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Peer Review File

Plasma proteomics identify biomarkers predicting Parkinson's

disease up to 7 years before symptom onset



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Using LC/MS-based proteomics approach, authors developed the plasma biomarker panel to idenfify

Parkinson’s disease (PD) and the prodromal symptom of isolated REM sleep behavior disorder (iRBD). 

Authors eventually evaluated 18 prodromal subjects with iRBD and predicted 72 - 94% of the iRBD 

samples as PD, which matches the clinical conversion rate observed in PD, idenfifying a paftern already 

evident in iRBD and indicafing pre-symptomafic molecular events. Here, I saw several crifical points 

described below are missing in the current manuscript to conclude author’s statement that the panel 

can be employed to detect prodromal and early Parkinson’s disease (prognosis, diagnosis, and 

monitoring).

1. First, since the pixel quality of figures is too low in this manuscript, it was so difficult to see all the 

results in figures. Need to improve the visibility of the results in all figures. In the current manuscript, I 

could not see the details at all.

2. Authors analyzed 18 plasma samples from prodromal subjects with iRBD and predicted 72 - 94% of 

the iRBD samples as PD. Authors menfioned this matches the clinical conversion rate observed in PD 

generally, idenfifying a paftern already evident in iRBD and indicafing pre-symptomafic molecular events. 

To make this impacfful statement, it is suggested that the longitudinal analysis should be conducted to 

see the true conversion of the iRBD pafients with the “developed biomarker panel – posifive” to the PD 

onset. It is necessary to confirm e.g., 72-94% of the individual iRBD pafients predicted as prodromal PD 

by the developed biomarker panel are certainly true. Unless this step is conducted, it is difficult to assess 

the biomarker performance for the prognosis viewpoint.

3. In the current manuscript, all discussions to idenfify PD pafients were conducted by “plasma 

biomarkers”. I agree with that the establishing plasma biomarker panel is the ulfimate goal with 

considering the clinical accessibility, however the invesfigafions of the “CSF and brain fissues” (hopefully, 

paired with the plasma samples used for the biomarker panel construcfion) are also quite important to 

understand the mechanism of acfion for the plasma biomarker panel and increasing the reliability. 

Parkinson’s disease is the CNS-disease, and the alpha-synuclein pathology as well as the damage on 

dopaminergic neurons are observed in brain parenchyma, not peripheral blood. Here, authors need to 

add the data and major discussion about the mechanism link between the peripheral biomarker changes 

and CNS-PD pathology and neurodegenerafion. To do that, it is strongly recommended to add the data 

on CSF and brain fissues (preferably, both the posifive and negafive control brain regions) proteomics 

data using the same discovery non-biased method approach.

4. Authors stated the early detecfion of PD at even prodromal stage - iRBD can be achieved by the 

established plasma biomarker panel consisted of the proteins relevant to the inflammafion mainly. 

Indeed, some reports suggest that the inflammafion may precede the formafion of alpha-synuclein 

pathology, which implies that the pathogenesis of alpha-synuclein aggregates may be driven by 

inflammatory pathway. However, this hypothesis is sfill under discussion, and the authors need to clarify 

if the developed plasma biomarker panel is proximally relevant to the severity of alpha-synuclein 

pathology, or just relevant to the PD clinical symptom as clinical phenotype. To clarify this point, one 



suggested opfion is that the analysis of pathologically-confirmed (alpha-synucleinopathy with different 

Braak/Spreading stages) plasma samples analysis, not just the clinically-diagnosed plasma samples. As 

another opfion, it is recommended to analyze the PD-model mice - e.g., Line61 etc. with progressing 

alpha-synuclein pathology in fime-course. Even non-clinical studies are also helpful to 

characterize/understand the mode-of acfion for the established clinical biomarkers – as a tradifional 

approach.

5. In Line 195-, authors menfioned, “We addifionally predicted the OND samples, out of which nine were 

predicted as HC, 12 as PD, and 19 were not predicted as belonging to either group. The 12 samples 

predicted as PD did not demonstrate enrichment in any of the clinical OND groups. The random 

distribufion of the OND samples between PD and HC indicates that the heterogeneous group of OND 

individuals does not share a disfinct protein expression with either the HC or PD groups.” Here, it is 

necessary to further discuss about the specificity of the developed plasma assay panel for PD (or alpha-

synucleinopathy?). For instance, 12 OND parficipants were classified as PD by the developed plasma 

biomarker panel, then if so, are there some specific characterisfics in these 12 OND parficipants – e.g., 

the DLB parficipants with alpha-synuclein aggregates are enriched in this specific group idenfified as PD 

by the developed biomarker panel?

6. In the current manuscript, the bidirecfional performance to diagnose e.g., HC vs PD by the developed 

biomarker panel is mainly discussed. Here, authors should invesfigate if the developed panel can be 

applied to assess the disease severity in terms of the clinical scales and also the amount of pathology – 

i.e., alpha-synuclein aggregates in brain. In Supplementary Table 2, some data for Spearman correlafions 

between each protein biomarker and clinical scales are described, however it seems that all individual 

rho values are very low and difficult to be used to predict the severity in a quanfitafive manner. Even 

though the individual proteins do not show the convincing results on predicfing the disease severity, 

some regression models with composite score can be constructed for the quanfitafive assessment, not 

the bidirecfional diagnosis purpose only?

Reviewer #2 (Remarks to the Author):

The authors sought to invesfigate whether a panel of plasma proteomic biomarkers could discriminate 

PD from heathly controls, and also be applicable to iRBD.

There are many posifive aspects of this analysis and manuscript, which the authors describe very well. 

The manuscript is also well-wriften, and the figures and tables are informafive.

Please address the following points:

The authors state that “Parkinson’s disease (PD) is an increasingly prevalent neurodegenerafive disease” 

– please provide references that PD is increasing in prevalence.

Note the error in lines 142-143 – “Further details can be found in Supplementary Error! Reference source 



not found”

In the discussion, considering the recent associafions of GRN mutafions, lysosomal funcfion, Lewy body 

demenfia, etc (for example, see Reho et al, Mov Disord 2022), it would be worth adding comments and 

associated references on this topic.

This analysis obviously focused on proteomic plasma biomarkers in PD. The authors should comment on 

the findings as they related to demenfia with Lewy bodies (DLB) and MSA. Comments would be 

parficularly needed to explain the findings in the small iRBD cohort. The panel predicted 72-94% of the 

iRBD samples as PD, which could be due to several factors/issues. One could be the possible change in 

the natural evolufion of proteins from the prodromal (eg, iRBD) to full PD clinical syndrome phase, which 

the authors allude to. Another explanafion is that some of the iRBD pafients will evolve into a full DLB or 

MSA clinical syndromes. The proteomic panel may or may not be different between PD and DLB, and the 

authors should compare and contrast their findings with those of O’Bryant et al, Alz and Dem 2019. 

While one might predict that the panel would be different between PD and MSA, that is also an open 

quesfion, which should also be discussed.

Reviewer #3 (Remarks to the Author):

See aftached file.

[Editorial Note: The PDF is displayed over the next three pages] 



Review “Proteomics and machine learning identify a distinct biomarker panel to detect 
prodromal and early Parkinson’s disease” 

 
Summary 
In their study, Hällqvist et. al. present a panel of proteomic plasma biomarkers that are capable of 
discriminating PD and healthy controls with perfect accuracy in a machine learning model. They 
apply their model on prodromal subjects with iRBD and predict samples with a similar rate as 
expected from clinical conversion rates. 
 
Overall, the study is well-written and concise. The figures are informative. Mass spectrometry-
based plasma proteomics to uncover biomarker panels has been studied for several years now. 
Although cerebrospinal fluid (CSF) is often the preferred body fluid for Parkinson's research, 
plasma is preferred due to its potential for clinical applications, owing to its ease of access. 
 
In current studies, a machine learning (ML) layer is often added following the identification of 
proteins of interest. This layer serves to build predictive models, a process that is becoming 
increasingly standardized. Sometimes, these studies correlate clinical parameters with protein 
values to provide deeper insights. Novel studies in this field usually leverage recent 
technological advancements to achieve greater protein depth, involving larger cohorts for 
increased reliability, or utilizing innovative algorithms for data interpretation. An early example 
reference would be Pan et al. (Journal of Proteome Research 2014, https://doi.org/10.1021/pr500421v), 
which used targeted plasma proteomics to study biomarkers generated from CSF measurements 
on a cohort of 282 patients, achieving an AUC of 0.753 with four peptides with a linear model. 
 
In evaluating the current study, however, there seems to be a lack of distinctive technological 
advancement, an unusually large cohort, or an innovative algorithm. There doesn't appear to be 
any significant leap from the existing state-of-the-art, based on the manuscript text. Yet, this 
should not overshadow the development of a protein panel that exhibits high predictive power 
and can achieve impeccable accuracy. Such an achievement could indeed be regarded as a form 
of novelty that is of great interest for the community. 
 
Major: Study Design 
For the above reasons, I find it extremely important how this predictive panel was generated. The 
authors conduct a proteomics discovery study and identify 47 proteins as differentially 
expressed. However, their final multiplexed assay consists of 121 proteins, stemming from 
“unpublished discovery studies”, AD, and proteins in the literature. The referenced literature 
includes an Alzheimer's mouse model from 2005 and a study of Neuroinflammation in 
Schizophrenia. Essentially, there is a well-defined statistical framework for 47 proteins, and then 
74 more are added in an opaque way. This, however, invalidates the whole discovery approach 
and severely limits the biological significance of the subsequent targeted analysis.  
 
To address this, I would recommend the following: 
- State how the final list of proteins was generated and included a list of them. In line 502, 

it is referenced to be Supplementary Table 2, but this is the correlation to clinical 
parameters. It is evident that the community will derive little value if the highly 
predictive panel is not disclosed. 



- Conduct a comparison between the significant proteins from the discovery phase and the 
proteins featured in the targeted assay. There seems to be a discrepancy, as some of the 
highly regulated proteins from Supplementary Figure S1 are not present in Figure 1. 
What is the authors' explanation for this? Maintaining consistency in the representation of 
data, such as using either lollipop charts or volcano plots (or ideally both), would 
facilitate interpretation. 

- Enhance the characterization of the identified proteins. While a machine learning model 
provides a quantitative metric of model performance, it would be beneficial to see 
additional technical controls. These could include correlation plots with hierarchical 
clustering and box/swarm plots for relevant proteins. 

 
Major: ML model 
 
The characterization of the machine learning (ML) model in this study could benefit from more 
thorough detailing. A receiver operating characteristic (ROC) curve based solely on the training 
set doesn't provide a comprehensive understanding of the model's generalizability. This analysis 
should be conducted on the test set. Additionally, the report lacks standard classification metrics 
such as precision, recall, and F1 score. Given that the dataset is imbalanced, with 99 Parkinson's 
Disease (PD) cases versus 36 healthy controls, a model that categorically predicts PD would 
already achieve 73% accuracy. Therefore, balanced accuracy or the Matthews correlation 
coefficient (MCC) should be considered for a more accurate evaluation. Alongside the ROC 
curve, a precision-recall (PR) curve would be a valuable additional metric. 
 
The section spanning lines 581-585 is somewhat ambiguous. Was the 5-fold split applied to the 
70% of the data? Without access to the ML code, it's difficult to fully understand the processes 
involved. While it's commendable that the feature extraction step was cross-validated, given the 
limited sample size, it would be very beneficial to also cross-validate the entire pipeline, rather 
than relying on a single split—ideally repeatedly. Scikit-learn's RepeatedKFold could be readily 
implemented for this purpose. 
 
I found the correlation to clinical scores interesting, but, also confusing: On one hand, the aim is 
to develop a predictive biomarker panel, while on the other, it's desirable to identify biomarkers 
that correlate with the scale. Wouldn't it make more sense to directly construct an ML model 
capable of predicting, for example, the clinical rating scale? 
 
Protein panel validation 
 
The authors could certainly benefit from providing a more thorough analysis of the significant 
proteins identified during both the discovery and targeted phases. Presently, there appears to be a 
degree of inconsistency in terms of the significant proteins identified, and this is somewhat 
perplexing. A comparison with existing literature could provide valuable insights and potentially 
explain these discrepancies. 
The authors do this partly by comparing pathways, and, e.g., comparing to their previous studies, 
but when comparing to the volcano plot of their OLINK study there seem to be entirely different 
proteins. This could be done by providing a table with proteins and references where they were 
identified previously. 



