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Supplementary Figures 

 
Supplementary Figure 1. Characterization of the properties of purified sEVs. 
sEVs were purified from the plasma of young (2 months) and aged (20 months) male 
mice and characterized using NTA, TEM and enrichment of sEV markers. (a) 
Determination of the size distribution and concentration of sEVs using NTA. NTA 
results revealed that the particles purified from the plasma of young and aged mice 
displayed a typical sEV size (approximately 100 nm in diameter) and were present in 
the original plasma of young and aged mice at a similar concentration (1.7 × 109 
particles/mL in young plasma vs. 1.04 × 109 particles/mL in aged plasma). Left panel: 
representative NTA images. Right panel: quantitative analysis (n = 3). In conventional 
NTA analysis, each sample is automatically subjected to three measurements. The red 
range curve represents the standard deviation of the three measurements, while the 
black curve corresponds to the mean of these three measurements. (b) Representative 
TEM images of young sEVs. Scale bars: 200 nm in the upper panel and 100 nm in the 
lower panel. TEM results showed that the majority of particles purified from young 
mouse plasma exhibited a characteristic round-shaped vesicular morphology and were 
heterogeneous in size, similar to previously reported exosomes. (c) Western blot 



analysis of sEV markers (CD9, CD63, Alix and Tsg101), the major plasma protein 
(Albumin) and endoplasmic reticulum protein (Calnexin) in whole plasma, purified 
sEVs and sEV-depleted supernatant. An equal amount of total protein was loaded in 
each lane. Significant enrichment of sEV markers but devoid of Albumin and Calnexin 
was detected in the sEV fraction. Each experiment was independently repeated three 
times with similar results for b and c. Significance was determined using two-sided 
Student’s t-test in a. **P < 0.01. 
 



 

Supplementary Figure 2. Long-term effects of young sEV injection on the whole-
body physiology of aged mice. (a) Flow chart of the experimental design. Aged male 
mice (20 months) were intravenously injected with 200 μL of PBS or young sEVs (1.80 
μg of total protein/μL, from 2-month-old male mice) once a week. Young male mice (2 
months) were simultaneously injected with PBS to serve as a control group. At different 



time points, changes of physiological activities and functions, including sperm quality 
and male fertility (22-month-old mice receiving 8 injections), metabolic rate and energy 
expenditure (23-month-old mice receiving 12 injections), cardiac functions (23.5-
month-old mice receiving 14 injections), bone microarchitecture (24-month-old mice 
receiving 16 injections) and brain volume alterations (24.5-month-old mice receiving 
18 injections), were evaluated. (b-c) Plasma and intratesticular testosterone levels in 
each group (n = 4). (d-e) Assessment of sperm DNA fragmentation with the sperm 
chromatin dispersion test. Under a bright field microscope, sperm with fragmented 
DNA fail to produce the characteristic halo of dispersed DNA loops that is observed in 
sperm with nonfragmented DNA following acid denaturation and removal of nuclear 
proteins. Therefore, sperm with large halos are considered normal and nonfragmented, 
whereas sperm with small or no halos are considered to have significant DNA 
fragmentation. Representative images (green arrows indicate large halos, and red 
arrows indicate small halos; scale bar, 50 μm) and quantitative data (n = 6) are shown. 
(f-h) Echocardiographic measurements of cardiac dimensions and indices of cardiac 
function in each group. Quantitation of FS, LV Vol;d and LV Vol;s is shown (n = 8). 
(i-j) Micro-CT analysis of the trabecular microarchitecture of the proximal femur in 
each group. Quantitative values of Tb.Th and Tb.Sp are shown (n = 8). (k-o) MRI-
based morphometric analyses of the hippocampus and cortex in each group. Outlines 
of the whole brain (red), hippocampus (green) and cortex (blue) used for semiautomatic 
volumetric analyses are depicted in colors. Representative MRI images of the brain in 
each group are shown, and the absolute volumes of the hippocampus and cortex were 
calculated (n = 8). Significance was determined using one-way ANOVA followed by 
Dunnett’s multiple comparison test in b, c, e, f, g, h, i, j, n and o. *P < 0.05, **P < 0.01 
and ***P < 0.005.  



 
Supplementary Figure 3. Short-term effects of young sEV injection on memory 
ability and endurance performance of the same batch of aged mice. (a) Flow chart 
of the experimental design. A batch of aged male mice (21 months) were randomly 
divided into 2 groups and were intravenously injected with 200 μL of PBS or young 
sEVs (from 2-month-old male mice) 7 times over 2 weeks. Before (at day -21) and after 
(at day 14) the 7 injections of PBS or young sEVs, the two groups of aged mice were 
assessed by a series of behavioral paradigms to determine memory ability and 
endurance performance. (b) The escape latency of each group in the training phase of 
Morris water maze test (n = 8). Purple and blue asterisks (ns) indicate statistically 
significant differences between Young sEV→Aged (day 14) vs. Young sEV→Aged 
(day -21) and between PBS→Aged (day 14) vs. PBS→Aged (day -21), respectively. 
(c-d) Time spent in the target quadrant and the number of platform crossings by each 
group in the probe trial of Morris water maze test (n = 8). (e) Freezing levels of each 
group in the contextual fear conditioning test (n = 8). (f) Running time to exhaustion 
for each group in the treadmill running test (n = 10). Significance was determined using 



two-sided Student’s t-test in b, c, d, e and f. *P < 0.05, **P < 0.01 and ***P < 0.005. 
ns = not significant. 
  



 

Supplementary Figure 4. Effects of aged sEV injection on memory ability and 
endurance performance of aged and young mice. (a) Flow chart of the experimental 
design. Young and aged sEVs were purified from the plasma of young (2 months) and 
aged male mice (21 months) and resuspended in PBS at a concentration of 1.80 μg of 
total protein/μL. Aged male mice (21 months) were intravenously injected with 200 μL 



of PBS, aged sEVs or young sEVs 7 times over 2 weeks, and then the three groups of 
aged mice were assessed by a series of behavioral paradigms to determine memory 
ability and endurance performance. Young male mice (2 months) were simultaneously 
injected with PBS to serve as a control group. (b) The escape latency of each group in 
the training phase of Morris water maze test (n = 8). Blue, red, green and black asterisks 
(ns) indicate statistically significant differences between PBS→Young vs. PBS→Aged, 
between Young sEV→Aged vs. PBS→Aged, between Aged sEV→Aged vs. 
PBS→Aged and between Young sEV→Aged vs. Aged sEV→Aged, respectively. (c-
d) Time spent in the target quadrant and the number of platform crossings by each 
group in the probe trial of Morris water maze test (n = 8). (e) Freezing levels of each 
group in the contextual fear conditioning test (n = 8). (f) Running time to exhaustion 
for each group in the treadmill running test (n = 8). (g) Flow chart of the experimental 
design. Aged sEVs were purified from the plasma of aged male mice (21 months) and 
resuspended in PBS at a concentration of 1.80 μg of total protein/μL. Young male mice 
(2 months) were intravenously injected with 200 μL of PBS or aged sEVs 7 times over 
2 weeks, and then the two groups of young mice were assessed by a series of behavioral 
paradigms to determine memory ability and endurance performance. Aged male mice 
(21 months) were simultaneously injected with PBS to serve as a control group. (h) The 
escape latency of each group in the training phase of Morris water maze test (n = 6). 
Blue and red asterisks indicate statistically significant differences between PBS→Aged 
vs. PBS→Young and between Aged sEV→Young vs. PBS→Young, respectively. (i-j) 
Time spent in the target quadrant and the number of platform crossings by each group 
in the probe trial of Morris water maze test (n = 6). (k) Freezing levels of each group 
in the contextual fear conditioning test (n = 6). (l) Running time to exhaustion for each 
group in the treadmill running test (n = 10). Significance was determined using one-
way ANOVA followed by Dunnett’s multiple comparison test in b, c, d, e, f, h, i, j, k 
and l. *P < 0.05, **P < 0.01 and ***P < 0.005. ns = not significant. 



