Supporting Information

Chemical signatures delineate heterogeneous amyloid plaque populations across the Alzheimer's disease spectrum

Srinivas Koutarapu¹, Junyue Ge¹, Maciej Dulewicz¹, Meera Srikrishna ^{1,2}, Alicja Szadziewska ¹, Jack Wood ^{1,3}, Kaj Blennow^{1,4,5,6}, Henrik Zetterberg^{1,4,7-10}, Wojciech Michno^{1,11}, Natalie S Ryan ^{3,12}, Tammaryn Lashley¹³, Michael Schöll ^{1,2,3,12}, and Jörg Hanrieder^{1,3,14}*

- 1) Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- 2) Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- 3) Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- 4) Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- 5) Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- 6) Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
- 7) Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- 8) UK Dementia Research Institute, University College London, London, United Kingdom
- 9) Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- 10) Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- 11) Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
- 12) Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- 13) Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- 14) SciLife Lab, University of Gothenburg, Gothenburg, Sweden

Content

SI Table 1

SI Figures S1-7

SI Table S1: Masses of the detected $\mbox{\sc A}\beta$ isoforms.

Peptide	Peptide Sequence	[M+H] ⁺	[M+H] ^{+ Avg}
Aβ11pE-40	pEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	3132.67684	3134
Aβ11pE-42	pEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	3317.79802	3319
Αβ11-42	EVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	3334.79802	3336
Αβ9-40	GYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	3370.76164	3372
Αβ8-40	SGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	3457.79366	3459
Αβ7-40	DSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	3572.82061	3574
Αβ4-40	FRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	4013.04904	4012.042
Αβ5-42	RHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	4050.10181	4052
Аβ3рЕ-40	pEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	4124.09164	4127
Αβ4-42	FRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	4197.17022	4199.5
Аβ3рЕ-42	pEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	4308.21281	4311
Αβ1-40	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV	4328.15569	4329.5
Αβ2-42	AEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	4397.24993	4400
Αβ1-42	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA	4512.27687	4515.5
Aβ1-42ox	DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA +oxidation	4528.27687	4531.5

