Supplementary Material

Table of contents

Supplementary Table S1. Main inclusion and exclusion criteria4
Supplementary Table S2. Modified STROBE statement checklist
List of local investigators from the participating clinical sites
Supplementary Table S3. Renal disease activity in LN subgroups9
Supplementary Table S4. Correlations between serological markers and z-scores of the "B cell" gene module in patients with LN
Supplementary Table S5. Correlations between serological markers and z-scores of the "cell cycle, mitotic phase" gene module in patients with LN11
Supplementary Table S6. Correlations between serological markers and z-scores of the "CORO1A-DEF6 network" gene module in patients with LN
Supplementary Table S7. Correlations between serological markers and z-scores of the "enriched in antigen presentation (III)" gene module in patients with LN
Supplementary Table S8. Correlations between serological markers and z-scores of the "enriched in neutrophils (II)" gene module in patients with LN
Supplementary Table S9. Correlations between serological markers and z-scores of the "erythrocytes" gene module in patients with LN
Supplementary Table S10. Correlations between serological markers and z-scores of the "extracellular matrix (I)" gene module in patients with LN
Supplementary Table S11. Correlations between serological markers and z-scores of the "extracellular region cluster" gene module in patients with LN
Supplementary Table S12. Correlations between serological markers and z-scores of the "inflammation (IV)" gene module in patients with LN
Supplementary Table S13. Correlations between serological markers and z-scores of the "inflammation (VI)" gene module in patients with LN
Supplementary Table S14. Correlations between serological markers and z-scores of the "inositol phosphate metabolism" gene module in patients with LN
Supplementary Table S15. Correlations between serological markers and z-scores of the "interferon" gene module in patients with LN
Supplementary Table S16. Correlations between serological markers and z-scores of the "interferon (II)" gene module in patients with LN
Supplementary Table S17. Correlations between serological markers and z-scores of the "MAPK, RAS signalling" gene module in patients with LN

Supplementary Table S18. Correlations between serological markers and z-scores of the "monocytes" gene module in patients with LN
Supplementary Table S19. Correlations between serological markers and z-scores of the "plasma cells, immunoglobulins" gene module in patients with LN
Supplementary Table S20. Correlations between serological markers and z-scores of the "platelets" gene module in patients with LN
Supplementary Table S21. Correlations between serological markers and z-scores of the "protein synthesis (I)" gene module in patients with LN
Supplementary Table S22. Correlations between serological markers and z-scores of the "regulation of antigen presentation and immune response" gene module in patients with LN.28
Supplementary Table S23. Correlations between serological markers and z-scores of the "regulation of transcription, transcription factors" gene module in patients with LN
Supplementary Table S24. Z-scores of replicated gene modules in patients with LN and anti- βGPI IgG positivity versus negative patients
Supplementary Table S25. Z-scores of replicated gene modules in patients with LN and aCL IgG positivity versus negative patients
Supplementary Table S26. Z-scores of replicated gene modules in patients with LN and low versus normal/high levels of C3c
Supplementary Table S27. Z-scores of replicated gene modules in patients with LN and low versus normal/high levels of C4
Supplementary Table S28. Z-scores of replicated gene modules in patients with LN and anti- chromatin positivity versus negative patients
Supplementary Table S29. Z-scores of replicated gene modules in patients with LN and anti- dsDNA positivity versus negative patients
Supplementary Table S30. Z-scores of replicated gene modules in patients with LN and anti- SSA-52 positivity versus negative patients
Supplementary Table S31. Z-scores of replicated gene modules in patients with LN and anti- SSA-60 positivity versus negative patients
Supplementary Table S32. Z-scores of replicated gene modules in patients with LN and anti-U1RNP positivity versus negative patients
Supplementary Table S33. The most enriched signalling molecule networks in patients with LN
Supplementary Figure S1. The <i>NRF1</i> signalling molecule network and annotated drug targets in patients with lupus nephritis
Supplementary Figure S2. The <i>YY1</i> signalling molecule network and annotated drug targets in patients with lupus nephritis
Supplementary Figure S3. The <i>ZBTB33</i> signalling molecule network and annotated drug targets in patients with lupus nephritis
Supplementary Figure S4. The <i>PRDM2</i> signalling molecule network and annotated drug targets in patients with lupus nephritis

Supplementar	y Table S1. Main	inclusion and	exclusion criteria	
	/			

Inclusion criteria	Exclusion criteria		
For all patients	For all patients		
 Age ≥18 years Diagnosed according to the prevailing criteria for systemic lupus erythematosus (SLE) Informed consent signed 	 Pediatric lupus Drug-induced lupus Severe nephrotic syndrome with proteinuria ≥3.5 g/day Patients with stable doses of prednisone equivalent >15 mg/day for the last 3 months or with IV corticosteroids in the last 3 months Patients under immunosuppressant treatment in the last 3 months prior to recruitment and patients with combined therapy using two or more immunosuppressants: Methotrexate ≥25mg/week Azathioprine ≥2.5mg/kg/day Cyclosporine A >3mg/kg/day Mycophenolate mofetil >2g/day Chronic HBV or HCV infection Patients who are also diagnosed according to the prevailing criteria for one of the following autoimmune diseases: Rheumatoid arthritis (RA) Scleroderma or systemic sclerosis (SSc) Primary Sjögren's syndrome (pSjS) Primary antiphospholipid syndrome (pAPS) Mixed connective tissue disease (MCTD) Patients with undifferentiated connective tissue disease (UCTD) for over 1 year and that do not fulfill the diagnosis of any of the above diseases or SLE 		
	For controls		
	 Individuals on chronic medication Individuals suffering from any inflammatory autoimmune allergic or infectious condition, and with a history of autoimmune disease, particularly thyroid disease or other diseases that may modify cellular profiles in blood 		

Adapted from "Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases." Arthritis Rheum. 2021;73(6):1073-1085. Copyright 2021 by the American College of Rheumatology. Adapted with permission. IV: intravenous, HBV: hepatitis B virus, HCV: hepatitis C virus.

Section(s)	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4–5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5–8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5–6
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5; Supplementary Material
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5–8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement).	5–8
Bias	9	Describe any efforts to address potential sources of bias	6–8
Study size	10	Explain how the study size was arrived at (if applicable)	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6–8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6–8
		(<i>b</i>) Describe any methods used to examine subgroups and interactions	7–8

Supplementary Table S2. Modified STROBE statement checklist

		(c) Explain how missing data were addressed	
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable,	6–8
		describe analytical methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	9–10; Supplementary Material
		confirmed eligible, included in the study, completing follow-up, and analyzed	
		(c) Use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	9
		(b) Indicate number of participants with missing data for each variable of interest(c) <i>Cohort study</i>—Summarise follow-up	9; Supplementary Material
1		time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of	
	15*	outcome events or summary measures over time	
		Case-control study—Report numbers in	
		each exposure category, or summary	
		measures of exposure	
		<i>Cross-sectional study</i> —Report numbers of outcome events or summary measures	9-13; Supplementary Material
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders	9-13; Supplementary Material
		were adjusted for and why they were	
Other analyses	17	included Report other analyses done—eg analyses	9-13; Supplementary Material
	17	of subgroups and interactions, and sensitivity analyses	
Discussion		SUBSILIVILY dildlySCS	
Key results	18	Summarise key results with reference to study objectives	13–22
Limitations	10	Discuss limitations of the study, taking	21–22
	19	into account sources of potential bias or imprecision. Discuss both direction and	
		magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	13–22
		similar studies, and other relevant evidence	

