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Atom-Scale Features

Atom Type

Local Density of Atoms (9 features, density within spheres ranging from 2 - 10 Å)

Solvent Accessible Surface Area

Formal Charge

Number of Bonds with Heavy Atom

Ring Membership

Aromaticity

Mass

Hybridization

Hydrogen Bond Donor/Acceptor

Hydrophobicity

Amino Acid-Scale Features

Residue Name

Residue Polarity

Acidity (Acidic/Basic/Neutral)

Charge (Positive/Negative/Neutral)

Edge Features

Inverse Distance

Bond Order (including unbonded)

TABLE S1: GrASP input features.
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I. SC-PDB DATASET PREPARATION

Unlabeled ligands in the modified sc-PDB dataset were identified by matching their

chemical composition to labeled ligands from an entry with the same PDB ID. This criterion

was chosen to avoid adding ligands not present in the original sc-PDB to be consistent with

the sc-PDB’s requirement that ligands must be biologically relevant. The count of each

non-hydrogen element in the ligand was compared to the labeled ligands and matches were

recorded. The relatively loose criteria of element count was chosen to avoid false negatives

due to inconsistencies in bond perception and ligands with a different ordering of elements,

different sybyl atom types, or different residue names were labeled for visual inspection to

confirm they were not identified as duplicates in error.

Unlabeled ligands were identified as buried using the ratio of solvent-accessible surface

area (SASA) in the protein complex to SASA in vacuum. Ligands were classified as buried if

they were either below 30% solvent accessible or if their fraction accessible was no more than

10% above their labeled counterpart’s fraction. These criteria use a conservative definition

of buried ligands with 30% accessible surface chosen because 95% of the labeled ligands fall

below this threshold. The second part of the criteria accounts for ligands that have over 30%

surface exposure in their binding modes. We found that ligands with long tails may be up

to 60% accessible in their labeled binding mode and this comparison to the labeled ligands

identifies the small number of cases where unlabeled ligands are symmetric to their labeled

counterparts but over 30% accessible. The use of two criteria allows the base threshold

of 30% to be low enough to avoid false positives while comparison to the labeled fraction

accessible catches false negatives that would arise due to unique binding modes.
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II. MOTIVATION FOR DATASET CHANGES

FIG. S1: Example of the motivation for parsing new ligands in the sc-PDB dataset

(PDB: 1IEP). The ligand mol2 file in the original dataset contains the green ligand while

the protein file contains both the cyan protein and orange ligand. Naive use of the dataset

may lead a modeler to label no binding site in the lower chain and potentially include the

ligand in the receptor inputs. Our new preparation will return two ligand structure files

separating these ligands and a protein file containing the cyan receptor.
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FIG. S2: Example of the motivation to combine the biological relevance and geomet-

ric criteria used separately by P2Rank (PDB: 3NK7 in COACH420). This structure was

prepared using only the biological relevance criteria that the ligand must be present in

the binding MOAD database.1 The orange ligand does not meet the geometric criteria

to consider it bound and would only be included in one of the ways that P2Rank parses

COACH420 (the Mlig version). To avoid such cases while guaranteeing the relevance of

the ligands, we only include ligands, such as the green ligand, that pass both sets of crite-

ria. Practically this is accomplished by parsing each test set with P2Rank once with each

type of criteria and then taking the ligands included in both preparations.
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FIG. S3: Example of the motivation for our methodology to split chains in the test sets.

This system (PDB: 1GTZ) in the HOLO4K set is a homo-dodecamer with each of the

12 chains shown in a different color. Since it is unlikely that all 12 chains would be used

at once in a virtual screen, it is more realistic to evaluate predictions on a subsystem.

Naively we could make predictions on each chain individually but this would misrepresent

binding sites at the interface between chains. We therefore separate chains that do have a

ligand at their interface. Specifically, we associate each ligand with all chains within 4 Å

(the threshold from P2Rank’s geometric binding criteria) to determine which ligands bind

to multiple chains.
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FIG. S4: A subsystem created from the system (PDB: 1GTZ) in Fig. S3 above. We

color the protein by chain and show all protein residues within 4 Å of the ligands. We

can see that each ligand is close to two chains so we do not separate any of these chain

pairs. Overall, our parsing splits the homo-dodecamer into four subsystems with three

chains and three ligands each. We choose to include all subsystems after splitting chains

so this change does not affect the distribution of ligands in the test set but penalizes rank-

ing multimer binding sites in a more realistic setting.
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III. NEAR-SURFACE GRAPH CONSTRUCTION

The near-surface graph is constructed using two components: a distance matrix between

all protein heavy atoms, and labels for which heavy atoms are part of the protein surface. We

begin the process of marking which atoms are on the surface by first calculating the SASA.

