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Legend to Supplementary Figure 1. Gating strategy used for FACS-based purification of
GFP+ cells. Cells were initially selected using Forward and Side Scatter area plots (FSC-A
and SSC-A) (indicated gate). To minimize the amount of small debris collected, care was taken
to adjust the lower limit on the forward scatter (measure of size) axis, although the gate was
left wide enough that smaller cells were still captured. Cell doublets were excluded using
forward/side scatter width vs height plots (FSC-W/FSC-H and SSC-W/SSC-H). Live-dead
staining using propidium iodide was used to identify viable cells, which were subsequently
separated into GFP+ and GFP- populations based on fluorescence. GFP+ cells were retained

for further use.
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Legend to Supplementary Figure 2. Cell type assignment based on specific marker gene
expression. Gene expression heatmap for higher-order cell types (columns) grouped according
to the Seurat classification shown in Fig. 2a. Color-coding from Fig. 2a is retained. Magenta,
low expression; yellow, high expression, In-normalized gene expression data is shown. UMAP
representations showing expression patterns of indicated marker genes across cell clusters (b),

color bars indicate relative intensity of expression, SCT normalized values are shown.
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Legend to Supplementary Figure 3. Pseudotime assignment of NSC-derived cell lineages
defined by expression of specific marker genes. Dot-plot graphs indicating the relative
expression of marker genes in NSCs and NSC-derived neuronal (a) and astrocytic (b)
populations; scaled SCT normalized data are shown. Color bars represent relative intensity of
gene expression, dot size represents percentage of cells within an individual cell cluster
(identity) expressing the indicated marker gene (feature). UMAP representations showing
NSC-derived neuronal (c¢) and astrocytic lineages (d); color bars indicate calculated pseudotime

distances from NSCs (yellow: minimum, red: maximum).
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Legend to Supplementary Figure 4. Integrated analysis of hierarchical clustering,
pseudotime profiles, and functional annotations for cell populations. Dendrogram showing
hierarchical clustering of putative cell populations identified in Batiuk et al.*’, or in this study
(a). The labels indicate the original group names. Genes in the indicated cell populations were
plotted based on the pseudotime of Shin et al.?” (b) and of Harris et al.? (¢). The y-axis in (b)
and (c) represents the mean z-score normalization of gene expression. The genes used to
identify the AST4, ASTS, NSC-stage 1, NSC-stage 2 and RG-like populations were extracted
from the gene lists provided with each study and the mean value was calculated. GO biological
pathway analysis using DAVID for the cell cluster AST4 identified in Batiuk et al.*” FDR:
false discovery rate (d). UMAP-based visualization of NSC-derived neuronal and astrocytic
lineages with A#p1b2 expression superimposed. Each dot represents an individual cell and gene

expression is indicated by color intensity (e).
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Legend to Supplementary Figure 5. GO biological pathway matrix for the differentially
expressed genes in NSC-derived cell populations. Differentially over-represented (red,

p<0,05) biological pathways found in the neuronal (a) and astrocytic (b) lineages.
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Legend to Supplementary Figure 6. RNA velocity analysis of additional cell populations.
Box plots showing transition probabilities calculated for N-stage 1 cells (a), A-stage 1 cells (b),
A-stage 2 cells (c), A-stage 3 cells (d) and A-stage 4 cells (e). Orange bars: Control group, cyan
bars: TBI group, 5-6 animals per condition. In all panels, ns: p > 0.05; *p<0,05; **p <= 0.01;
*Hkp <=0.001; ****p<=0.0001, independent two-sided non-parametric Wilcoxon test. Exact
p values for all statistical comparisons and calculated mean transition probabilities across cell
clusters are available as Supplementary data 14. Box plots show the median, first quartile
(25%), third quartile (75%) and inter-quartile range. Whiskers represent data minima and
maxima; dots are data points located outside the whiskers. Source data is available as

Supplementary data 15.
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Legend to Supplementary Figure 7. Design and validation of probes for spatial
transcriptomics. Sample confocal images representative of three independent experiments of
RNA scope detection of marker genes used to identify individual A-stage 4 (a), A-stage 2 (b)
and A-stage 1 (c) cells in the dentate gyrus. UMAP plots showing the expression of individual
gene markers used for RNAscope validation, across astrocytic cell clusters, SCT normalized
values are shown (d). UMAP representations of the combined 10X and Molecular Cartography
dataset, indicating expression of exemplar marker genes for the various identified cell
populations (e). Sample images representative of three independent experiments showing how
mRNA expression detected by 12 probes in Molecular Cartography experiments compares to
that reported in the Allen Brain Atlas, colored bars indicate relative intensity of gene
expression, raw counts are shown, colored dots indicate individual cells in the dentate gyrus(f).
Bar plots showing the relative number of cells per identified Molecular Cartography cluster in
Control or TBI samples, against their expected abundance (based on 59,05% of all cells
originating from TBI samples: dashed line), *p<0.05 vs. expected abundance, binomial test (g).
The numbers of cells per cluster and experimental condition, and the statistical analyses
performed are given in Supplementary data 11, including exact p values for all statistical

comparisons.
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