Generalisability	21	Discuss the generalisability (external	21–22	
		validity) of the study results		

List of local investigators from the participating clinical sites

Lorenzo Beretta¹, Barbara Vigone¹, Jacques-Olivier Pers², Alain Saraux², Valérie Devauchelle-Pensec², Divi Cornec², Sandrine Jousse-Joulin², Bernard Lauwerys³, Julie Ducreux³, Anne-Lise Maudoux³, Carlos Vasconcelos⁴, Ana Tavares⁴, Esmeralda Neves⁴, Raquel Faria⁴, Mariana Brandão⁴, Ana Campar⁴, António Marinho⁴, Fátima Farinha⁴, Isabel Almeida⁴, Miguel Angel Gonzalez-Gay Mantecón⁵, Ricardo Blanco Alonso⁵, Alfonso Corrales Martínez⁵, Ricard Cervera⁶, Ignasi Rodríguez-Pintó⁶, Gerard Espinosa⁶, Rik Lories⁷, Ellen De Langhe⁷, Nicolas Hunzelmann⁸, Doreen Belz⁸, Torsten Witte⁹, Niklas Baerlecken⁹, Georg Stummvoll¹⁰, Michael Zauner¹⁰, Michaela Lehner¹⁰, Eduardo Collantes¹¹, Rafaela Ortega-Castro¹¹, M^a Angeles Aguirre-Zamorano¹¹, Alejandro Escudero-Contreras¹¹, M^a Carmen Castro-Villegas¹¹, Norberto Ortego¹², María Concepción Fernández Roldán¹², Enrique Raya¹³, Inmaculada Jiménez Moleón¹³, Enrique de Ramon¹⁴, Isabel Díaz Quintero¹⁴, Pier Luigi Meroni¹⁵, Maria Gerosa¹⁵, Tommaso Schioppo¹⁵, Carolina Artusi¹⁵, Carlo Chizzolini¹⁶, Aleksandra Zuber¹⁶, Donatienne Wynar¹⁶, Laszló Kovács¹⁷, Attila Balog¹⁷, Magdolna Deák¹⁷, Márta Bocskai¹⁷, Sonja Dulic¹⁷, Gabriella Kádár¹⁷, Falk Hiepe¹⁸, Velia Gerl¹⁸, Silvia Thiel¹⁸, Manuel Rodriguez Maresca¹⁹, Antonio López-Berrio¹⁹, Rocío Aguilar-Quesada¹⁹, Héctor Navarro-Linares¹⁹

Affiliations

1. Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

di Milano, Italy

- 2. Centre Hospitalier Universitaire de Brest, Hospital de la Cavale Blanche, Brest, France
- 3. Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique,

Université catholique de Louvain, Brussels, Belgium

- 4. Centro Hospitalar do Porto, Portugal
- 5. Servicio Cantabro de Salud, Hospital Universitario Marqués de Valdecilla, Santander, Spain
- 6. Hospital Clinic I Provicia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- 7. Katholieke Universiteit Leuven, Belgium
- 8. Klinikum der Universitaet zu Koeln, Cologne, Germany
- 9. Medizinische Hochschule Hannover, Germany
- 10. Medical University Vienna, Vienna, Austria
- 11. Servicio Andaluz de Salud, Hospital Universitario Reina Sofía Córdoba, Spain
- 12. Servicio Andaluz de Salud, Complejo hospitalario Universitario de Granada (Hospital Universitario San Cecilio), Spain
- 13. Servicio Andaluz de Salud, Complejo hospitalario Universitario de Granada (Hospital Virgen de las Nieves), Spain
- 14. Servicio Andaluz de Salud, Hospital Regional Universitario de Málaga, Spain
- 15. Università degli studi di Milano, Milan, Italy
- 16. Hospitaux Universitaires de Genève, Switzerland
- 17. University of Szeged, Szeged, Hungary
- 18. Charite, Berlin, Germany
- 19. Andalusian Public Health System Biobank, Granada, Spain

Supplementary Table S3	Renal disease acti	ivity in LN subgroups
------------------------	--------------------	-----------------------

Target	lo-IFN subgroup	im-IFN subgroup	hi-IFN subgroup	lo-IFN vs im-IFN	lo-IFN vs hi-IFN	im-IFN vs hi-IFN
	N=13	N=9	N=19	<i>p</i> value	<i>p</i> value	<i>p</i> value
rSLEDAI-2K	7.38±3.59	6.67 ± 2.00	6.95±3.49	0.822	0.692	0.871

Data are presented as mean (standard deviation). All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

hi: high; IFN: interferon; im: intermediate; LN: lupus nephritis; lo: low; rSLEDAI-2K: renal SLE Disease Activity Index 2000.

Supplementary Table S4. Correlations between serological markers and z-scores of the "B cell" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.09	0.612
anti-PC IgM	31	-0.07	0.717
BAFF	28	0.07	0.707
IL-6	28	0.13	0.523
TGF-ß	28	-0.17	0.376
ΤΝΓ-α	28	0.21	0.282

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the B cell gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S5. Correlations between serological markers and z-scores of the "cell cycle, mitotic phase" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.23	0.206
anti-PC IgM	31	0.04	0.850
BAFF	28	-0.13	0.525
IL-6	28	-0.02	0.930
TGF-ß	28	-0.12	0.534
ΤΝΓ-α	28	-0.11	0.572

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the cell cycle, mitotic phase gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S6. Correlations between serological markers and z-scores of the "CORO1A-DEF6 network" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.33	0.067
anti-PC IgM	31	-0.09	0.644
BAFF	28	0.16	0.407
IL-6	28	0.22	0.262
TGF-ß	28	-0.23	0.242
ΤΝΓ-α	28	0.03	0.890

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the CORO1A-DEF6 network gene module. The total number of patients with available data is indicated. Statistically significant *p* values are in bold. Only comparisons with sufficient numbers of observations ($n \ge 10$) are included.

BAFF: B cell activating factor belonging to the tumour necrosis factor family; CORO1A-DEF6: coronin 1A-differentially expressed in FDCP 6 homolog; Ig: immunoglobulin; IL-6: interleukin 6; LN: lupus nephritis; MDA: malondialdehyde; PC: phosphorylcholine; TGF- β : transforming growth factor β ; TNF- α : transforming growth factor α .