We then add the hydrogen SASA to their bonded heavy atoms since GrASP will use implicit

hydrogens. We apply a threshold of 10−4 nm2, which was treated as a hyperparameter,

marking all atoms with SASA above this threshold as part of the surface. Once we have

calculated a distance matrix and have labelled the surface atoms, we take the set of all

surface heavy-atoms and add them as nodes to the protein graph. We then add all heavy-

atoms within 5 Å of surface heavy-atoms as nodes. Finally, we draw edges between all nodes

corresponding to atoms ≤ 5 Å apart.

IV. BINDING SITE LABELS

We train GrASP using continuously valued binding site labels with the following sigmoid

form where yi is the class label for protein atom i and di is the distance from protein atom

i to the nearest ligand heavy atom. Only surface atoms defined in Section III are scored by

GrASP.

yi = Sigmoid(−3(di − 5)) (1)

This can be viewed as a smoothed version of a 5 Å binding site definition where the

labels decrease from 1 to 0 in roughly the region between 4 - 6 Å as opposed to a discrete

boundary at 5 Å. Both the midpoint and slope of this sigmoid were tuned as hyperparameters

to optimize the top N DCA recall on the validation set.

V. CONVEX HULL CENTER CALCULATION

To calculate the center of a convex hull, the hull is treated as a solid object with uniform

density and its center of mass is calculated. This is accomplished by breaking the hull into

tetrahedrons and taking the volume-weighted average of these tetrahedrons’ centroids.
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VI. SEMANTIC SEGMENTATION METRICS

We use the following metrics to evaluate the performance of semantic segmentation:

• Area under the receiver operating characteristic curve (ROC AUC): A classification

threshold invariant metric that measures the trade-off between the true positive rate

and false positive rate as the classification threshold is varied. Here we use macro

averaging to give equal weight to each category instead of each sample because there

is heavy class imbalance between site and non-site atoms.

• Area under the precision-recall curve (PR AUC): A classification threshold invariant

metric that measures the trade-off between precision and recall as the classification

threshold is varied. Similar to ROC AUC but less sensitive to class imbalance.

• Matthews correlation coefficient2 (MCC): A correlation metric commonly used for

tasks where there is class imbalance. A value of 1 means all predictions are correct

while a value of -1 means all predictions are incorrect and a value of 0 corresponds to

random predictions. The MCC is shown in Eq. 2 where T, F, P, and N correspond to

true, false, positive, and negative respectively.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2)

COACH420(Mlig+) HOLO4K(Mlig+)

ROC AUC PR AUC MCC ROC AUC PR AUC MCC

.97 .75 .64 .98 .79 .70

TABLE S2: GrASP atom-wise semantic segmentation metrics on COACH420(Mlig+)

and HOLO4K(Mlig+).
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VII. SEQUENCE IDENTITY GENERALIZATION

FIG. S5: GrASP’s performance on the COACH420(Mlig+) and HOLO4K(Mlig+) sets

as a function of sequence similarity between train and test sets. GrASP’s performance on

samples in each sequence similarity bin with standard error is displayed as bars and the

performance on the full set is shown as dashed lines for A) COACH420(Mlig+) and B)

HOLO4K(Mlig+). Histogram of sequence similarity between GrASP’s training data and

C) COACH420(Mlig+) or D) HOLO4K(Mlig+).

S10



FIG. S6: P2Rank’s performance on the COACH420(Mlig+) and HOLO4K(Mlig+) sets

as a function of sequence similarity between train and test sets. P2Rank’s performance on

samples in each sequence similarity bin with standard error is displayed as bars and the

performance on the full set is shown as dashed lines for A) COACH420(Mlig+) and B)

HOLO4K(Mlig+). Histogram of sequence similarity between P2Rank’s training data and

C) COACH420(Mlig+) or D) HOLO4K(Mlig+).
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VIII. PREDICTIONS ON APO STRUCTURES

FIG. S7: Example outputs of the GrASP web interface on two apo structures of Abl Ki-

nase in the DFG-in (A. PDB: 6XR6) and DFG-out (B. PDB: 6XR7) conformations. The

druggability scores for each surface atom are used to color the transparent surface with

dark blue corresponding to a score of 0 and dark orange corresponding to a score of 1.

While Abl Kinase is included in the training set, no apo structures were included in the

training set. These preliminary results show that GrASP still identifies the accessible por-

tion of the orthosteric binding site in both DFG-in and DFG-out apo conformations de-

spite the site being more occluded than in training. It also appears that GrASP identifies

the allosteric site in the DFG-out conformation with lower confidence than the orthos-

teric site. These initial results show some promise for GrASP’s potential to identify bind-

ing sites on holo and apo structures in a conformation-dependent manner. This poten-

tial could be used for docking structures where no site is known or conformations where

a cryptic site may be exposed. These settings will be explored in a rigorous quantitative

manner in a future publication.
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IX. ABLATION STUDIES

We assessed the contribution of individual GrASP components by performing ablation

studies removing one or more components. The ablation models we used were as follows:

• No Noisy Nodes: GrASP trained without the Noisy Nodes reconstruction loss.

