Cell Reports, Volume 43

Supplemental information

Small-molecule inhibition of the METTL3/METTL14

complex suppresses neuroblastoma tumor

growth and promotes differentiation

Monica Pomaville, Mohansrinivas Chennakesavalu, Pingluan Wang, Zhiwei Jiang, Hui-Lung Sun, Peizhe Ren, Ryan Borchert, Varsha Gupta, Chang Ye, Ruiqi Ge, Zhongyu Zhu, Mallory Brodnik, Yuhao Zhong, Kelley Moore, Helen Salwen, Rani E. George, Malgorzata Krajewska, Alexandre Chlenski, Mark A. Applebaum, Chuan He, and Susan L. Cohn

Supplemental Figures

Figure S1. METTL3/METTL14 expression correlates with survival in patients with neuroblastoma. (A) Kaplan Meier survival curve showing event-free survival of patients with neuroblastoma in the Westermann cohort (n=105) according to METTL3/METTL14 expression. **(B)** Kaplan Meier survival curve showing overall survival of patients with neuroblastoma in the Westermann cohort (n=105) according to METTL3/METTL14 expression. **(C)** Violin plot showing relative distribution of METTL3/METTL14 expression in patients in the Westermann cohort classified as having high-risk (n=56) or non-high-risk (n=49) neuroblastoma.

Figure S2. Effect of METTL3/14 inhibition in neuroblastoma xenografts derived from NGP cells. Overall survival of mice with neuroblastoma xenografts derived from NGP cells treated with STM2457 versus vehicle control is not significantly different (p=0.3138).

Figure S3. STM2457 treatment increases expression of neuronal differentiation genes. (A) Volcano plot showing differentially expressed genes in NGP cells treated for 6 days with 1 μ M STM2457. (B) Volcano plot showing differentially expressed genes in SK-N-BE2 cells treated for 6 days with 12 μ M STM2457. (C) GO pathway analysis showing up-regulated gene pathways in Kelly cells, (D) NGP cells, and (E) SK-N-BE2 cells after 6 days of treatment with STM2457 (8 μ M, 1 μ M, and 12 μ M, respectively). (F) GO pathway analysis showing up-regulated gene pathways in Kelly cells treated with 8 μ M STM2457 for 1 day. (G) GO pathway analysis showing down-regulated gene pathways in Kelly cells treated with 8 μ M STM2457 for 6 days, (H) Kelly cells treated with 8 μ M for 1 day, (I) NGP cells treated with 1 μ M STM2457 for 6 days, and (J) SK-N-BE2 cells treated with 12 μ M STM2457 for 6 days.

Figure S4. STM2457 treatment promotes expression of selected differentiation genes. Heat map of expression (z scored expression) of a previously defined set of neuronal differentiation genes (Supplementary Table 1) in Kelly cells treated with DMSO or 8 µM STM2457 for six days.

Figure S5. High METTL3/14 inhibitor response signature scores are correlated with improved survival in neuroblastoma. (A) Event-free survival and (B) overall survival is significantly improved for patients in the Westermann cohort with high expression of STM2457 targets (n=55) compared to those with low expression (n=50) (p=0.0022 and p=0.00015, respectively). STM2457 targets were defined from the 73 genes in the nervous system development pathway (GO:0007399) that are found up-regulated in NGP, Kelly, and SK-N-BE2 cells after treatment with STM2457 for 6 days (1 μ M, 8 μ M, and 12 μ M, respectively).

Figure S6. STM2457 treatment decreases m⁶A mRNA deposition and increases mRNA expression in networks enriched for neuronal differentiation. (A) STM2457 treatment of Kelly cells for 6 days promotes loss of mRNA m⁶A deposition (x axis) assessed by meRIP sequencing and increased gene expression assessed by RNA sequencing (y axis) compared to DMSO. (B) GO analysis of upregulated METTL3 targets following treatment with 8µM STM2457 for 6 days in Kelly cells and in (C) NGP cells.

Figure S7. The METTL3/14 inhibitor STM2457 was synthesized and validated. (A) Structure of METTL3/METTL14 inhibitor, STM2457. (B) Molecular identification based on Nuclear Magnetic Resonance (NMR) analysis. (C) NMR analysis.