Supplementary Table S7. Correlations between serological markers and z-scores of the "enriched in antigen presentation (III)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.10	0.575
anti-PC IgM	31	-0.13	0.477
BAFF	28	0.23	0.242
IL-6	28	0.26	0.177
TGF-ß	28	-0.02	0.910
ΤΝΓ-α	28	0.30	0.115

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the enriched in antigen presentation (III) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S8. Correlations between serological markers and z-scores of the "enriched in neutrophils (II)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	-0.10	0.588
anti-PC IgM	31	-0.30	0.101
BAFF	28	0.29	0.139
IL-6	28	0.08	0.674
TGF-ß	28	0.18	0.349
ΤΝΓ-α	28	0.00	0.996

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the enriched in neutrophils (II) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S9. Correlations between serological markers and z-scores of the "erythrocytes" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	-0.32	0.082
anti-PC IgM	31	-0.22	0.244
BAFF	28	0.25	0.192
IL-6	28	-0.06	0.750
TGF-ß	28	-0.11	0.587
ΤΝΓ-α	28	-0.10	0.600

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the erythrocytes gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S10. Correlations between serological markers and z-scores of the "extracellular matrix (I)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.20	0.274
anti-PC IgM	31	0.02	0.921
BAFF	28	0.01	0.974
IL-6	28	-0.01	0.965
TGF-ß	28	-0.16	0.423
ΤΝΓ-α	28	0.00	0.982

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the extracellular matrix (I) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S11. Correlations between serological markers and z-scores of the "extracellular region cluster" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.03	0.858
anti-PC IgM	31	-0.13	0.477
BAFF	28	0.16	0.404
IL-6	28	0.14	0.479
TGF-ß	28	0.03	0.894
ΤΝΓ-α	28	0.15	0.453

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the extracellular region cluster gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S12. Correlations between serological markers and z-scores of the "inflammation (IV)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	-0.11	0.558
anti-PC IgM	31	0.10	0.595
BAFF	28	-0.25	0.201
IL-6	28	-0.11	0.587
TGF-ß	28	0.00	0.998
ΤΝΓ-α	28	-0.21	0.273

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the inflammation (IV) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations ($n \ge 10$) are included.

Supplementary Table S13. Correlations between serological markers and z-scores of the "inflammation (VI)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.03	0.867
anti-PC IgM	31	-0.22	0.230
BAFF	28	0.26	0.184
IL-6	28	0.26	0.173
TGF-ß	28	0.02	0.927
ΤΝΓ-α	28	0.20	0.304

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the inflammation (VI) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations ($n \ge 10$) are included.

Supplementary Table S14. Correlations between serological markers and z-scores of the "inositol phosphate metabolism" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.08	0.685
anti-PC IgM	31	0.07	0.692
BAFF	28	-0.18	0.359
IL-6	28	-0.05	0.816
TGF-ß	28	0.04	0.853
ΤΝΓ-α	28	-0.21	0.292

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the inositol phosphate metabolism gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S15. Correlations between serological markers and z-scores of the "interferon" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.12	0.513
anti-PC IgM	31	-0.06	0.742
BAFF	28	0.16	0.426
IL-6	28	0.26	0.175
TGF-ß	28	-0.06	0.771
ΤΝΓ-α	28	0.32	0.100

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the interferon gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S16. Correlations between serological markers and z-scores of the "interferon (II)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.06	0.768
anti-PC IgM	31	-0.20	0.287
BAFF	28	0.26	0.180
IL-6	28	0.36	0.063
TGF-ß	28	0.00	0.993
ΤΝΓ-α	28	0.41	0.033

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the interferon (II) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S17. Correlations between serological markers and z-scores of the "MAPK, RAS signalling" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	-0.14	0.440
anti-PC IgM	31	-0.16	0.388
BAFF	28	0.25	0.191
IL-6	28	0.00	0.987
TGF-ß	28	0.20	0.301
ΤΝΓ-α	28	0.02	0.910

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the MAPK, RAS signalling gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S18. Correlations between serological markers and z-scores of the "monocytes" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.07	0.712
anti-PC IgM	31	-0.12	0.532
BAFF	28	0.14	0.480
IL-6	28	0.42	0.028
TGF-ß	28	0.07	0.715
ΤΝΓ-α	28	0.38	0.047

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the monocytes gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S19. Correlations between serological markers and z-scores of the "plasma cells, immunoglobulins" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.14	0.461
anti-PC IgM	31	-0.09	0.635
BAFF	28	0.14	0.470
IL-6	28	0.39	0.039
TGF-ß	28	-0.06	0.765
ΤΝΓ-α	28	0.39	0.041

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the plasma cells, immunoglobulins gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S20. Correlations between serological markers and z-scores of the "platelets" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	-0.51	0.003
anti-PC IgM	31	-0.42	0.019
BAFF	28	0.29	0.128
IL-6	28	-0.02	0.916
TGF-ß	28	0.14	0.491
ΤΝΓ-α	28	-0.05	0.791

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the platelets gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S21. Correlations between serological markers and z-scores of the "protein synthesis (I)" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.16	0.380
anti-PC IgM	31	0.03	0.865
BAFF	28	0.08	0.692
IL-6	28	0.23	0.235
TGF-ß	28	-0.12	0.553
ΤΝΓ-α	28	0.18	0.370

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the protein synthesis (I) gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations ($n \ge 10$) are included.

Supplementary Table S22. Correlations between serological markers and z-scores of the "regulation of antigen presentation and immune response" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.18	0.337
anti-PC IgM	31	-0.01	0.973
BAFF	28	0.05	0.816
IL-6	28	0.13	0.500
TGF-ß	28	-0.18	0.362
ΤΝΓ-α	28	0.14	0.484

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the regulation of antigen presentation and immune response gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Supplementary Table S23. Correlations between serological markers and z-scores of the "regulation of transcription, transcription factors" gene module in patients with LN

Serological marker	n	Coefficient	<i>p</i> value
anti-MDA IgM	31	0.21	0.249
anti-PC IgM	31	0.17	0.355
BAFF	28	-0.16	0.413
IL-6	28	-0.17	0.377
TGF-ß	28	-0.13	0.503
ΤΝΓ-α	28	-0.29	0.130

Spearman's rank correlation coefficients of correlations between levels of different serological markers and Z-scores of the regulation of transcription, transcription factors gene module. The total number of patients with available data is indicated. Statistically significant p values are in bold. Only comparisons with sufficient numbers of observations (n \geq 10) are included.

Gene module	anti-βGPI IgG (+) N=5	anti-βGPI IgG (-) N=26	<i>p</i> value
B cell	-1.54 (-2.611.48)	-1.47 (-2.300.32)	0.707
Cell cycle, mitotic phase	-0.23 (-0.860.06)	-0.41 (-0.860.12)	0.788
CORO1A-DEF6 network	-0.35 (-0.370.06)	-0.07 (-0.18-0.02)	0.119
Enriched in antigen presentation (III)	-0.37 (-0.590.17)	-0.39 (-0.53-0.03)	0.452
Enriched in neutrophils (II)	0.17 (-0.14-0.21)	0.06 (-0.08-0.18)	0.872
Erythrocytes	-0.23 (-0.30-0.19)	0.23 (-0.44-0.67)	0.707
Extracellular matrix (I)	-1.42 (-1.431.15)	-0.74 (-1.120.35)	0.060
Extracellular region cluster	-0.28 (-0.42-0.01)	-0.08 (-0.23-0.03)	0.259
Inflammation (IV)	0.25 (-0.11-0.49)	0.24 (-0.01-0.44)	0.872
Inflammation (VI)	0.08 (-0.50-0.34)	0.01 (-0.25-0.20)	1.000
Inositol phosphate metabolism	-0.13 (-0.55-0.68)	-0.05 (-0.38-0.26)	0.830
Interferon	0.76 (0.03-1.71)	1.41 (0.05-2.02)	0.830
Interferon (II)	0.23 (-0.27-0.93)	0.53 (0.24–0.70)	0.591
MAPK–RAS signalling	0.29 (-0.65-0.35)	-0.01 (-0.43-0.33)	0.957
Monocytes	0.38 (0.26-0.86)	0.26 (-0.15-0.92)	0.390
Plasma cells, immunoglobulins	0.04 (-0.24-1.06)	-0.16 (-0.70-0.56)	0.452
Platelets	-0.03 (-0.62-0.23)	0.13 (-0.35-0.65)	0.452
Protein synthesis (I)	-0.78 (-1.17-0.29)	-0.35 (-0.91-0.13)	0.667
Regulation of antigen presentation and immune response	-1.41 (-1.430.86)	-0.73 (-1.260.22)	0.334
Regulation of transcription, transcription factors	-0.82 (-0.920.17)	-0.45 (-0.810.10)	0.629