• Sum Aggr: GrASP without multi-aggregation using sum aggregation like the original

GAT.

• Mean Aggr: GrASP without multi-aggregation using mean aggregation.

• No Skip Connections: GrASP without residual or jumping knowledge skip connections.

• GATv1 GrASP: GrASP using the original GAT instead of GATv2.

• GCN GrASP: GrASP using GCN instead of GATv2.

• Simplified GrASP Sum Aggr: GrASP without skip connections, noisy nodes or multi-

aggregation using sum aggregation.

• Simplified GrASP Mean Aggr: GrASP without skip connections, noisy nodes or multi-

aggregation using mean aggregation.

• No Dropout: GrASP without dropout in the attention weights.

• Batch Norm: GrASP using batch norm instead of instance norm.

• No Norm: GrASP with instance norm removed.

• *Discrete Sites: GrASP with discrete site definition instead of continuous.

• *Full Graph Inference: GrASP trained to score all atoms in the graph without con-

sidering solvent accessibility.

We trained these ablation models on a single validation fold as well as the training

splits associated with COACH420(Mlig+) and HOLO4K(Mlig+). We then assessed their

performance at identifying which atoms were part of binding sites using MCC and PR-AUC.

Note that we exclude the two ablation models marked with an asterisk, discrete sites and

full graph inference, from atom scoring comparisons because they change the definition of
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binding site used to train the model and do not allow for fair comparison on the atomic

scale. We then cluster atomic scores into binding sites and compare the DCA precision

and recall for each model and set. We obtain p-values comparing default GrASP to each

model for atom metrics using McNemar’s test3 on their atom labels. We obtain p-values for

DCA recall using McNemar’s test on the binding site predictions and we obtain p-values for

the number of sites predicted (shown above precision for convenience) using the Wilcoxon

signed-rank test.4 All p-values were then corrected using the Holm–Bonferroni method5 to

control the family-wise error rate for our set of models and associated hypotheses.
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FIG. S8: Atom metrics for a single sc-PDB cross-validation fold. Models are ordered

based on their MCC performance and confidence in the difference between default GrASP

and each model is shown with asterisks. We can see that GrASP significantly outperforms

all ablation models in MCC and is only outperformed by the Batch Norm model in PR

AUC.
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FIG. S9: DCA metrics for a single sc-PDB cross-validation fold with clustering perfor-

mance on training labels shown as striped bars for reference. Models are ordered based

on their validation MCC performance and confidence in the difference between default

GrASP and each model is shown with asterisks. The asterisks above precision represent

differences in the number of sites predicted. We can see that no model significantly out-

performs GrASP in DCA recall and that the increased PR AUC previously noted for

Batch Norm corresponds to a precision-recall trade-off. It is important to note that signifi-

cant improvements in atom scoring over the ablation models do not translate to significant

improvements in DCA.
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FIG. S10: Atom metrics for COACH420(Mlig+). Models are ordered based on their val-

idation MCC performance and confidence in the difference between default GrASP and

each model is shown with asterisks. We can see that no model outperforms the original

GrASP but with the smaller data set the differences are not significant for some differ-

ences.
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FIG. S11: DCA metrics for COACH420(Mlig+) with clustering performance on train-

ing labels shown as striped bars for reference. Models are ordered based on their valida-

tion MCC performance and confidence in the difference between default GrASP and each

model is shown with asterisks. The asterisks above precision represent differences in the

number of sites predicted. While default GrASP has the highest DCA recall it is not sig-

nificantly higher than most ablation models and GrASP is significantly outperformed by

GATv1 GrASP and Batch Norm in precision. As before, we note that significant improve-

ments in atom scoring over the ablation models do not translate to significant improve-

ments in DCA.
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FIG. S12: Atom metrics for HOLO4K(Mlig+). Models are ordered based on their val-

idation MCC performance and confidence in the difference between default GrASP and

each model is shown with asterisks. We can see that GrASP significantly outperforms

most models but on this dataset No Noisy Nodes, Sum Aggr, and Simplified GrASP Sum

Aggr outperform the original model.
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FIG. S13: DCA metrics for HOLO4K(Mlig+) with clustering performance on train-

ing labels shown as striped bars for reference. Models are ordered based on their vali-

dation MCC performance and confidence in the difference between default GrASP and

each model is shown with asterisks. The asterisks above precision represent differences

in the number of sites predicted. GrASP is not significantly outperformed by any models

in DCA recall, however, several models have significantly higher precision. As before, we

note that significant differences in atom scoring over the ablation models do not translate

to significant differences in DCA.
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