 

Supplementary Figure 5. Short-term effects of young/aged plasma injection on the 
cognitive function and muscle endurance of aged/young mice. (a) Flow chart of the 
experimental design. Aged male mice (21 months) were intravenously injected with 
200 μL of PBS or young plasma (from 2-month-old male mice) 7 times over 2 weeks, 
and then the two groups of aged mice were assessed by a series of behavioral paradigms 



to determine memory ability and endurance performance. (b) The escape latency of 
each group in the training phase of Morris water maze test (n = 9 for PBS→Aged; n = 
8 for Young sEV→Aged). (c-d) Time spent in the target quadrant and the number of 
platform crossings by each group in the probe trial of Morris water maze test (n = 8). 
(e) Freezing levels of each group in the contextual fear conditioning test (n = 8). (f) 
Running time to exhaustion for each group in the treadmill running test (n = 5). (g) 
Flow chart of the experimental design. Young male mice (2 months) were intravenously 
injected with 200 μL of PBS or aged plasma (from 21-month-old male mice) 7 times 
over 2 weeks, and then the two groups of young mice were assessed by a series of 
behavioral paradigms to determine memory ability and endurance performance. (h) The 
escape latency of each group in the training phase of Morris water maze test (n = 8). (i-
j) Time spent in the target quadrant and the number of platform crossings by each group 
in the probe trial of Morris water maze test (n = 8). (k) Freezing levels of each group 
in the contextual fear conditioning test (n = 8). (l) Running time to exhaustion for each 
group in the treadmill running test (n = 5). Significance was determined using two-
sided Student’s t-test in b, c, d, e, f, h, i, j, k and l. *P < 0.05, **P < 0.01 and ***P < 
0.005. 
 
 
 



 
Supplementary Figure 6. Short-term effects of young sEV injection on the 
senescent phenotypes of aged mice. Aged male mice (21 months) were intravenously 
injected with 200 μL of PBS or young sEVs (from 2-month-old male mice) 7 times 
over 2 weeks. Young male mice (2 months) were simultaneously injected with PBS to 
serve as a control group. (a) Western blot analysis of p21 and p16 protein levels in the 
heart, liver, spleen, lung, kidney, hippocampus, muscle and testis derived from young 
and aged mice injected with PBS 7 times over 2 weeks. Left panel: representative 
Western blots. Right panel: densitometric analysis (n = 6). (b) Quantitative RT–PCR 



analysis of p21 and p16 mRNA levels in the heart, liver, spleen, lung, kidney, 
hippocampus, muscle and testis derived from young and aged mice injected with PBS 
7 times over 2 weeks (n = 6). (c) Western blot analysis of p21 and p16 protein levels in 
the heart, liver, spleen, lung, kidney, hippocampus, muscle and testis derived from aged 
mice injected with PBS or young sEVs. Densitometric analysis are shown (n = 6). (d) 
Immunohistochemistry staining of Ki67 in the hippocampus sections. Quantification of 
Ki67 staining intensity in the hippocampus sections are shown (n = 4). Significance 
was determined using two-sided Student’s t-test in a, b and c and using one-way 
ANOVA followed by Dunnett’s multiple comparison test in d. *P < 0.05, **P < 0.01 
and ***P < 0.005. 
 



 
Supplementary Figure 7. Long-term effects of young sEV injection on the 
senescent phenotypes of aged mice. Aged male mice (20 months) were intravenously 
injected with 200 μL of PBS or young sEVs (1.80 μg of total protein/μL, from 2-month-
old male mice) once a week for 15 weeks. Young male mice (2 months) were 
simultaneously injected with PBS to serve as a control group. (a) Representative images 
of SA-β-Gal staining in the sections of liver, spleen, lung, kidney, hippocampus and 
testis derived from aged mice injected with PBS or young sEVs. The tissue sections 
derived from young mice injected with PBS were taken as a control. Scale bar, 100 μm. 



(b) Western blot analysis of p21 and p16 protein levels in the heart, liver, spleen, lung, 
kidney, hippocampus, muscle and testis derived from aged mice injected with PBS or 
young sEVs. Left panel: representative Western blots. Right panel: densitometric 
analysis (n = 6). (c) Quantitative RT–PCR analysis of p21 and p16 mRNA levels in the 
heart, liver, spleen, lung, kidney, hippocampus, muscle and testis derived from aged 
mice injected with PBS or young sEVs (n = 4 for p21; n = 6 for p16). Each experiment 
was independently repeated four times with similar results in a. Significance was 
determined using two-sided Student’s t-test in b and c. *P < 0.05, **P < 0.01 and ***P 
< 0.005. 



 
Supplementary Figure 8. UMAP plot of the iTRAQ quantitative proteomic data in 
eight tissues from PBS- and young sEV-injected aged mice. Each dot represents the 
overall protein expression in each tissue. The distance between dots indicates their 
dissimilarity.  
 



 
Supplementary Figure 9. Young sEV treatment mitigates the loss of mtDNA 
content in various tissues of aged mice. Aged male mice (21 months) were 
intravenously injected with 200 μL of PBS or young sEVs (from 2-month-old male 
mice) 7 times over 2 weeks. Young male mice (2 months) were simultaneously injected 
with PBS to serve as a control group. Mitochondrially encoded NADH dehydrogenase 
1 (MT-ND1), cytochrome c oxidase III (MT-CO3) and D-loop region, normalized to 
β2-microglobulin (β2-MG), were used to measure relative mtDNA content. (a-h) 
Relative mtDNA content in the hippocampus, muscle, heart, liver, spleen, lung, kidney 
and testis of each group (n = 5). Significance was determined using one-way ANOVA 
followed by Dunnett’s multiple comparison test in a-h. *P < 0.05, **P < 0.01 and ***P 
< 0.005. 
 
 



 
Supplementary Figure 10. Effects of aged sEV injection on metabolic phenotypes 
of aged and young mice. Aged male mice (21 months) were intravenously injected 
with 200 μL of PBS, aged sEVs (from 21-month-old male mice) or young sEVs (from 
2-month-old male mice) 7 times over 2 weeks, and then the three groups of aged mice 
were subjected to assessments of mitochondrial functional parameters and metabolic 
phenotypes. Young male mice (2 months) were simultaneously injected with PBS to 
serve as a control group. (a-b) ATP synthesis rates in the hippocampus and muscle of 
each group (n = 8). (c-d) Mitochondrial complex V activity in the hippocampus and 



muscle of each group (n = 8). (e-f) Relative mtDNA content (MT-CO1/β2-MG) in the 
hippocampus and muscle of each group (n = 8). (g-p) Young male mice (2 months) 
were intravenously injected with 200 μL of PBS or aged sEVs (from 21-month-old 
male mice) 7 times over 2 weeks, and then the two groups of young mice were subjected 
to assessments of mitochondrial functional parameters and metabolic phenotypes. (g-h) 
ATP synthesis rates in the hippocampus and muscle of each group (n = 6). (i-j) 
Mitochondrial complex V activity in the hippocampus and muscle of each group (n = 
6). (k-l) Relative mtDNA content (MT-CO1/β2-MG) in the hippocampus and muscle 
of each group (n = 6). (m-n) Representative TEM images showing the structure and 
density of mitochondria in the hippocampus and muscle of each group. Normal 
mitochondria are round or oval-shaped and contain well-defined cristae, whereas aged 
mitochondria become swollen, vacuolated and even broken, with cracked 
mitochondrial cristae. The green arrow indicates morphologically normal mitochondria, 
and the red arrow indicates morphologically damaged mitochondria. Scale bars: 5 µm 
in the left panel and 1 µm in the right panel. (o-p) Quantification of the numbers of 
mitochondria in the sections (at low magnification) of hippocampus and muscle (n = 
3). Significance was determined using one-way ANOVA followed by Dunnett’s 
multiple comparison test in a, b, c, d, e, f and using two-sided Student’s t-test in g, h, i, 
j, k, l, o and p. *P < 0.05, **P < 0.01 and ***P < 0.005. 



