
Appendix 1

Supplementary Videos
Three supplemental videos are included:

- Video V1: SR-EV configuration represented as beads and sticks, wrapped in
a mesh envelope that separates the dense regions from the nearly empty
regions of the configuration. The beads have a diameter to 25% of their ac-
tual size to allow for more visibility. This configuration is the same as the one
displayed on Figure 2-E and 2-G. The configuration rotates about the 𝑍-axis
to give a good understanding of its corrugated character.

- Video V2: Representation of the same system of Video V1, but in this case it
contains only the wrapping mesh that resembles the interface between two
disordered bi-continuous phases.

- Video V3: Stack of images from a conformation obtained with 𝛼 = 1.20 and
𝜙 = 0.12. The planes are separated by 5 nm, and in plane resolution is 2 nm
× 2 nm. The image shows the variability of 2D representation in a 100 nm
slab.
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Appendix 2

Supplementary Figures

Appendix 2—figure 1. Example of domain and domain’s center determination from
SR-EV slabs. The left image shows the collapse SR-EV density from a 100 nm slab. The right
image shows the identified domains cores in black and their geometric centers in yellow.
Three different domains are identified with the numbers.

Appendix 2—figure 2. Example of the determination of the density profiles of domains
and their effective radii. The three cases correspond to the large, medium and small
domains denoted by 1, 2 and 3 in Figure S1. The profiles are calculated from the domain
center using the coordinates from the configurations and assuming cylindrical symmetry.
The radius of a domain corresponds to the first minimum in the density profile.

29 of 33



Appendix 2—figure 3. Example of cumulative distribution functions, 𝐺𝑖(𝑟), for fivedifferent SR-EV configurations. Each 𝐺𝑖(𝑟) is fitted with a power law between 40 and 120
nm to determine the packing coefficient 𝐷𝑖 corresponding to that configuration.
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Appendix 3

Supplementary Algorithms
Algorithm for the generation of a SRRW in free space
Here we describe a recursive Monte Carlo algorithm to generate a SRRW param-
eterized by folding parameter 𝛼 > 1 and local cutoff 𝑈max, which represents the
maximum bond length. Within the algorithms to be described, the length unit is
the minimum bond length 𝑈min = 10 nm, so that all length are dimensionless, and
taken relative to the minimum bond length 𝑈min. The conformation of the SRRW,
emanating from the origin, is defined by 𝑁 bond vectors 𝐔1, 𝐔2, ..., 𝐔𝑁 . In the
following, the symbol 𝜉 stands for an independent random number drawn with
equal probability from the interval [0, 1], and has to be recreated whenever it oc-
curs below.
(A1) Define 𝛽 ≡ 1 − 𝑈−(1+𝛼)

max .
(A2) Generate a set of 2𝑁 bond vectors 𝐁𝑛 with 𝑛 = 1, 2, .., 2𝑁 for eventual later

use. Each 𝐁𝑛 is given by 𝐁𝑛 = 𝓁𝐮, where 𝐮 is a random unit vector and
𝓁 = (1 − 𝛽𝜉)−1∕(1+𝛼) its bond length. A random unit vector we create via
𝐮 = (

√

1 − 𝑧2 cos𝜙,
√

1 − 𝑧2 sin𝜙, 𝑧), where 𝜙 = 2𝜋𝜉 and 𝑧 = 2𝜉 − 1. The gen-
eration of the set {𝐁} hence requires 6𝑁 random numbers 𝜉 and if not oth-
erwise mentioned, the {𝐁} will remain unchanged during the course of the
algorithm.

(A3) Initialize 𝑛 = 𝑁 , set 𝐔1 = 𝐁𝑛.(A4) Increase 𝑛 by one, set 𝐔2 = 𝐁𝑛, and initialize step 𝑠 = 2.
(A5) Call a recursive routine that takes the existing sets {𝐁}, {𝐔}, 𝑛, and 𝑠 as argu-

ments, and returns new sets {𝐁}, {𝐔}, and 𝑛. This routine does the following:
(i) If 𝑠 = 𝑁 , just return from the routine.
(ii) Calculate return probability 𝑃𝑅 = |𝐔𝑠|

−𝛼∕𝛼.
(iii) If 𝜉 < 𝑃𝑅, then 𝐔𝑠+1 = −𝐁𝑛 and 𝑛 is decreased by one. Otherwise, 𝑛 is

increased by one, the single 𝐁𝑛 is re-created using the above procedure(A2), and 𝐔𝑠+1 = 𝐁𝑛.(iv) Routine calls itself with identical arguments as before, with the excep-
tion of 𝑠 + 1 instead of 𝑠.

The described algorithm terminates automatically as soon as 𝑁 bond vectors
𝐔1, 𝐔2, ..., 𝐔𝑁 have been created. The coordinates {𝐱} of nodes are simply given by
the cumulative sum over the set of bond vectors {𝐔}, i.e., 𝐱𝑗+1 = 𝐱𝑗 +𝐔𝑗 . Note thatusing this algorithm the return probabilities satisfy Eq. (1) and that all bond lengths
𝓁 are automatically confined to the interval [𝑈min, 𝑈max] and distributed accordingto Eq. (2). The proof is provided in the next section.
Algorithm for the generation of a SRRW subject to global cutoff
The idea of a SRRWwith global cutoff𝑅𝑐 is tomake sure the SRRWwill tend to grow
within a certain spherical volume of radius ≈ 𝑅𝑐 . To this end the above algorithm
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is slightly modified as follows. Instead of the earlier (ii) calculate the geometric
center 𝐂 of the existing nodes from {𝐱}. If |𝐱𝑠 −𝐂| > 𝑅𝑐 , then set 𝑃𝑅 = 1, otherwise
calculate 𝑃𝑅 = |𝐔𝑠|