 
 
Misc: 
- The auto-generated PDF appears to have formatting issues, e.g. Reference source not 

found, figures are not readable 
- Figure 2: The figure contains long descriptions for the Proteins, whereas the text has 

short names. It would increase readability to stick to one. 
- L398: Clinical testing for neurological disorders is limited to use of a select few well 

characterised individual markers and translating new biomarkers to eventual clinical 
application is notoriously challenging. “to use of a” 

 
In conclusion, I cannot endorse this study for publication in its current form in Nature 
Communications. However, I believe that a highly predictive biomarker panel, as presented in 
this study, could be of considerable interest to the scientific community. Therefore, I would 
support the publication of this study, provided the necessary revisions are made. 



Rebuttal letter for manuscript NCOMMS-23-14866  

titled  

Proteomics and machine learning identify a distinct blood biomarker panel to 

detect  Parkinson’s disease up to 7 years before motor disease  

We thank the editors for their patience and reviewers for their valuable 

comments in regard of our manuscript. We have taken on-board all the points, 

suggestions and completed all the requests for more experiments. Some of the 

experimental analyses required the acquisition of unique sample sets which 

took time to collect and analyze. Subsequently, the manuscript has been 

revised accordingly and the addition of the extensive new data to the study 

has made the work significantly better.  We would like to take this opportunity 

to thank the reviewers for their comments and suggestions. 

In the following, we are answering the comments point-by-point. 

Reviewer comments are displayed in black, the author response in blue, 

quotes from the manuscript in italics. 

 

REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Using LC/MS-based proteomics approach, authors developed the plasma biomarker panel to 

identify Parkinson’s disease (PD) and the prodromal symptom of isolated REM sleep behavior 

disorder (iRBD). Authors eventually evaluated 18 prodromal subjects with iRBD and predicted 

72 - 94% of the iRBD samples as PD, which matches the clinical conversion rate observed in 

PD, identifying a pattern already evident in iRBD and indicating pre-symptomatic molecular 

events. Here, I saw several critical points described below are missing in the current 

manuscript to conclude author’s statement that the panel can be employed to detect 

prodromal and early Parkinson’s disease (prognosis, diagnosis, and monitoring). 

 

Reviewer comment: 1. First, since the pixel quality of figures is too low in this manuscript, it 

was so difficult to see all the results in figures. Need to improve the visibility of the results in 

all figures. In the current manuscript, I could not see the details at all. 

Our answer: We apologize for any inconvenience caused and submitted all 

images in high resolution in the revised version. 

Reviewer comment: 2. Authors analyzed 18 plasma samples from prodromal subjects with 

iRBD and predicted 72 - 94% of the iRBD samples as PD. Authors mentioned this matches the 



clinical conversion rate observed in PD generally, identifying a pattern already evident in iRBD 

and indicating pre-symptomatic molecular events. To make this impactful statement, it is 

suggested that the longitudinal analysis should be conducted to see the true conversion of the 

iRBD patients with the “developed biomarker panel – positive” to the PD onset. It is necessary 

to confirm e.g., 72-94% of the individual iRBD patients predicted as prodromal PD by the 

developed biomarker panel are certainly true. Unless this step is conducted, it is difficult to 

assess the biomarker performance for the prognosis viewpoint. 

Our answer: We thank the reviewer for this important point and fully agree. 

Therefore, we acquired and analyzed with 146 samples significantly more 

samples and we can confirm, that 16 out of these longitudinal 54 subjects iRBD 

converted to a synucleinopathy/neuronal α-synuclein disease 

(phenoconverters), including clinical Parkinson’s disease (11 cases) and 

Dementia with Lewy bodies (5 cases). Further, with our refined and simplified 

discriminant support vector machine model, we found that 79% of these 

samples were predicted as PD in the SVM models. In total, 27 of the 40 

individuals with follow up samples had their baseline sample and their 

longitudinal follow-up samples predicted as PD. 10 out of 16 phenoconverters 

were classified as PD at all timepoints. We are pleased to report that this 

longitudinal dataset validates and supports our initial findings and prediction 

rates for phenoconvertion. 

We added the following parts to the manuscript: 

Page 6/7, line 258-283, main manuscript: Development of a rapid and refined LC-

MS/MS method and evaluation of a larger iRBD cohort, with longitudinal  samples 

(Phase II) 

“To evaluate the results from the initial prediction models focusing on at-risk subjects, 

we developed and refined our targeted and multiplexed proteomic test to quantitate 

only those proteins that were readily and reliably detectable from the initial targeted 

proteomic assay (n = 32). We then analysed an additional set of 146 longitudinal 

samples from an independent cohort of 54 individuals at high-risk with iRBD. This cohort 

was available from the same centre and consisted of longitudinally tracked iRBD 

subjects who were deeply characterized by PSG and showed additional hyposmia in 

88.9% (48/54) of the individuals and  additionally α-synuclein Seed Amplification Assay 

(SAA) positivity in cerebrospinal fluid (CSF) in 91.7 % (22/24) of the subjects as 

published.1 Longitudinal follow-up was available for up to 10 years, during which 16 

subjects converted to either PD (n = 11) or dementia with Lewy Bodies (DLB; n = 5), 

jointly summarised as neuronal-synuclein-disorders (NSD). Only serum samples were 

available in phase II (further details can be found in Supplementary Table S4).  We 

investigated how the proteins in our assay correlated between plasma, serum and CSF 

and found good correlations between plasma and serum, but poor correlations 

between these matrices and CSF. The limited correlations between blood and CSF 

proteins correspond to those of other studies comparing the protein expression 



between plasma/serum and CSF2,3 and underscore that our test does not necessarily 

reflect a prodromal and PD-specific proteomic signature of the protein expression in 

the brain, but rather a potential earlier change in the blood protein expression 

between healthy controls and very early PD patients. Details from  the comparison 

can be found in Supplementary Information S1. 

We applied all the longitudinal iRBD samples (n = 146) from phase II to the two machine 

learning models (OPLS-DA and support vector machine) constructed in phase I (PD vs. 

controls). The OPLS-DA model, based on all 32 detected proteins, identified 70% of the 

iRBD samples as PD, while the SVM model, which was based on a panel of eight 

proteins, identified 79% of the samples as PD. At the time of analysis, 16 out of the 54 

subjects in our longitudinal iRBD validation cohort had developed an NSD. The earliest 

correct classification was 7.3 years prior to diagnosis and the latest was 0.9 years prior 

to diagnosis (average 3.5 ± 2.4 years). Detailed information can be found in 

Supplementary Figure S7 and Supplementary Information S3.”    

 

Page 2, line 48-68, Supplementary Material: Supplementary Information S3. Evaluation 

of the larger iRBD cohort, with longitudinal samples (Phase II) 

“The longitudinal iRBD samples (146, phase II) were applied to (I) the PD vs. control 

OPLS-DA model which had been constructed using the initial sample set and (II) our 

refined and simplified discriminant support vector machine model consisting of eight 

proteins. The OPLS-DA model (I) contained the detectable proteins and resulted in 107 

out of 146 iRBD samples being identified as PD or control, and 39 samples as 

unclassified. Analysis of this new iRBD samples demonstrated that 70% were consistent 

identified as having a PD panel profile. Longitudinally, 22 out of the 40 individuals with 

longitudinal follow-up samples were consistently classified as PD. (II) the SVM model  

classified  79% of the samples as PD. At the time of analysis, 16 out of the 54 subjects in 

our longitudinal iRBD validation cohort had developed an NSD. Out of these samples 

with a known clinical outcome, our SVM model identified ten individuals with all their 

timepoints as PD. Of the 11 PD converters, 8 were identified as PD.  The earliest correct 

classification was 7.3 years prior to diagnosis and the latest was 0.9 years prior to 

diagnosis (average 3.5 ± 2.4 years).    In 26 of the 40 individuals with longitudinal follow 

up samples the baseline samples and all longitudinal samples demonstrated a PD 

profile, while four individuals had all their timepoints classified as control. Ten individuals 

demonstrated indeterminate predictions, with timepoints from the same individual 

showing a PD profile in most, but not all samples. Generally, the samples predicted as 

controls in the SVM model corresponded to the samples with no prediction outcome 

in the OPLS-DA model. In those subjects that converted to NSD during follow-up, eight 

of eleven were observed to have the PD profile though all timepoints and the 

remaining three patients demonstrated a change to a PD profile during follow-up.  

(Supplementary Figure S6 ).“  



 

Supplementary Figure S6. Classification metrics of the discriminant SVM model, predicting samples 

as PD or control (phase I) 

The classification metrics were calculated from stratified k-fold cross validation utilising six splits of 

the data and 40 repetitions and are displayed as histograms showing the frequency of the metrics 

precision, recall, the F1 score, the Matthews correlation coefficient and the balanced accuracy 

score.   

 

 

 

 

Supplementary Figure S7. Prediction results from of a newly acquired set of prodromal iRBD samples 

(phase II) 

146 new serum samples from individuals diagnosed with iRBD, several with longitudinal follow up 

samples, were predicted in the OPLS-DA model. 70% of the samples were predicted as PD, and 23 

of 40 individuals had all their longitudinal samples predicted as PD. In the more refined SVM model, 

79% of the 146 new samples were predicted as PD and 27 of 40 individuals consistently had all their 

longitudinal samples predicted as PD.  

 

 

 

 

 



Supplementary Table S4. Characteristics of longitudinal iRBD subjects (phase II). 

The table shows age, sex, number of longitudinal samples, and the time since baseline for the 

last sample. Out of the 40 iRBD subjects, 16 had phenoconverted to a neuronal synuclein 

disease at the time of the last sample (11 Parkinson’s disease, 5 Dementia with Lewy bodies). 

The time from baseline to conversion is shown.  

Subject 

Age at 

baseline 

(years) 

Sex 

Number of 

longitudinal 

Follow-up 

samples 

Time since 

baseline for 

final sample 

(years) 

Phenoconversion Diagnosis 

iRBD01 65 Male 5 11 8 years after BL PD 

iRBD02 52 Female 5 10 6 years after BL PD 

iRBD03 77 Female 5 10 8 years after BL PD 

iRBD04 64 Male 4 10   

iRBD05 66 Male 4 10 10 years after BL DLB 

iRBD06 71 Male 3 10   

iRBD07 71 Male 5 10 10 years after Bl PD 

iRBD08 62 Male 4 10   

iRBD09 64 Female 5 10 10 years after Bl PD 

iRBD10 73 Female 5 10   

iRBD11 69 Male 5 9 9 years after Bl DLB 

iRBD12 75 Female 4 9   

iRBD13 73 Male 4 9 9 years after Bl PD 

iRBD14 68 Female 3 9   

iRBD15 62 Female 4 9   

iRBD16 64 Male 3 9 9 years after BL DLB 

iRBD17 51 Female 4 8   

iRBD18 63 Male 2 8   

iRBD19 54 Male 3 8   

iRBD20 50 Male 3 8   

iRBD21 77 Male 3 8 8 years after BL PD 

iRBD22 68 Male 4 8 11 mos after BL DLB 

iRBD23 73 Male 2 8   



Subject 

Age at 

baseline 

(years) 

Sex 

Number of 

longitudinal 

Follow-up 

samples 

Time since 

baseline for 

final sample 

(years) 

Phenoconversion Diagnosis 

iRBD24 55 Male 3 7   

iRBD25 53 Male 3 7   

iRBD26 68 Male 3 7 4 years after BL DLB 

iRBD27 72 Female 3 7   

iRBD28 69 Male 2 6 2 years after BL PD 

iRBD29 73 Male 2 6 1 year after BL PD 

iRBD30 77 Male 3 6   

iRBD31 68 Female 2 5   

iRBD32 67 Male 3 5 7 mos after BL PD 

iRBD33 74 Female 3 5   

iRBD34 80 Male 3 5   

iRBD35 58 Male 2 5 1 year after BL PD 

iRBD36 76 Female 2 5   

iRBD37 79 Male 2 4   

iRBD38 70 Male 2 4   

iRBD39 74 Female 2 4   

iRBD40 76 Male 2 4   

Average 

± SD 
67,5 (8,1) 

27 

Male 
3,3 (1,1) 7,6 (2,1) 3,7 (2,6)  

Abbreviations: iRBD= isolated REM-sleep behavior disorder; PD= Parkinson’s disease; DLB= 

Dementia with Lewy bodies; BL= Baseline; SD= Standard deviation 

 

 

 

 

 



Reviewer comment: 3. In the current manuscript, all discussions to identify PD patients were 

conducted by “plasma biomarkers”. I agree with that the establishing plasma biomarker panel 

is the ultimate goal with considering the clinical accessibility, however the investigations of the 

“CSF and brain tissues” (hopefully, paired with the plasma samples used for the biomarker 

panel construction) are also quite important to understand the mechanism of action for the 

plasma biomarker panel and increasing the reliability. Parkinson’s disease is the CNS-disease, 

and the alpha-synuclein pathology as well as the damage on dopaminergic neurons are 

observed in brain parenchyma, not peripheral blood. Here, authors need to add the data and 

major discussion about the mechanism link between the peripheral biomarker changes and 

CNS-PD pathology and neurodegeneration. To do that, it is strongly recommended to add the 

data on CSF and brain tissues (preferably, both the positive and negative control brain regions) 

proteomics data using the same discovery non-biased method approach. 