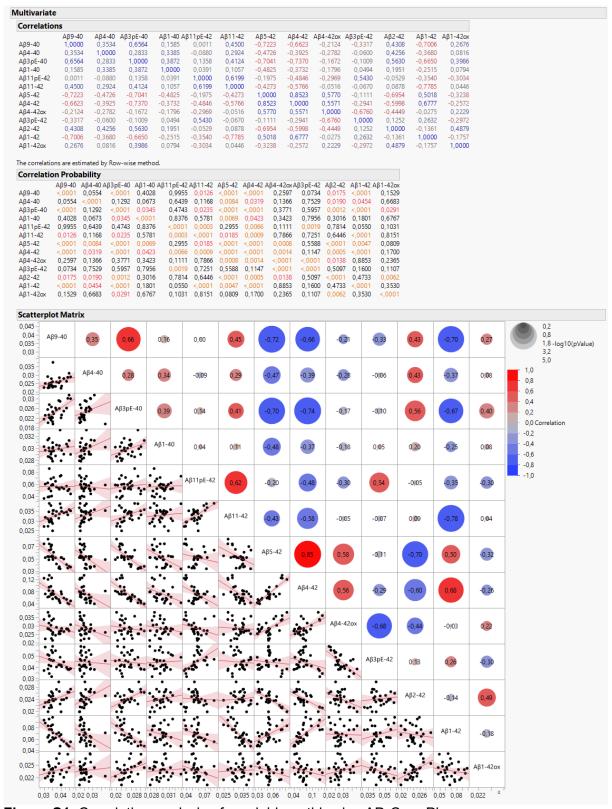


Figure S1. Correlation analysis of amyloid peptides in sAD-Core Plaque

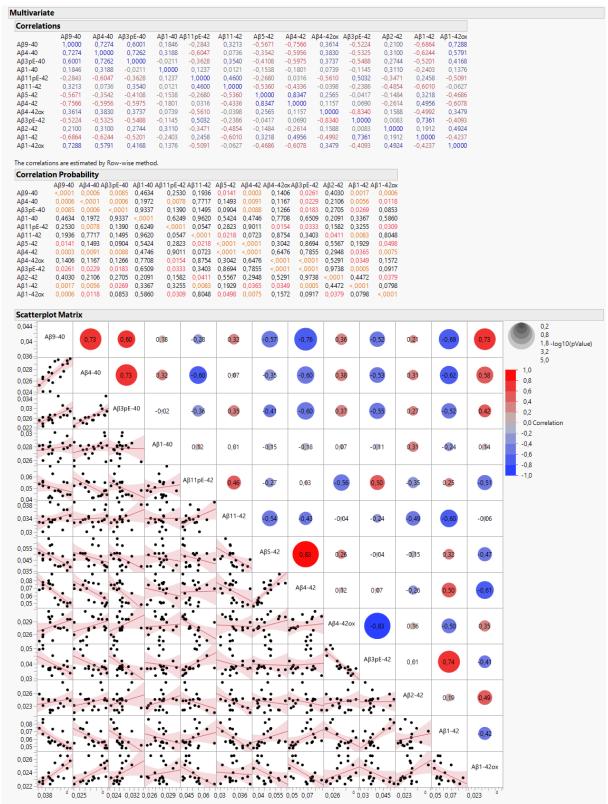


Figure S2. Correlation analysis of amyloid peptides in sAD-Diffused Plaque

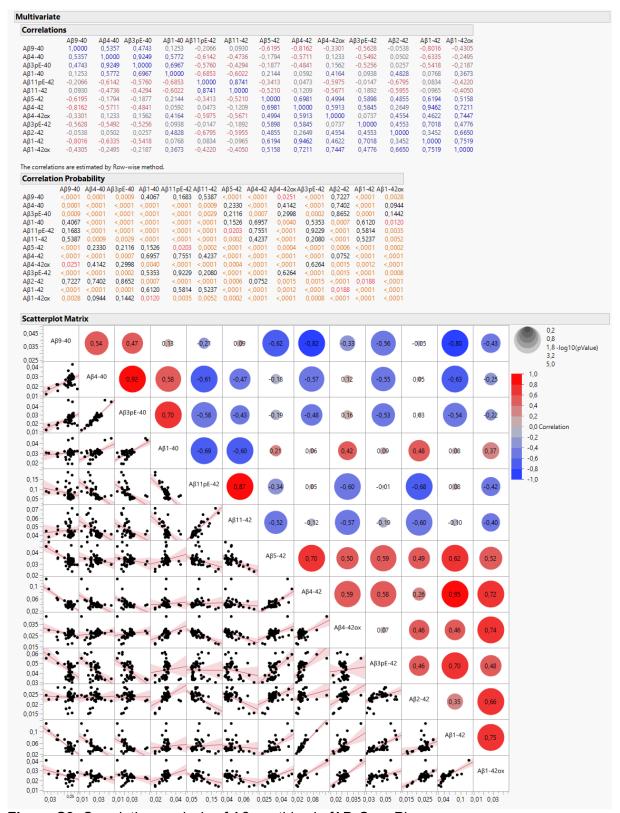
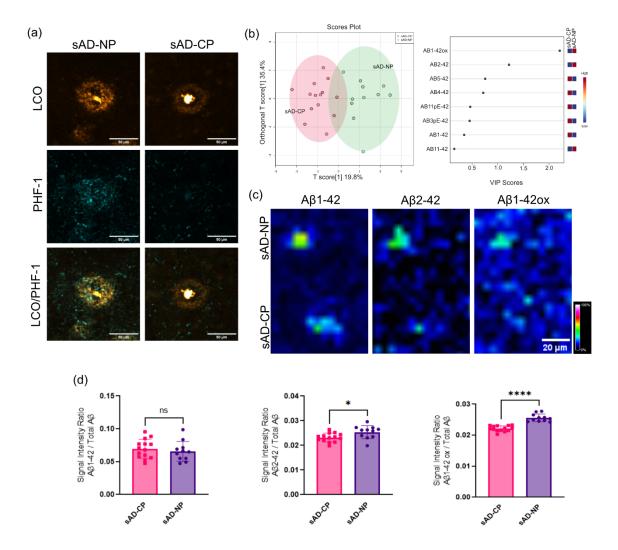
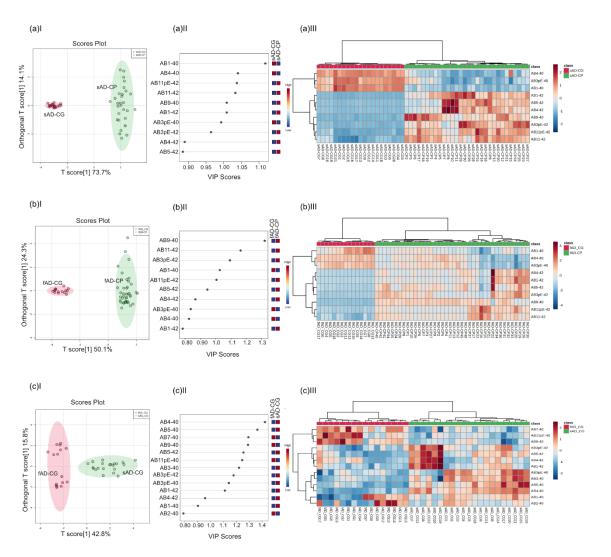




Figure S3. Correlation analysis of Aβ peptides in fAD-Core Plaque

Figure S4. MALDI signatures of neuritic plaques. (a) Delineating plaque types by means of fluorescent microscopy using LCO amyloid probes (q and h FTAA) along with PHF-1 IHC. Neuritic plaques show higher levels of PHF-1 Tau positive neurites. (b) OPLS DA of MALDI signatures(OPLS model characteristics: R2X-0.256; R2Y-0.558; Q2-0.486). Here the VIP reveal elevated levels of Aβ2-42 and Aβ1-42ox in neuritic plaques as compared to cored plaques. (c, d) Bar graphs and single ion images. Scale bar: 30um. Intensity scale: rel. intensity in %.

