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Supplementary Information for Integrated single-cell chromatin and 

transcriptomic analyses of human scalp identify gene regulatory programs 

and critical cell types for hair and skin diseases 

 

I. Supplementary Notes 

Demonstration of how peak-to-gene linkages are missed on full dataset 

To demonstrate how enhancer-gene links can be missed by using only the full dataset, we 

examined peaks linked to RUNX3, a gene that is expressed in multiple distinct cell types. Using 

the full, non-sub clustered dataset, we identified 43 linked peaks for RUNX3, the majority of 

which were accessible in T-lymphocytes, myeloid lineage cells, and melanocytes. Relatively 

little chromatin accessibility was observed in keratinocytes (Figure 2B). However, performing 

peak-to-gene identification in the sub-clustered keratinocytes revealed numerous RUNX3-linked 

peaks that were strongly accessible in sebaceous gland cells. Repeating this process on each 

of the sub-clustered data sets resulted in a non-redundant set of 81 RUNX3- linked peaks, 

nearly doubling the number of RUNX3-linked enhancers identified using only the full dataset. 

  

Discussion on absence of T-lymphocyte differences between alopecia areata and control 

samples 

While we observed increased overall abundance of T-lymphocytes in samples from patients 

with alopecia areata (Fig. 1H,I, Extended Data Fig. 2D,E), we did not observe any discrete 

populations of T-lymphocytes unique to patients with alopecia areata, nor did we identify an 

appreciable number of differentially accessible open chromatin regions between alopecia areata 

and control T-lymphocytes. This perhaps could be because the cellular phenotype of auto-
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reactive T-lymphocytes in alopecia areata is relatively subtle, or is driven by rare subpopulations 

of cells that we could not identify.  

 

Additional LD score regression analyses 

To assess how much additional information the cell type–specific chromatin profiles provided, 

we repeated LD score regression using cell type–specific marker genes instead of peaks 

(Methods, Extended Data Fig. 8C-E). We found that while the overall pattern of enrichments 

was similar, the degree of enrichment and the statistical significance tended to be lower when 

using cell type–specific genes compared to open chromatin regions. We additionally tested 

further restricting the cell type-specific accessible chromatin regions used in linkage 

disequilibrium score regression (LDSC) to only cis-regulatory elements linked to expression of a 

gene through a peak-to-gene linkage (reducing total number of usable chromatin regions from 

589,294 to 98,188 peaks). We found that with this adjustment, the overall pattern of cell type 

enrichments was largely the same when using all cell type-specific accessible chromatin regions 

(Extended Data Fig. 8F). We found that using only CREs involved in peak-to-gene linkages 

generally increased the magnitude of enrichment for certain interactions (e.g. T-cell subclusters 

and most autoimmune disease GWAS datasets), however the lower number of peak regions 

used in the analysis predictably resulted in less significant enrichment p-values. 

 

Additional discussion of hierarchical peak-to-gene linkage analyses 

By identifying peak-to-gene linkages at multiple levels of cellular resolution, we captured both 

broad, cell-class regulatory differences, as well as regulatory programs delineating more subtle 

cell type differences. We anticipate that using both ‘low-resolution’ clustering and ‘high-

resolution’ sub-clustering of complex datasets can be adapted to increase the resolution of 

predicted gene-regulatory networks in future studies, whether they use computationally 

integrated or experimentally linked multi-omic datasets. However, the fact that so many 
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additional enhancer-gene predictions can be made using this tiered approach highlights the 

dependence of this type of analysis on the particular datasets under examination. The cellular 

diversity of a dataset should be an important consideration for all such analyses, and 

experimental validation of predicted enhancer-gene linkages will ultimately be required.   
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II. Supplementary Methods 

 
Bulk ATAC-seq of subset of control samples 

Bulk ATAC seq was performed on dissociated cells from four of the surgical dogear control 

samples (C_SD4, C_SD5, C_SD6 and C_SD7). These samples were thawed quickly in a 37℃ 

water bath and then 1 mL of prewarmed media (RPMI 1640 w/ 10% FBS) was added to each 

sample. Samples were centrifuged at 300 x g for 5 minutes at 4℃ and the supernatant was 

aspirated. Each sample was resuspended in ice cold 1x PBS with 0.5% BSA and then split into 

two aliquots of 200,000 cells. If fewer cells were present for a sample, the number of cells was 

split evenly. One aliquot from each sample was pooled and this pool was used for two lanes of 

10x single cell ATAC-seq v2. The remaining aliquot of each sample was used for bulk ATAC-

seq, which was performed similarly to as described previously1. Briefly, cell aliquots were 

centrifuged at 300 x g for 5 minutes at 4℃ and the supernatant was aspirated. Each pellet was 

resuspended in 100 µL of ice cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM 