 

Supplementary Figure 11. The ultrastructure of mitochondria in various tissues 
of aged mice after treatment with young sEVs. Aged male mice (21 months) were 
intravenously injected with 200 μL of PBS or young sEVs (from 2-month-old male 
mice) 7 times over 2 weeks. Young male mice (2 months) were simultaneously injected 
with PBS to serve as a control group. TEM was employed to visualize the mitochondria 



at the ultrastructural level. (a-e) Representative TEM images showing the structure and 
density of mitochondria in the heart, liver, spleen, lung and kidney of each group. 
Normal mitochondria are round or oval-shaped and contain well-defined cristae, 
whereas aged mitochondria become swollen, vacuolated and even broken, with cracked 
mitochondrial cristae. The green arrow indicates morphologically normal mitochondria, 
and the red arrow indicates morphologically damaged mitochondria. Scale bars: 5 µm 
in the left panel and 1 µm in the right panel. (f) Quantification of the numbers of 
mitochondria in the sections (at low magnification) of heart, liver, spleen, lung and 
kidney (n = 3). Significance was determined using one-way ANOVA followed by 
Dunnett’s multiple comparison test in f. *P < 0.05 and **P < 0.01. 



 
Supplementary Figure 12. Young sEV treatment improves mitochondrial 
functions and attenuates senescent phenotypes in cultured cells. (a) Flow chart of 
the experimental design. NE-4C or C2C12 cells (1 × 106 cells) were incubated with 100 
μL of PBS or young sEVs (from 2-month-old male mice) for 24 hours, and then the 
cells were subjected to assessments of mitochondrial functional parameters and 
senescent phenotypes. (b-c) ATP synthesis rates in NE-4C and C2C12 cells (n = 6). (d-



e) Mitochondrial complex V activity in NE-4C and C2C12 cells (n = 6). (f-g) Relative 
mtDNA content (MT-CO1/β2-MG) in NE-4C and C2C12 cells (n = 6). (h-k) 
Measurement of OCR in NE-4C and C2C12 cells. After measurement of basal OCR, 
oligomycin, FCCP, and rotenone + antimycin A were sequentially added, and the 
alterations in OCR were recorded and normalized to cell number. Quantification of the 
basal OCR, ATP-coupled OCR and maximal OCR is shown (NE-4C, n = 16; C2C12, 
n = 8 for PBS, n = 7 for Young sEV). (l-m) Quantitative RT–PCR analysis of P21 
mRNA levels in NE-4C and C2C12 cells (n = 4). (n-q) EdU incorporation assay 
showing the proportion of proliferating cells in NE-4C and C2C12 cells. Representative 
images (scale bar, 100 µm) and quantitative analysis of the percentage of EdU-positive 
cells (n = 6) are shown. Significance was determined using two-sided Student’s t-test 
in b, c, d, e, f, g, i, k, l, m, o and q. *P < 0.05, **P < 0.01 and ***P < 0.005. 
 



 
Supplementary Figure 13. Human sEVs derived from the plasma of young donors 
improve physiological functions and counteract mitochondrial deficiency in aged 
mice. (a) Flow chart of the experimental design. Young human sEVs were purified 
from the plasma of young male donors (19-24 years) and resuspended in PBS at a 
concentration of 1.80 μg of total protein/μL. Aged male mice (21 months) were 
intravenously injected with 200 μL of PBS or young human sEVs 7 times over 2 weeks, 
and then the two groups of aged mice were monitored to determine behavioral 



performance and mitochondrial functional parameters. (b) The escape latency of each 
group in the training phase of Morris water maze test (n = 8). (c-d) Time spent in the 
target quadrant and the number of platform crossings by each group in the probe trial 
of Morris water maze test (n = 8). (e) Freezing levels of each group in the contextual 
fear conditioning test (n = 8). (f) Running time to exhaustion for each group in the 
treadmill running test (n = 8). (g) ATP synthesis rates in the hippocampus and muscle 
of each group (n = 6). (h) Mitochondrial complex V activity in the hippocampus and 
muscle of each group (n = 6). (i) Relative mtDNA content (MT-CO1/β2-MG) in the 
hippocampus and muscle of each group (n = 6). (j-k) Representative TEM images 
showing the structure and density of mitochondria in the hippocampus and muscle of 
each group. The green arrow indicates morphologically normal mitochondria, and the 
red arrow indicates morphologically damaged mitochondria. Scale bars: 5 µm in the 
left panel and 1 µm in the right panel. (l-m) Quantification of the amounts of 
mitochondria in the sections (at low magnification) of hippocampus and muscle (n = 
3). (n-o) SDH staining of the muscle fibers in each group. Representative images (scale 
bars: 100 µm in the left panel and 50 µm in the right panel) and quantification of SDH 
staining intensity (n = 6) are shown. Significance was determined using two-sided 
Student’s t-test in b, c, d, e, f, g, h, i, l, m and o. *P < 0.05, **P < 0.01 and ***P < 0.005.  



 
Supplementary Figure 14. Human sEVs derived from the plasma of young donors 
improve mitochondrial functions and attenuate senescent phenotypes in cultured 
cells. (a) Flow chart of the experimental design. NE-4C or C2C12 cells (1 × 106 cells) 
were incubated with 100 μL of PBS or sEVs derived from the plasma of young male 
donors for 24 hours, and then the cells were subjected to assessments of mitochondrial 
functional parameters and senescent phenotypes. (b-c) ATP synthesis rates in NE-4C 



and C2C12 cells (n = 6). (d-e) Mitochondrial complex V activity in NE-4C and C2C12 
cells (n = 6). (f-g) Relative mtDNA content (MT-CO1/β2-MG) in NE-4C and C2C12 
cells (n = 6). (h-k) Measurement of OCR in NE-4C and C2C12 cells. After 
measurement of basal OCR, oligomycin, FCCP, and rotenone + antimycin A were 
sequentially added, and the alterations in OCR were recorded and normalized to cell 
number. Quantification of the basal OCR, ATP-coupled OCR and maximal OCR is 
shown (NE-4C, n = 15 for PBS, n = 16 for Young sEV; C2C12, n = 8 for PBS, n = 7 
for Young sEV). (l-m) Quantitative RT–PCR analysis of p21 mRNA levels in NE-4C 
and C2C12 cells (n = 4). (n-q) EdU incorporation assay showing the proportion of 
proliferating cells in NE-4C and C2C12 cells. Representative images (scale bar, 100 
µm) and quantitative analysis of the percentage of EdU-positive cells (n = 6) are shown. 
Significance was determined using two-sided Student’s t-test in b, c, d, e, f, g, i, k, l, m, 
o and q. *P < 0.05, **P < 0.01 and ***P < 0.005. 
  



 
Supplementary Figure 15. Tracking of the delivery of fluorescently labeled young 
sEVs into hippocampus and muscle of aged mice. Young sEVs were purified from 
the plasma of young male mice (2 months) and stained with PKH26, and then the 
fluorescently labeled sEVs were intravenously injected into aged male mice (21 
months). After treatment, aged mice were sacrificed, and fluorescence confocal 
microscopy was applied to detect the red fluorescent signals in frozen sections of 
hippocampus and muscle. Aged mice were solely injected with PBS or PKH26 dye as 
controls. (a-b) Representative images of microscopic fields showing PKH26-positive 



cells in the hippocampus and muscle. PKH26-stained cells and DAPI-stained nuclei are 
shown in red and blue, respectively. The sections were also stained with specific tissue 
markers (positive signals are shown in green), including neuron-specific nucleoprotein 
(NeuN) for hippocampus and Desmin for muscle. Magnification, 20 × and 60 ×. Scale 
bar, 100 μm. Each experiment was independently repeated three times with similar 
results in a and b. 
  



 
Supplementary Figure 16. Uptake of sEV miRNAs by aged tissues following the 
injection of young plasma sEVs into aged mice. (a) Quantitative RT–PCR analysis 
of miR-144-3p, miR-149-5p and miR-455-3p levels in the heart, liver, spleen, lung, 
kidney, hippocampus, muscle and testis of aged mice injected with 200 μL of PBS or 
young sEVs (from 2-month-old male mice) 7 times over 2 weeks. Fold changes of 
miRNAs in young sEV-injected mice relative to PBS-injected mice were determined 
(n = 4). (b) Quantitative RT–PCR analysis of pre-miR-144, pre-miR-149 and pre-miR-
455 levels in the heart, liver, spleen, lung, kidney, hippocampus, muscle and testis of 
aged mice injected with 200 μL of PBS or young sEVs (from 2-month-old male mice) 
7 times over 2 weeks. Fold changes of pre-miRNAs in young sEV-injected mice 
relative to PBS-injected mice were determined (n = 4). Significance was determined 
using two-sided Student’s t-test in a-b. *P < 0.05, **P < 0.01 and ***P < 0.005. 