Our answer: We fully agree that PD is a disease with aggregated aSyn 

pathology in the CNS. With our study we want to provide insights into proteins 

in peripheral blood as biomarkers s. We indeed have a brain donation 

program, but so far brain samples of any of these patients donating samples in 

vivo are not available. With continuing follow-up of these subjects, we will in 

the future be able to run combined fluid and brain tissue analyses. To at least 

get closer to the brain, we added cerebrospinal fluid samples, which are most 

proximal to the brain. Our main goal was to identify a protein pattern in the 

most peripheral accessible fluid: blood. Knowing that some or most PD starts in 

the periphery and that there is a lot of peripheral pathology. We are also 

conducting population based cohort screens for risk factors for PD for the 

recruitment of upcoming prevention trials. 

It is already known that the CSF and blood proteome vary significantly (Whelan, 

Christopher D., et al. 2019; Acta neuropathologica communications, Dayon et 

al., 2019; J Proteome Res. We therefore also added these references to the 

manuscript. Based on basic, fundamental work of Felgenhauer and Reiber, 

80% of CSF is a product of blood filtration  and only around 20 % of the CSF 

proteins are brain derived, which could indicate 80% overlap, but further the 

hydrodynamic radius of the proteins determines its presence in CSF and not all 

brain areas contribute to the CSF protein composition in the same amount, 

which has been quite extensively been studied in our institution many years ago 

(Reiber, Felgenhauer 1987, Clinica Chimica acta4, Felgenhauer 19745, Klin 

Wochenschr) 

To connect our results with the relevant CNS-pathology in PD, we indicate these 

connections in the discussion section. 

We added the following parts to the manuscript/Suppplementary Material: 



Page 1, line 8-33, Supplementary Material: Supplementary Information S1. Protein 

expression similarities and differences between plasma, serum and CSF 

Supplementary Information S1. Protein expression similarities and differences between 

plasma, serum and CSF  

“We determined the expression of the blood-derived biomarkers in our panel and 

compared them to those in CSF to ascertain if they potentially could have originated 

from the brain. Additionally, to determine if serum or plasma gave identical results as 

phase 0 and I was carried out in plasma samples but for phase II analyses only serum 

samples were available. We analysed our panel in paired plasma, serum, and CSF 

from subjects with neurological controls.  The analysis revealed large differences 

between the blood- and CSF-protein expressions in a PCA (results can be found in 

Supplementary figure S7). An OPLS-DA model comparing CSF and plasma/serum was 

strongly significant (ANOVA p = 2.0E-20, permutations p << 0.001) and demonstrated 

that SOD3, PTGDS, CST3, DKK3, FABP5, PRG1, PLD3, APOE and HPX were elevated in 

CSF while all other proteins, apart from HSP1L, HSPA5 and VCAM1, were higher in the 

blood-based plasma and serum samples. CSF demonstrated limited correlations with 

both plasma and serum for all proteins in the predictive panel, apart from MASP2 

which was positively correlated (plasma/serum vs CSF, rho = 0.66/0.81). The blood-

derived proteins from our panel demonstrated higher values than the CSF proteins for 

all but DKK3 and PTGDS, which were roughly 80 and 340 times higher, respectively, 

than the proteins measured in blood. Individual OPLS-DA models of plasma and serum 

versus CSF did not differ significantly but reflected the observations from the overall 

blood- versus brain-based model. Comparing plasma and serum, we found that the 

levels of the proteins FGA, PGK1, SERPINF2, HSPA5, TUBA4A, GRN, HSPA1L and ADIPOQ 

differed– all of which were higher in plasma, except for ADIPOQ which was higher in 

serum. Investigating the expression of the proteins in our predictive SVM panel in detail, 

we correlated the paired samples from the three matrices with each other. We noted 

that plasma and serum demonstrated positive correlations (Spearman’s rho 0.75 – 

0.93) for the five of the eight proteins: C3, GRN, ICAM1, MASP2 and SERPING1, but not 

for HSPA5, DKK3 and PTGDS, see Supplementary Figure S8. Although a high degree of 

correlation was observed between plasma and serum, the test is considered to 

perform better in plasma as this is the sample matrix it was developed in.“ 

 



 

Supplementary Figure S8.  Protein expression in plasma, serum and CSF. 

OPLS-DA scores from a model of plasma and serum versus CSF (top left). The model was highly 

significant with ANOVA p = 2.0E-20 and permutations p <<? 0.001. The corresponding loadings (top 

right) demonstrated that all but three proteins were significantly different between the blood-based 

plasma and serum, and CSF. Most of the proteins were elevated in plasma/serum, though HPX, 

PGK1, APOE, PLD3, FABP5, DKK3, CST3, SOD3 and PTGDS were higher in CSF. Box and whisker plots 

of the paired plasma, serum and CSF samples, annotated with Spearman’s rho and p-value 

significance levels. The correlation demonstrated that five out of eight of the proteins included in 

the predictive SVM model were significantly correlated between plasma and serum, post Benjamini-

Hochberg multiple testing correction with alpha = 0.05. Only MASP2 exhibited significant correlations 

between CSF and plasma/serum. The whiskers show the minimum and maximum and the boxes 

show the 25th percentile, the median and the 75th percentile. *** p < 0.001, ** p < 0.01, * p < 0.05, 

and ns = not significant. 

Page 12, Line 501-506, main manuscript:   

“The analysis of paired samples of plasma, serum and CSF revealed only a low 

correlation between the marker concentrations in peripheral and central 

compartments. This issue is known and has been reported by several groups before 2,3. 

Nevertheless, our study showed that specific protein patterns in plasma and serum 

samples in not only PD but also prodromal iRBD are capable to differentiate between 

the groups, correlate with the clinical picture and that this pattern is already available 



in early disease stages. In context with the easy accessibility of blood samples, they 

show ideal biomarker potential.” 

 

Reviewer comment: 4. Authors stated the early detection of PD at even prodromal stage - 

iRBD can be achieved by the established plasma biomarker panel consisted of the proteins 

relevant to the inflammation mainly. Indeed, some reports suggest that the inflammation may 

precede the formation of alpha-synuclein pathology, which implies that the pathogenesis of 

alpha-synuclein aggregates may be driven by inflammatory pathway. However, this hypothesis 

is still under discussion, and the authors need to clarify if the developed plasma biomarker 

panel is proximally relevant to the severity of alpha-synuclein pathology, or just relevant to the 

PD clinical symptom as clinical phenotype. To clarify this point, one suggested option is that 

the analysis of pathologically-confirmed (alpha-synucleinopathy with different 

Braak/Spreading stages) plasma samples analysis, not just the clinically-diagnosed plasma 

samples. As another option, it is recommended to analyze the PD-model mice - e.g., Line61 

etc. with progressing alpha-synuclein pathology in time-course. Even non-clinical studies are 

also helpful to characterize/understand the mode-of action for the established clinical 

biomarkers – as a traditional approach. 

Our answer: We thank the reviewer for this important point. The manuscript is 

not designed to confirm the current hypothesis that inflammation precedes α-

synuclein aggregation.  Although an extremely interesting implication that 

adds weight to this hypothesis, this would take significant research and is 

outside the scope of what this manuscript represents or intends to convey. 

Further, our panel is not only based on proteins, reflecting inflammation but also 

includes markers of the Wnt-signaling pathway, protein misfolding, ER-stress 

and neuroprotective mechanisms.  

However, the reviewer is correct: we see more inflammation in the prodromal 

state. This would be an interesting avenue of future research but would require 

significant funding and time to complete.  Furthermore, we believe there are 

several other groups already working on this hypothesis, our findings may 

provide significant information to the field to answer this hypothesis and guide 

researchers attempting to deduce the mechanisms involved in PD. 

We focus on analyzing fluid markers in humans, as it is in our opinion the best 

way to access the natural history of the disease. To our knowledge, there are 

no animal models available, that reflect the PD specific pathology of the 

prodromal and clinical stage, including phenoconvertion to disease. Animal 

models have strong limitations, these include the fact that they are based on 

either toxic (eg 6-OHDA) or genetic (eg A53T α-synuclein -mouse model) 

mechanisms, which most likely do not reflect the pathology of idiopathic 

Parkinson's syndrome very well. 



 

Reviewer comment: 5. In Line 195-, authors mentioned, “We additionally predicted the OND 

samples, out of which nine were predicted as HC, 12 as PD, and 19 were not predicted as 

belonging to either group. The 12 samples predicted as PD did not demonstrate enrichment 

in any of the clinical OND groups. The random distribution of the OND samples between PD 

and HC indicates that the heterogeneous group of OND individuals does not share a distinct 

protein expression with either the HC or PD groups.” Here, it is necessary to further discuss 

about the specificity of the developed plasma assay panel for PD (or alpha-synucleinopathy?). 

For instance, 12 OND participants were classified as PD by the developed plasma biomarker 

panel, then if so, are there some specific characteristics in these 12 OND participants – e.g., 

the DLB participants with alpha-synuclein aggregates are enriched in this specific group 

identified as PD by the developed biomarker panel?  

Our answer: The OND subjects represent a very heterogeneous group, we 

reported the details in Supplementary Table S1. The analysis showed no 

common protein panel between the subjects that were predicted as PD and 

the clinical OND group. Further, there was no noticeable connection between 

the diagnosis of the OND subjects and the corresponding protein pattern. We 

selected the OND group with diagnoses that included differential 

diagnostically relevant diagnoses to PD, but due to the heterogeneity of the 

group and the random distribution, a further subgrouping seemed not to be 

feasible. To extend the analysis and validate the predictive potential of our 

model, we added data from the newly acquired set of prodromal iRBD subjects 

(leading to overall 54 iRBD subjects), consisting of 40 subjects with 

polysomnography confirmed isolated REM-sleep behavior disorder and 

available longitudinal serum samples of clinical follow up visits, in some cases 

up to 10 years.  The model consistently predicted most iRBD subjects as PD over 

time. With the now expanded dataset, we think, that the high number of iRBD 

subjects predicted as PD points out the specificity of this applied targeted 

panel of prodromal and early PD. None of the iRBD subjects converted to 

Multiple Systems Atrophy and only five of them to dementia with Lewy bodies, 

while 11 converted to PD. One subject showed the PD panel of proteins 7 years 

before phenoconversion to PD. Therefore, our analysis mostly reports predictive 

potential of the proteome pattern of the phenoconvertion to PD or neuronal 

α-synuclein disorder (NSD), as it’s described in the new publications, 

introducing a biological staging system for PD6 (Simuni et al., 2023; 

https://doi.org/10.5281/zenodo.10001310).We added the following parts to the 

manuscript and the supplementary material section: 

 

 



Page 2, line 48-68, Supplementary Material: Supplementary Information S3. Evaluation 

of the larger iRBD cohort, with longitudinal samples (Phase II)” 

“The longitudinal iRBD samples (146, phase II) were applied to (I) the PD vs. control 

OPLS-DA model which had been constructed using the initial sample set and (II) our 

refined and simplified discriminant support vector machine model consisting of eight 

proteins. The OPLS-DA model (I) contained the detectable proteins and resulted in 107 

out of 146 iRBD samples being identified as PD or control, and 39 samples as 

unclassified. Analysis of this new iRBD samples demonstrated that 70% were consistent 

identified as having a PD panel profile. Longitudinally, 22 out of the 40 individuals with 

longitudinal follow-up samples were consistently classified as PD. (II) the SVM model  

classified  79% of the samples as PD. At the time of analysis, 16 out of the 54 subjects in 

our longitudinal iRBD validation cohort had developed an NSD. Out of these samples 

with a known clinical outcome, our SVM model identified ten individuals with all their 

timepoints as PD. Of the 11 PD converters, 8 were identified as PD.  The earliest correct 

classification was 7.3 years prior to diagnosis and the latest was 0.9 years prior to 

diagnosis (average 3.5 ± 2.4 years).    In 26 of the 40 individuals with longitudinal follow 

up samples the baseline samples and all longitudinal samples demonstrated a PD 

profile, while four individuals had all their timepoints classified as control. Ten individuals 

demonstrated indeterminate predictions, with timepoints from the same individual 

showing a PD profile in most, but not all samples. Generally, the samples predicted as 

controls in the SVM model corresponded to the samples with no prediction outcome 

in the OPLS-DA model. In those subjects that converted to NSD during follow-up, eight 

of eleven were observed to have the PD profile though all timepoints and the 

remaining three patients demonstrated a change to a PD profile during follow-up  

(Supplementary Figure S6 ).”   