Gene Name	Classification 1	Citation 1	Classification 2	Citation 2
STMN2	Chromaffin	Bedoya-Reina [1]		
CHGA	Chromaffin	Bedoya-Reina [1]	Adrenergic	Bedoya-Reina [1]
CHGB	Chromaffin	Bedoya-Reina [1]	Adrenergic	Bedoya-Reina [1]
HAND1	Chromaffin	Bedoya-Reina [1]		
PNMT	Chromaffin	Bedoya-Reina [1]	Adrenergic	Bedoya-Reina [1]
CHRNA3	Chromaffin	Bedoya-Reina [1]		
NTRK1	Differentiation	Nakagawara [2]	Adrenergic	Bedoya-Reina [1]
TUBB3	Differentiation	Zimmerman [3]		
HOXC9	Differentiation	Mao [4]		
FN1	Differentiation	Zimmerman [3]		
INA	Central Nervous System	Kildisiute [6]	Fetal Medullary	Kildisiute [6]
RET	Sympathoadrenal development	Bedoya-Reina [1]		
STMN4	Sympathoadrenal development	Bedoya-Reina [1]		
NEFL	Sympathoadrenal development	Bedoya-Reina [1]		
HAND2	Sympathoadrenal development	Tomolonis [7]		
GATA3	Sympathoadrenal development	Tomolonis [7]		
PHOX2A	Adrenergic	Bedoya-Reina [1]	Sympathoadrenal development	Tomolonis [7]
PHOX2B	Adrenergic	Bedoya-Reina [1]	Sympathoadrenal development	Tomolonis [7]
GATA2	Sympathoadrenal development	Tomolonis [7]		
SOX4	Retino-sympathetic	Zimmerman [3]		
TBX2	Retino-sympathetic	Zimmerman [3]		
ТВХ3	Retino-sympathetic	Zimmerman [3]	Fetal Medullary	Kildisiute [6]
PRPH	Sympathoblast	Bedoya-Reina [1]	Chromaffin	Bedoya-Reina [1]
HEY1	Adrenergic-type neuroblastoma	Van Groningen [5]		
CHRNA7	Progenitor	Bedoya-Reina [1]	Chromaffin	Bedoya-Reina [1]
ISL1	Adrenergic	Bedoya-Reina [1]		

Table S1. List of differentiation-associated genes compiled from RNA sequencing in Kelly cells and literature search.

Shared upregulated genes between Kelly, NGP, and SK-N-BE2 cells within the nervous system development pathway (GO:0007399)				
GFRA2	APBA2	LLGL1	KIF14	
PLPPR4	CDKN2C	NR0B1		
PLXNA4	ATP7A	CTNNB1		
TMEM108	SFRP1	KDM2B		
DOK4	TBX3	EDNRA		
CNP	MAP4K4	EHMT2		
GPRIN1	OGDH	MEIS1		
MARCKSL1	LRRN3	B4GALT5		
NES	DCHS1	PTPRS		
CHRM1	TUBB2B	MAP1A		
TENM4	GLI2	LPAR1		
PLPPR5	NREP	RTN1		
XRCC2	SDC2	ATXN1		
SULF2	DAG1	PBX1		
MMP2	DLC1	TEAD2		
GRIP1	SYNE2	SMARCC2		
MDGA1	FN1	CHRNA7		
EVL	SPTBN1	CCDC14		
ACTB	TIAM1	PKD2		
GDF11	BASP1	GPR173		
MACF1	ENC1	MTR		
SPG7	COL4A1	DCX		
ST8SIA2	PHACTR4	DPYSL2		
IGF1R	IGSF9	ZEB2		

<u>**Table S2.</u>** List of genes up-regulated in Kelly, NGP, and SK-N-BE2 cells after treatment with STM2457 (8 μ M, 1 μ M, 12 μ M, respectively) and list of genes up-regulated in Kelly, NGP, and SK-N-BE2 cells after treatment with STM2457 (8 μ M, 1 μ M, 12 μ M, respectively) classified as part of the nervous system development pathway (GO:0007399).</u>

Genes upregulated in STM2457-treated tumors relative to vehicle control after 14 consecutive days of					
HSPA1A	SEC61A1	DPP7	RPL23	RPS14	
NR4A1	RPL13	LIMD2	BSG	FLNA	
MT-CYB	RTL1	SRRM3	GPS1	NUCB1	
HSPB1	INTS11	TRMT1	TELO2	PNKP	
RPL36	FBRSL1	DPP9	DLGAP4	RPS8	
MDK	EEF1A2	UBA52	FAM207A	STRA6	
GAPDH	SP100	RPL10	ZNF316	ZDHHC8	
RPS11	NOP56	MT-CO3	WDR74	CC2D1A	
MT-ND5	CEP131	FAM193B	CHTF18	RPL35	
RPS19	CRH	RRP12	DOK4	NPDC1	
SEZ6L2	MT-ND6	GADD45GIP1	IGFBP2	RPL32	
RPL28	ELOB	MT-CO2	DNAJB1	ТТС9В	
MT-ND4L	SERF2	KLHL17	PPP6R1		
CHGA	SNRNP70	IGSF9	GATA2		
ACIN1	RPL19	PSMC3	IER5L		
JUN	COL6A1	CDC37	RPS24		
HSPA1B	MAP1B	RPL37	ARFGAP1		
TBX2	RABL6	IER2	PDZD4		
MT-ND3	RPL8	HEXD	SF3A2		
COL6A2	NOP58	MFSD12	RPL4		
RPS27	H1-10	RPLP1	KRT17		
PTMS	PELP1	AHCY	PPDPF		
MT-ND4	RPL18	TNFRSF25	SCRIB		
CCNL2	SAMD1	RPL29	TPM2		
LRRC4B	PRRT2	ANKRD13B	GDPD5		

