: Docking poses of **CPK4** (**A**), **CPK13** (**B**), **CPK16** (**C**), **CPK18** (**D**), **CPK20** (**E**) and quinidine (**F**) on HMhKCNT1₉₈₋₃₅₄. In every panel, the ligand is depicted in magenta sticks and hKCNT1 monomers are depicted in cyan, green, salmon and white cartoons and sticks.

В

Figure S44: Ligand interaction diagrams of **CPK4** (**A**), **CPK13** (**B**), **CPK16** (**C**), **CPK18** (**D**), **CPK20** (**E**) and quinidine (**F**) in complex with HMhKCNT1₉₈₋₃₅₄. Only residues interacting with the ligand for at least 36ns out 120ns of MD simulation are shown. Residues are colored according to the following scheme: cyan - polar; green - hydrophobic; grey - water molecule. Grey halos highlight solvent exposure. H-bonds are represented by magenta arrows (dashed when sidechain atoms are involved, solid in the case of backbone atoms involvement); green solid lines represent π - π stacking interactions.

Figure S45: Functional and pharmacological properties of KCNT1 F346S channels. (A) Representative whole-cell currents traces recorded from CHO cells expressing wild-type or mutant homomeric KCNT1 channels, as indicated, in response to the voltage protocol shown below the leftmost traces. Current scale: 1 nA; time scale: 100 ms. (B) Current density (left) and normalized conductance (right) of wild-type and mutant KCNT1 channels. (C) Representative current traces measured in response to voltage ramps from -100 mV to +60 mV in cells expressing KCNT1 or KCNT1 F346S channels in control solution (C), upon perfusion of 100 μ M of quinidine (QND), or upon drug washout (W). Current scale: 200 pA for KCNT1, 1 nA for KCNT1 F346S; time scale: 100 ms.

Figure S46: Pharmacological characterization of selected CPK compounds on KCNT1 or KCNT1 F346S channels. (A-B-C) Representative current traces in response to voltage ramps from -100 mV to +60 mV in cells expressing KCNT1 or KCNT1 F346S channels recorded in control solution (CTL), upon perfusion with CPK16 (10 μ M), 18 (10 nM), or 20 (10 μ M), or upon drug washout (W). Current scale: 1 nA; time scale: 100 ms.

Parameters	CPK16	CPK18	CPK20
Retention time (min) \pm dev. st. (n = 6)	4.34 ± 0.01	2.88 ± 0.01	2.67 ± 0.01
Linearity range (µM)	0.125-20.0	0.250-20.0	0.06-10.0
Intercept	-0,0332	-0.3627	0.0418
Slope	1.8894	0.1901	0.0822
Correlation coefficient (R ²)	0.9999	0.9992	0.9992
Standard deviation of intercept	0.0352	0.1222	0.0537
Standard deviation of the slope	0.0081	0.0027	0.0010
Standard deviation of residuals	0.0753	0.2407	0.1174
LOD (nM)	8.7	15.4	3.0
LOQ (nM)	26.4	46.6	1.0

Table S2: Method validation parameters for LC/MS quantitation of test compoun
--

Figure S47: Representative graph showing the linear regression of the natural logarithm of % remaining parent compounds **CPK19** and **CPK20** plotted against incubation time (min). $3-(\alpha$ -acetonylbenzyl)-4-hydroxycoumarin, testosterone, 7-hydroxyl-coumarin were employed as controls for high, moderate, and low metabolic stability.

Figure S48: Compound CPK18 metabolic fate as determined by LC analysis. (a) Time course LC traces showing CPK18 metabolic-dependant decrease in concentration; (b) Time course LC trace of the CPK18 oxidized metabolites; (c) Time course LC trace of the main CPK18 glucuronic metabolites.

Figure S49: Molecular structures of compound CPK18 oxidized metabolites M1-Ox (a), M2-Ox (b), M3-Ox (c), M4-Ox (d), M5-Ox (e) and M6-Ox (f) as determined by MS/MS analysis.

M1-Ox-Glu

Figure S50: Molecular structures of compound CPK18 glucuronic metabolites M1-Ox-Glu (a), M2-Ox-Glu (b) and M3-Ox-Glu (c) as determined by MS/MS analysis