 

Page 7, line 276-283, main manuscript “We applied all the longitudinal iRBD samples 

(n = 146) from phase II to the two machine learning models (OPLS-DA and support 

vector machine) constructed in phase I (PD vs. controls). The OPLS-DA model, based 

on all 32 detected proteins, identified 70% of the iRBD samples as PD, while the SVM 

model, which was based on a panel of eight proteins, identified 79% of the samples 

as PD. At the time of analysis, 16 out of the 54 subjects in our longitudinal iRBD 

validation cohort had developed an NSD. The earliest correct classification was 7.3 

years prior to diagnosis and the latest was 0.9 years prior to diagnosis (average 3.5 ± 

2.4 years). Detailed information can be found in Supplementary Figure S7 and 

Supplementary Information S3. “   

 

Page 12, Line 519-537, main manuscript: “Our work was predominantly focused on 

the similarities between PD and iRBD, particularly as PD is the most common 

clinical syndrome developing out of iRBD. Previous proteomic analysis has been 

able to distinguish PD from DLB7, but data on DLB and iRBD is lacking. Future 

work would include refinement of the panels of biomarkers developed in this 



study and using the pipeline described in this manuscript, to identify and 

validate additional biomarkers that could distinguish between iRBD and PD, 

MSA and DLB. Another advantage of using triple quadrupole platforms is that 

new and better biomarkers can easily be augmented into the test described 

in this manuscript.  Thus, any test could be refined and optimised over time with 

very little modification to the assay as new biomarkers are discovered. In 

summary, instead of single biomarkers, in a univariate approach, we have 

created a pipeline using a targeted proteomic test of a multiplexed panel of 

proteins, together with machine learning.  This powerful combination of 

multiple well-selected biomarkers with state-of-the-art machine learning 

bioinformatics, allowed us to use a panel of eight biomarkers which enabled 

us to distinguish early PD from HC. This biomarker panel provided a distinct 

signature of protective and detrimental mechanisms, finally triggering 

oxidative stress and neuroinflammation, leading to α-synuclein aggregation 

and LB formation. Moreover, this signature was already present in the 

prodromal stages of the disease, before motor onset, supporting the high 

specificity of iRBD and its high conversion rate to a NSD especially PD8. And 

most important this blood panel can in the future help to identify subjects at risk 

to develop neuronal synuclein aggregation disorder and stratify subjects for 

upcoming prevention trials.” 

 

 

 

 

  

 

Supplementary Figure S6. Classification metrics of the discriminant SVM model, predicting samples 

as PD or control (phase I) 

The classification metrics were calculated from stratified k-fold cross validation utilising six splits of 

the data and 40 repetitions and are displayed as histograms showing the frequency of the metrics 

precision, recall, the F1 score, the Matthews correlation coefficient and the balanced accuracy 

score.   

 



 

 

 

Supplementary Figure S7. Prediction results from of a newly acquired set of prodromal iRBD samples 

(phase II) 

146 new serum samples from individuals diagnosed with iRBD, several with longitudinal follow up 

samples, were predicted in the OPLS-DA model. 70% of the samples were predicted as PD, and 23 

of 40 individuals had all their longitudinal samples predicted as PD. In the more refined SVM model, 

79% of the 146 new samples were predicted as PD and 27 of 40 individuals consistently had all their 

longitudinal samples predicted as PD.  

 

 

Reviewer comment: 6. In the current manuscript, the bidirectional performance to diagnose 

e.g., HC vs PD by the developed biomarker panel is mainly discussed. Here, authors should 

investigate if the developed panel can be applied to assess the disease severity in terms of the 

clinical scales and also the amount of pathology – i.e., alpha-synuclein aggregates in brain. In 

Supplementary Table 2, some data for Spearman correlations between each protein biomarker 

and clinical scales are described, however it seems that all individual rho values are very low 

and difficult to be used to predict the severity in a quantitative manner. Even though the 

individual proteins do not show the convincing results on predicting the disease severity, some 

regression models with composite score can be constructed for the quantitative assessment, 

not the bidirectional diagnosis purpose only? 

Our answer: We thank the reviewer for the comment and agree that the 

combination of clinical scores and the brain pathology could provide new 

insights into the disease specific pathology and its correlation with the clinical 

picture. The authors have applied for funding to carry out this because it would 

require significant funds, a unique collection of samples that would need to be 

collected and time to address this.  We believe this would be part of a follow 

up mechanism paper. We also have a brain-donation program and await 

together with further longitudinal follow-up, increase number of converters and 



eventually the collection of more brain material in the upcoming years for more 

analyses. Therefore, to answer this question pondered by the reviewer may 

take another 20-30 years before such samples are even available.  Thus, we 

believe it is not possible to answer the reviewer’s point in the timeframe 

available to us. 

With the additional longitudinal data sets that we added to the MS we were 

also able to extend the correlation analysis and included a linear mixed effects 

model. The results can be found in Supplementary Table S6.  

We decided not to work with composite scores, as the main aim of the study 

was the discriminatory potential of the proteome pattern and not the 

assessment of clinical phenotypes. 

We added the following part to the main manuscript: 

Page: 7, line: 307-326 main manuscript: Comparison with clinical outcomes and 

measurements in the longitudinal iRBD samples (phase II) 

“The longitudinal expression in the iRBD samples was evaluated using linear mixed 

effects models. Conditional growth models with random slope and random intercept 

between the individuals were constructed. After adjusting the p-values for multiple 

testing by applying the Benjamini-Hochberg (BH) procedure with alpha = 0.05, we 

found that BCHE was significantly decreased over the timepoints in the iRBD individuals 

(p = 0.01). We next focussed on only the iRBD samples with at least two timepoints and 

which had consistently been predicted as PD in the SVM model (n = 90). This produced 

comparable results to the initial model with BCHE significantly related with time since 

baseline (p = 0.01), but also TUBA4A nominally significant (p = 0.04) although not 

passing the BH FDR threshold. The modelling also demonstrated that the clinical 

measurements Hoehn-Yahr (p = 0.02), UPDRS I-III (p = 0.02), and UPDRS I and III (p = 0.03 

and 0.03, respectively), were significantly related with the time since baseline in the 

iRBD group post multiple testing correction. The summed PD non-motor symptoms 

measurement was strongly correlated with longitudinal progression (p = 5E-8), as were 

the questionnaire PDQ-39’s mean values (p = 0.005). From routine blood values 

available, Cholesterol was moreover associated with the longitudinal timepoints (p = 

0.02). Details can be found in Supplementary Table S6. Correlating the clinical 

measurements with the targeted proteomic data, we applied Spearman correlation 

and found that cholesterol was positively correlated with sixproteins (Supplementary 

Table S7) including HSPA8, APOE and MASP2 (p = 5E-9, 0.0003 and 0.003, respectively). 

Also correlated, but to a lesser degree and not passing the BH FDR-threshold were the 

PD NMS sum which correlated negatively with TUBA4A (p unadjusted = 0.01) and the 

PDQ-39 mean values which correlated negatively with CST3 and PTGDS (p unadjusted 

= 0.03 and 0.05, respectively).” 

 

 



 

Supplementary Table S6: Supplementary Material: Significant relationships with longitudinal 

progression evaluated by linear mixed effects models (phase II). 

The table shows the p-value significance of the interaction between the time since baseline and 

each significant clinical variable post Benjamini-Hochberg multiple testing correction (alpha = 0.05), 

the coefficient and the 95% confidence interval ± the standard error. The p-values are denoted by 

**** p < 0.0001, *** p < 0.001, ** p < 0.01, and * p < 0.05.  

Clinical variable 
Significanc

e 

Coefficien

t 
95 CI ± SE 

Hoehn-Yahr * 0.011 [0.0038, 0.0181] ± 0.0036 

UPDRS I * 0.018 [0.0041, 0.0311] ± 0.0069 

UPDRS III * 0.098 [0.0252, 0.1698] ± 0.0369 

UPDRS I-III * 0.16 [0.0547, 0.2608] ± 0.0526 

UPDRS (sum) * 0.16 [0.0549, 0.261] ± 0.0526 

PD non-motor symptoms measurement (sum) **** 0.12 [0.0938, 0.1474] ± 0.0137 

PD non-motor symptoms measurement 

(mean) 
** 0.0035 [0.0018, 0.0053] ± 0.0009 

Cholesterol * -0.30 
[-0.4841, -0.1186] ± 

0.0932 

Abbreviations: MMSE= Mini-Mental State Examination, UPDRS= Unified Parkinson’s Disease Rating 

Scale) 

 

 

 

 

 

Supplementary Table S7: Supplementary Material: Significant correlations between cholesterol and 

proteins measured by targeted mass spectrometry, evaluated by Spearman correlation (phase II). 

The table shows the p-value significance of the correlations between cholesterol and the 

significant proteins post Benjamini-Hochberg multiple testing correction (alpha = 0.05). the 

correlation coefficient is also shown. The p-values are denoted by **** p < 0.0001, *** p < 0.001, ** p 

< 0.01, and * p < 0.05. 

Protein Significance Correlation coefficient 

HSPA8 **** 0.50 

APOE *** 0.45 

MASP2 ** 0.39 

PRG4 * 0.35 

BCHE * 0.31 

SERPINA1 * 0.31 

 

 

 



 

Reviewer #2 (Remarks to the Author): 

The authors sought to investigate whether a panel of plasma proteomic biomarkers could 

discriminate PD from heathly controls, and also be applicable to iRBD. 

There are many positive aspects of this analysis and manuscript, which the authors describe 

very well. The manuscript is also well-written, and the figures and tables are informative. 

Please address the following points: 

Reviewer comment: The authors state that “Parkinson’s disease (PD) is an increasingly 

prevalent neurodegenerative disease” – please provide references that PD is increasing in 

prevalence. 

 

Our answer: We added the following references to the manuscript:  

Page 8, line 329-336, main manuscript: “PD has emerged as the world’s fastest growing 

neurodegenerative disorder and is currently affecting close to 10 million people 

worldwide, thereby emphasizing the urgent need for disease-modifying and 

prevention strategies9,10”. 

Bloem, B.R., Okun, M.S. & Klein, C. Parkinson's disease. Lancet 397, 2284-2303 (2021). 

Dorsey, E.R., Sherer, T., Okun, M.S. & Bloem, B.R. The Emerging Evidence of the 

Parkinson Pandemic. J Parkinsons Dis 8, S3-s8 (2018). 

 

Reviewer comment: Note the error in lines 142-143 – “Further details can be found in 

Supplementary Error! Reference source not found” 

Our answer: We apologize for this error and have corrected it. 

 

Reviewer comment: In the discussion, considering the recent associations of GRN mutations, 

lysosomal function, Lewy body dementia, etc. (for example, see Reho et al, Mov Disord 2022), 

it would be worth adding comments and associated references on this topic. 