 
 



 
Supplementary Figure 17. PGC-1α is a direct or indirect downstream target of 
miR-29a-3p, miR-29c-3p, miR-34a-5p, miR-144-3p, miR-149-5p and miR-455-3p. 
(a) Putative working model and potential effects of the miR-29a-3p, miR-29c-3p and 
miR-34a-5p group and the miR-144-3p, miR-149-5p and miR-455-3p group on PGC-
1α expression and mitochondrial functions. miR-29 family (miR-29a-3p and miR-29c-
3p) directly downregulates the target gene PGC-1α, which in turn controls 
mitochondrial biogenesis and homeostasis. Meanwhile, miR-34a-5p directly targets 
and decreases Sirtuin1 (SIRT1) expression, which increases acetylation of the SIRT1 
target transcriptional regulator PGC-1α, eventually resulting in decreased 
transcriptional activities of PGC-1α. On the other hand, while β-amyloid precursor 
protein (APP) shows inhibitory effects on the expression of PGC-1α, miR-144-3p 



inhibits the expression of APP to increase cellular ATP levels and mtDNA copy 
numbers. Likewise, poly (ADP-ribose) polymerase-2 (PARP-2) is a direct target gene 
of miR-149-5p, and miR-149-5p inhibits PARP-2 expression and increases SIRT1 
activity that subsequently enhances mitochondrial function and biogenesis via PGC-1α 
activation. Meanwhile, while hypoxia-inducible factor 1-alpha inhibitor (HIF1an) 
hydroxylates AMP-activated kinase α1 subunit (AMPKα1) and inhibit its activity, miR-
455-3p suppresses HIF1an to activate AMPKα1, which in turn induces mitochondria 
biogenesis via the HIF1an-AMPKα1-PGC1α regulatory cascade. Since the downstream 
target genes of miR-144-3p, miR-149-5p and miR-455-3p, including APP, PARP-2 and 
HIF1an, exhibit inverse correlation with PGC‐1α, miR-144-3p, miR-149-5p and miR-
455-3p can be considered as indirect stimulators of PGC‐1α expression. (b) Schematic 
description of the binding sites for miR-29a-3p and miR-29c-3p in PGC-1α 3’-
untranslated region (3’-UTR), for miR-34a-5p in SIRT1 3’-UTR, for miR-144-3p in 
APP 3’-UTR, for miR-149-5p in PARP-2 3’-UTR and for miR-455-3p in HIF1an 3’-
UTR. The minimum free energy value of each hybrid is indicated. The seed recognition 
sites are denoted, and all nucleotides in these regions are highly conserved across 
species. (c) Conservation of the sequences of miR-29a-3p, miR-29c-3p, miR-34a-5p, 
miR-144-3p, miR-149-5p and miR-455-3p across various species. 
 
 



 
Supplementary Figure 18. Young and aged sEVs regulate PGC-1α expression in 
vitro and in vivo. (a) Western blot analysis of the protein levels of PGC-1α, mt-ATP6, 
Cyto-c (cytochrome c), NDUFA9 (NADH dehydrogenase (ubiquinone) 1α subcomplex, 
9), ATPase-α and CS (citrate synthase) in the hippocampus and muscle of young and 
aged mice. Left panel: representative Western blots. Right panel: densitometric analysis 
(n = 8). (b) Western blot analysis of PGC-1α protein levels in the hippocampus and 



muscle of aged mice injected with 200 μL of PBS, aged sEVs or young sEVs 7 times 
over 2 weeks. PBS-treated young mice serve as a control group. Left panel: 
representative Western blots. Right panel: densitometric analysis (n = 6). (c) Western 
blot analysis of PGC-1α protein levels in the hippocampus and muscle of aged mice 
injected with 200 μL of PBS or young human sEVs 7 times over 2 weeks. Left panel: 
representative Western blots. Right panel: densitometric analysis (n = 6). (d) 
Quantitative RT–PCR analysis of PGC-1α mRNA levels in the hippocampus and 
muscle of aged mice injected with 200 μL of PBS or young human sEVs 7 times over 
2 weeks (n = 4). (e) Western blot analysis of PGC-1α protein levels in NE-4C cells and 
C2C12 cells incubated with 100 μL of PBS or young human sEVs for 24 hours. Left 
panel: representative Western blots. Right panel: densitometric analysis (n = 6). (f) 
Western blot analysis of PGC-1α protein levels in the hippocampus and muscle of 
young mice injected with 200 μL of PBS or aged mouse sEVs 7 times over 2 weeks. 
Left panel: representative Western blots. Right panel: densitometric analysis (n = 6). 
Significance was determined using two-sided Student’s t-test in a, c, d, e and f and using 
one-way ANOVA followed by Dunnett’s multiple comparison test in b. *P < 0.05, **P 
< 0.01 and ***P < 0.005. 
  



 
Supplementary Figure 19. PGC-1α siRNA blocks the beneficial effects of young 
sEVs on mitochondrial respiration. NE-4C or C2C12 cells (1 × 106 cells) were treated 
with PBS plus scrRNA, young sEVs plus scrRNA, or young sEVs plus PGC-1α siRNA 
for 24 hours, and then the cells were subjected to assessments of mitochondrial 
respiration. (a) Western blot analysis of PGC-1α protein levels in NE-4C and C2C12 
cells after transfecting with scrRNA or PGC-1α siRNA. Left panel: representative 
Western blots. Right panel: densitometric analysis (n = 6). (b-e) Measurement of OCR 
in NE-4C and C2C12 cells after treatment with PBS plus scrRNA, young sEVs plus 
scrRNA, or young sEVs plus PGC-1α siRNA. After measurement of basal OCR, 
oligomycin, FCCP, and rotenone + antimycin A were sequentially added, and the 
alterations in OCR were recorded and normalized to cell number. Quantification of the 
basal OCR, ATP-coupled OCR and maximal OCR is shown (n = 6). Significance was 
determined using two-sided Student’s t-test in a and using one-way ANOVA followed 
by Dunnett’s multiple comparison test in c and e. *P < 0.05, **P < 0.01 and ***P < 
0.005. 
 



 
Supplementary Figure 20. Pre-treatment of young sEVs with Triton X-100 and 
RNase blocks the beneficial effects of young sEVs on mitochondrial respiration. 
Young sEVs were pre-treated with Triton X-100 and RNase, and then the resultant 
sEVs were incubated with NE-4C or C2C12 cells (1 × 106 cells) for 24 hours. NE-4C 
and C2C12 cells (1 × 106 cells) were also solely treated with PBS or young sEVs for 
24 hours. After treatment, the cells were subjected to assessments of mitochondrial 
respiration. (a-d) Measurement of OCR in NE-4C and C2C12 cells. After measurement 
of basal OCR, oligomycin, FCCP, and rotenone + antimycin A were sequentially added, 
and the alterations in OCR were recorded and normalized to cell number. Quantification 
of the basal OCR, ATP-coupled OCR and maximal OCR is shown (NE-4C, n = 6 for 
PBS and Young sEV + Triton + RNase, n= 5 for Young sEV; C2C12, n =7 for PBS, n 
= 8 for Young sEV and Young sEV + Triton + RNase). Significance was determined 
using one-way ANOVA followed by Dunnett’s multiple comparison test in b and d. *P 
< 0.05, **P < 0.01 and ***P < 0.005. 

 
 



 

Supplementary Figure 21. Antisense oligonucleotides of miR-29a-3p, miR-29c-3p 
and miR-34a-5p rescue the detrimental effects of aged sEVs on mitochondrial 
metabolism and cell senescence. (a) Flow chart of the experimental design. NE-4C or 
C2C12 cells (1 × 106 cells) were treated with PBS plus scrRNA, aged sEVs plus 
scrRNA, or aged sEVs plus antisense oligonucleotides of miR-29a-3p, miR-29c-3p and 
miR-34a-5p (anti-miR-29a/29c/34a) for 24 hours, and then the cells were subjected to 
assessments of mitochondrial functional parameters and senescent phenotypes. (b) 
Western blot analysis of PGC-1α protein levels in NE-4C and C2C12 cells. Left panel: 
representative Western blots. Right panel: densitometric analysis (n = 6). (c) ATP 
synthesis rates in NE-4C and C2C12 cells (n = 6). (d) Mitochondrial complex V activity 
in NE-4C and C2C12 cells (n = 5). (e) Relative mtDNA content (MT-CO1/β2-MG) in 
NE-4C and C2C12 cells (n = 6). (f) Quantitative RT–PCR analysis of p21 mRNA levels 
in NE-4C and C2C12 cells (n = 4). Significance was determined using one-way 
ANOVA followed by Dunnett’s multiple comparison test in b, c, d, e and f. *P < 0.05, 
**P < 0.01 and ***P < 0.005.  
 