MgCl2, 1% BSA, 0.01% Digitonin, 0.1% Tween-20, and 0.1% NP40) and incubated on ice for 3 

minutes. The lysis reaction was then diluted by the addition of 1 mL of ice cold RSB-washout 

buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween-20). Samples 

were centrifuged at 500 x g for 10 minutes at 4℃. The supernatant was aspirated and each 

nuclei pellet was resuspended in 50 µL of Transposition solution (10 mM Tris-HCl, pH 7.4, 5 mM 

MgCl2, 10% dimethyl formamide, 0.33x PBS, 0.01% digitonin, 0.1% Tween-20, 100 nM Illumina 

Tn5 Transposase (Illumina, 20034197)). Samples were incubated at 37℃ in a thermomixer 

rotating at 1000 RPM for 30 minutes. The remainder of the bulk ATAC-seq library generation 

was performed as described previously. Resulting bulk-ATAC libraries were pooled and 

sequenced on an Illumina NextSeq 550 using paired-end 36-bp reads. 
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Genotyping and sample deconvolution using demuxlet 

Bulk ATAC-seq FastQ files were processed and aligned to the hg38 reference genome using 

Bowtie2 (v2.2.6), and then peaks were identified using MACS2 (v2.1.1)2. Peak regions identified 

from these bulk ATAC-seq samples were genotyped using SAMtools mpileup (v1.5) and 

VarScan mpileup2snp (v2.4.3), and then used as input for Demuxlet to identify the patient 

sample for each cell for the pooled scATAC-seq samples3,4. 

 
Comparison of fresh vs cryopreserved samples 

To determine if there were any systematic differences between the fresh vs cryopreserved 

samples, we tested for differential genes and differential peaks between fresh and 

cryopreserved samples for each of the major cell groupings described above (Keratinocytes, 

Fibroblasts, Endothelial, T-lymphocytes, and Myeloid lineage cells). For each of these major cell 

groupings, we used ArchR to identify differential scATAC-seq peaks using the 

‘getMarkerFeatures’ function with the default ‘wilcoxon’ test method and correcting for TSS 

enrichment and log10(nFrags) bias (Extended Data Fig. 1F). For each of the major cell 

groupings, we pseudo-bulked each individual sample and then removed mitochondrial, 

ribosomal, and chrY genes. We then used the DESeq2 R package (v1.30.1) to test for 

differentially expressed genes between fresh vs frozen samples while controlling for sex and 

disease status (alopecia areata vs control) as covariates (Extended Data Fig. 1G).  

 

Sub-clustering of major cell types 

To improve identification of rare cell types, we sub-clustered several major cell groups from the 

full scRNA and scATAC-seq datasets. For scRNA-seq data, cluster labels were assigned based 

on known cell type markers (Fig. 1E - ‘NamedClust’). Cluster labels for scATAC-seq data were 

assigned in a similar manner, using gene activity scores as a proxy for gene expression (Fig. 1F 

- ‘NamedClust’). For example, basal keratinocyte clusters exhibited high gene activity and 
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expression of the basal keratin KRT155, hair-follicle keratinocyte clusters exhibited high gene 

activity and expression of the transcription factor SOX96, T-lymphocyte clusters exhibited high 

gene activity and expression of the cell surface marker CD3D, and fibroblast clusters exhibited 

high gene activity and expression of the cell surface marker THY17. We observed a relatively 

large scRNA-seq cluster expressing high levels of mast-cell markers including beta tryptases 

(TPSB1/2) and HPGD 8–10, but we did not observe a corresponding scATAC-seq cluster, 

perhaps due to the tendency for granulocyte chromatin to spontaneously decondense during 

nuclear isolation 11,12. After labeling clusters in each modality, we sub-clustered major cell types 

in each dataset (Keratinocytes, Fibroblasts, Endothelial cells, T-lymphocytes, and Myeloid 

lineage cells) (Extended Data Fig. 3A-C). For scRNA-seq subclustering, we used the same 

iterative LSI dimensionality reduction procedure described above, except that we used two 

rounds of LSI instead of three, and we used the ‘Harmony’ R package (v0.1.0) to reduce sample 

batch effects since this effect was more pronounced on sub-clustered datasets relative to the 

full dataset 13. For both scRNA-seq and scATAC-seq subclustering, the number of variable 

features and the resolution of clustering was tuned to attempt to balance the number of 

identified clusters between modalities and to match the cellular heterogeneity of each sub-

clustered group. For the sub-clustered scRNA-seq datasets, we used 2,000 variable genes and 

15 SVD dimensions, and a clustering resolution of either 0.1 or 0.2 in the first round, followed by 

a clustering resolution of 0.3 in the final round. To generate UMAPs for each sub-clustered 

scRNA-seq dataset, we used n.neighbors=35 or 40, min.dist=0.4, and metric=cosine. For 

scATAC-seq subclustering, we again used ArchR’s implementation of iterative LSI 

dimensionality reduction, and we used Harmony to reduce sample batch effects. For each sub-

clustered group, we used either 25,000 or 50,000 variable features, 25 dimensions, and 

between 0.2-0.4 resolution for clustering. To generate UMAPs for each sub-clustered scATAC-

seq dataset, we used n.neighbors=35, min.dist=0.4, and metric=cosine. 
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Following sub-clustering in each dataset, we assigned sub-cluster labels based on known 

marker genes (Extended Data Fig. 3A-C - ‘FineClust’). 