Supplementary Table S24. Z-scores of replicated gene modules in patients with LN and antiβGPI IgG positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

βGPI: β₂ glycoprotein I; CORO1A-DEF6: coronin 1A-differentially expressed in FDCP 6 homolog; Ig: immunoglobulin; LN: lupus nephritis; MAPK: mitogen-activated protein kinase.

Gene module	aCL IgG (+)	aCL IgG (-)	<i>p</i> value
	N=4	N=27	•
B cell	-1.51 (-1.971.05)	-1.71 (-2.360.43)	0.906
Cell cycle, mitotic phase	-0.15 (-0.56-0.16)	-0.43 (-0.870.13)	0.480
CORO1A-DEF6 network	-0.21 (-0.450.04)	-0.09 (-0.20-0.02)	0.289
Enriched in antigen presentation (III)	-0.48 (-0.880.32)	-0.37 (-0.51-0.03)	0.289
Enriched in neutrophils (II)	0.02 (-0.25-0.19)	0.08 (-0.07-0.18)	0.680
Erythrocytes	-0.02 (-0.25-0.41)	0.21 (-0.49-0.65)	0.953
Extracellular matrix (I)	-1.28 (-1.610.97)	-0.74 (-1.150.36)	0.157
Extracellular region cluster	-0.20 (-0.47-0.03)	-0.08 (-0.25-0.02)	0.480
Inflammation (IV)	0.37 (0.16-0.70)	0.18 (-0.07-0.43)	0.377
Inflammation (VI)	-0.21 (-0.66-0.17)	0.02 (-0.24-0.22)	0.517
Inositol phosphate metabolism	0.28 (-0.23-0.78)	-0.07 (-0.39-0.25)	0.377
Interferon	0.39 (-0.01-0.99)	1.49 (0.05-2.12)	0.289
Interferon (II)	-0.02 (-0.29-0.41)	0.54 (0.24–0.73)	0.157
MAPK–RAS signalling	-0.15 (-0.78-0.40)	0.02 (-0.41-0.33)	0.768
Monocytes	0.32 (0.10-0.75)	0.26 (-0.10-0.92)	0.596
Plasma cells, immunoglobulins	-0.10 (-0.38-0.29)	-0.10 (-0.67-0.65)	0.953
Platelets	0.10 (-0.18-0.42)	0.01 (-0.37-0.63)	0.953
Protein synthesis (I)	-0.24 (-0.90-0.32)	-0.44 (-0.93-0.10)	0.860
Regulation of antigen presentation and			
immune response	-1.14 (-1.610.63)	-0.80 (-1.350.25)	0.517
Regulation of transcription,			
transcription factors	-0.50 (-0.850.07)	-0.46 (-0.910.13)	0.724

Supplementary Table S25. Z-scores of replicated gene modules in patients with LN and aCL IgG positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Gene module	Low C3c	Normal/high C3c	
Gene module	N=10	N=21	<i>p</i> value
B cell	-1.03 (-2.540.32)	-1.71 (-2.200.68)	0.642
Cell cycle, mitotic phase	-0.47 (-0.88-0.38)	-0.32 (-0.760.12)	0.899
CORO1A-DEF6 network	-0.07 (-0.18-0.10)	-0.12 (-0.28-0.00)	0.422
Enriched in antigen presentation (III)	-0.06 (-0.32-0.17)	-0.43 (-0.590.24)	0.031
Enriched in neutrophils (II)	0.17 (0.08-0.20)	-0.03 (-0.14-0.14)	0.010
Erythrocytes	-0.24 (-0.500.16)	0.33 (-0.23-0.72)	0.083
Extracellular matrix (I)	-0.52 (-0.790.13)	-1.00 (-1.260.58)	0.083
Extracellular region cluster	-0.01 (-0.12-0.13)	-0.10 (-0.270.02)	0.099
Inflammation (IV)	-0.12 (-0.34-0.17)	0.33 (0.07-0.50)	0.022
Inflammation (VI)	0.23 (0.06-0.36)	-0.19 (-0.30-0.11)	0.004
Inositol phosphate metabolism	-0.25 (-0.57-0.36)	-0.03 (-0.28-0.28)	0.375
Interferon	1.73 (0.37–2.26)	0.76 (-0.06-1.74)	0.099
Interferon (II)	0.73 (0.38-0.98)	0.44 (-0.09-0.60)	0.025
MAPK-RAS signalling	0.29 (-0.13-0.33)	-0.35 (-0.68-0.36)	0.151
Monocytes	0.56 (0.11-1.06)	0.26 (-0.46-0.44)	0.353
Plasma cells, immunoglobulins	0.39 (-0.32-0.81)	-0.23 (-0.81-0.39)	0.205
Platelets	-0.21 (-0.50-0.19)	0.25 (-0.24-0.68)	0.083
Protein synthesis (I)	-0.73 (-1.07-0.11)	-0.18 (-0.90-0.16)	0.526
Regulation of antigen presentation and			
immune response	-0.99 (-1.160.14)	-0.80 (-1.620.29)	0.583
Regulation of transcription,			
transcription factors	-0.47 (-0.960.09)	-0.46 (-0.820.20)	0.833

Supplementary Table S26. Z-scores of replicated gene modules in patients with LN and low versus normal/high levels of C3c

