Supplementary Figures

Fig. S2. Quality of the K means clustering solution in CAP analysis. Silhouette scores were estimated across different numbers of clusters (k) from the K-means clustering solution from a split data. Results from 10 permutations (two split-halves in each permutation) are shown. Optimal k values were estimated using the elbow method for the Silhouette scores and are highlighted in red.

Fig. S3. Occurrence of CAPs across permutations. (A) The estimated number of CAPs (k) in each split across 1,000 permutations. (B) Occurrence rate (%) of k=4 or k=5 solutions in each split. (C) Co-occurrence rate (%) of k = 4 or k = 5 solutions in both splits.

Fig. S4. Generation of basis CAP sets.

Fig. S5. Spatial patterns of the basis CAPs are distinct to each other and reproducible using the proposed shuffled split-half analysis. (A) Spatial patterns of the basis CAPs in each split-half data. The 4-CAP basis set and the 5-CAP basis set were generated independently from the same split-half data, using the hierarchical clustering across 1,000 shuffled split-half resampling, as described in **Fig. S2. (B)** Spatial similarity (*r*, correlation coefficient) of the 4-CAP basis set within the split 1 data (left) and within the split 2 data (right). *r* values were rounded to the nearest 2 decimal digits for visualization. **(C)** Spatial similarity of the 5-CAP basis set within the split 1 data (left) and within the split 2 data (right). **(D)** Spatial similarity of the 4-CAP basis set between the split 1 and 2 data (left) and of the 5-CAP basis set between the split 1 and 2 data (right). **(E)** Spatial similarity between the 4-CAP basis set and the 5-CAP basis set within the split 1 data (left) and within the split 2 data (right). **(E)** Spatial similarity between the 4-CAP basis set and the 5-CAP basis set within the split 1 data (left) and within the split 2 data (right). **(E)** Spatial similarity between the 4-CAP basis set and the 5-CAP basis set within the split 1 data (left) and within the split 2 data (right).

Fig. S6. Spatial patterns of the CAPs estimated from both splits are reproducible and strongly correlated with at least one of the basis CAPs. (A) From left to right, the marginal distributions of r between all estimated CAPs (ECs) and each basis CAP (BC) from the 4-CAP basis set are illustrated using kernel density estimation. Results were obtained from the split 1 data (top) and the split 2 data (bottom). Each r value is color-coded using a sorting algorithm to label the corresponding EC using the maximum spatial correlation with BCs. (B) From left to right, the marginal distributions of r between all estimated CAPs and each BC from the 5-CAP basis set are illustrated using kernel density estimation.

Fig. S7. The spatial topography of CAP state III is reproducible when it is found in one split and not in another across permutations.

Fig. S8. The distribution of correlations between individual fMRI time-frames and the estimated basis CAPs (cluster centroid), to which individual time-frames were assigned by K-means clustering.

Fig. S9. Stability of individual mean DT, var DT and FO across permutations

Between-day reliability at single subject level

Fig. S10. Between-day reliability of neural measures at single subject level. Each datapoint in the scatter plot is a subject. For each subject, neural measures were averaged across permutations.

Similar state-trait features between positive and negative co-activations

Fig. S11. Similarity of temporal organizations between positive and negative co-activation patterns. CAP states I and II have similar FO, mean DT and DT variance across the positive and negative co-activation states (I+ vs I- and II+ vs II-). Each data-point indicate a subject. The temporal metric values across all permutations and two days were averaged within each subject.

Within-subject CAP variance

Fig. S12. Within-subject variance of FO across 5 CAPs across permutations.

Fig. S13. Distribution of individual neural measures of spatio-temporal CAP dynamics differ between subgroups. The distributions of individual FO, mean DT, and var DT of each CAP state are color-coded by the three subgroups. Results from days 1 and 2 data are shown separately and compared between groups. Each data-point indicates a subject. Blue lines: *p*-values with Bonferronic correction across five CAPs are estimated using two-sided two-sample *t*-tests between groups, $p_{BON} < .001$ (bold) and $p_{BON} < .05$ (dotted).

