


Fig S1. KH_2PO_4 standard curve (mean values with standard errors; n=4)

Fig. S2 Effect of inoculation on essential mineral content of *Tetraria comosa* grown on ultramafic substrate. Relative variations of element content in shoots and roots are expressed as % of element content in dry mass of tissues of inoculated plants compared with controls. Bars represent means, and error bars represent standard deviation of means (n = 3). Different letters above columns indicate significant differences at P < 0.05. The same coefficient to letters refers to one element analysis. The letters and coefficients with an asterix indicate significant differences with controls at P < 0.05.

Control

 $\textit{Paraburkholderia ultramafica} \ STM10279^T$

EPS of Paraburkholderia ultramafica $STM10279^T$

Fig S3. Photographic report of *Tetraria comosa* removed from pots after 8 months of grown in ultramafic soil (5 samples representative of the average of growth).

Supplementary Tables

Table S1 Major characteristics of *Paraburkholderia ultramafica* STM10279^T and the soil sampling site (Guentas et al., 2016; Bourles et al., 2020b).

	P. ultramafica STM10279 ^T									
Sampling characteristics										
Plant Host species	Tetraria arundinacea									
-	Mont-Dore, Plum road									
<u>Site</u>	22°15'5	4"S; 166°35'57" E 22.26 S 166.59 E								
	22 13 3	+ 5, 100 3337 E 22.20 5 100.37 E								
<u>Altitude</u>		534 m								
Geomorphological type*		Cambisol*								
Soil main characteristics pH (H ₂ O)		5.2								
pH (H ₂ O)	Total (σ Kσ ⁻¹)	Extractable Elements (DTPA, mg Kg ⁻¹)								
N	1.63	Exeruetable Elements (E 1111, mg 11g)								
P (g Kg ⁻¹)										
	0.129									
Ca (g Kg ⁻¹)	0.46									
$Mg (g Kg^{-1})$	10.4									
Fe (g Kg ⁻¹)	396	95								
$Mn (g Kg^{-1})$	2.7	76								
Ni (g Kg ⁻¹)	3.9	162								
Co (g Kg ⁻¹)	0.44	57								
$\operatorname{Cr}\left(g\ Kg^{-1}\right)$	20.4	0.6								
Microbiological characteristics										
Range temperature (°C)		20-32								
% NaCl		0-1								
pH optimum		5-6								
Molecular characteristics										
16S RNA seq EMBL		FR872407								
Trace metal tolerance Ni		IC_{50} (mM) 45.6 ± 5.3								
Co		43.0 ± 3.3 3.9 ± 0.9								
Cr		0.5 ± 0.1								
Mn		32 ± 1.6								
Plant Growth Promoting Traits										
Phosphate solubilization		+								
Indole-3-acetic acid		+								
NH_3		+								
Siderophore		+								
ACC deaminase		+								

 $\underline{\underline{Note}}: ACC, 1-aminocyclopropane-1-carboxylate\ deaminase.$

^{*}Soil geomorphological definition according to FAO UNESCO and as reported by (Wulff et al, 2010)

Table S2 KH₂PO₄ standard curve

Concentration (mg I ⁻¹)	25	50	100	150	200	250
0.08	0.090	0.257	0.616	0.829	1.124	1.573
	0.087	0.235	0.622	0.828	1.143	1.455
Absorbance (700 nm)	0.119	0.281	0.658	0.854	1.172	1.47
	0.121	0.278	0.656	0.859	1.173	1.471
Mean	0.104	0.263	0.638	0.843	1.153	1.492
Standard deviation	0.018	0.021	0.022	0.016	0.024	0.054

Table S3 Evaluation of the phosphorus solubilisation by the EPS of P. ultramafica STM10279^T expressed in mgl⁻¹ of KH₂PO₄

Sample	EPS assay 1	EPS assay 2	EPS assay 3	Control				
Absorbance (700 nm)	0.8	1.2	1.0	0.6				
	0.8	1.2	1.0	0.6				
	0.8	1.2	1.0	0.6				
Mean value	0.8	1.2	1.0	0.6				
A assay -A control	0.2	0.6	0.4	0.0				
Concentration P (mg l ⁻¹) expressed in KH ₂ PO ₄	46.5	109.7	68.5	0.0				
Mean concentration (mg l ⁻¹)		74.9						
Standard deviation		32.1						

Table S4 Shoot and root biomasses of *Tetraria comosa* (mean \pm SE n=15) as a function of various treatments.

Treatment	Shoot bion	mass (mg)	Root biomass (m					
Control	$243.3 \pm$	$71.0b_1^{\dagger.\ddagger}$	116.7	±	45.9a ₂			
$P. \ ultramafica \ { m STM10279}^{ m T}$	$391.0 \pm$	74.1ab ₁	151.8	\pm	$40.3a_2$			
EPS of <i>P. ultramafica</i> STM10279 ^T	548.7 ±	116.7a ₁	280.5	\pm	$79.8a_2$			

[†]Different letters in each column indicate significant differences at P < 0.05. ‡Same coefficient to letters refers to one data analysis of one plant part (shoot or root).

Table S5 Mineral element content in shoot and root of *Tetraria comosa* (mean \pm SE n = 3) as function of various treatment.