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Gene module	Low C4	Normal/high C4	n voluo
Gene module	N=9	N=22	<i>p</i> value
B cell	-1.22 (-2.200.91)	-1.76 (-2.550.15)	0.761
Cell cycle, mitotic phase	-0.26 (-0.480.06)	-0.44 (-0.980.15)	0.240
CORO1A-DEF6 network	-0.01 (-0.17-0.07)	-0.11 (-0.29-0.00)	0.277
Enriched in antigen presentation (III)	-0.15 (-0.86-0.17)	-0.39 (-0.530.15)	0.663
Enriched in neutrophils (II)	0.09 (0.00-0.19)	0.04 (-0.12-0.18)	0.572
Erythrocytes	-0.15 (-0.30-0.29)	0.20 (-0.42-0.71)	0.408
Extracellular matrix (I)	-0.55 (-0.850.23)	-0.97 (-1.370.51)	0.164
Extracellular region cluster	-0.08 (-0.14-0.03)	-0.09 (-0.28-0.02)	0.542
Inflammation (IV)	0.34 (-0.14-0.40)	0.21 (-0.01-0.48)	0.728
Inflammation (VI)	0.11 (0.01-0.36)	-0.04 (-0.27-0.18)	0.164
Inositol phosphate metabolism	0.05 (-0.36-0.45)	-0.08 (-0.40-0.19)	0.408
Interferon	1.71 (0.76-2.10)	0.88 (0.00-1.78)	0.408
Interferon (II)	0.60 (0.12-0.70)	0.45 (0.23-0.73)	0.632
MAPK-RAS signalling	-0.26 (-0.46-0.16)	0.16 (-0.47-0.37)	0.177
Monocytes	0.29 (0.25-1.09)	0.23 (-0.44-0.66)	0.240
Plasma cells, immunoglobulins	0.16 (-0.34-0.78)	-0.23 (-0.76-0.41)	0.317
Platelets	-0.18 (-0.53-0.28)	0.12 (-0.32-0.65)	0.486
Protein synthesis (I)	-0.18 (-0.46-0.31)	-0.55 (-1.00-0.03)	0.139
Regulation of antigen presentation and			
immune response	-0.85 (-1.15-0.02)	-0.83 (-1.650.33)	0.296
Regulation of transcription,			
transcription factors	0.17 (-0.67-0.22)	-0.56 (-0.950.35)	0.033

Supplementary Table S27. Z-scores of replicated gene modules in patients with LN and low versus normal/high levels of C4

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Gene module	Anti-chromatin (+)	Anti-chromatin (-)	<i>p</i> value
	N=8	N=22	<i>p</i> value
B cell	-1.76 (-2.540.71)	-1.35 (-2.370.32)	0.743
Cell cycle, mitotic phase	-0.24 (-1.050.06)	-0.46 (-0.840.15)	0.963
CORO1A-DEF6 network	0.00 (-0.20-0.01)	-0.11 (-0.22-0.01)	0.574
Enriched in antigen presentation (III)	-0.43 (-0.540.17)	-0.39 (-0.55-0.03)	0.851
Enriched in neutrophils (II)	-0.07 (-0.15-0.16)	0.09 (0.01-0.18)	0.373
Erythrocytes	0.62 (-0.28-0.80)	0.02 (-0.43-0.52)	0.260
Extracellular matrix (I)	-0.83 (-1.070.64)	-0.69 (-1.350.40)	0.815
Extracellular region cluster	-0.10 (-0.260.01)	-0.09 (-0.28-0.02)	0.925
Inflammation (IV)	0.11 (0.00-0.30)	0.27 (-0.13-0.49)	0.511
Inflammation (VI)	-0.16 (-0.270.01)	0.07 (-0.17-0.25)	0.205
Inositol phosphate metabolism	-0.17 (-0.39-0.16)	-0.06 (-0.39-0.39)	0.673
Interferon	0.88 (0.13-1.57)	1.70 (0.05-2.13)	0.606
Interferon (II)	0.41 (0.24–0.60)	0.57 (0.16-0.82)	0.511
MAPK–RAS signalling	-0.02 (-0.64-0.41)	0.02 (-0.33-0.33)	0.925
Monocytes	0.23 (-0.47-0.62)	0.28 (0.01-0.83)	0.851
Plasma cells, immunoglobulins	-0.49 (-0.93-0.02)	0.10 (-0.55-0.76)	0.133
Platelets	0.11 (-0.26-0.40)	-0.01 (-0.50-0.65)	0.606
Protein synthesis (I)	-0.35 (-0.930.09)	-0.45 (-0.93-0.17)	0.888
Regulation of antigen presentation and			
immune response	-0.64 (-1.370.38)	-0.96 (-1.420.37)	0.778
Regulation of transcription,			
transcription factors	-0.45 (-0.730.34)	-0.43 (-0.84-0.07)	0.673

Supplementary Table S28. Z-scores of replicated gene modules in patients with LN and antichromatin positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Cono modulo	anti-dsDNA (+)	anti-dsDNA (-)	
Gene module	N=18	N=13	<i>p</i> value
B cell	-1.03 (-2.300.05)	-1.81 (-3.261.48)	0.161
Cell cycle, mitotic phase	-0.41 (-0.690.12)	-0.32 (-1.160.06)	0.471
CORO1A-DEF6 network	-0.05 (-0.18-0.03)	-0.13 (-0.30-0.00)	0.401
Enriched in antigen presentation (III)	-0.16 (-0.45-0.14)	-0.44 (-0.560.28)	0.093
Enriched in neutrophils (II)	0.09 (0.02–0.18)	-0.05 (-0.14-0.18)	0.337
Erythrocytes	-0.16 (-0.50-0.32)	0.57 (-0.23-0.79)	0.139
Extracellular matrix (I)	-0.52 (-1.120.25)	-1.00 (-1.260.74)	0.078
Extracellular region cluster	-0.05 (-0.15-0.03)	-0.14 (-0.400.02)	0.186
Inflammation (IV)	0.24 (-0.18-0.44)	0.25 (0.06-0.49)	0.575
Inflammation (VI)	0.07 (0.00-0.24)	-0.25 (-0.30-0.20)	0.078
Inositol phosphate metabolism	-0.03 (-0.34-0.39)	-0.07 (-0.40-0.21)	0.936
Interferon	1.72 (0.05-2.22)	0.76 (-0.01-1.69)	0.246
Interferon (II)	0.62 (0.23-0.82)	0.44 (0.13-0.60)	0.186
MAPK-RAS signalling	0.09 (-0.28-0.33)	-0.37 (-0.68-0.37)	0.423
Monocytes	0.34 (0.04–0.95)	0.26 (-0.49-0.44)	0.471
Plasma cells, immunoglobulins	0.03 (-0.49-0.74)	-0.37 (-0.91-0.42)	0.262
Platelets	-0.10 (-0.39-0.51)	0.25 (-0.24-0.67)	0.378
Protein synthesis (I)	-0.45 (-0.88-0.11)	-0.13 (-1.03-0.17)	0.936
Regulation of antigen presentation and			
immune response	-0.85 (-1.160.08)	-0.80 (-1.620.44)	0.471
Regulation of transcription,			
transcription factors	-0.51 (-0.93-0.07)	-0.46 (-0.820.35)	0.779