 
Supplementary Figure 22. The GO term GOBP_AGING (including GOBP_CELL 
AGING) is significantly upregulated and enriched in hippocampus and muscle. (a) 
Enrichment plot of the GO term GOBP_AGING showing the gene set that is 
upregulated in the hippocampus of “sEV→Aged” vs. “PBS→Aged” group with a 
Normalized Enrichment Score (NES) of 1.0678. (b) Heatmap showing the relative 
expression pattern of the 38 proteins in hippocampus involved in the GO term 
GOBP_AGING. (c) Enrichment plot of the GO term GOBP_AGING showing the gene 
set that is upregulated in the muscle of “sEV→Aged” vs. “PBS→Aged” group with a 
NES of 1.150. (d) Heatmap showing the relative expression pattern of the 18 proteins 
in muscle involved in the GO term GOBP_AGING. After young sEV treatment, beclin-
1 (BECN1), an autophagy-regulating gene, was increased in aged hippocampus, and 
NAD(P)H dehydrogenase quinone 1 (NQO1), an antioxidant enzyme, was increased in 
aged hippocampus and muscle. Since BECN1 is decreased in human brains in an age-
dependent fashion, leading to a reduction of autophagic activity and loss of cellular 
homeostasis during aging66, modulation of BECN1 expression and restoration of 
BECN1-dependent autophagy by young sEVs can theoretically perform a 
neuroprotective effect against aging. Likewise, since the enzyme NQO1 plays a critical 
role in cellular antioxidant defense by effectively detoxifying quinones and, as a result, 
preventing the formation of ROS67, age-associated decline in antioxidant potential and 



accumulation of ROS in hippocampus and muscle can be rescued by young sEV-
induced NQO1 upregulation. 
 
 
 
 
 



Supplementary Tables 
Supplementary Table 1. Assessment of frailty index scores in individual mouse (young sEV-treated aged mouse versus PBS-treated aged 
mouse) based on clinical signs of deterioration. 

 

System and Parameter PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged PBS→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged sEV→Aged
Integument：

1 0.5 0 0.5 1 1 1 0.5 1 1 0.5 0.5 0 0.5 0.5 0.5 0.5 0.5 0 0.5
1 1 1 1 1 1 1 0.5 1 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
1 0 0 0 0.5 0 0.5 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0.5 0.5 0.5 1 1 0.5 1 0.5 0.5 0 1 0 0 0.5 0.5 0.5 0.5 0

Physical/Musculoskeletal：
0.5 0 0.5 0.5 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0.5 0 0.5 0 0.5 0.5 0.5 0 0 0.5 0 0 0 0 0 0.5 0
0 0 0.5 0.5 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0

0.5 0.5 1 0.5 1 1 0.5 1 0.5 0.5 0 0 0 0 0.5 0 0 0 0 0
0.5 0.5 0.5 0 1 0.5 1 0 0 0.5 0 0 0 0 0 0.5 0 0.5 0 0
1 1 0.5 0 0.5 1 1 0.5 1 0.5 0 0 0 0 0 0.5 0 0.5 0 0

0.5 0.5 0.5 0.5 0.5 1 0.5 0 0 0.5 0.5 0 0.5 0.5 0 0 0 0 0 0

1 1 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0.5 0 0 0 0.5 0

Vestibulocochlear/Auditory:
0.5 0.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.5 0.5 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0

Ocular/Nasal:
0.5 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0.5 0.5 0 0.5 0.5 0.5 0 0.5 0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0.5 0.5 0 0.5 0.5 0 0 0 0 0.5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Digestive/Urogenital:
0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Respiratory system:

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0.5 0 0 0.5 0 0.5 0.5 0.5
Discomfort:

0.5 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0.5 0 0 0 0 0

Temperature score: 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Body weight score: 1 1 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

14.5 11.5 11 9 9.5 12 11.5 7 11 12.5 6 2.5 4.5 3 4 4 2.5 4 3.5 2.5

0.4677419 0.3709677 0.3548387 0.2903226 0.3064516 0.3870968 0.3709677 0.2258065 0.3548387 0.4032258 0.1935484 0.0806452 0.1451613 0.0967742 0.1290323 0.1290323 0.0806452 0.1290323 0.1129032 0.0806452

Total Score

Clinical frailty index

Alopecia
Loss of colour

Dermatitis
Loss of whiskers
Coat condition

Tumours
Distended abdomen

Kyphosis
Tail stiffening
Gait disorders

Tremor

Menace reflex
Nasal discharge

Malocclusions

Forelimb grip strength

Body condition score

Vestibular disturbance
Hearing loss

Cataracts
Corneal opacity

Rectal prolapse
Vaginal/uterine/penile

prolapse
Diarrhoea

breathing rate /depth

Mouse Grimace Scale
Piloerection

Eye discharge /swelling
Microphthalmia

Vision loss



Supplementary Table 2. The significantly differentially altered miRNAs in aged 
plasma compared with young plasma. 
 

