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1 Investigated reactions of organoferrate anions with alcohols
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Scheme S1: Investigated protolysis reactions of the organoferrate anions with the proton 
donors ROH.
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2 Participants and submission

Table S1: Overview of the participants and their submissions for the Fe-MAN challenge.

Submission Structure 
optimization

Electronic single-
point energies Kinetic model Participants

A:
LUCCSD(T)

ωB97X-D3/
def2-TZVP

LUCCSD(T)/
def2-TZVP

microcanonical; 
Master equation 

calculations

Amarasinghe, 
Shafique, Feldt

B:
DLPNO-CCSD(T)

ωB97X-D3/
def2-TZVP

DLPNO-CCSD(T)/
def2-TZVP

microcanonical; 
Master equation 

calculations

Amarasinghe, 
Shafique, Feldt

C:
PNO-LCCSD(T)

ωB97X-D3/
def2-TZVP

PNO-LCCSD(T)-
F12/def2-TZVP

microcanonical; 
Master equation 

calculations

Amarasinghe, 
Shafique, Feldt

D:
B3LYP-PBE0

BP86-D3BJ/
def2-SVP

B3LYP-
D3BJ+PBE0/
def2-TZVP

microcanonical; 
Master equation 

calculations
Hein-Janke, Mata

E:
B3LYP 

microcanonical

microcanonical; 
Master equation 

calculations
F:

B3LYP canonical

B3LYP-D3BJ/
def2-SVP

B3LYP-D3BJ/
def2-TZVPD canonical,

TST

Guo, Harvey

G:
Data driven Data-driven model Pollice
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3 Further information about the experimental methods
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Scheme S2: Reaction network for the protolysis reactions of FePh3
− by CF3CH2OH (RF3OH).
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Scheme S3: Reaction network for the protolysis reactions of FePh3
− by CF2HCH2OH 

(RF2OH).
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Scheme S4: Reaction network for the protolysis reactions of FeMes3
− by CF3CH2OH (ROH).
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Table S2: Theoretical collision rate constants kcoll of the reactant ions with the neutral 
alcohols at T = 310 K according to the capture theory of Su and Chesnavich.

Reactant ion
Reaction # Species[a] m/z Alcohol[b] kcoll / 10−9 cm3 s−1

0 FePh3
− 287.16 RF3OH[c] 1.2228

1 FePh2(ORF3)− 309.08 RF3OH[c] 1.2115
2 FePh3

− 287.16 RF2OH[d] 0.7602
3 FePh2(ORF2)− 291.09 RF2OH[d] 0.7591
4 FeMes3

− 413.40 RF3OH[c] 1.1736
5 FeMes2(ORF3)− 393.25 RF3OH[c] 1.1794

[a] Ph = C5H6, Mes = C6H2(CH3)3. [b] RF3OH = CF3CH2OH, RF2OH = CF2HCH2OH. [c] For the dipole moment and 
the polarizability volume, calculated values of µ(RF3OH) = 1.95 D and α’(RF3OH) = 4.38 Ǻ3 were used, respectively. 
[d] For the dipole moment and the polarizability volume, calculated values of µ(RF2OH) = 0.72 D and α’(RF2OH) = 
4.37 Ǻ3 were used, respectively.
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4 Experimental results

Figure S1: Correlation of the effective rate constant keff for the protonation of Ph3Fe− by 
CF3CH2OH against the introduced volume of the substrate Vsubstrate (black 
squares) and linear fit with the intercept set to 0 (R2 = 0.997).

Figure S2: Correlation of the effective rate constant keff for the protonation of Ph2Fe(OR)− 
by CF3CH2OH against the introduced volume of the substrate Vsubstrate (black 
squares) and linear fit with the intercept set to 0 (R2 = 0.998).
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Figure S3: Time-dependent intensity profile (MSn) for the gas-phase ion-molecule reaction 
of mass-selected FePh3

− with 2,2-difluoroethanol (CF2HCH2OH; RF2OH) and its 
products as well as fit of the data according to Scheme S3.

Figure S4: Negative ion-mode electrospray ionization (ESI) mass spectrum (MS1) of a 
solution of Fe(acac)3 and MesMgBr (4 equiv) in THF (10 mM) at 195 K.



S8

Figure S5: Time-dependent intensity profile (MSn) for the gas-phase ion-molecule reaction 
of mass-selected FeMes3

− with 2,2,2-trifluoroethanol (CF3CH2OH; RF3OH) and 
its products as well as fit of the data according to Scheme S4.
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5 Theoretical results

Figure S6: Theoretical rate constants ktheo as obtained from Master-equation calculations 
based on the stationary-point structures and energies which were computed 
with the quantum-chemical method LUCCSD(T)/def2-TZVP//ωB97X-D3/def2-
TZVP.

Figure S7: Theoretical rate constants ktheo as obtained from Master-equation calculations 
based on the stationary-point structures and energies which were computed 
with the quantum-chemical method DLPNO-CCSD(T)/def2-TZVP///ωB97X-
D3/def2-TZVP.
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Figure S8: Theoretical rate constants ktheo as obtained from Master-equation calculations 
based on the stationary-point structures and energies which were computed 
with the quantum-chemical method PNO-LCCSD(T)-F12/def2-TZVP//ωB97X-
D3/def2-TZVP.

Figure S9: Theoretical rate constants ktheo and uncertainties as obtained from Master-
equation calculations based on the stationary point structures and energies 
which were computed employing a combination of the density functionals 
B3LYP and PBE0 with def2-TZVP basis sets.
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Figure S10: Theoretical rate constants ktheo as obtained from microcanonical Master-
equation calculations (red) or canonical transition-state theory calculations 
(orange) based on the stationary-point structures and energies which were 
computed with the quantum-chemical method B3LYP-D3BJ/def2-
TZVPD//B3LYP-D3BJ/def2-SVP.

Figure S11: Theoretical rate constants ktheo as obtained from the data-driven model.