Supplementary Table S29. Z-scores of replicated gene modules in patients with LN and antidsDNA positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Company de la	anti-SSA-52 (+)	anti-SSA-52 (-)	
Gene module	N=5	N=19	<i>p</i> value
B cell	-2.33 (-3.171.22)	-1.48 (-2.060.43)	0.303
Cell cycle, mitotic phase	-0.76 (-1.150.51)	-0.32 (-0.87-0.05)	0.126
CORO1A-DEF6 network	-0.13 (-0.170.12)	-0.04 (-0.34–0.03)	0.546
Enriched in antigen presentation (III)	-0.45 (-0.590.44)	-0.28 (-0.55-0.03)	0.374
Enriched in neutrophils (II)	0.08 (0.00-0.23)	0.09 (-0.10-0.18)	0.696
Erythrocytes	0.19 (-0.15-0.80)	-0.17 (-0.49-0.48)	0.271
Extracellular matrix (I)	-0.85 (-1.150.58)	-0.74 (-1.210.36)	0.499
Extracellular region cluster	-0.15 (-0.420.08)	-0.09 (-0.27-0.06)	0.241
Inflammation (IV)	0.25 (-0.14-0.50)	0.12 (-0.06-0.36)	0.749
Inflammation (VI)	0.25 (-0.22-0.36)	0.02 (-0.22-0.15)	0.414
Inositol phosphate metabolism	-0.39 (-0.550.03)	-0.10 (-0.38-0.44)	0.271
Interferon	1.71 (1.33-2.10)	0.58 (0.01-1.73)	0.271
Interferon (II)	0.70 (0.54-0.93)	0.28 (0.02-0.66)	0.166
MAPK-RAS signalling	0.16 (0.03-0.28)	-0.22 (-0.66-0.35)	0.696
Monocytes	0.25 (-0.20-0.38)	0.26 (0.02-0.92)	0.546
Plasma cells, immunoglobulins	-0.34 (-0.73-0.61)	-0.10 (-0.58-0.80)	0.644
Platelets	0.28 (0.23-0.67)	-0.18 (-0.46-0.25)	0.145
Protein synthesis (I)	-0.68 (-1.120.18)	-0.44 (-0.91-0.23)	0.303
Regulation of antigen presentation and			
immune response	-1.15 (-1.171.06)	-0.80 (-1.350.04)	0.214
Regulation of transcription,			
transcription factors	-0.35 (-0.820.26)	-0.44 (-0.96-0.11)	0.915

Supplementary Table S30. Z-scores of replicated gene modules in patients with LN and anti-SSA-52 positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

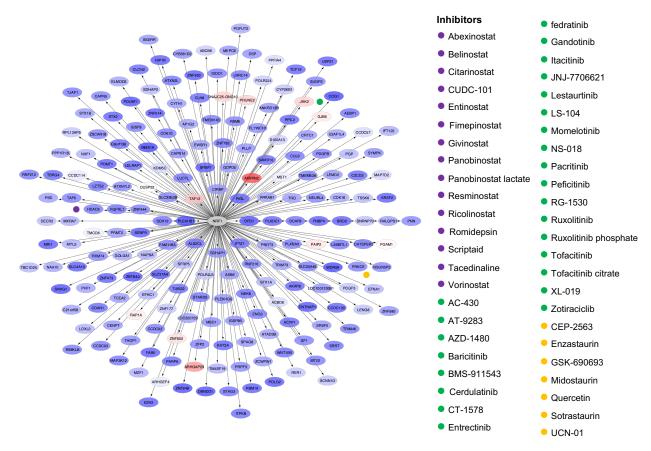
	anti-SSA-60 (+)	anti-SSA-60 (-)		
Gene module	N=5	N=19	<i>p</i> value	
B cell	-2.33 (-3.171.54)	-1.16 (-2.060.10)	0.095	
Cell cycle, mitotic phase	-0.51 (-1.150.26)	-0.43 (-0.87, -0.09)	0.594	
CORO1A-DEF6 network	-0.17 (-0.180.13)	-0.04 (-0.23-0.03)	0.241	
Enriched in antigen presentation (III)	-0.45 (-0.590.14)	-0.37 (-0.55-0.03)	0.644	
Enriched in neutrophils (II)	0.08 (0.00-0.23)	0.09 (-0.10-0.18)	0.644	
Erythrocytes	-0.15 (-0.23-0.19)	-0.13 (-0.49-0.70)	0.972	
Extracellular matrix (I)	-1.15 (-1.150.85)	-0.63 (-1.130.36)	0.214	
Extracellular region cluster	-0.08 (-0.150.03)	-0.10 (-0.28-0.02)	0.972	
Inflammation (IV)	0.25 (-0.14-0.49)	0.12 (-0.06-0.36)	0.915	
Inflammation (VI)	0.25 (-0.22-0.36)	0.02 (-0.22-0.15)	0.455	
Inositol phosphate metabolism	-0.39 (-0.55-0.28)	-0.10 (-0.38-0.32)	0.644	
Interferon	1.71 (1.33-2.10)	0.58 (0.04-1.73)	0.546	
Interferon (II)	0.70 (0.54-0.93)	0.28 (0.13-0.66)	0.303	
MAPK-RAS signalling	0.16 (-0.46-0.28)	0.03 (-0.59-0.35)	0.972	
Monocytes	0.38 (0.25-1.09)	0.21 (-0.18-0.65)	0.303	
Plasma cells, immunoglobulins	-0.34 (-0.73-0.61)	-0.10 (-0.58-0.73)	0.804	
Platelets	0.28 (0.23-1.02)	-0.18 (-0.46-0.25)	0.110	
Protein synthesis (I)	-0.68 (-1.120.18)	-0.44 (-0.91-0.10)	0.499	
Regulation of antigen presentation and				
immune response	-1.15 (-1.171.06)	-0.80 (-1.350.13)	0.455	
Regulation of transcription,				
transcription factors	-0.82 (-0.850.26)	-0.39 (-0.84-0.11)	0.644	

Supplementary Table S31. Z-scores of replicated gene modules in patients with LN and anti-SSA-60 positivity versus negative patients

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

	Anti-U1RNP (+)	Anti-U1RNP (-)	
Gene module	N=5	N=20	<i>p</i> value
B cell	0.01 (-0.65-0.03)	-1.84 (-2.401.11)	0.089
Cell cycle, mitotic phase	-0.76 (-1.050.48)	-0.29 (-0.870.01)	0.197
CORO1A-DEF6 network	-0.04 (-0.09-0.02)	-0.13 (-0.33-0.02)	0.342
Enriched in antigen presentation (III)	0.03 (-0.44-0.20)	-0.41 (-0.750.15)	0.174
Enriched in neutrophils (II)	0.02 (-0.14-0.17)	0.09 (-0.07-0.19)	0.541
Erythrocytes	0.19 (-0.13-0.72)	-0.16 (-0.49-0.60)	0.248
Extracellular matrix (I)	-0.48 (-0.580.33)	-0.80 (-1.300.52)	0.221
Extracellular region cluster	-0.29 (-0.420.25)	-0.09 (-0.26-0.05)	0.118
Inflammation (IV)	0.25 (-0.50-0.29)	0.14 (-0.04-0.41)	0.587
Inflammation (VI)	0.07 (-0.14-0.20)	0.01 (-0.26-0.21)	0.634
Inositol phosphate metabolism	-0.28 (-0.550.11)	0.07 (-0.39-0.43)	0.118
Interferon	0.58 (0.30-1.71)	1.41 (0.04–2.25)	0.587
Interferon (II)	0.24 (0.13-0.76)	0.53 (0.20-0.69)	0.839
MAPK-RAS signalling	0.52 (0.36-0.55)	-0.27 (-0.68-0.29)	0.007
Monocytes	0.38 (0.09-0.38)	0.23 (-0.24-1.01)	0.684
Plasma cells, immunoglobulins	-0.23 (-0.550.10)	-0.10 (-0.77-0.79)	0.786
Platelets	0.23 (0.01-0.67)	-0.10 (-0.43-0.31)	0.248
Protein synthesis (I)	-0.26 (-1.270.04)	-0.45 (-0.92-0.20)	0.415
Regulation of antigen presentation and			
immune response	-0.64 (-1.120.29)	-0.96 (-1.410.17)	0.839
Regulation of transcription,			
transcription factors	-0.82 (-1.100.35)	-0.42 (-0.72-0.11)	0.277