 Mean reads in aged 

mouse plasma 

Mean reads in young  

mouse plasma 
log2FoldChange P value* 

miR-6953-3p 37.084 0 6.793  0.007  

miR-7658-3p 31.648 0 6.565  0.008  

miR-29a-5p 27.365 0 6.363  0.002  

miR-7649-3p 25.445 0 6.245  0.037  

miR-351-3p 25.022 0 6.221  0.033  

miR-138-2-3p 23.094 0 6.105  0.042  

miR-5107-5p 22.934 0 6.095  0.042  

miR-3535 33.532 0.2479 6.093  0.007  

miR-1968-5p 32.482 0.2070 6.050  0.006  

miR-7036b-3p 21.918 0 6.030  0.044  

miR-6395 19.561 0 5.874  0.012  

miR-3473d 90.815 1.531 5.807  0.000  

miR-466g 34.850 0.558 5.636  0.002  

miR-702-3p 16.497 0 5.628  0.018  

miR-330-3p 65.681 1.740 5.494  0.001  

miR-1941-5p 20.336 0.351 5.361  0.045  

miR-6948-3p 19.959 0.351 5.339  0.032  

miR-338-5p 15.097 0.076 5.166  0.046  

miR-490-5p 41.919 1.608 5.015  0.011  

miR-101b-3p 88.077 3.061 4.770  0.000  

miR-672-5p 50.058 3.516 3.783  0.032  

miR-1843a-5p 77.388 5.792 3.623  0.002  

miR-28a-5p 60.021 8.622 2.866  0.032  

miR-29c-3p 67.263 18.066 2.020  0.042  

miR-196b-5p 756.677 188.143 2.009  0.037  

miR-3473e 44.614 10.971 1.965  0.045  

miR-3473b 44.614 10.971 1.965  0.045  

miR-23b-3p 9324.390 2576.480 1.856  0.000  

miR-29a-3p 4997.068 1663.643 1.588  0.000  

miR-34a-5p 4002.032 1420.359 1.494  0.009  

miR-326-3p 1072.678 428.694 1.320  0.048  

miR-27b-3p 14306.330 6851.343 1.063  0.006  

miR-7a-5p 2412.016 4958.333 -1.040  0.031  

mmu-let-7f-5p 17378.260 36186.470 -1.058  0.010  

miR-149-5p 5365.526 11415.520 -1.089  0.007  

mmu-let-7e-5p 448.391 1077.117 -1.264  0.022  

miR-144-3p 427.786 1089.023 -1.349  0.011  



miR-486a-3p 1009.263 2666.168 -1.401  0.031  

miR-1983 127.551 368.438 -1.524  0.033  

miR-615-3p 76.580 227.581 -1.575  0.040  

miR-211-5p 122.288 461.185 -1.916  0.013  

miR-199a-3p 1458.081 5705.585 -1.968  0.000  

miR-135b-5p 11.570 55.409 -2.269  0.023  

miR-8114 262.591 1358.905 -2.372  0.008  

miR-127-3p 1197.295 6354.734 -2.408  0.000  

miR-195a-5p 14.791 116.867 -2.969  0.020  

miR-455-3p 3.252 27.151 -3.032  0.063  

miR-379-5p 15.164 130.092 -3.099  0.016  

miR-26b-3p 7.176 79.404 -3.465  0.024  

miR-5106 12.500 146.600 -3.545  0.030  

miR-296-5p 29.753 356.092 -3.578  0.004  

miR-431-5p 2.665 35.310 -3.718  0.008  

miR-8109 19.520 290.038 -3.888  0.000  

miR-214-3p 14.468 249.799 -4.107  0.013  

miR-5119 13.211 298.907 -4.499  0.002  

miR-409-3p 3.366 120.373 -5.181  0.000  

miR-5134-5p 0 10.807 -6.960  0.021  

miR-30c-1-3p 0 11.563 -7.057  0.019  

miR-329-3p 0 12.462 -7.182  0.001  

miR-294-5p 0 20.105 -7.848  0.004  

miR-298-5p 0 25.948 -8.218  0.000  

miR-455-5p 0 28.552 -8.351  0.005  

miR-668-3p 0 31.802 -8.507  0.003  

miR-295-5p 0 34.546 -8.627  0.003  

miR-293-5p 0 54.650 -9.288  0.001  

miR-290a-3p 0 58.120 -9.376  0.001  

miR-124-3p 0 66.138 -9.562  0.001  

miR-291a-5p 0 180.362 -24.129  0.000  

miR-291a-3p 0 117.063 -24.530  0.000  

miR-290a-5p 0 160.729 -25.650  0.000  

miR-292a-5p 0 272.972 -26.507  0.000  

miR-294-3p 0 371.178 -26.926  0.000  

miR-295-3p 0 615.431 -27.611  0.000  

miR-293-3p 0 1000.708 -28.287  0.000  

miR-292a-3p 0 1181.514 -28.514  0.000  

* Significance was determined using two-sided Student’s t-test. 
  



Supplementary Table 3. Selection of age-associated circulating miRNAs (in plasma 
and serum) based on literature mining. 
 

miRNA Species Source 
Detection technique 

(RNA sequencing /qRT-PCR) 
up/down References  

let-7a-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [1-5] 

let-7e-5p human and mouse plasma qRT-PCR down [6-8] 

let-7f-5p human and mouse serum and plasma qRT-PCR down [1, 9-12] 

let-7g-5p human whole blood and serum RNA sequencing and qRT-PCR up [13-15] 

let-7i-5p human serum and plasma RNA sequencing and qRT-PCR down [16-19] 

miR-1 human and mouse serum and plasma RNA sequencing and qRT-PCR up [20-24] 

miR-106a human and mouse plasma RNA sequencing and qRT-PCR down [25-33] 

miR-106b human and mouse serum and plasma RNA sequencing and qRT-PCR down [34-37] 

miR-122-5p human and mouse plasma RNA sequencing and qRT-PCR up [38-42] 

miR-125b human serum and plasma RNA sequencing and qRT-PCR down [43-47] 

miR-125b-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [18, 39, 40, 48, 49] 

miR-126 human and mouse serum and plasma RNA sequencing and qRT-PCR down [20, 50-53] 

miR-126-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [54-56] 

miR-129-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [57-60] 

miR-130b-5p human and mouse serum and plasma RNA sequencing up [42, 61, 62] 

miR-133a-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [63-66] 

miR-134-5p human and mouse plasma qRT-PCR up [16, 67-72] 

miR-138-5p human and mouse plasma RNA sequencing up [42, 73-75] 

miR-142-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [2, 44, 65, 76-78] 

miR-144-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [9, 79-83] 

miR-145-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [84-87] 

miR-148a-5p human and mouse plasma RNA sequencing and qRT-PCR up [88-92] 

miR-149-5p human and mouse plasma RNA sequencing and qRT-PCR down [52, 93-96] 

miR-150-5p human and mouse serum and plasma qRT-PCR up [65, 97, 98] 

miR-151a-3p human and mouse plasma RNA sequencing and qRT-PCR up [19, 99-102] 

miR-155-5p human and mouse plasma qRT-PCR up [60, 103-105] 

miR-15a human and mouse serum and plasma qRT-PCR up [36, 106, 107] 

miR-17 human serum and plasma RNA sequencing and qRT-PCR down [20, 52, 77, 108, 109] 

miR-17-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [7, 39, 79, 110-112] 

miR-181a-5p human and mouse serum and plasma qRT-PCR up [83, 90, 113] 

miR-181b-5p human and mouse  plasma qRT-PCR down [114-116] 

miR-183-5p human and mouse plasma qRT-PCR up [16, 62, 117] 

miR-185 human and mouse serum and plasma qRT-PCR up [21, 78, 118, 119] 

miR-18a human and mouse serum and plasma RNA sequencing and qRT-PCR down [20, 35, 52, 108] 

miR-199a-3p human and mouse serum and plasma RNA sequencing and qRT-PCR down [17, 25, 120, 121] 



miRNA Species Source 
Detection technique 

(RNA sequencing /qRT-PCR) 
up/down References  

miR-19a-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [13, 15, 122-125] 

miR-19b-3p human and mouse plasma RNA sequencing and qRT-PCR up [46, 82, 123] 

miR-208a human and mouse serum and plasma RNA sequencing and qRT-PCR up [20, 23, 52, 64, 126-128] 

miR-208b human and mouse plasma RNA sequencing and qRT-PCR up [22, 23, 127] 

miR-20a-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [35, 52, 108, 127, 129, 130] 

miR-20b-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [46, 131, 132] 

miR-210 human serum and plasma RNA sequencing and qRT-PCR up [28, 36, 133] 

miR-212 human  plasma RNA sequencing and qRT-PCR down [18, 134, 135] 

miR-214-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [39, 136-138] 

miR-21-5p human serum and plasma RNA sequencing and qRT-PCR up [13, 40, 65, 139-143] 

miR-217-5p human and mouse plasma RNA sequencing up [42, 144, 145] 

miR-22 human and mouse plasma RNA sequencing and qRT-PCR up [18, 73, 146] 

miR-221-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [23, 127, 147] 

miR-22-3p human and mouse serum and plasma RNA sequencing and qRT-PCR down [14, 102, 128, 148] 

miR-23a-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [4, 18, 40, 48, 149-151] 

miR-23b-3p human and mouse serum and plasma qRT-PCR up [12, 49, 152, 153] 

miR-26b-5p human and mouse plasma RNA sequencing and qRT-PCR down [11, 25, 46, 63, 154, 155] 

miR-27a-3p human and mouse plasma RNA sequencing and qRT-PCR up [13, 25, 155-159] 

miR-27b-3p human and mouse plasma RNA sequencing and qRT-PCR up [12, 157, 160, 161] 

miR-29 human and mouse serum and plasma RNA sequencing and qRT-PCR down [20, 46, 162, 163] 

miR-29a-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [56, 82, 164-166] 

miR-29b human plasma RNA sequencing and qRT-PCR down [23, 34, 43, 46, 167-169] 

miR-29b-3p human and mouse serum and plasma qRT-PCR up [82, 170-172] 

miR-29c-3p human and mouse serum and plasma RNA sequencing and qRT-PCR up [46, 62, 136] 

miR-30a-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [39, 129, 173-177] 

miR-31-5p human serum and plasma RNA sequencing and qRT-PCR down [128, 148, 178-180] 

miR-320b human serum and plasma RNA sequencing and qRT-PCR up [168, 181-185] 

miR-324-3p human serum and plasma RNA sequencing and qRT-PCR up [62, 185, 186] 

miR-326-3p human and mouse whole blood RNA sequencing and qRT-PCR up [20, 57, 185, 187] 

miR-328-3p human plasma RNA sequencing up [14, 62, 103] 

miR-330-3p human and mouse serum  qRT-PCR up [58, 188, 189] 

miR-33a-5p human and mouse plasma qRT-PCR up [190-192] 

miR-33b human and mouse serum and plasma qRT-PCR up [88, 193, 194] 

miR-342-3p human serum and plasma RNA sequencing and qRT-PCR down [36, 46, 89] 