Table S3. Genes up-regulated in STM2457-treated tumors (50mg/kg/dose) derived from Kelly cells relative to vehicle control after 14 consecutive days of treatment and followed to 23 days of life.

Shared genes that are upregulated, contain lower m ⁶ A, and have increased half-life in Kelly cells treated with METTL3/14 inhibitor				
ABHD8	KIF26A			
ADRA2A	KIF3C			
ALDH1B1	MARVELD1			
APC2	MEX3D			
ARID1A	MPST			
B3GALT6	NEU4			
BRPF3	P3H4			
C11orf95	PATZ1			
CHST2	PCDH1			
CKAP4	PLEKHO1			
DDN	PPP1R18			
DDX17	RBM15B			
DOK4	RHOB			
FAM171A2	SBK1			
FBXO41	SLC10A4			
FEM1A	SLIT3			
FEN1	SOX12			
FLAD1	SOX4			
FSCN1	TBX2			
GPRIN1	TNRC18			
HCFC1	TRIB2			
HNRNPF	UBTF			
HOXC9	ZNF48			
JARID2	ZNF581			
KIF18B	ZNF787			

<u>**Table S4.</u>** List of genes assessed by RNA sequencing in Kelly cells after treatment with 8 μ M STM2457 that show increased expression, decreased m⁶A, and increased stability after 6 days of treatment.</u>

Primer sequences use	ed		
Actin	F	CACCATTGGCAATGAGCGGTTC	
Actin	R	AGGTCTTTGCGGATGTCCACGT	
CHGA	F	GGTTCTTGAGAACCAGAGCAGC	
CHGA	R	GCTTCACCACTTTTCTCTGCCTC	
NTRK1	F	CACTAACAGCACATCTGGAGACC	
NTRK1	R	TGAGCACAAGGAGCAGCGTAGA	

Table S5. Primer sequences used in this study.

Supplemental reference list ¹⁻⁷

- 1. Bedoya-Reina, O.C., Li, W., Arceo, M., Plescher, M., Bullova, P., Pui, H., Kaucka, M., Kharchenko, P., Martinsson, T., Holmberg, J., et al. (2021). Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun *12*, 5309. 10.1038/s41467-021-24870-7.
- Nakagawara, A., Arima-Nakagawara, M., Scavarda, N.J., Azar, C.G., Cantor, A.B., and Brodeur, G.M. (1993). Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328, 847-854. 10.1056/NEJM199303253281205.
- 3. Zimmerman, M.W., Durbin, A.D., He, S., Oppel, F., Shi, H., Tao, T., Li, Z., Berezovskaya, A., Liu, Y., Zhang, J., et al. (2021). Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Sci Adv 7, eabe0834. 10.1126/sciadv.abe0834.
- 4. Mao, L., Ding, J., Zha, Y., Yang, L., McCarthy, B.A., King, W., Cui, H., and Ding, H.F. (2011). HOXC9 links cell-cycle exit and neuronal differentiation and is a prognostic marker in neuroblastoma. Cancer Res *71*, 4314-4324. 10.1158/0008-5472.CAN-11-0051.
- 5. van Groningen, T., Koster, J., Valentijn, L.J., Zwijnenburg, D.A., Akogul, N., Hasselt, N.E., Broekmans, M., Haneveld, F., Nowakowska, N.E., Bras, J., et al. (2017). Neuroblastoma is composed of two superenhancer-associated differentiation states. Nat Genet *49*, 1261-1266. 10.1038/ng.3899.
- 6. Kildisiute, G., Kholosy, W.M., Young, M.D., Roberts, K., Elmentaite, R., van Hooff, S.R., Pacyna, C.N., Khabirova, E., Piapi, A., Thevanesan, C., et al. (2021). Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 7. 10.1126/sciadv.abd3311.
- 7. Tomolonis, J.A., Agarwal, S., and Shohet, J.M. (2018). Neuroblastoma pathogenesis: deregulation of embryonic neural crest development. Cell Tissue Res *372*, 245-262. 10.1007/s00441-017-2747-0.