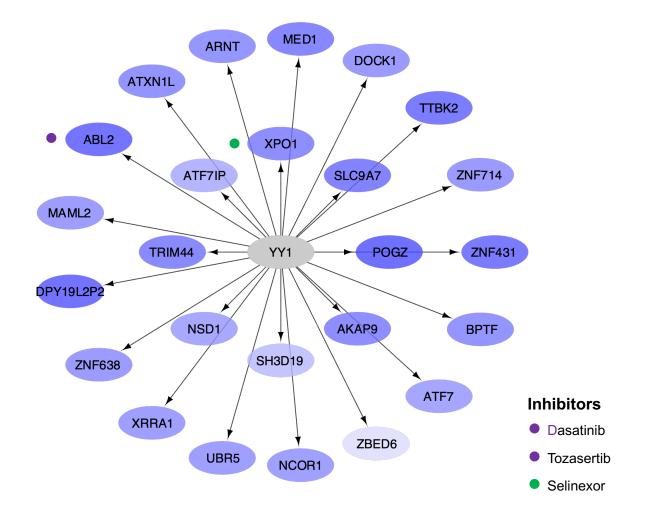
Supplementary Table S32. Z-scores of replicated gene modules in patients with LN and anti-U1RNP positivity versus negative patients

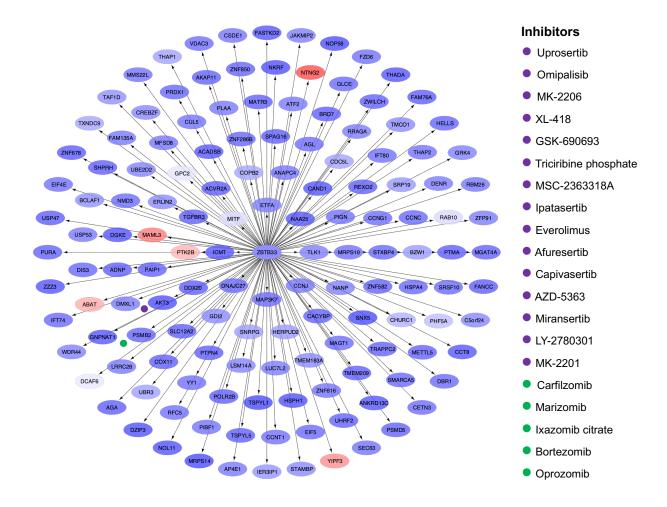

Data are presented as median (interquartile range). The total number of patients with available data is indicated. All p values are derived from non-parametrical Mann-Whitney U tests. Statistically significant p values are in bold.

Regulator	Motif ID	AUC	NES	Targets	TFs
Interferon g	ene module				
STAT1	factorbook-STAT2	0.229	22.37	59	13
IRF8	taipale-NCGAAACCGAAACY-IRF8-DBD	0.207	20.12	57	8
STAT1	jaspar-MA0137.1	0.206	19.98	65	12
Interferon (II) gene module				
1RF9	taipale-AWCGAAACCGAAACY-IRF9-full	0.147	13.16	48	6
IRF8	taipale-NCGAAACCGAAACT-IRF8-full	0.140	12.47	47	6
IRF8	taipale-NCGAAACCGAAACY-IRF8-DBD	0.136	12.03	24	8
B cell gene r	nodule				
SOX10	tfdimers-MD00329	0.101	4.78	12	2
PRDM1	flyfactorsurvey-Blimp-1_SOLEXA_FBgn0035625	0.096	4.42	24	14
TBX2	taipale-NAGGTGTGAWN-TBX2-full	0.095	4.36	11	12
Plasma cells	, immunoglobulins gene module				
TFDP3	transfac_pro-M00920	0.079	8.38	65	8
NFYC	yetfasco-1537	0.077	8.03	96	4
NFYC	jaspar-MA0316.1	0.076	7.91	95	4
Regulation	of transcription, transcription factors				
YY1	flyfactorsurvey-phol_SOLEXA_5_FBgn0035997	0.162	8.83	18	3
YY1	flyfactorsurvey-phol_SANGER_5_FBgn0035997	0.149	8.04	9	2
YYI	factorbook-YY1	0.143	7.73	19	3
Cell cycle, n	nitotic phase gene module				
YY1	jaspar-PF0063.1	0.059	4.50	25	1
NANOS1	hdpi-NANOS1	0.058	4.40	9	1
YY1	flyfactorsurvey-phol_SOLEXA_5_FBgn0035997	0.057	4.32	39	3
Protein synt	hesis (I) gene module				
ZBTB33	jaspar-PF0008.1	0.030	3.91	143	1
ZBTB33	factorbook-UA1	0.029	3.56	108	1
ZBTB33	homer-M00076	0.029	3.54	135	1
Extracellula	r matrix (I) gene module				
NRF1	factorbook-NRF1	0.037	5.32	202	2
NRF1	swissregulon-NRF1.p2	0.036	5.09	131	2
ZSCAN10	jaspar-PF0001.1	0.036	4.91	191	3
Regulation of	of antigen presentation and immune response gene module				
PRDM2	yetfasco-1185	0.027	4.29	562	9
ZNF143	jaspar-PF0113.1	0.027	4.15	82	1
CUXI	homer-M00467	0.027	4.09	90	2

Supplementary Table S33. The most enriched signalling mole	lecule networks in patients with LN
--	-------------------------------------

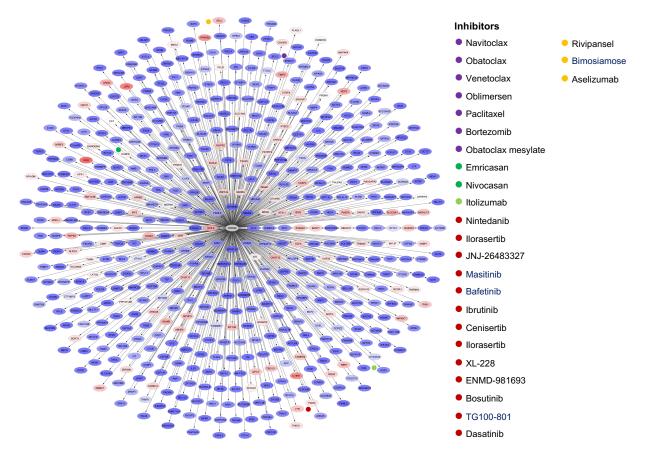
Genes in replicated gene modules with a mean |z-score|>1 in at least one LN patient subgroup were imputed in iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. The top chief regulators and enriched motifs are displayed.


AUC: area under the curve; LN: lupus nephritis; NES: normalised enrichment score; TFs: transcription factors.