miR-345-5p human whole blood/serum RNA sequencing and qRT-PCR up [195-197] 

miR-34a-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [6, 12, 105, 148, 198-202] 

miR-378a-3p human and mouse plasma RNA sequencing down [62, 191, 203] 

miR-409-3p human and mouse serum and plasma RNA sequencing and qRT-PCR down [36, 186, 204] 



miRNA Species Source 
Detection technique 

(RNA sequencing /qRT-PCR) 
up/down References  

miR-423-3p human and mouse serum and plasma qRT-PCR up [17, 148, 155] 

miR-423-5p human and mouse serum and plasma RNA sequencing and qRT-PCR up [36, 148, 155, 205] 

miR-455-3p human and mouse serum and plasma RNA sequencing and qRT-PCR down [30, 46, 59, 206-208] 

miR-483-5p human  serum and plasma qRT-PCR up [44, 142, 184] 

miR-486-5p human  serum and plasma RNA sequencing and qRT-PCR up [36, 132, 181, 204, 209] 

miR-497-5p human and mouse  serum and plasma RNA sequencing and qRT-PCR up [46, 210, 211] 

miR-499 human  plasma qRT-PCR down [22, 23, 127, 212] 

miR-501-3p human  plasma qRT-PCR up [11, 46, 213-215] 

miR-7a-5p human and mouse serum and plasma RNA sequencing and qRT-PCR down [216-218] 

miR-9 human and mouse serum and plasma qRT-PCR down [43, 46, 167, 176, 219, 220] 

miR-92a human and mouse serum and plasma RNA sequencing and qRT-PCR down [34-36, 52, 108, 187, 221-224] 

miR-92a-up human and mouse serum and plasma RNA sequencing and qRT-PCR up [13, 42, 103, 181] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 4. Antibody list. 
 

Target Isotype 
Supplier 

Name 
Cat# Clone Name Lot # Dilution ratio 

NDUFA  
Mouse IgG1 

kappa 

Thermo 

Fisher 
459100 

20C11B11B

11 
TD2536591 

1:1000 

(WB) 

ATPase-α 
Mouse IgG2b, 

kappa 

Thermo 

Fisher 
459240 7H10BD4F9 TE2563181 

1:1000 

(WB) 

CS 
Mouse IgG1 

Kappa 
Santa Cruz 

sc-

390693 
G-3 H2714 

1:1000 

(WB) 

Cyto-c 
Mouse IgG2b, 

kappa 

BD 

Biosciences 
556433 7H8.2C12 1068185 

1:1000 

(WB) 

PARP2  
Mouse IgM 

kappa 
Santa Cruz 

Sc-

393343 
F-8 J0713 

1:1000 

(WB) 

mt-ATP6 Rabbit IgG Abcam 
ab1924

23 
 

GR 

3198216-11 

1:1000 

(WB) 

PGC-1α Mouse IgG Abcam 
ab5448

1 
EPR18289 GR3315850-1 

1:1000 

(WB) 

P21 Rabbit IgG Abcam 
ab1882

24 
EPR18021 GR3289181-4 

1:1000 

(WB) 

MAP2 Rabbit IgG Servicebio 
GB 

11128-2 
P20357 

AC 

220511024 

1:1000 

(IF) 

Desmin Rabbit IgG Proteintech 
16520-

1-AP 
P17661 00099060 

1:500 

(IF) 

SDHA Mouse IgG Abcam 
ab1471

5 

2E3GC12FB

2AE2 
GR3263456-6 

1:1000 

(IF) 

HIF1an Rabbit IgG Abcam 
ab9230

4 
EPR3659 GR77846-7 

1:1000 

(WB) 

APP Rabbit IgG Abcam 
ab3213

6 
Y188 GR3287436-6 

1:1000 

(WB) 

Alix Rabbit IgG Proteintech 
12422-

1-AP 
Q8WUM4 00096216 

1:2000 

(WB) 

TSG101 Rabbit IgG Proteintech 
14497-

1-AP 
Q99816 00093762 

1:1000 

(WB) 

CD9 
Mouse IgG1 

Kappa 
Santa Cruz 

sc-

13118 
C-4 G0121 

1:1000 

(WB) 

CD63 
Mouse IgG1 

Kappa 
Santa Cruz sc-5275 

MX-

49.129.5 
C0320 

1:1000 

(WB) 

Albumin Rabbit IgG Proteintech 
16475-

1-AP 

 

P02768 
00076243 

1:2500 

(WB) 

https://www.uniprot.org/uniprot/Q8WUM4
https://www.uniprot.org/uniprot/Q99816
https://www.uniprot.org/uniprot/P02768
https://www.uniprot.org/uniprot/P02768


Calnexin Mouse IgG Santa Cruz 
Sc-

23954 
P35564 AF-18 

1:1000 

(WB) 

β-actin Rabbit IgG Servicebio 
GB110

01 
P60710 LS202310 

1:1000 

(WB) 

Secondary Antibodies 

Goat anti-

rabbit HRP-

conjugated 

Goat 

IgG 
Santa Cruz sc-2030  L1015 

1:1000 

(WB) 

Goat anti-

mouse 

HRP-

conjugated 

Goat 

IgG 
Santa Cruz sc-2005  B1616 

1:1000 

(WB) 

BrdU Mouse IgG1 Abcam ab8152 IIB5 GR3340784-1 
1:100 

(IF) 

DAPI / Santa Cruz 
sc-

24941 
 L1508 

1:300 

(IF) 

  



Supplementary Table 5. Primer list. 