−𝛼∕𝛼 as before.
Molecular dynamics protocol for the generation of a SR-EV
A SRRW conformation subject to global cutoff is produced via Monte Carlo as just
described; such a conformation usually exhibits a large number of nodes (points)
with identical coordinates. All these points need to be turned into beads, i.e., re-
ceive a finite spherical volume within the final SR-EV configuration, that should
preserve all large scale features and domain characteristics of the SRRW. We alter
the local structure to avoid bead-bead overlap, while operating at (ideally) mini-
mal displacement effort. To this end we use the original node coordinates {𝐱} as
initial center positions of spherical beads of radius 𝑟◦ = 0.49 and unit mass 𝑚. In
a first step, to allow for a random element, and to avoid center-center distances
that are exactly zero up to numerical precision, we displace all overlapping beads
randomly by 1% of the bead diameter. Afterwards we employ LAMMPS Thompson
et al. (2022) to run a molecular dynamics simulation on the modified SRRW sys-
tems composed of spherical beads. We let all beads interact via a soft repulsive
radially symmetric pair potential 𝑉 (𝑟) = 20𝜖[1 + cos(𝜋𝑟∕𝑟𝑐)] for 𝑟 ≤ 𝑟𝑐 , and 𝑉 (𝑟) = 0
otherwise, where 𝑟 denotes the center-center distance between pairs of beads, 𝜖
the irrelvant energy unit, and the cutoff distance 𝑟𝑐 = 1.03 is chosen slightly larger
than the beaddiameter. The system is thermostatted via theNosé-Hoover scheme
at 𝑇 = 0.001 𝜖∕𝑘B, and run using a time step Δ𝑡 = 0.005𝑈min

√

𝑚∕𝜖. During runtime,
the bead-bead pair correlation function 𝑔(𝑟) is evaluated at each time step and av-
eraged for a duration of 200 time steps. Each time unit (200 time steps) we inspect
the averaged 𝑔(𝑟), integrated up to 𝑟𝑐 , as this quantity informs about the amount
of remaining overlap. In rare cases, the integral did not decrease with time, in that
case we start over using another seed value for the random number generator.
While the integral keeps decreasing, we monitor the potential energy of the sys-
tem. As soon as the potential energy has reached a minimum, which happens if
the energy is close to zero, we terminate the molecular dynamics run and save
the resulting SR-EV coordinates. The minimum center-center distance between
pairs of beads in the SR-EV configuration exceeds 2𝑟◦, as we verified. Note that thedistribution of bond lengths is significantly different for SR-EV and SRRW confor-
mations.

Proof of the validity of the SRRW algorithm
The forward jump probability 𝑃𝐽 (𝑈 ) = (𝛼 + 1)𝑈−(𝛼+2) was stated in the manuscript.
It was furthermore mentioned that new bonds of length 𝑈1 should not exceed a
local dimensionless cutoff length 𝑈max, while 𝑈min = 1 within these units. Because
𝑃𝐽 is a probability distribution, it must fulfill ∫ 𝑈max

1 𝑃𝐽 (𝑈 )𝑑𝑈 = 1 and the properly
normalized version thus reads

𝑃𝐽 (𝑈 ) =
(𝛼 + 1)𝑈−(𝛼+2)

1 − 𝑈−(𝛼+1)
max

, 𝑈 ∈ [1, 𝑈max]. (3)
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To efficiently create bond lengths 𝑈 distributed according to Eq. (3) using equally
distributed random numbers 𝜉 ∈ [0, 1], one has to solve the differential equation
𝜉′(𝑈 ) = 𝑃𝐽 (𝑈 ) with initial condition 𝜉(1) = 0, and then invert the solution. The
solution of the differential equation is 𝜉(𝑈 ) = (𝑈max∕𝑈 )1+𝛼(𝑈1+𝛼 − 1)∕(𝑈1+𝛼

max − 1).
Solving this expression for 𝑈 gives 𝑈 = (1 − 𝛽𝜉)−1∕(1+𝛼) with the constant 𝛽 ≡ 1 −
𝑈−(1+𝛼)
max , so that𝑈 = 1 and𝑈 = 𝑈max for 𝜉 = 0 and 𝜉 = 1, respectively. This completes

the proof of item (A2) with (A1).
It might be just interesting to mention that one has access to some statistical

properties of the chain conformation from 𝑃𝐽 , while 𝑃𝑅 has to be taken into ac-
count for the exact calculation. For sufficiently large 𝑈max the mean bond length
is

⟨𝑈⟩ = ∫

𝑈max

1
𝑈𝑃𝐽 (𝑈 )𝑑𝑈 ≈ 1 + 𝛼

𝛼
. (4)

For 𝛼 ∈ {1.1, 1.15, 1.2} the mean bond length is hence ⟨𝑈⟩ ∈ {1.91, 1.87, 1.83}. Simi-
larly, the mean return probability is approximately

⟨𝑃𝑅⟩ = ∫

𝑈max

1
𝑃𝑅(𝑈 )𝑃𝐽 (𝑈 ) 𝑑𝑈 ≈ 1 + 𝛼

𝛼(1 + 2𝛼)
, (5)

i.e., ⟨𝑃𝑅⟩ = {0.597, 0.567, 0.539} for 𝛼 = {1.1, 1.15, 1.2}. While for 𝛼 ≤ 1.03 the SRRW
basically collapses to a small region in space, beyond this value the effective num-
ber of forward steps is approximately [0.49(𝛼 − 1) − 0.02]𝑁 ≈ (𝛼 − 1)𝑁∕2.