_	1 1005 0
	1 - MMSE_Score
_	2 – PSQI_Score
	3 – PicSeq_AgeAdj
	4 – CardSort_AgeAdj
	5 – Flanker_AgeAdj
	6 – PMAT24 A CR
	7 – PMAT24_A_SI
	8 - PMAT24 A RTCR
	9 - BeadEng AgeAdi
	10 - PicVocab AgeAdi
	11 - ProcSpeed AgeAdi
	12 - DDisc SV 1mo 200
	12 DDiac_0V_1110_200
	13 - DDIsc_3V_6III0_200
	14 - DDIsc_SV_Tyr_200
	15 - DDisc_SV_3yr_200
	16 - DDisc_SV_5yr_200
	17 - DDisc_SV_10yr_200
	18 – DDisc_SV_1mo_40K
	19 – DDisc_SV_6mo_40K
	20 – DDisc_SV_1yr_40K
	21 – DDisc_SV_3yr_40K
	22 - DDisc_SV_5yr_40K
	23 - DDisc_SV_10yr_40K
	24 - DDisc AUC 200
	25 - DDisc AUC 40K
	26 - VSPLOT TC
	27 - VSPLOT_CRTE
	JU - SUPI_IN
	31 - SUPI_FP
	32 – SCPT_FN
	33 – SCPT_TPRT
	34 – SCPT_SEN
	35 – SCPT_SPEC
	36 – SCPT_LRNR
	37 – IWRD_TOT
	38 – IWRD_RTC
	39 – ListSort_AgeAdj
	40 - ER40_CR
	41 - ER40 CRT
	42 - ER40ANG
	43 – ER40FEAR
	44 – ER40HAP
	45 - ER40NOE
	46 - EB40SAD
	47 – AngAffect Unadi
	48 – AngHostil Unadi
	49 - AngAggr Unadi
	50 - FearAffect Unadi
	51 - FearSomat Unadi
	52 - Sadness Unadi
	52 _ LifeSatief Linadi
	54 - MeanPurn Unadi
	54 - Mean rup_onauj
	55 – FOSAllect_Olladj
	56 - Friendship_Onadj
	57 - Loneliness_Unadj
	58 - PercHostil_Unadj
	59 - PercHeject_Unadj
	60 – EmotSupp_Unadj
	61 – InstruSupp_Unadj
	62 – PercStress_Unadj
1	63 - SelfEff_Unadj
	64 – NEOFAC_A
	65 – NEOFAC_O
	66 – NEOFAC_C
	67 – NEOFAC_N
	68 – NEOFAC_E
	69 - Emotion_Task_Acc
	70 – Emotion_Task_Median_RT
	71 - Emotion_Task_Face_Acc
	72 - Emotion_Task_Face_Median_RT
	73 - Emotion_Task_Shape_Acc
	74 - Emotion Task Shape Median RT
	75 - Gambling_Task_Perc Larger
	76 - Gambling Task Perc Smaller
	77 - Gambling Task Median BT Larger
	78 - Gambling Task Median BT Smaller
	79 - Gambling Task Reward Perc Larger
1	80 - Gambling Task Beward Median RT Larger
1	81 - Gambling Task Reward Perc Smaller
1	82 - Gambling Task Reward Median DT Smelle
1	83 _ Gambling Task Pupish Porc Lorger
1	84 - Gambling Task Punish Median PT Lorger
1	85 _ Gambling Task Pupish Poro Smaller
1	96 Gambling Task Punish Median BT Smaller
	97 Language Tesk Ace
	or - Language_Task_ACC
	00 - Language_Task_Median_HT
	09 - Language_Task_Story_Acc
	90 - Language_Task_Story_Median_RT

91 - Language_Task, Story_Avg_Difficulty_Level
92 - Language_Task, Math, Acc
93 - Language_Task, Math, Avg_Difficulty_Level
94 - Language_Task, Math, Avg_Difficulty_Level
95 - Relational_Task, Median_RT
99 - Relational_Task, Median_RT
99 - Relational_Task, Math, Median_RT
90 - Relational_Task, Math, Median_RT
91 - Relational_Task, Math, Median_RT
92 - Relational_Task, Rel_Acc
93 - Relational_Task, Perc_Random
102 - Social_Task, Perc_CNUSURE
104 - Social_Task, Perc_CNUSURE
105 - Social_Task, Median_RT, Andom
105 - Social_Task, Median_RT, Andom
106 - Social_Task, Median_RT, Random
106 - Social_Task, Median_RT, Random
106 - Social_Task, Mandom_Perc_Manure
107 - Social_Task, Mandom_Perc_Unsure
108 - Social_Task, Mandom_Perc_Unsure
119 - Social_Task, Mandom_Perc_Unsure
110 - Social_Task, Mandom_Perc_Unsure
111 - Social_Task, Mandom_Perc_Unsure
111 - Social_Task, Mandom_Perc_Unsure
114 - Social_Task, Mandom_RT
118 - Social_Task, Mandom_RT
119 - Social_Task, Mandom_RT
119 - Social_Task, Mandom_RT
120 - WM_Task, Obk, Acc
121 - WM_Task, Obk, Median_RT
120 - WM_Task, Obk, Median_RT
120 - WM_Task, Obk, Rody, Acc. Target
122 - WM_Task, Obk, Rody, Acc. Target
123 - WM_Task, Obk, Race_Acc
124 - WM_Task, Obk, Race_Acc
125 - WM_Task, Obk, Race_Acc
136 - WM_Task, Obk, Race, Acc
137 - WM_Task, Obk, Race, Acc
138 - WM_Task, Bok, Race, Acc
139 - WM_Task, Obk, Race, Acc
130 - WM_Task, Dbk, Race, Acc
131 - WM_Task, Dbk, Race, Acc
131 - WM_Task, Dbk, Race, Acc HML Task Zbk, Body, Acc, Iargef
HML Task, Zbk, Body, Acc, Nontarget
HML Task, Zbk, Face, Acc, Target
HML Task, Zbk, Tool, Acc, Nontarget
HML Task, Zbk, Tool, Acc, Median, RT
HML Task, Zbk, Face, Median, RT, Nontarget
HML Task, Zbk, Tool, Median, RT, Target
HML Task, Zbk, Tool, Median, RT, Target
HML Task, Zbk, Face, Median, RT, Nontarget
HSH, HML, Task, Zbk, Face, Median, RT, Nontarget
HSH, HML, Task, Zbk, Face, Median, RT, Target
HML T 168 – ASR_Anxd_Pct 169 – ASR_Witd_T 170 – ASR_Soma_T 171 – ASR_Thot_T 172 – ASR_Attn_T 172 - ASR_Attn_T 173 - ASR_Agg_T 174 - ASR_Rule_T 175 - ASR_Intr_T 176 - ASR_Intr_T 177 - ASR_Extn_T 178 - ASR_Totp_T 179 - DSM_Depr_T 180 - DSM_Anxi_T