Our answer: We thank the reviewer for this important comment as GRN 

dysfunction is actually widely discussed in the field. We added a reference and 

a part to the discussion section:  

 

 



 

Page 10/11, line 443-452, main manuscript: “In addition, a strong downregulation of 

progranulin (GRN) was detected, indicating a potential loss of neuroprotection and 

increased susceptibility to neuroinflammation. GRN may act as a neurotrophic factor, 

promoting neuronal survival and modulating lysosomal function. Loss-of-function 

mutations in the GRN gene are a cause of frontotemporal dementia and also of 

familial Dementia with Lewy bodies.  GRN gene variants are also known to increase 

the risk of developing AD and PD11. The main characteristics of neurodegeneration 

related to GRN are TDP43-inclusions, but LB-pathology is also very common. Loss of 

progranulin has further been linked to increased production of pro-inflammatory 

species such as TNF and IL-6 in microglia12. A study in mice showed that Grn-/- mice 

had elevated levels of complement proteins, including C3 even before the onset of 

neurodegeneration13. Additionally, previous studies have found GRN downregulated 

in serum samples of advanced PD compared to Alzheimer’s disease and healthy 

individuals14.” 

 

Reviewer comment: This analysis obviously focused on proteomic plasma biomarkers in PD. 

The authors should comment on the findings as they related to dementia with Lewy bodies 

(DLB) and MSA. Comments would be particularly needed to explain the findings in the small 

iRBD cohort. The panel predicted 72-94% of the iRBD samples as PD, which could be due to 

several factors/issues. One could be the possible change in the natural evolution of proteins 

from the prodromal (eg, iRBD) to full PD clinical syndrome phase, which the authors allude to. 

Another explanation is that some of the iRBD patients will evolve into a full DLB or MSA?? 

clinical syndromes. The proteomic panel may or may not be different between PD and DLB, 

and the authors should compare and contrast their findings with those of O’Bryant et al, Alz 

and Dem 2019. While one might predict that the panel would be different between NSD and 

glial synuclein aggregation disorder (i.e. MSA), that is also an open question, which should also 

be discussed when more samples with longitudinal follow-up and phenoconversion will be 

available.  

 

Our answer: This is an excellent point from the reviewer. Therefore, we have 

added this suggestion to the discussion including the relevance to the findings 

of Bryant et al. 

Our study did not test the differences and similarities of the proteome pattern 

of MSA subjects. As only four iRBD subjects converted to DLB, we also have no 

extended data on this. We strongly focused on iRBD and PD/DLB as the most 

common neuronal α-synuclein aggregation disorders. 

We added the following parts to the manuscript: 

 



 

Page 12, Line 519-537, main manuscript: “Our work was predominantly focused on the 

similarities between PD and iRBD, particularly as PD is the most common clinical 

syndrome developing out of iRBD. Previous proteomic analysis has been able to 

distinguish PD from DLB7, but data on DLB and iRBD is lacking. Future work would 

include refinement of the panels of biomarkers developed in this study and using the 

pipeline described in this manuscript, to identify and validate additional biomarkers 

that could distinguish between iRBD and PD, MSA and DLB. Another advantage of 

using triple quadrupole platforms is that new and better biomarkers can easily be 

augmented into the test described in this manuscript.  Thus, any test could be refined 

and optimised over time with very little modification to the assay as new biomarkers 

are discovered. In summary, instead of single biomarkers, in a univariate approach, 

we have created a pipeline using a targeted proteomic test of a multiplexed panel 

of proteins, together with machine learning.  This powerful combination of multiple 

well-selected biomarkers with state-of-the-art machine learning bioinformatics, 

allowed us to use a panel of eight biomarkers which enabled us to distinguish early PD 

from HC. This biomarker panel provided a distinct signature of protective and 

detrimental mechanisms, finally triggering oxidative stress and neuroinflammation, 

leading to α-synuclein aggregation and LB formation. Moreover, this signature was 

already present in the prodromal stages of the disease, before motor onset, supporting 

the high specificity of iRBD and its high conversion rate to a NSD especially PD8. And 

most important this blood panel can in the future help to identify subjects at risk to 

develop neuronal synuclein aggregation disorder and stratify subjects for upcoming 

prevention trials.” 

 

 

 

Reviewer #3 (Remarks to the Author): 

Summary 

In their study, Hällqvist et. al. present a panel of proteomic plasma biomarkers that are capable 

of discriminating PD and healthy controls with perfect accuracy in a machine learning model. 

They apply their model on prodromal subjects with iRBD and predict samples with a similar 

rate as expected from clinical conversion rates. Overall, the study is well-written and concise. 

The figures are informative. Mass spectrometry based plasma proteomics to uncover 

biomarker panels has been studied for several years now. Although cerebrospinal fluid (CSF) is 

often the preferred body fluid for Parkinson's research, plasma is preferred due to its potential 

for clinical applications, owing to its ease of access. 

Reviewer comment: In current studies, a machine learning (ML) layer is often added following 

the identification of proteins of interest. This layer serves to build predictive models, a process 



that is becoming increasingly standardized. Sometimes, these studies correlate clinical 

parameters with protein values to provide deeper insights. Novel studies in this field usually 

leverage recent technological advancements to achieve greater protein depth, involving larger 

cohorts for increased reliability, or utilizing innovative algorithms for data interpretation. An 

early example reference would be Pan et al. (Journal of Proteome Research 2014, 

https://doi.org/10.1021/pr500421v), which used targeted plasma proteomics to study 

biomarkers generated from CSF measurements on a cohort of 282 patients, achieving an AUC 

of 0.753 with four peptides with a linear model. In evaluating the current study, however, there 

seems to be a lack of distinctive technological advancement, an unusually large cohort, or an 

innovative algorithm. There doesn't appear to be any significant leap from the existing state-

of-the-art, based on the manuscript text. Yet, this should not overshadow the development of 

a protein panel that exhibits high predictive power and can achieve impeccable accuracy. Such 

an achievement could indeed be regarded as a form of novelty that is of great interest for the 

community. 

Our answer: We thank the reviewer for this comment. With this study we aim to 

translate an easy to apply targeted mass spec panel, that enables the 

differentiation between HC and PD and iRBD, and is capable to successfully 

correlate the proteomic markers to the clinical picture of the subjects. We used 

the ML models as useful tools to optimize and validate our model. The 

development of new AI algorithms and MS approaches is an important subject 

but not the main focus of our manuscript. As a new feature, we can provide 

for the first time longitudinal proteome data from iRBD subjects and developed 

a rapid and refined LC-MS/MS method, possible to run in any laboratory with 

an available tandem LC-MS instrument. 

We added the following part to the manuscript: 

 

Page 8/9, line 343-360, main manuscript: “Other emerging multiplex technologies are 

increasingly used to identify individual proteomic biomarkers. However, these 

techniques are not true proteomic or ‘eyes open’ methods, as they rely on selected 

large panels of specific antibodies/and other (e.g., aptamer)-based assay 

technologies. These techniques, although useful, have not provided consistent 

results15,16. In our own research we applied these techniques in our PD cohort17,18, and 

identified several pathways including inflammation that were perturbed, but we were 

not able to validate the single proteins in an unbiased manner. Proteomics using mass 

spectrometry measures all expressed proteins in an unbiased fashion as opposed to 

those selectively included in a panel.  Therefore, proteomic screening using mass 

spectrometry-based techniques is much more likely to identify new pathways or 

biomarkers and provides more meaningful insights into the disease mechanisms 

involved in PD.  We found a discrepancy between the detected markers between the 

discovery and the targeted phase. This is a known phenomenon in biomarker 

translation19, reflected in the low number of biomarkers that got an FDA approval20. 

https://doi.org/10.1021/pr500421v


We addressed this by refining our panel, reducing the number of markers and 

increasing the sample size, what has been reported as successful improvement 

strategies21. Further, the validation of potential biomarkers was performed on a second 

and different type of mass spectrometer (triple quadrupole), which added the 

advantage of being available in all large hospitals. Thus, a significant strength of our 

biomarker discovery to translation pipeline is that it allows for the developed test to be 

easily validated and translated to any clinical laboratory equipped with a tandem LC-

MS instrument.” 

Page 9, line 362-365, main manuscript: “Targeted MS has been applied in PD 

previously, including by the authors, but typically the biological fluid used has been 

CSF22 and not with readily available peripheral fluids such as the low amount of 

plasma/serum required in our study (10 µl). In addition, the authors are unaware of any 

study that have analysed longitudinal studies and prodromal cohorts including iRBD 

and phenoconverters.” 

 

Reviewer comment: Major: Study Design 

For the above reasons, I find it extremely important how this predictive panel was generated. 

The authors conduct a proteomics discovery study and identify 47 proteins as differentially 

expressed. However, their final multiplexed assay consists of 121 proteins, stemming from 

“unpublished discovery studies”, AD, and proteins in the literature. The referenced literature 

includes an Alzheimer's mouse model from 2005 and a study of Neuroinflammation in 

Schizophrenia. Essentially, there is a well-defined statistical framework for 47 proteins, and 

then 74 more are added in an opaque way. This, however, invalidates the whole discovery 

approach and severely limits the biological significance of the subsequent targeted analysis. 

To address this, I would recommend the following: 

- State how the final list of proteins was generated and included a list of them. In line 502, it is 

referenced to be Supplementary Table 2, but this is the correlation to clinical 

parameters. It is evident that the community will derive little value if the highly predictive 

panel is not disclosed. 

- Conduct a comparison between the significant proteins from the discovery phase and the 

proteins featured in the targeted assay. There seems to be a discrepancy, as some of the highly 

regulated proteins from Supplementary Figure S1 are not present in Figure 1. What is the 

authors' explanation for this? Maintaining consistency in the representation of data, such as 

using either lollipop charts or volcano plots (or ideally both), would facilitate interpretation. 

Our answer: We thank the reviewer for these important points in regard of the 

applied protein panel. 

We have now clarified that several proteins in the targeted panel originated 

from our in-house neuroinflammatory panel, which was developed from 



literature and several discovery studies, one of which we have since 

published23. We further cited two publications where the targeted 

neuroinflammatory panel has been applied24,25. Further, we have expanded in 

the introduction and discussion why the researchers created the final targeted 

MRM panel.  Additionally, all protein names, MRMs and experimental 

parameters are included in the manuscript supplementary information so any 

researcher can reproduce or use the predictive panel (Supplementary Table 

S3). By providing information on the proteins including the gene ID, protein 

name, amino acid sequence and MRMs, we increased transparency and 

traceability of the applied techniques. 

We found a degree of discrepancy between the results from the discovery and 

the targeted phases. This was not unexpected as it is well-known that the 

translation of proteomic biomarkers, going from discovery, to validation and 

finally to clinical translation, is challenging19 which is clearly conveyed by the 

low number of proteomic biomarkers currently approved by the Food and 

Drug Administration (FDA)20. The reviewer is correct, and it is our fault for not 

explaining this common issue in medical proteomics and translation of 

biomarkers into clinical practice more clearly. It is common practice in clinical 

proteomics that all omics results are followed up by a secondary and different 

validatory test and usually using another technique. This is why so many 

biomarkers fail to translate to clinical practice and why we have developed 

the pipeline described in this paper i.e. validation of potential biomarkers is 

performed on a second and different type of mass spectrometer.  In addition, 

this second type of mass spectrometer (triple quadrupole) which was used in 

this study has the added advantage of being available in all large hospitals. 

The main aim and advantage of this work was the creation of a test which can 

be performed in most large clinical chemistry laboratories for added patient 

benefit. Reducing the number of markers can be an effective tool to optimize 

the translational potential, so we refined our mass-spec panel and increased 

the sample size to increase the detectability of the proteins and facilitate the 

possible translation of the panel into clinical diagnostics21. However, we find 

that a large number of the proteins included in the targeted assay translated 

successfully between phase I and phase II as demonstrated by the machine 

learning predictions. 

To address these points and make it clearer, we have added the following lines 

and additional references to the manuscript: 

Page 3, line 104-119, main manuscript: “In this study, we employed mass spectrometry-

based proteomic phenotyping to identify a panel of blood biomarkers in early PD. In 

the initial discovery stage termed phase 0, we analysed samples from a well-

characterized de novo PD patients and healthy controls (HC) that had been 



subjected to rigorous collection protocols.26 Using unbiased state-of-the-art mass 

spectrometry, we identified putatively involved proteins, suggesting an early 

inflammatory profile in plasma. We thereafter moved on to validation in phase I, by 

creating a high throughput and targeted proteomic assay which was applied to 

plasma samples from an independent replication cohort, consisting of de novo PD, 

HC, and iRBD patients. Finally after refining the targeted proteomic panel to include a 

multiplex of only the biomarkers which were reliably measured, an independent 

analysis (phase II) was performed on a larger and independent, cohort of longitudinal,  

high-risk subjects who had been confirmed as iRBD by  state-of-the art video recorded 

polysomnography (vPSG), including follow-up sampling of up to 7 years. 