Gene Primer Sequence Gene Primer Sequence 

Primers for mRNAs 

P21 Forward AGTCAGTTCCTTGTGGAGCC β-actin Forward GGCTGTATTCCCCTCCATCG 

P21 Reverse CATTAGCGCATCACAGTCGC β-actin Reverse CCAGTTGGTAACAATGCCATGT 

PGC-1α Forward AACAATGAGCCTGCGAACA   

PGC-1α Reverse CATCAAATGAGGGCAATCC   

Primers for mitochondrial DNAs 

MT-CO1 Forward TTGGTCCCCTCCTCCAGC MT-ND1 Forward AGTCACCCTAGCCATCATTCTACT 

MT-CO1 Reverse CCAGTGCTAGCCGCAGGCA MT-ND1 Reverse GGAGTAATCAGAGGTGTTCTTGTGT 

MT-CO3 Forward AGGCATCACCCCGCTAAATC D-loop Forward CATCTGGTTCCTACTTCAGGG 

MT-CO3 Reverse GGTGAGCTCAGGTGATTGATACTC D-loop Reverse TGAGTGGTTAATAGGGTGATAGA 

β2-MG Forward GCGTGGGAGGAGCATCAGGG   

β2-MG Reverse CTCATCACCACCCCGGGGACT   

Primers for miRNAs 

mmu-miR-23a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGGAAAT 

mmu-miR-23a-3p 

Forward 
GCGATCACATTGCCAGGG 

mmu-miR-23b-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTGGTA 

mmu-miR-23b-3p 

Forward 
CGATCACATTGCCAGGGAT 

mmu-miR-27a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCGGAA 

mmu-miR-27a-3p 

Forward 
GCGCGTTCACAGTGGCTAAG 

mmu-miR-27b-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCAGAA 

mmu-miR-27b-3p 

Forward 
GCGCGTTCACAGTGGCTAAG 

mmu-miR-29a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTAACCG 

mmu-miR-29a-3p 

Forward 
CGCGTAGCACCATCTGAAAT 

mmu-miR-29c-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTAACCG 

mmu-miR-29c-3p 

Forward 
CGCGTAGCACCATTTGAAAT 



Gene Primer Sequence Gene Primer Sequence 

mmu-miR-34a-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACACAACC 

mmu-miR-34a-5p 

Forward 
CGCGTGGCAGTGTCTTAGCT 

mmu-miR-122-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCAAACA 

mmu-miR-122-5p 

Forward 
CGCGTGGAGTGTGACAATGG 

mmu-miR-129-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCAAGC 

mmu-miR-129-5p 

Forward 
CGCTTTTTGCGGTCTGG 

mmu-miR-130b-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTAGTG 

mmu-miR-130b-5p 

Forward 
CGCGACTCTTTCCCTGTTG 

mmu-miR-134-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCCCCTC 

mmu-miR-134-5p 

Forward 
CGCGTGTGACTGGTTGACCA 

mmu-miR-138-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCGGCCT 

mmu-miR-138-5p 

Forward 
GCGAGCTGGTGTTGTGAATC 

mmu-miR-148a-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGTCGG 

mmu-miR-148a-5p 

Forward 
GCGCGAAAGTTCTGAGACACT 

mmu-miR-150-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCACTGG 

mmu-miR-150-5p 

Forward 
GCGTCTCCCAACCCTTGTA 

mmu-miR-155-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACACCCCT 

mmu-miR-155-5p 

Forward 
GCGCGTTAATGCTAATTGTGAT 

mmu-miR-183-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGTGAA 

mmu-miR-183-5p 

Forward 
CGCGTATGGCACTGGTAGAA 

mmu-miR-192-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGGCTGT 

mmu-miR-192-5p 

Forward 
GCGCGCTGACCTATGAATTG 

mmu-miR-217-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTCCAAT 

mmu-miR-217-5p 

Forward 
CGCGTACTGCATCAGGAACTG 

mmu-miR-221-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAAATCT 

mmu-miR-221-5p 

Forward 
CGCGACCTGGCATACAATGT 



Gene Primer Sequence Gene Primer Sequence 

mmu-miR-10a-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCACAAA 

mmu-miR-10a-5p 

Forward 
CGCGTACCCTGTAGATCCGAA 

mmu-miR-7-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAACAAC 

mmu-miR-7-5p 

Forward 
CGCGTGGAAGACTAGTGATTTT 

mmu-miR-17-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCTACCT 

mmu-miR-17-5p 

Forward 
GCGCAAAGTGCTTACAGTGC 

mmu-miR-20a 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCTACCT 

mmu-miR-20a 

Forward 
GCGCGTAAAGTGCTTATAGTGC 

mmu-miR-92a 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCAGGCC 

mmu-miR-92a 

Forward 
CGCGTATTGCACTTGTCCC 

mmu-miR-106a 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCTACCT 

mmu-miR-106a 

Forward 
GCGCAAAGTGCTAACAGTGC 

mmu-miR-126-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCGCGTA 

mmu-miR-126-5p 

Forward 
GCGCGCATTATTACTTTTGG 

mmu-miR-144-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGTACA 

mmu-miR-144-3p 

Forward 
GCGCGCGTACAGTATAGATGA 

mmu-miR-145-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGGGAT 

mmu-miR-145-5p 

Forward 
CGGTCCAGTTTTCCCAGGA 

mmu-miR-149-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGGGAGT 

mmu-miR-149-5p 

Forward 
CGTCTGGCTCCGTGTCTTC 

mmu-miR-378a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCCTTC 

mmu-miR-378a-3p 

Forward 
CGCGACTGGACTTGGAGTCA 

mmu-miR-455-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTGTAT 

mmu-miR-455-3p 

Forward 
CGGCAGTCCATGGGCAT 

mmu-let-7a-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAACTAT 

mmu-let-7a-5p 

Forward 
GCGCGTGAGGTAGTAGGTTGT 



Gene Primer Sequence Gene Primer Sequence 

mmu-let-7f-5p  

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAACTAT 

mmu-let-7f-5p 

Forward 
CGCGCGTGAGGTAGTAGATTGT 

mmu-miR-16-1-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTCAGCA 

mmu-miR-16-1-3p 

Forward 
CGCGCCAGTATTGACTGTGC 

hsa-miR-23a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGGAAAT 

hsa-miR-23a-3p 

Forward 
GCGATCACATTGCCAGGG 

hsa-miR-23b-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTGGTA 

hsa-miR-23b-3p 

Forward 
CGATCACATTGCCAGGGAT 

hsa-miR-27a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCGGAA 

hsa-miR-27a-3p 

Forward 
GCGCGTTCACAGTGGCTAAG 

hsa-miR-27b-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCAGAA 

hsa-miR-27b-3p 

Forward 
GCGCGTTCACAGTGGCTAAG 

hsa-miR-29a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTAACCG 

hsa-miR-29a-3p 

Forward 
CGCGTAGCACCATCTGAAAT 

hsa-miR-29c-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTAACCG 

hsa-miR-29c-3p 

Forward 
CGCGTAGCACCATTTGAAAT 

hsa-miR-34a-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACACAACC 

hsa-miR-34a-5p 

Forward 
CGCGTGGCAGTGTCTTAGCT 

hsa-miR-130b-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTAGTG 

hsa-miR-130b-5p 

Forward 
CGCGACTCTTTCCCTGTTG 

hsa-miR-150-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCACTGG 

hsa-miR-150-5p 

Forward 
GCGTCTCCCAACCCTTGTA 

hsa-miR-221-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAAATCT 

hsa-miR-221-5p 

Forward 
CGCGACCTGGCATACAATGT 

hsa-miR-17-5p  

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCTACCT 

hsa-miR-17-5p 

Forward 
GCGCAAAGTGCTTACAGTGC 



  

Gene Primer Sequence Gene Primer Sequence 

hsa-miR-126-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACCGCGTA 

hsa-miR126-5p 

Forward 
GCGCGCATTATTACTTTTGG 

hsa-miR-144-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGTACA 

hsa-miR144-3p 

Forward 
GCGCGCGTACAGTATAGATGA 

hsa-miR-149-5p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGGGAGT 

hsa-miR-149-5p 

Forward 
CGTCTGGCTCCGTGTCTTC 

hsa-miR-378a-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGCCTTC 

hsa-miR-378a-3p 

Forward 
CGCGACTGGACTTGGAGTCA 

hsa-miR-455-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGTGTAT 

hsa-miR-455-3p 

Forward 
CGGCAGTCCATGGGCAT 

hsa-let-7a-5p  

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAACTAT 

hsa-let-7a-5p 

Forward 
GCGCGTGAGGTAGTAGGTTGT 

hsa-let-7f-5p  

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAACTAT 

hsa-let-7f-5p 

Forward 
CGCGCGTGAGGTAGTAGATTGT 

hsa-miR-16-1-3p 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTCAGCA 

hsa-miR-16-1-3p 

Forward 
CGCGCCAGTATTGACTGTGC 

Primers for pre-miRNAs 

mmu-pre-miR-144 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACGACTAG 

mmu-pre-miR-144 

Forward 

GTGATGAGACACTACAGTATAGATG

ATGTA 

mmu-pre-miR-149 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACAGCACC 

mmu-pre-miR-149 

Forward 
AGGGAGGGACGGGGGC 

mmu-pre-miR-455 

Reverse 

GTCGTATCCAGTGCAGGGTCCGAGGTATT

CGCACTGGATACGACTGAGGC 

mmu-pre-miR-455 

Forward 
CAGTCCACGGGCATATACACTT 



Supplementary Table 6. Sequences of synthetic miRNA mimics and antisenses. 

 
miRNA name miRNA mimics  miRNA antisense 

mmu-miR-29a-3p 
Forward: UAGCACCAUCUGAAAUCGGUUA 

Reverse: ACCGAUUUCAGAUGGUGCUAUU 
UAACCGAUUUCAGAUGGUGCUA 

mmu-miR-29c-3p 
Forward: UAGCACCAUUUGAAAUCGGUUA 

Reverse: ACCGAUUUCAAAUGGUGCUAUU 
UAACCGAUUUCAAAUGGUGCUA  

mmu-miR-34a-5p 
Forward: UGGCAGUGUCUUAGCUGGUUGU 

Reverse: AACCAGCUAAGACACUGCCAUU 
ACAACCAGCUAAGACACUGCCA 

mmu-miR-144-3p 
Forward: UACAGUAUAGAUGAUGUACU 

Reverse: UACAUCAUCUAUACUGUAUU 
AGUACAUCAUCUAUACUGUA 

mmu-miR-149-5p 
Forward: UCUGGCUCCGUGUCUUCACUCCC 

Reverse: GAGUGAAGACACGGAGCCAGAUU 
GGGAGUGAAGACACGGAGCCAGA 

mmu-miR-455-3p 
Forward: GCAGUCCAUGGGCAUAUACAC 

Reverse: GUAUAUGCCCAUGGACUGCUU 
GUGUAUAUGCCCAUGGACUGC 
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