 
Subsampling of full dataset to assess cluster reproducibility 

To assess the reproducibility of the aforementioned low and high cellular resolution clustering, 

we subsampled the full filtered dataset in two ways: first, by subsampling the patient samples 

used in the analysis (removing one sample from each category: AA4, C_SD3, and C_PB3– 

these samples were selected as they were present in both the scRNA and scATAC-seq 

datasets), and again by randomly removing 25% of the total number of cells from each of the 

scRNA and scATAC-seq datasets.  

Using these two subsampled datasets (‘sample subsampled’ and ‘cell subsampled’), we 

repeated clustering of both scRNA and scATAC datasets at both low and high cellular resolution 

as described previously. We found that with both subsampling strategies, we recovered highly 

highly reproducible cluster profiles at both high and low resolutions (Extended Data Fig. 

4A,B,D,E). In a few instances, the cluster profile of sub-clustered cell groups from subsampled 

datasets did not separate rare cell populations (e.g. Eccrine gland cells in the sample 

subsampled keratinocyte scRNA dataset or NK cells in the cell subsampled T-cells). 

 We repeated the CCA integration for each of these subsampled datasets and found that 

as in the full dataset, corresponding clusters from the scRNA and scATAC datasets were 

accurately integrated (Extended Data Fig. 4C,F).  

 

Peak calling in scATAC-seq datasets 

After sub-clustering of major cell types, we transferred the sub-cluster labels (‘FineClust’) back 

to the full scATAC-seq dataset for peak calling to maximize our ability to detect open chromatin 

regions specific to rare cell subtypes. Peak calling was carried out using the standard ArchR 

workflow. Pseudo-bulk group coverages were calculated for each cluster using the ArchR 
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function ‘addGroupCoverages’, which were then used to call peaks using 

‘addReproduciblePeakSet’. This function uses MACS2 (v2.1.1) to call fixed-width 500bp peaks 

on each cell type, merges the peak set from each cell type, and then iteratively removes 

overlapping peaks by dropping the lower scoring peak of overlapping pairs until no overlapping 

peaks remain 2,4. This procedure resulted in identification of 589,294 unique peaks for the entire 

dataset.  

For each of the sub-clustered scATAC-seq datasets, only a relatively small subset of the full 

union peak set will be accessible in any of the cell types present. This results in excessive 

numbers of completely inaccessible regulatory regions being used for analyses on the sub-

clustered datasets, which decreases statistical power. However, simply repeating peak-calling 

on each sub-clustered dataset would result in a peak set that does not represent a true subset 

of the full peak set due to the iterative overlapping peak removal procedure used to obtain the 

full union peak set. To obtain a peak set that is specific to a given sub-clustered dataset but is 

also a true subset of the full union peak set, we loaded the original peak calls for each cell type 

in the sub-clustered dataset and then kept only the subset of peaks from the union peak set that 

overlapped with peaks called on the sub-clustered cell types. This sub-clustered peak set was 

used for the keratinocyte– specific analyses shown in figures 3 and 4.  

 

Identification of potential regulatory target genes of TF regulators 

We used the following strategy to identify potential regulatory gene targets of a given TF. Using 

the sub-clustered keratinocytes, we identified ~500 low overlapping pseudo bulk samples of 

KNN with k=100 and obtained the mean normalized integrated gene expression and the mean 

chromVAR motif deviation score for each pseudo bulk sample. For our subset of candidate TF 

regulators, we used these pseudo bulk samples to calculate the Pearson correlation coefficient 

between the candidate TF regulator’s chromVAR motif activity and the integrated gene 

expression of all expressed genes. Next, we calculated a ‘Linkage Score’ for each gene and TF 
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pair. This score is calculated by identifying all peak-to-gene links for that gene for which the 

linked peak contains an instance of the candidate TF motif, and then summing the product of 

the squared peak-to-gene linkage correlation with the the motif score: 