In summary, using a panel of eight blood biomarkers identified in a machine learning 

approach, allowed us (I) to differentiate between PD and HC with a specificity of 

100%, and (II) to predict 79% of the iRBD subjects as PD up to 7 years before conversion 

to motor PD-. Our identified panel of biomarkers significantly advances PD research 

by providing potential screening and detection markers for use in the earliest stages 

of PD for subject identification/stratification for the upcoming prevention trials.” 

Page 8/9, line 343-360, main manuscript: “Other emerging multiplex technologies are 

increasingly used to identify individual proteomic biomarkers. However, these 

techniques are not true proteomic or ‘eyes open’ methods, as they rely on selected 

large panels of specific antibodies/and other (e.g., aptamer)-based assay 

technologies. These techniques, although useful, have not provided consistent 

results15,16. In our own research we applied these techniques in our PD cohort17,18, and 

identified several pathways including inflammation that were perturbed, but we were 

not able to validate the single proteins in an unbiased manner. Proteomics using mass 

spectrometry measures all expressed proteins in an unbiased fashion as opposed to 

those selectively included in a panel.  Therefore, proteomic screening using mass 

spectrometry-based techniques is much more likely to identify new pathways or 

biomarkers and provides more meaningful insights into the disease mechanisms 

involved in PD.  We found a discrepancy between the detected markers between the 

discovery and the targeted phase. This is a known phenomenon in biomarker 

translation19, reflected in the low number of biomarkers that got an FDA approval20. 

We addressed this by refining our panel, reducing the number of markers and 

increasing the sample size, what has been reported as successful improvement 

strategies21. Further, the validation of potential biomarkers was performed on a second 

and different type of mass spectrometer (triple quadrupole), which added the 

advantage of being available in all large hospitals. Thus, a significant strength of our 

biomarker discovery to translation pipeline is that it allows for the developed test to be 

easily validated and translated to any clinical laboratory equipped with a tandem LC-

MS instrument.” 

 

Page 9, line 362-365, main manuscript: “Targeted MS has been applied in PD 

previously, including by the authors, but typically the biological fluid used has been 

CSF22 and not with readily available peripheral fluids such as the low amount of 



plasma/serum required in our study (10 µl). In addition, the authors are unaware of any 

study that have analysed longitudinal studies and prodromal cohorts including iRBD 

and phenoconverters.” 

 

Reviewer comment: - Enhance the characterization of the identified proteins. While a machine 

learning model provides a quantitative metric of model performance, it would be beneficial to 

see additional technical controls. These could include correlation plots with hierarchical 

clustering and box/swarm plots for relevant proteins. 

Our answer: This is a very good suggestion and we have now included Box-

scatter plots of all the significantly different proteins in Supplementary Figure S2. 

We have moreover added hierarchical clustering to the correlation plot in 

Figure 4. Please see below. 

 

Supplementary Figure S3.  Significantly different proteins between controls and the different disease 

groups DNP, iRBD and OND (phase II). 

The data are displayed as Box and whisker plots overlaid with scatter plots of the individual 

measurements. The whiskers show the minimum and maximum and the boxes show the 25th 

percentile, the median and the 75th percentile. ns = not significant, * p < 0.05, ** p < 0.01, *** p < 

0.001, and **** p < 0.0001. The proteins are represented by gene names.  



 
Figure 4.  Correlation and clustering heatmap of proteins measured by targeted mass 

spectrometry and clinical scores in controls and PD subjects. (phase I) 

The correlation was performed using Spearman’s procedure, and the clustering method was 

set to average. The clustering metric was Euclidean. The heatmap is coloured by correlation 

coefficient where red represents positive and blue negative correlations. Detailed information 

about the protein correlations can be found in Supplementary Table S3. De novo Parkinson’s 

disease (n = 99) and healthy controls (n = 36). Abbreviations: MMSE= Mini Mental State 

Examination, UPDRS= Unified Parkinson’s Disease Rating Scale 

 

 

 

 



Reviewer comment: Major: ML model 

The characterization of the machine learning (ML) model in this study could benefit from more 

thorough detailing. A receiver operating characteristic (ROC) curve based solely on the training 

set doesn't provide a comprehensive understanding of the model's generalizability. This 

analysis should be conducted on the test set. Additionally, the report lacks standard 

classification metrics such as precision, recall, and F1 score. Given that the dataset is 

imbalanced, with 99 Parkinson's Disease (PD) cases versus 36 healthy controls, a model that 

categorically predicts PD would already achieve 73% accuracy. Therefore, balanced accuracy 

or the Matthews correlation coefficient (MCC) should be considered for a more accurate 

evaluation. Alongside the ROC curve, a precision-recall (PR) curve would be a valuable 

additional metric. The section spanning lines 581-585 is somewhat ambiguous. Was the 5-fold 

split applied to the 70% of the data? Without access to the ML code, it's difficult to fully 

understand the processes involved. While it's commendable that the feature extraction step 

was cross-validated, given the limited sample size, it would be very beneficial to also cross-

validate the entire pipeline, rather than relying on a single split—ideally repeatedly. Scikit-

learn's Repeated KFold could be readily implemented for this purpose. 

Our answer: We thank the reviewer for these helpful suggestions. We agree that 

the mentioned metrics would aid in the interpretability of the model’s 

performance and have since made the following edits: 

 ROC curve conducted on training set 

 Precision-recall curve performed on the training set and added to Figure 

2 

 Precision, recall, F1-score, Matthew’s correlation coefficient and 

balanced accuracy score extracted from a stratified k-fold cross 

validation of the whole dataset partitioning the data into six splits with 

100 repetitions each (Supplementary Figure S5) 

 The method of cross-validation of the feature selection has been clarified 

 We added the following text: 

Page 6, line 237-243, main manuscript: “The combined panel was attributed with ROC 

and PR areas under the curve (AUC) of 1.0, while the values for the individual 

predictors ranged from 0.53 to 0.92 in the ROC curve, and from 0.79 to 0.96 in the PR 

curve (Figure 2). We further evaluated the whole dataset by performing repeated 

cross validation with six splits of the data and 40 repetitions. The resulting classification 

metrics (Supplementary Figure S6) demonstrated average precision, recall, F1 score, 

and balanced accuracy score of 0.995, 0.994, 0.995 and 0.987, respectively and 

thereby indicating a highly robust classification model.” 

 



 

Supplementary Figure S6. Classification metrics of the discriminant SVM model, predicting samples 

as PD or control (phase I) 

The classification metrics were calculated from stratified k-fold cross validation utilising six splits of 

the data and 40 repetitions and are displayed as histograms showing the frequency of the metrics 

precision, recall, the F1 score, the Matthews correlation coefficient and the balanced accuracy 

score.   

 

Reviewer comment: found the correlation to clinical scores interesting, but, also confusing: 

On one hand, the aim is to develop a predictive biomarker panel, while on the other, it's 

desirable to identify biomarkers that correlate with the scale. Wouldn't it make more sense to 

directly construct an ML model capable of predicting, for example, the clinical rating scale? 

Our answer: We thank the reviewer for this comment. We agree that the 

prediction of clinical rating scales, such as UPDRS or MMSE, could provide 

valuable insights. In this paper, our main goal was to predict the individuals’ 

diagnoses, although we found the clinical correlations informative and helpful 

to corroborate the variable selection in the ML model. Since the submission of 

the original draft, we have included a large new cohort of individuals 

diagnosed with iRBD (54 subjects), proven in the polysomnography, several 

with up to 5 longitudinal timepoints and 10 years of follow up, and predicted 

these in the ML model. We further evaluated the relationship between the 

clinical variables and the proteins.  

Page: 7, line: 307-326, main manuscript: Comparison with clinical outcomes and 

measurements in the longitudinal iRBD samples (phase II) “The longitudinal expression 

in the iRBD samples was evaluated using linear mixed effects models. Conditional 

growth models with random slope and random intercept between the individuals 

were constructed. After adjusting the p-values for multiple testing by applying the 

Benjamini-Hochberg (BH) procedure with alpha = 0.05, we found that BCHE was 

significantly decreased over the timepoints in the iRBD individuals (p = 0.01). We next 

focussed on only the iRBD samples with at least two timepoints and which had 

consistently been predicted as PD in the SVM model (n = 90). This produced 

comparable results to the initial model with BCHE significantly related with time since 

baseline (p = 0.01), but also TUBA4A nominally significant (p = 0.04) although not 

passing the BH FDR threshold. The modelling also demonstrated that the clinical 

measurements Hoehn-Yahr (p = 0.02), UPDRS I-III (p = 0.02), and UPDRS I and III (p = 0.03 

and 0.03, respectively), were significantly related with the time since baseline in the 



iRBD group post multiple testing correction. The summed PD non-motor symptoms 

measurement was strongly correlated with longitudinal progression (p = 5E-8), as were 

the questionnaire PDQ-39’s mean values (p = 0.005). From routine blood values 

available, Cholesterol was moreover associated with the longitudinal timepoints (p = 

0.02). Details can be found in Supplementary Table S6. Correlating the clinical 

measurements with the targeted proteomic data, we applied Spearman correlation 

and found that cholesterol was positively correlated with sixproteins (Supplementary 

Table S7) including HSPA8, APOE and MASP2 (p = 5E-9, 0.0003 and 0.003, respectively). 

Also correlated, but to a lesser degree and not passing the BH FDR-threshold were the 

PD NMS sum which correlated negatively with TUBA4A (p unadjusted = 0.01) and the 

PDQ-39 mean values which correlated negatively with CST3 and PTGDS (p unadjusted 

= 0.03 and 0.05, respectively).” 

 

Reviewer comment: Protein panel validation 

The authors could certainly benefit from providing a more thorough analysis of the significant 

proteins identified during both the discovery and targeted phases. Presently, there appears to 

be a degree of inconsistency in terms of the significant proteins identified, and this is 

somewhat perplexing. A comparison with existing literature could provide valuable insights 

and potentially explain these discrepancies. 

The authors do this partly by comparing pathways, and, e.g., comparing to their previous 

studies, but when comparing to the volcano plot of their OLINK study there seem to be entirely 

different proteins. This could be done by providing a table with proteins and references where 

they were identified previously. 

Our answer: We thank the reviewer for mentioning this important aspect. We 

cited the previous research to set our MS approach into the context of the 

actual research. As we mentioned above it is a known phenomenon, that 

proteins, identified in multi-omics approaches are not validated in other 

cohorts with different methods. The mentioned OLINK panel is a targeted panel 

based on another technology (proximity extension assay). We did not intent to 

run a validation or one to one comparisons of the applied methods. 

We added the following lines to the manuscript to emphasize this point: 

 

Page 8/9, line 343-360, main manuscript: “Other emerging multiplex technologies are 

increasingly used to identify individual proteomic biomarkers. However, these 

techniques are not true proteomic or ‘eyes open’ methods, as they rely on selected 

large panels of specific antibodies/and other (e.g., aptamer)-based assay 

technologies. These techniques, although useful, have not provided consistent 

results15,16. In our own research we applied these techniques in our PD cohort17,18, and 

identified several pathways including inflammation that were perturbed, but we were 



not able to validate the single proteins in an unbiased manner. Proteomics using mass 

spectrometry measures all expressed proteins in an unbiased fashion as opposed to 

those selectively included in a panel.  Therefore, proteomic screening using mass 

spectrometry-based techniques is much more likely to identify new pathways or 

biomarkers and provides more meaningful insights into the disease mechanisms 

involved in PD.  We found a discrepancy between the detected markers between the 

discovery and the targeted phase. This is a known phenomenon in biomarker 

translation19, reflected in the low number of biomarkers that got an FDA approval20. 

We addressed this by refining our panel, reducing the number of markers and 

increasing the sample size, what has been reported as successful improvement 

strategies21. Further, the validation of potential biomarkers was performed on a second 

and different type of mass spectrometer (triple quadrupole), which added the 

advantage of being available in all large hospitals. Thus, a significant strength of our 

biomarker discovery to translation pipeline is that it allows for the developed test to be 

easily validated and translated to any clinical laboratory equipped with a tandem LC-

MS instrument.” 