181 - DSM Somp T 182 – DSM_Avoid_T 183 – DSM Adh T 184 - DSM Antis T 185 – SSAGA ChildhoodConduct 186 - SSAGA PanicDisorde 186 – SSAGA, PanicDisorder 187 – SSAGA, Agoraphobia 188 – SSAGA, Depressive_Ep 189 – SSAGA, Depressive_Sx 189 – Total_Drinks_7days 191 – Avg_Weekday_Drinks_7days 193 – Avg_Weekday_Drinks_7days 193 – Total_Beer_Wine_Cooler_7days 195 – Avg_Weekday_Deer_Vine_Cooler_7days 195 – Avg_Weekday_Deer_Vine_Cooler_7days Inde Avg, Weeknad, Beer, Wile, Cooler, Tday
 Inde Avg, Weeknad, Beer, Wile, Cooler, Tday
 Inde Avg, Weeknad, Malt, Liquor, Tdays
 Avg, Weeknad, Malt, Liquor, Tdays
 Avg, Weeknad, Malt, Liquor, Tdays
 Total, Min, Tdays
 Avg, Weeknad, Malt, Liquor, Tdays
 Total, Min, Tdays
 Avg, Weeknad, Min, Tdays
 Avg, Weeknad, Malt, Liquor, Tdays
 Avg, Weeknad, Min, Liquor, Tdays
 Avg, Weeknad, Yine, Tdays
 Avg, Weeknad, Yine, Tdays
 Avg, Weeknad, Hard, Liquor, Tdays
 Avg, Weeknad, Hard, Liquor, Tdays
 Total, Hard, Liquor, Tdays
 Total, Ala, Dd, Ab, Da, Sa
 SSAGA, Alc, D4, Ab, Dx
 SSAGA, Alc, D4, Ab, Dx
 SSAGA, Alc, 124, Frq, Splus
 SSAGA, Alc, Hwy, Trq, Tobacco, Tdays
 Total, May, Tobacco, Tdays
 Total, Orgarettes, Tdays
 Total, Orgarettes, Tdays
 Saw, Hwy, Tobacco, Tdays
 Saw, Sued, Any, Tobacco, Tdays
 Saw, Sued, Any, Tobacco, Tdays
 Saw, Sued, Any, Tobacco, Tdays
 Suekend, Any, Tobacco, Tdays
 Suekend, Any, Tobacco, Tdays
 Num, Dwekend, Any, Tobacco, Tdays
 Num, Dwekend, Any, Tobacco, Tdays
 Suekend, Any, Tobacco, Tdays
 Suekend, Any, Tobacco, Tdays
</ul 96 - Avg_Weekend_Beer_Wine_Cooler_7days 97 - Total_Malt_Liquor_7days

Fig. S14. List of behavioral variables. Behavioral variable names are identical to the variable names provided by the HCP data dictionary for the S1200 data release: HCP_S1200_DataDictionary_April_20_2018.csv. Check https://wiki.humanconnectome.org/display/PublicData/HCP-YA+Data+Dictionary-+Updated+for+the+1200+Subject+Release for details.

Fig. S15. Null data were generated by shuffling individual subjects in behavioral data. Null distributions of partial R^2 were estimated for each predictor in the neuro-behavioral association model trained from a split data across 1,000 split-half permutations.

Cross-validation (Training on split 1 and Test on Split 2) *** *** 0.2 0.1 Correlation \mathbb{R}^2 -0.2 0 True Null True Null Data Data Data Data *** p<e-10

Fig. S16. Split-half permutation based cross-validation of the prediction model of predicting behavioral PC 1 from neural PCs. The multiple linear regression models were trained using split 1 data and tested on split 2 data in each permutation. Null data were generated by shuffling individual subjects in behavioral data.

n=309 subjects excluding 28 subjects with high motion

Fig. S17. Repeating the analysis of neuro-behavioral association excluding subjects with high motion did not change the results. Among 337 subjects, 28 subjects with excessive motion (FD > 0.5mm) were excluded. Across 1,000 permutations, a split of subjects (n = 154) was randomly selected, and PCA was performed on neural measures from these subjects. Multiple linear regression models for predicting behavioral PCs from these subjects were estimated. Null data were generated by shuffling individual subjects in behavioral data.