Supplementary Figure S1. The *NRF1* signalling molecule network and annotated drug targets in patients with lupus nephritis

Genes in the extracellular matrix (I) gene module were imputed in iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. One of the most enriched signalling molecule networks is plotted, with the chief regulator *NRF1* in the central node. The colour of the nodes ranges from light blue (downregulated genes) to increasing intensities of red (upregulated genes) based on the gene dysregulation (z-scores) in the lo-IFN patient subgroup. Inhibiting drugs and their upregulated targets are indicated by coloured dots.

Supplementary Figure S2. The *YY1* signalling molecule network and annotated drug targets in patients with lupus nephritis


Genes in the cell cycle, mitotic phase gene module were imputed in iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. One of the most enriched signalling molecule networks is plotted, with the chief regulator *YY1* in the central node. The colour of the nodes ranges from light blue (downregulated genes) to increasing intensities of red (upregulated genes) based on the gene dysregulation (z-scores) in the lo-IFN patient subgroup. Inhibiting drugs and their upregulated targets are indicated by coloured dots.

Supplementary Figure S3. The *ZBTB33* signalling molecule network and annotated drug targets in patients with lupus nephritis

Genes in the protein synthesis (I) gene module were imputed in iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. One of the most enriched signalling molecule networks is plotted, with the chief regulator *ZBTB33* in the central node. The colour of the nodes ranges from light blue (downregulated genes) to increasing intensities of red (upregulated genes) based on the gene dysregulation (z-scores) in the lo-IFN patient subgroup. Inhibiting drugs and their upregulated targets are indicated by coloured dots.

Supplementary Figure S4. The *PRDM2* signalling molecule network and annotated drug targets in patients with lupus nephritis

Genes in the regulation of transcription, transcription factors gene module were imputed in iRegulon through Cytoscape to generate signalling molecule networks and identify their chief regulators. One of the most enriched signalling molecule networks is plotted, with the chief regulator *PRDM2* in the central node. The colour of the nodes ranges from light blue (downregulated genes) to increasing intensities of red (upregulated genes) based on the gene dysregulation (z-scores) in the lo-IFN patient subgroup. Inhibiting drugs and their upregulated targets are indicated by coloured dots.

Target	lo-IFN subgroup	im-IFN subgroup	hi-IFN subgroup	lo-IFN vs im-IFN	lo-IFN vs hi-IFN	im-IFN vs hi-IFN
	N=13	N=9	N=19	<i>p</i> value	p value	<i>p</i> value
IFNAR	0.58 ± 0.05	0.55±0.03	0.60±0.05	0.133	0.309	0.015
CD22	0.07 ± 0.01	0.08 ± 0.00	0.08±0.01	0.077	0.027	0.539
BAFF	0.25±0.02	0.24±0.02	0.25±0.03	0.171	0.803	0.337
BAFF and APRIL	0.25±0.02	0.24±0.02	0.25±0.03	0.171	0.803	0.337
BAFFR	0.03±0.01	0.04±0.01	0.03±0.01	0.010	0.309	0.052
Calcineurin	0.07 ± 0.01	0.05±0.01	0.05±0.01	0.001	<0.001	0.446
C5	0.01 ± 0.00	0.01 ± 0.00	0.01±0.00	0.217	0.454	0.363
CD19	0.18 ± 0.08	0.26±0.03	0.22±0.04	0.005	0.328	0.010
CD38	0.36±0.02	0.40±0.05	0.40±0.03	0.021	<0.001	0.476
mTORC1	0.76 ± 0.04	0.71±0.03	0.72±0.04	0.001	0.003	0.337
CCR1	0.00 ± 0.00	0.00±0.00	0.00±0.01	N/A	0.408	0.491
ВТК	0.14±0.02	0.17±0.01	0.16±0.01	0.001	0.001	0.029
Tyrosine kinase	0.81±0.04	0.75±0.02	0.76±0.05	<0.001	0.016	0.313
JAK1/JAK2	0.96±0.04	0.89±0.03	0.93±0.05	0.001	0.388	0.022

Supplementary Table S34. Response scores to selected targets in patients with LN

Data are presented as mean (standard deviation). All *p* values are derived from non-parametrical Mann-Whitney *U* tests. Statistically significant *p* values are in bold.

APRIL: a proliferation-inducing ligand; BAFF: B cell activating factor belonging to the tumour necrosis factor family; BAFFR; B cell activating factor belonging to the tumour necrosis factor family; BTK: Bruton's tyrosine kinase; C5: complement component 5; hi: high; IFN: interferon; IFNAR: interferon- α/β receptor; im: intermediate; N/A: not applicable; JAK: Janus kinase; LN: lupus nephritis; lo: low; mTORC1: mammalian target of rapamycin complex 1.

Target	lo-IFN subgroup	im-IFN subgroup	hi-IFN subgroup	lo-IFN vs im-IFN	lo-IFN vs hi-IFN	im-IFN vs hi-IFN
	N=13	N=9	N=19	<i>p</i> value	<i>p</i> value	<i>p</i> value
IFNAR	5 (38.5%)	1 (11.1%)	14 (73.7%)	0.333	0.104	0.004
CD22	4 (30.8%)	6 (66.7%)	14 (73.7%)	0.192	0.041	1.000
BAFF	7 (53.8%)	3 (33.3%)	10 (52.6%)	0.415	1.000	0.435
BAFF and APRIL	7 (53.8%)	3 (33.3%)	10 (52.6%)	0.415	1.000	0.435
BAFFR	6 (46.2%)	8 (88.9%)	12 (63.2%)	0.074	0.556	0.214
Calcineurin	12 (92.3%)	2 (22.2%)	5 (26.3%)	0.001	0.001	1.000
C5	4 (30.8%)	6 (66.7%)	10 (52.6%)	0.192	0.389	0.687
CD19	5 (38.5%)	8 (88.9%)	8 (42.1%)	0.031	1.000	0.039
CD38	0 (0.0%)	4 (44.4%)	13 (68.4%)	0.017	<0.001	0.409
mTORC1	10 (76.9%)	1 (11.1%)	5 (26.3%)	0.008	0.014	0.630
CCR1	0 (0.0%)	0 (0.0%)	1 (5.3%)	1.000	1.000	1.000
ВТК	1 (7.7%)	9 (100.0%)	12 (63.2%)	<0.001	0.003	0.062
Tyrosine kinase	12 (92.3%)	1 (11.1%)	6 (31.6%)	<0.001	0.002	0.371
JAK1/JAK2	10 (76.9%)	0 (0.0%)	12 (63.2%)	<0.001	0.467	0.003

Supplementary Table S35. LN patients with anticipated response to selected drug targets

Data are presented as number (percentage). All p values are derived from Pearson's chi squared (χ 2) or Fisher's exact tests. Statistically significant p values are in bold.

APRIL: a proliferation-inducing ligand; BAFF: B cell activating factor belonging to the tumour necrosis factor family; BAFFR; B cell activating factor belonging to the tumour necrosis factor family; BTK: Bruton's tyrosine kinase; C5: complement component 5; hi: high; IFN: interferon; IFNAR: interferon- α/β receptor; im: intermediate; JAK: Janus kinase; LN: lupus nephritis; lo: low; mTORC1: mammalian target of rapamycin complex 1.