 

Reviewer comment:  

Misc: - The auto-generated PDF appears to have formatting issues, e.g. Reference source not 

found, figures are not readable 

Our answer: We apologize for any inconvenience caused, rechecked the 

references and submitted all images in high resolution in the revised version. 

Reviewer comment: - Figure 2: The figure contains long descriptions for the Proteins, whereas 

the text has short names. It would increase readability to stick to one. 

Our answer: Thanks for this comments, to increase readability we adapted the 

caption accordingly. 

Reviewer comment: - L398: Clinical testing for neurological disorders is limited to use of a 

select few well characterised individual markers and translating new biomarkers to eventual 

clinical application is notoriously challenging. “to use of a” 

Our answer: We corrected this. 

Page 13, line 540-548, main manuscript: Clinical testing for neurological disorders is 

limited to the use of a selected few well characterized individual markers and 

translating new biomarkers to eventual clinical application is notoriously challenging. 

The power of using multiplexed biomarker technologies with machine learning 

enables biomarkers to be evaluated in context with other markers of pathological 

events thereby creating a ‘disease profile’ as opposed to individual markers.  

Reviewer comment: In conclusion, I cannot endorse this study for publication in its current 

form in Nature Communications. However, I believe that a highly predictive biomarker panel, 



as presented in this study, could be of considerable interest to the scientific community. 

Therefore, I would support the publication of this study, provided the necessary revisions are 

made 

Our answer: We thank the reviewer for this comment that if we were able to 

analyse the extra samples, correlate different tissue types and took on board 

all suggestions they would support this work for publication.  We therefore 

appreciate the constructive comments of the reviewers and hope that the 

revisions merit the editors and the reviewers. We believe the manuscript gained 

significantly with the additional cohort and analyses.  
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REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author):

The authors have safisfactorily addressed many of the crificisms and suggesfions posed by the review 

panel, and the manuscript is much stronger. However, there are sfill some issues that warrant 

clarificafion.

Please address the following points, which largely relate to terminology and phenonversion issues:

One issue is terminology. The authors confinue to focus on the term “Parkinson’s disease” when 

referring to both PD and to some extent DLB. The coauthors in the recent publicafion on neuronal a-

synuclein disease (NSD) (Simuni et al) seftled on that term and abbreviafion to encompass the clinical 

syndromes of PD and DLB under one umbrella term, and they also regarded iRBD as a common 

prodromal disorder that often eventually manifests as overt PD or DLB. The authors should revise their 

terminology in various secfions of the manuscript to use PD when clearly focused on those with the PD 

phenotype, and use PD/DLB or NSD or some other term and abbreviafion when referring to the 

combinafion of these phenotypes or to the same biologic enfity with Lewy body disease pathology at its 

core. And doesn’t Figure 3 reflect “Suggested involved in Lewy body disease” (or NSD) rather than 

“Parkinson’s disease”

One of several examples of this confusing use of terminology is stated on page 12, “Our approach is 

feasible to select subjects for clinical trials, as all the iRBD subjects had all of their samples predicted as 

PD and went on to develop a NSD. Not all iRBD subjects showed the PD paftern. So far, the published 

data indicates, that around 80% of the iRBD subjects develop NSD.” The term NSD is intended to 

represent a disease process, and as such, most iRBD subjects represent those who already have the 

pathobiology of NSD, and many will eventually phenoconvert to the PD or DLB syndrome.

A somewhat related issue is their statements or implicafions on iRBD almost always phenoconverfing to 

PD. The sets of the largest series on prospecfively followed iRBD pafients suggest that phenoconversion 

to PD vs DLB is almost equal, or skewed with PD being slightly more frequent than DLB as eventual 

phenotypic outcomes. Their plasma proteomic findings are truly intriguing, and may impact the NSD 

field greatly – including as inclusion criteria or markers worthy of tracking in clinical trials. While more 

validafion work is clearly needed, if their findings are replicated in overt PD and DLB cohorts, and in iRBD 

subjects who later phenoconvert to either PD or DLB, then the applicability would extend to DLB in 

addifion to PD. Furthermore, their findings would likely NOT be applicable to those with iRBD associated 

with underlying MSA pathology. Please discuss these issues with more clarity in the Discussion.



Reviewer #3 (Remarks to the Author):

For the revision, the authors do a good job of pufting their findings into context and mapping out what is 

currently possible and what is not and what the requirements are in terms of funding and fimescale for 

follow-ups. I especially like the focus on the data, which – for the discussion of CSF vs plasma – has only 

limited power to explain things but can classify. I think this is of great benefit to the study.

Overall, my concerns have been addressed. There seems to be a slight technical flaw for Figure S6, so I 

suggest rerunning this and updafing the respecfive figure(s), which should be a minor fix. Apart from 

that, my concerns have been addressed.

S6:

In line 85ff of the DNP_Code, feature selecfion is done on x_train. When doing cross-validafion (line 

161ff), feature selecfion needs to be done for each x_train of the cross-validafion split as otherwise 

there could be some data leakage, as for some splits, datapoints from x_train from feature selecfion 

could be in x_test of cross validafion.

There are some addifional notes that I would like to share with the authors:

In my inifial review, I had pointed to the discrepancy between discovery and target proteins in the study, 

and the authors now addressed this further and pointed to the general issue of discovery and validafion 

with different instruments. I like the crifical discussion about assay technologies. The benefits of using 

readily available instruments such as the triple quadrupole are evident. However, I would like to point 

the authors towards ongoing developments. These approaches are characterized as a `triangular` 

strategies and in clinical proteomics, `rectangular` strategies have been proposed, e.g. see the highly 

cited review by Geyer et al. (10.15252/msb.20156297) from 2017. Using the same instrument would 

circumvent this and would enable a much higher consistency between the discovery and target phases.

The newly added Box-Scafter plots give fantasfic insight in the data and strengthen the confidence of the 

findings.

Addifionally, the same goes for the heatmap – very insighfful. There are some clusters visible, and it 

could be interesfing to explore them further.

The ML model greatly improved, now having addifional stafisfics and increased cross-validafion. The 

code shared on GitHub does not have the *.py-ending, so there is no syntax highlighfing. This decreases 

readability. Addifionally, it would be great if the data files could be shared so that the analysis can be 

reproduced.

As a side note, I found a some figures really hard to read as the font size is too small, especially for the 

axis. One way to check this is to open Word, set it to 100%, and check what is readable and what is not. 

Supplementary Figure 6 as bar plots is a bit hard to read; maybe a table with mean + std would be 

helpful.



In the code: LL 270: # # # Plot precision-recall curve of trainin set -> This is the PR curve of the test set 

(code is correct but inline comment not)

Reviewer #3 (Remarks on code availability):

The code shared on GitHub does not have the *.py-ending, so there is no syntax highlighfing. This 

decreases readability. The Readme could be extended.

Addifionally, it would be great if the data files could be shared so that the analysis can be reproduced.

Reviewer #4 (Remarks to the Author):

This manuscript presents innovafive and important findings on peripheral biomarkers of PD, in parficular 

its very early stages. It has been thoroughly responsive to the comments and I don't have anything 

further to adress.



Rebuttal letter for manuscript NCOMMS-23-14866A 

titled 

Proteomics and machine learning identify a distinct blood biomarker panel to 

detect Parkinson’s disease up to 7 years before motor disease 

We thank the editors and reviewers for their valuable feedback in regard of our 

manuscript. We have taken on-board all the points, suggestions and the 

manuscript has been revised accordingly. 

Below, we answer all comments point-by-point. 

In addition to these point-to-point answers below, we have again involved a 

native speaker, who revised some grammar and wordings in the text, that is 

tracked in the files. 

Reviewer comments are displayed in black, the author response in blue, 

quotes from the manuscript in italics. 

 

REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

The authors have satisfactorily addressed many of the criticisms and suggestions posed by the 

review panel, and the manuscript is much stronger. However, there are still some issues that 

warrant clarification. 

Please address the following points, which largely relate to terminology and phenonversion 

issues: 

Reviewer comment: One issue is terminology. The authors continue to focus on the term 

“Parkinson’s disease” when referring to both PD and to some extent DLB. The coauthors in the 

recent publication on neuronal a-synuclein disease (NSD) (Simuni et al) settled on that term 

and abbreviation to encompass the clinical syndromes of PD and DLB under one umbrella 

term, and they also regarded iRBD as a common prodromal disorder that often eventually 

manifests as overt PD or DLB. The authors should revise their terminology in various sections 

of the manuscript to use PD when clearly focused on those with the PD phenotype, and use 

PD/DLB or NSD or some other term and abbreviation when referring to the combination of 

these phenotypes or to the same biologic entity with Lewy body disease pathology at its core. 

And doesn’t Figure 3 reflect “Suggested involved in Lewy body disease” (or NSD) rather than 

“Parkinson’s disease” 

One of several examples of this confusing use of terminology is stated on page 12, “Our 

approach is feasible to select subjects for clinical trials, as all the iRBD subjects had all of their 



samples predicted as PD and went on to develop a NSD. Not all iRBD subjects showed the PD 

pattern. So far, the published data indicates, that around 80% of the iRBD subjects develop 

NSD.” The term NSD is intended to represent a disease process, and as such, most iRBD 

subjects represent those who already have the pathobiology of NSD, and many will eventually 

phenoconvert to the PD or DLB syndrome. 

 

Our answer: The new Integrated Staging System of Neuronal alpha-Synuclein 

Disease (NSD-ISS) is indeed an important step, which should be acknowledged. 

In fact, since we were actively integrated in the development of NSD-ISS we 

truly appreciate this comment and revised the manuscript accordingly to be 

compliant with the proposed terminology. Isolated REM sleep behaviour 

disorder (iRBD) is classified as Stage 2 in the NSD-ISS, Parkinson’s disease (PD) 

and dementia with Lewy bodies (DLB) is categorized as Stage 3-6 according 

to the functional impairment of the classified subjects1. 

We now consequently use the terms iRBD, PD, and DLB when we are talking 

about these clinical syndromes. All these terms are included into the term 

Neuronal Synuclein Disease (NSD). The transition from the prodromal iRBD stage 

to a higher stage is named “phenoconversion” from stage 2 to stage 3 of NDS. 

We thank the reviewer for the suggestion to also rename Figure 3, it has been 

renamed as “Suggested involvement in Synuclein Disease” with the legend: 

“Oligomerisation and accumulation of α-synuclein in Lewy body inclusions is a 

key process in the pathophysiology of Neuronal Synuclein Disease.” 

 

Here, we list the several changes to the manuscript: 

Main manuscript: page 3, lines 106-13: “Inflammatory risk factors in circulating blood 

(i.e., C-reactive-protein and Interleukin-6 and α-synuclein-specific T-cells) are 

associated with motor deterioration and cognitive decline in PD2,3. These inflammatory 

blood markers can even be identified in plasma/serum samples of individuals with 

isolated REM sleep behaviour disorder (iRBD), the early stage of a Neuronal Synuclein 

Disease (NSD), and the most specific predictor for PD and dementia with Lewy bodies 

(DLB)4. NSD was recently proposed as a new biologically defined term, for a spectrum 

of clinical syndromes, including iRBD, PD, and DLB that follow an integrated clinical 

staging system of progressing neuronal α-synuclein pathology (NSD-ISS)1.” 

Main manuscript: pages 3-4, lines 125-48: “In summary, using a panel of eight blood 

biomarkers identified in a machine-learning approach, we were able to differentiate 

between PD and HC with a specificity of 100%, and to identify 79% of the iRBD subjects, 

up to 7 years before the development of either DLB or motor PD (NSD stage 3). Our 

identified panel of biomarkers significantly advances NSD research by providing 



potential screening and detection markers for use in the earliest stages of NSD for 

subject identification/stratification for the upcoming prevention trials.” 

Main manuscript: page 7, lines 306-10: “This cohort was available from continuing 

recruitment at the same centre and consisted of longitudinally followed iRBD subjects. 

Deep phenotyping revealed 100% (54/54) had RBD on PSG, 88.9% (48/54) had 

hyposmia as identified with the Sniffin’ Stick Identification Test, and 91.7 % (22/24) had 

neuronal α-synuclein positivity as shown by α-synuclein Seed Amplification Assay (SAA) 

in cerebrospinal fluid (CSF)5.” 

