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Fig S1. (A) Flow cytometric analysis of cells transduced with an empty MSCV-EGFP vector control. N=6. 
(B) Representative images of transduction efficiency of FLMKs transduced with MSCV-β1-tubulin-
dendra2. Scale bars: 150 µm. (C) Representative images of MSCV-β1-tubulin-dendra2-transduced
FLMKs containing clustered centrosomes during initiation of proplatelet formation. Scale bars: 20 µm.
(D, E) Nucleus area (D) and relation to cell size (E) was analyzed in MKs with unclustered vs.
clustered centrosomes. N=2. At least 50 cells were analyzed per mouse. Unpaired, two-tailed student’s
t-test. P < 0.01 **.  (F, G) Visualization and quantification of Golgi ribbon formation in BMMKs treated
with DMSO or 50 µM Gris for 6 hours. Golgi apparatus was visualized using an antibody against the
Golgi membrane protein GM130. Golgi distribution was quantified manually using ImageJ Software.
Scale bars: 20 µm. N=3. At least 50 cells were analyzed per mouse. Two-way ANOVA with Sidak
correction for multiple comparisons. P < 0.001 ***. (H, I) Percentage of proplatelet-forming MKs at 24h
and proplatelet area upon treatment with DMSO, 10 or 50 µM Gris was assessed using an automated
imaging platform and custom analysis pipeline [87]. N=2; 4 technical replicates. One-way ANOVA with
Sidak correction for multiple comparisons. P < 0.0001 ****. (J) Percentage of proplatelet-forming
MKs at 24h upon treatment with



CCB01. One-way ANOVA with Sidak correction for multiple comparisons. P < 0.0001 ****. (K) 
Representative images of MKs containing clustered centrosomes in situ. Arrows point at clustered 
centrosomes. Scale bars: 50 µm. (L) DNA area in relation to cell size was analyzed in MKs with 
unclustered vs. clustered centrosomes in situ. N=4. At least 20 cells were analyzed per mouse. 
Unpaired, two-tailed student’s t-test. P < 0.001 ***.  All data are presented as mean ± SD. 



Fig S2. (A) Body weight of control and STS mice was measured at the indicated timepoints. N=5. Data 
are presented as mean ± SD. (B, C) White blood cell and lymphocyte counts of control and STS mice 
were assessed using an automated blood cell analyzer. N=5. One-way ANOVA with Sidak 
correction for multiple comparisons. P < 0.0001 ****. (D) Glycoprotein (GP) expression of control and 
STS platelets was assessed by flow cytometry. N=4. Two-way ANOVA with Sidak correction for 
multiple comparisons. P < 0.01 **. (E) Spleen weight was normalized to body weight. N=5. Data are 
presented as mean ± SD. (F) Spleens from control and STS mice were sectioned, stained for laminin 
and CD41 and imaged using an 



automated imager. Scale bars: 100 µm. (G, H) CD41 MFI and MK numbers were assessed using an 
automated image analysis software. N=5. (I, J) Platelet integrin activation and P-selectin exposure were 
analyzed by flow cytometry upon stimulation with different agonists. N=5. Multiple student’s t-tests. P < 
0.05 *; P < 0.001 ***. (K, L) Plasma cortisol and TPO levels in control and STS mice was assessed using 
enzyme-based immunosorbent assays. N=9. Unpaired, two-tailed student’s t-test. P < 0.05 *. (M, N) Bone 
marrow and blood plasma were isolated from control and STS mice and subjected to cytokine profiling. 
Plasma was pooled from 9 mice. All data are presented as mean ± SD. 



Fig S3. (A, B) Cytotoxicity of the inhibitors SR31527 (SR), CW069, griseofulvin (Gris) and CCB02 in 
hematopoietic stem and progenitor cells (HSPCs) cultured for 3 days (A) as well as mature BMMKs 
cultured for 24h (B) was assessed using an LDH cytotoxicity assay per the manufacturers’ instructions. 
Absorbance was measured at a plate reader. (A) N=2; (B) N=1; 3 technical replicates. Data are presented 
as mean ± SD. (C) Simulation-based modeling of interactions between chromosomes and centrosomes [64, 
65]: Kinesin-14 motors like KIFC1 (red) stretching from two centrosomes generate effective inter-
centrosomal attraction forces (red arrows) (1). Microtubules interacting with dynein motors (blue) on the 
kinetochores are pulled toward the chromosomes causing the effective attraction force between the 
centrosome and chromosome (blue arrow). Microtubules interacting with chromokinesin motors (purple) 
on the chromosome arms are pushed away from the chromosomes causing the effective repulsion force 
between the centrosome and chromosome (purple arrow). Two opposing centrosome-chromosome forces 
position centrosomes at a characteristic distance from the chromosomes (2). The chromosomes aggregate 
to several clusters at the center, while the effective attraction clusters some of the centrosomes and localizes 
them around the chromosomes resulting in multipolarity. The centrosomal clusters do not aggregate further 
because the attraction between them is either blocked by the chromosomes in between (dotted arrows) or 
is too weak because of the large inter-centrosomal cluster distances (dashed arrows). Following DNA 
decondensation, the only remaining force is the attraction between the centrosomal clusters (3). This 
KIFC1-generated attraction force clusters all centrosomes together. The resulting combined microtubule 
aster is so dense that crosslinking action of MAPs could lead to bundling of microtubules (4), from which 
they are distributed to the cell cortex.  