Plant Part	Treatment	Ca (g. Kg ⁻¹)		K (g. Kg ⁻¹)			P (1	Kg ⁻¹)	Mg	(g.	Kg ⁻¹)	Na	Kg ⁻¹)			
	Control	4.3	±	$0.3a_1$ ^{†.‡}	9.2	±	$0.2a_{2}$	385	±	27b ₃	1.6	±	0.1a ₄	0.53	±	0.15a ₅
Shoot	$P. \ ultramafica \ { m STM10279^T}$	4.3	\pm	$0.1a_{1}$	9.4	\pm	$0.2a_{2}$	451	\pm	19ab ₃	1.6	±	$0.0a_{4}$	0.92	\pm	$0.09a_{5}$
	EPS of P . ultramafica STM10279 ^T	4.4	\pm	$0.3a_1$	11.2	±	$1.2a_{2}$	454	\pm	24a ₃	1.5	\pm	$0.1a_{4}$	0.36	土	$0.11a_{5}$
	Control	1.6	±	$0.1a_{1}$	6.0	±	$0.0b_2$	260	±	6a ₃	1.5	±	$0.0c_{4}$	0.92	±	$0.02b_{5}$
Root	$P. \ ultramafica \ { m STM10279^T}$	2.0	\pm	$0.1a_{1}$	6.3	\pm	$0.2b_{2}$	325	\pm	$32a_3$	2.1	±	$0.1a_{4}$	1.54	\pm	$0.14a_{5}$
	EPS of <i>P. ultramafica</i> STM10279 ^T	1.8	±	$0.2a_{1}$	6.8	±	$0.0a_{2}$	337	±	12a ₃	1.7	±	$0.0b_{4}$	0.59	±	$0.23b_{5}$

[†]Different letters in each column indicate significant differences at P < 0.05. ‡Same coefficient to letters refers to one data analysis of one element.

Table S6 Element uptake in shoot and root of *Tetraria comosa* (mean \pm SE n = 3) as function of various treatment.

Plant Part	Tue 1400 1014		Ca			K			P			M	g		a	
	Treatment	(mg. plant ⁻¹)			(mg. plant ⁻¹)			(µg. plant ⁻¹)			(mg. plant ⁻¹)			(mg. plant ⁻¹)		
	Control	1.04	土	$0.08c_1$ †.‡	2.24	±	$0.05c_{2}$	94	±	7c ₃	0.39	±	$0.02c_{4}$	0.13	±	$0.04b_{5}$
Shoot	P . ultramafica STM10279 $^{\mathrm{T}}$	1.67	\pm	$0.02b_{1}$	3.68	\pm	$0.08b_{2}$	176	\pm	$8b_3$	0.64	\pm	$0.01b_{4}$	0.36	±	$0.03a_{5}$
	EPS of P . ultramafica STM10279 ^T	2.39	\pm	$0.14a_1$	6.15	\pm	$0.65a_{2}$	249	\pm	13a ₃	0.80	\pm	$0.04a_{4}$	0.20	\pm	$0.06ab_5$
	Control	0.18	±	$0.01b_1$	0.70	±	$0.00c_{2}$	30	±	1c ₃	0.17	±	0.00a ₄	0.11	±	$0.00a_{5}$
Root	P . ultramafica STM10279 $^{\mathrm{T}}$	0.30	\pm	$0.01b_{1}$	0.95	\pm	$0.03b_{2}$	49	\pm	$5b_3$	0.32	\pm	$0.01a_{4}$	0.23	±	$0.02a_{5}$
	EPS of P . ultramafica STM10279 ^T	0.51	±	$0.05a_{1}$	1.91	±	$0.01a_{2}$	94	±	$3a_3$	0.46	\pm	0.01a4	0.16	±	$0.07a_{5}$

 $^{^{\}dagger}$ Different letters in each column indicate significant differences at P < 0.05. ‡ Same coefficient to letters refers to one element uptake analysis.

Table S7 Trace metal content in shoot and root of *Tetraria comosa* (mean \pm SE n = 3) as function of various treatment.

Plant Part	Treatment	Co			Cr						l					
Shoot	Control	18.2	±	$2.0a_1^{\dagger.\ddagger}$	106	±	$9.8a_{2}$	5.1	±	$0.6a_{3}$	466	±	8a4	258	\pm	5a ₅
	$P. \ ultramafica \ { m STM10279^T}$	13.0	\pm	$2.9a_1$	90.4	±	25.6a ₂	3.7	±	$1.0a_3$	517	±	56a4	231	±	22a ₅
	EPS of P . ultramafica STM10279 ^T	10.1	\pm	$0.9a_{1}$	66.5	±	$1.1a_{2}$	2.9	±	$0.1a_{3}$	451	±	17a ₄	232	±	$38a_5$
	Control	48.5	土	6.0a ₁	212.4	±	31.0a ₂	15.3	±	2.0a ₃	882	±	86a4	246	±	32a ₅
Root	P. ultramafica $STM10279^{T}$	82.6	\pm	$7.0a_{1}$	417.3	\pm	$40.5a_2$	27.5	\pm	$3.0a_3$	1280	\pm	100 ₄ a	410	\pm	$35a_5$
	EPS of P . ultramafica STM10279 ^T	76.5	\pm	$16.8a_1$	388.9	±	$71.3a_2$	24.5	±	$5.2a_3$	1280	±	238a ₄	390	±	84a ₅

 $^{^{\}dagger}$ Different letters in each column indicate significant differences at P < 0.05. ‡ Same coefficient to letters refers to one data analysis of one metal.