Main manuscript: page 7, lines 324-26: “…at the time of analysis, 16 out of the 54 

subjects in our longitudinal iRBD validation cohort had developed PD/DLB.” 

Main manuscript: page 9, line 393-95: “In the last years, CSF SAA emerged as the most 

specific indicator for NSD, including in prodromal stages like iRBD, with an impressively 

high sensitivity and specificity of up to 74 and 93%, respectively, across various 

cohorts1,6. 

Main manuscript: page 9, lines 400-2: “Therefore, the identification of additional 

biomarkers is needed, as is further knowledge of the biomarkers and pathways of the 

underlying pathophysiology (e.g. inflammation) during the earliest stage of NSD.” 

Main manuscript: page 10, lines 456-57: “So far, 16 of the 54 iRBD subjects converted 

to PD/DLB” 

Main manuscript: pages 14, lines 648-55: “Our work was predominantly focused on 

the similarities between PD and iRBD. Future work would include (i) validation of our 

findings in independent cohorts consisting of iRBD and other at-risk subjects (e.g. 

hyposmia), PD, DLB and MSA subjects, (ii) refinement of the panels of biomarkers 

developed in this study including sensitivity and technical performance, (iii) and using 

the pipeline described in this manuscript, the identification and validation of 

additional biomarkers that could distinguish between the different clinical syndromes 

with the ultimate goal of identifying progression biomarkers as outcome measures for 

prevention trials. 

Main manuscript: pages 13/14, lines 627-47One advantage of using triple quadrupole 

platforms is that new and better biomarkers can easily be augmented into the test 

described in this manuscript. Thus, any test could be refined and optimized over time 

with very little modification to the assay as new biomarkers are discovered. Clinical 

testing for neurological disorders is limited to the use of a selected few well-

characterised individual markers and translating new biomarkers to eventual clinical 

application is notoriously challenging. The power of using multiplexed biomarker 

technologies with machine learning enables biomarkers to be evaluated in context 

with other markers of pathological events, thereby creating a ‘disease profile’ as 

opposed to individual markers. This approach opens the biomarker discovery field for 

many disorders and increases the specificity and sensitivity of testing as demonstrated 

in this study. The combination of multiplexed analysis of biomarker panels analysed on 

triple quadrupole platforms can advance biomarker translation to clinical application; 



this mass spectral technology is already embedded in many clinical diagnostics labs 

for routine small molecule analyses.” 

Supplementary material: page 2, lines 70-3: “In those subjects who converted to 

PD/DLB (stage 3 NSD) during follow-up, eight of eleven were observed to have the PD 

profile through all timepoints and the remaining three patients demonstrated a 

change to a PD profile during follow-up.” 

Supplementary Table S4: page 9. “Characteristics of longitudinal iRBD subjects (phase 

II)“The table shows age, sex, number of longitudinal samples, and the time since 

baseline for the last sample. Out of the 40 iRBD subjects, 16 had converted to stage 3 

NSD (neuronal synuclein disease) at the time of the last sample (11 Parkinson’s disease, 

5 dementia with Lewy bodies). The time from baseline to conversion is shown.” 

 

Reviewer comment: A somewhat related issue is their statements or implications on iRBD 

almost always phenoconverting to PD. The sets of the largest series on prospectively followed 

iRBD patients suggest that phenoconversion to PD vs DLB is almost equal, or skewed with PD 

being slightly more frequent than DLB as eventual phenotypic outcomes. Their plasma 

proteomic findings are truly intriguing, and may impact the NSD field greatly – including as 

inclusion criteria or markers worthy of tracking in clinical trials. While more validation work is 

clearly needed, if their findings are replicated in overt PD and DLB cohorts, and in iRBD subjects 

who later phenoconvert to either PD or DLB, then the applicability would extend to DLB in 

addition to PD. Furthermore, their findings would likely NOT be applicable to those with iRBD 

associated with underlying MSA pathology. Please discuss these issues with more clarity in the 

discussion. 

Our answer: We fully agree that the actual literature supports an almost equal 

conversion rate from iRBD to PD and DLB. Thus, we revised the corresponding 

parts and included additional references. 

Further, we updated the discussion section to discuss our findings in PD and 

iRBD subjects and the possible next steps for validating the data in DLB and 

addressing the possible limitations of our data regarding MSA subjects. 

Main manuscript: page 13, lines 612-24: “Continuing further longitudinal follow-up of 

these subjects will elucidate our understanding of when and potentially why 

conversion occurs/does not occur. It is known that around 80% of iRBD subjects 

develop NSD, i.e. PD/DLB with a rate of 6% per year as shown in a multicenter cohort 

including ours9. To a lesser extent, iRBD subjects develop the intracytoplasmic glial α-

synuclein aggregation disorder Multiple Systems Atrophy (MSA)8,9. Although RBD is 

common in MSA (summary prevalence of 73%)10 none of our iRBD subjects have, as 

yet, converted to MSA. Recruiting and following large longitudinal at-risk cohorts is, 

therefore, very important and future studies will not only identify biomarkers for 

phenoconversion from stage 1 or 2 to eventually stage 3 NSD or MSA, but also identify 

the many possible factors of resilience (including genetics etc.) of NON-conversion 



which will be as, if not more important than identifying indicators for phenoconversion. 

Both direction progression biomarkers from stage 1 and 2 cohorts will have tremendous 

implications for future neuroprevention trials as phenoconversion itself is (due to the 

low annual rate) unlikely to be an outcome measure.” 

 

Reviewer #3 (Remarks to the Author): 

For the revision, the authors do a good job of putting their findings into context and mapping 

out what is currently possible and what is not and what the requirements are in terms of 

funding and timescale for follow-ups. I especially like the focus on the data, which – for the 

discussion of CSF vs plasma – has only limited power to explain things but can classify. I think 

this is of great benefit to the study. 

 

Reviewer comment: Overall, my concerns have been addressed. There seems to be a slight 

technical flaw for Figure S6, so I suggest rerunning this and updating the respective figure(s), 

which should be a minor fix. Apart from that, my concerns have been addressed. 

Our answer: We gratefully thank the reviewer for pointing this out. The plot has 

been updated: 

 

 

Supplementary Figure S6. Classification metrics of the discriminant SVM model, 

predicting samples as PD or control (phase I) 

The classification metrics were calculated from stratified k-fold cross-validation utilising 

six splits of the data and 40 repetitions and are displayed as histograms showing the 

frequency of the metrics precision, recall, the F1 score, and the balanced accuracy 

score. The average and standard deviation was, for precision 0.87 ± 0.09, for recall 0.87 

±0.08, for the F1 score 0.86 ± 0.09, and for the balanced accuracy score 0.82 ± 0.12. 

 



Reviewer comment: S6: In line 85ff of the DNP_Code, feature selection is done on x_train. 

When doing cross-validation (line 161ff), feature selection needs to be done for each x_train 

of the cross-validation split as otherwise there could be some data leakage, as for some splits, 

datapoints from x_train from feature selection could be in x_test of cross validation. 

Our answer: We thank the reviewer for noting this discrepancy. The cross-

validation has been updated to perform feature selection in the training set in 

each CV split. 

Main manuscript: page 6, lines 275-83: “We further constructed receiver operating 

characteristic (ROC) and precision-recall (PR) curves to illustrate the ability of each 

protein to distinguish between PD and HC and compared this with the ability of the 

combined multiplexed protein panel. The combined panel achieved an AUC of 1.0 

on both ROC and PR curves. The AUC of the individual predictors ranged from 0.53 to 

0.92 in the ROC curve, and from 0.79 to 0.96 in the PR curve (Figure 2). We further 

evaluated the whole dataset by performing repeated cross-validation with six splits of 

the data and 40 repetitions. The resulting classification metrics (Supplementary Figure 

S6) demonstrated average and standard deviation for precision, recall, F1 score, and 

balanced accuracy score of 0.87 ± 0.09, 0.87 ± 0.08, 0.86 ± 0.09 and 0.82 ± 0.12, 

respectively, thereby indicating a highly robust classification model.” 

Reviewer comment: There are some additional notes that I would like to share with the 

authors: 

In my initial review, I had pointed to the discrepancy between discovery and target proteins in 

the study, and the authors now addressed this further and pointed to the general issue of 

discovery and validation with different instruments. I like the critical discussion about assay 

technologies. The benefits of using readily available instruments such as the triple quadrupole 

are evident. However, I would like to point the authors towards ongoing developments. These 

approaches are characterized as a `triangular` strategies and in clinical proteomics, 

`rectangular` strategies have been proposed, e.g. see the highly cited review by Geyer et al. 

(10.15252/msb.20156297) from 2017. Using the same instrument would circumvent this and 

would enable a much higher consistency between the discovery and target phases. 

The newly added Box-Scatter plots give fantastic insight in the data and strengthen the 

confidence of the findings. 

Additionally, the same goes for the heatmap – very insightful. There are some clusters visible, 

and it could be interesting to explore them further. 

The ML model greatly improved, now having additional statistics and increased cross-

validation. The code shared on GitHub does not have the *.py-ending, so there is no syntax 

highlighting. This decreases readability. Additionally, it would be great if the data files could be 

shared so that the analysis can be reproduced. 



Our answer: The GitHub code has been updated and provided with a.py suffix 

to increase readability.  

https://github.com/jchallqvist/DNP_Pub/blob/main/DNP_Code 

 

Reviewer comment: As a side note, I found a some figures really hard to read as the font size 

is too small, especially for the axis. One way to check this is to open Word, set it to 100%, and 

check what is readable and what is not. Supplementary Figure 6 as bar plots is a bit hard to 

read; maybe a table with mean + std would be helpful. 

Our answer: The figures have been adjusted with larger font size where possible. 

In addition, we have added average and standard deviation to the text 

describing Supplementary Figure 6 as well as to the figure caption. 

Reviewer comment: In the code: LL 270: # # # Plot precision-recall curve of trainin set -> This 

is the PR curve of the test set (code is correct but inline comment not) 

Our answer: We thank the reviewer for pointing out this error. We have 

corrected it. 

 

Reviewer #3 (Remarks on code availability): 

Reviewer comment: The code shared on GitHub does not have the *.py-ending, so there is no 

syntax highlighting. This decreases readability. The Readme could be extended. 

Our answer: A.py suffix has been added to increase readability. The Readme 

has been updated, including information about the package versions, and 

extended with a statement about data availability. 

Reviewer comment: Additionally, it would be great if the data files could be shared so that the 

analysis can be reproduced. 

Our answer: We fully acknowledge that sharing the data files would be 

beneficial. However, as we are performing additional analyses on the 

proteomic and clinical data for a grant application, we will keep the data 

tables embargoed for approximately one year before making them publicly 

available. We are of course more than happy to share the data tables upon 

request by e-Mail to the corresponding author. 

Reviewer #4 (Remarks to the Author): 

 



This manuscript presents innovative and important findings on peripheral biomarkers of PD, 

in particular its very early stages. It has been thoroughly responsive to the comments and I 

don't have anything further to address. 

Our answer: We thank reviewer 4 for this comment. 
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REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The authors have safisfactorily addressed all of the crificisms and suggesfions posed by the review panel.

Reviewer #3 (Remarks to the Author):

Concerns have been adressed.

Reviewer #3 (Remarks on code availability):

The code was now improved.

Small note: The link seems broken and shows a 404, however it points to the right repository and one 

can fine the code. The correct link would probably be:

hftps://github.com/jchallqvist/DNP_Pub/tree/main



Rebuttal letter for manuscript NCOMMS-23-14866B

Below, we answer the comments point-by-point.

All the changes to the manuscript are marked in red color in the tracked 

changes file.

REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The authors have satisfactorily addressed all of the criticisms and suggestions posed by 
the review panel.

Reviewer #3 (Remarks to the Author):

Concerns have been adressed.

Reviewer #3 (Remarks on code availability):

The code was now improved. 

Small note: The link seems broken and shows a 404, however it points to the right 
repository and one can fine the code. The correct link would probably be:

https://github.com/jchallqvist/DNP_Pub/tree/main

Our answer:

We thank the reviewers and are happy that we could address all the valuable 
comments and suggestions.

We checked and corrected all the hyperlinks to the repositories.
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