Fig S4. (A) PCR for wildtype (WT) and mutant (KO) Kifc1 allele using DNA derived from Kifc1-/-, 
heterozygous (Kifc+/-) and WT mice. (B, C) Analysis of litter sizes (B) and sex distribution among the 
litters (C) of WT and Kifc1-/- mice. Unpaired, two-tailed student’s t-test. P < 0.05. (D, E) Red and white 
blood cell counts in WT and Kifc1-/- mice were assessed using an automated blood cell analyzer. N=25. 
Unpaired, two-tailed student’s t-test. (F) Platelet recovery after depletion was assessed using an 
automated blood cell analyzer. N=3. (G) Immature platelet fraction in WT and Kifc1-/- mice was 
assessed using an automated blood cell analyzer. N=25. Unpaired, two-tailed student’s t-test. (H, I) 
Activation of platelet αIIbβ3 integrins and exposure of P-selectin were analyzed by flow cytometry upon 
stimulation with different agonists. N=4. Unpaired, two-tailed student’s t-test. P < 0.05. (J) Percentage of 
MKs expressing CD41 and CD42d after 4 days of culturing was assessed by flow cytometry. N=3. 
K) Number of MKs containing clustered centrosomes was quantified by immunofluorescence stainings
for pericentrin and α-tubulin. N=4. Unpaired, two-tailed student’s t-test. P < 0.001 ***. (L) TPO levels in
plasma derived from WT or Kifc1-/- mice were analyzed using an enzyme-linked immunosorbent assay.
N=6. All data are presented as mean ± SD.



Table S1. 

Gene Protein Method Function 

Tpx2 
Microtubule 
Nucleation 
Factor 

Ubiquitin Pulldown & 

Polysome Profiling 
[48] 

Spindle assembly factor required for normal assembly of mitotic 
spindles. Mediates AURKA localization to spindle microtubules 
[89]. 

Aurka 
Aurora Kinase 
A  

Polysome Profiling 
[48] 

Associates with the centrosome and the spindle microtubules 
during mitosis and plays a critical role in various mitotic events 
[90]. 

Aurkb 
Aurora Kinase 
B 

Polysome Profiling 
[48] 

Kinase component of the chromosomal passenger complex 
(CPC), a key regulator of mitosis [90]. 

Plk1, 4 
Polo-like 
Kinase 1, 4 

Polysome Profiling 
[48] 

Regulates centrosome maturation, spindle assembly, and 
cytokinesis. Contributes to the regulation of AURKA function 
[91]. 

Kif11 
Kinesin 
Family 
Member 11 

Polysome Profiling 
[48] 

Motor protein required for establishing a bipolar spindle during 
mitosis [92]. 

Kif2a 
Kinesin 
Family 
Member 2a 

Ubiquitin Pulldown 
Plus-end-directed microtubule-dependent motor required for 
progression through mitosis [93].  

StarD9 

STAR Related 
Lipid Transfer 
Domain 
Containing 9 

Ubiquitin Pulldown 
Microtubule-dependent motor protein required for spindle pole 
assembly during mitosis and to stabilize the pericentriolar 
material (PCM) [94]. 

CEP192 Centrosomal 
Protein 192 Ubiquitin Pulldown 

Required for mitotic centrosome and spindle assembly. Appears 
to be a major regulator of PCM recruitment and centrosome 
maturation [95]. 

Table S1. Cell cycle proteins identified by polysome profiling [48] and ubiquitin pulldown. 



Movie S1. Timelapse of MSCV-Centrin2-GFP-transduced FLMKs imaged every 10 min for 2 hours at a 
Yokogawa spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation enclosure 
(20x objective). Scale bar: 5 µm. 

Movie S2. Timelapse of MSCV-FUCCI-transduced FLMKs imaged every hour for 24 hours at a 
Yokogawa spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation 
enclosure (20x objective). Scale bar: 30 µm. 

Movie S3. Timelapse of MSCV-FUCCI-transduced FLMKs imaged every hour for 24 hours at a Yokogawa 
spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation enclosure (20x 
objective). Video shows MKs transitioning to proplatelet formation. Scale bar: 60 µm. 

Movie S4. Timelapse of MSCV-β1-tubulin-dendra2-transduced FLMKs imaged every hour for 24 hours at 
a Yokogawa spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation enclosure 
(20x objective). Video shows MKs prior to proplatelet formation. Scale bar: 50 µm. 

Movie S5. Timelapse of MSCV-β1-tubulin-dendra2-transduced FLMKs imaged every hour for 24 hours at 
a Yokogawa spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation enclosure 
(20x objective). Video shows MKs during proplatelet formation. Scale bar: 50 µm. 

Movie S6, 7. Timelapse of MSCV-β1-tubulin-dendra2-transduced FLMKs imaged every hour for 24 hours 
at a Yokogawa spinning disk confocal/inverted Nikon Ti fluorescence microscope with incubation 
enclosure (20x objective). Video shows MKs transitioning to proplatelet formation. Scale bar: 5 µm. 

Movie S8. Timelapse of FLMKs transduced with SFV-EB3-GFP visualizing EB3 comets emanating from 
clustered centrosomes towards the cell cortex [7]. MKs were imaged every 5 sec at a Zeiss Axiovert 200 
microscope (63x objective). 

Movie S9. Proplatelet formation of DMSO-treated FLMKs was imaged using the Incucyte imaging system 
over 24 hours. Scale bar: 150 µm. 

Movie S10. Proplatelet formation of FLMKs treated with 40 µm SR31527 was imaged using the Incucyte 
imaging system over 24 hours. Scale bar: 150 µm. 
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