Figure S5. Comparative analysis of Aβ patterns in cored and coarse grain plaques. (a) sAD cored plaques vs coarse grain plaques (OPLS model characteristics: R2X-0.737; R2Y-0.948; Q2-0.947)(b) fAD cored plaques vs coarse grain plaques (OPLS model characteristics: R2X-0.501; R2Y-0.813; Q2-0.81) (c) sAD coarse grain plaques vs fAD coarse grain plaques (OPLS model characteristics: R2X-0.428; R2Y-0.852; Q2-0.835) (a-cl) OPLS-DA score plot. (a-cll) VIP scores. (a-clll) HCA heatmap.

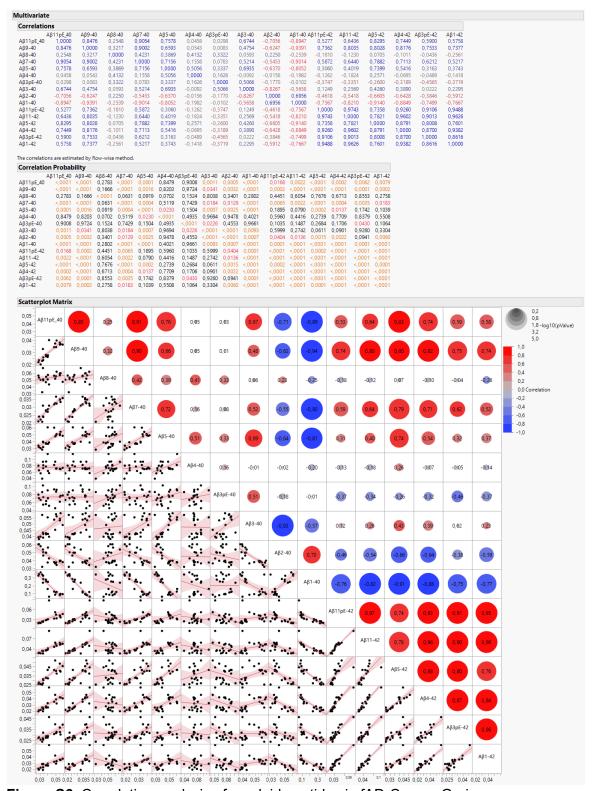


Figure S6. Correlation analysis of amyloid peptides in fAD-Coarse Grain

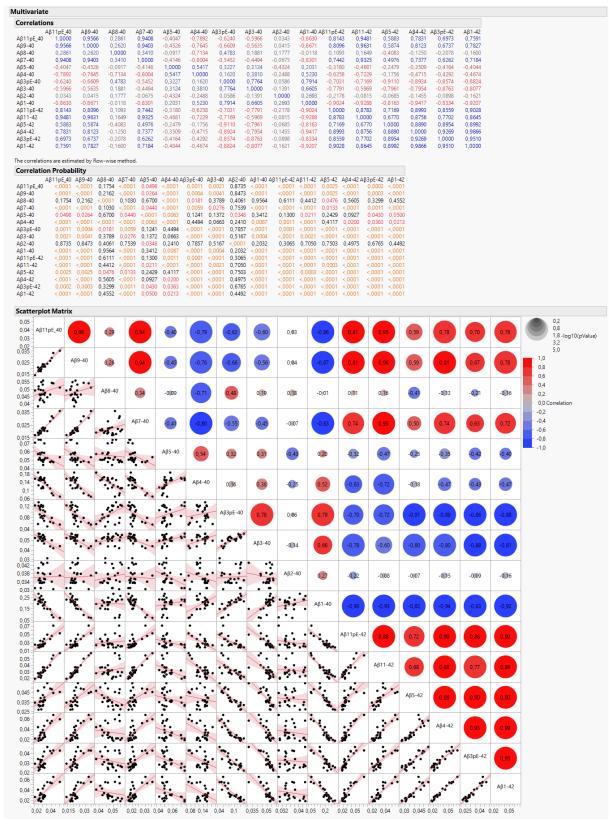


Figure S7. Correlation analysis of amyloid peptides in sAD-Coarse Grain