"#! = % &"#'#"
$
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Where LSg is the linkage score of gene g, n is the number of linked peaks for gene g, R is the 

peak-to-gene Pearson correlation coefficient for peak k, and MSk is the motif score for the motif 

occurring in peak k. The linkage score is thus higher for genes that have multiple linked peaks 

containing the TF motif, more strongly correlated linked peaks containing the TF motif, and/or 

linked peaks that contain highly confident instances of the motif. Finally, we also calculated the 

hypergeometric enrichment p-value for the TF motif in all linked peaks for a given gene. We 

defined potential gene regulatory targets of a TF regulator as those that have an absolute TF 

motif to gene expression correlation of >0.25 and a linkage score greater than the 80th 

percentile across all genes. We performed Gene Ontology (GO) enrichment analyses on the 

putative direct regulatory gene targets using the topGO (v2.42.0) R package 14, using all 

expressed genes as background. 

 We validated inferred TF regulatory targets using previously published datasets of RNA-

seq performed on keratinocytes with TF mutations or TF knockdown. For TP63, we downloaded 

the differentially expressed genes (Table S1D from Qu et al. 2018) identified between control 

human keratinocytes and keratinocytes containing a mutant, binding incompetent form of 

TP6315. We calculated the enrichment of downregulated genes from TP63 mutant keratinocytes 

in our predicted TP63 regulatory targets using a one-sided Fisher’s exact test. We also 

compared the enrichment of upregulated genes from these TP63 mutant keratinocytes in our 

predicted TP63 regulatory targets. For KLF4, we downloaded the raw, unnormalized counts 

matrix from a recent study that performed shRNA knockdown of KLF4 in human adult 

keratinocytes (GSE111786_counts_raw.csv.gz)16. We removed genes that had fewer than 10 
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counts across all samples, and then performed normalization and differential testing using the 

DESeq2 R package (v1.30.1)17. We again calculated the enrichment of downregulated and 

upregulated genes from KLF4 knockdown keratinocytes in our predicted KLF4 regulatory 

targets. 

 
LD Score Regression using scATAC-seq data 

We used linkage disequilibrium score regression (LDSC, v1.0.1) to estimate the heritability of 

multiple skin, hair and other traits in each high-resolution clustered cell type in our dataset 18. 

Briefly, this method determines if a functional category is enriched for heritability of a given trait 

by determining if SNPs with high LD to that category tend to have higher c2 statistics than SNPs 

with low LD to that category, conditioned on a baseline set of annotations. Cluster-specific peak 

regions were used as input functional categories for LDSC. To obtain these cluster-specific 

peaks, we first removed clusters that had fewer than 40 cells total, as these clusters generally 

had too few cells to identify sufficient numbers of confident cell type–specific peaks. For 

remaining clusters, we identified which peaks from the union peak set had been originally 

identified in a given cluster by overlapping the union peak set with the MACS2 peak calls from 

that specific cluster. For each cluster, we then retained only peaks that had been identified in no 

more than 25% of all clusters (9 out of a possible 36 clusters). This strategy enabled us to both 

filter out common ‘housekeeping peaks’ that are accessible in the majority of cell types, while 

retaining peaks that are unique to at most a few clusters. We formatted these cluster specific 

peaks using the ‘make_annot.py’ script, and LD scores were computed for each annotation 

using the ‘ldsc.py’ script with default parameters. Formatted summary statistics for partitioning 

heritability using LD score regression can be downloaded from 

https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-

pays/sumstats_formatted. In addition to using skin and hair-related GWAS traits, we selected 

several other traits related to neurologic or psychiatric conditions (e.g. major depressive 
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disorder, schizophrenia, neuroticism, parkinson’s disease) that would not be expected to 

demonstrate much, if any, cell type–specificity in our scalp dataset. Other broad, but highly 

powered GWAS studies (e.g. BMI, body height, systolic blood pressure (SBP)) were selected to 

demonstrate that even though cells in the scalp may not be obviously involved in these traits, 

there may be some areas of biological overlap (e.g. fibroblasts being enriched for body height 

GWAS signal and endothelial cells being enriched for SBP GWAS signal). We followed the 

recommended guidelines for cell type–specific partitioned heritability analysis using the 1000G 

EUR phase 3 population reference and the hg38 baseline model (v2.2). We used the ‘ldsc.py’ 

script to calculate partitioned heritability for each trait in the cluster specific peak sets. We used 

Benjamini-Hochberg FDR correction to adjust heritability enrichment p-values. We also 

repeated this analysis using cluster-specific marker gene regions. To identify cell type–specific 

marker genes, we used Seurat’s ‘FindAllMarkers’ function with default settings to identify a set 

of genes differentially highly expressed in each high-resolution scRNA cluster. For each cluster, 

we then retained only genes that had been identified in no more than 25% of all clusters (10 out 

of a possible 42 clusters). We added a 100-kb window around each gene region and used these 

regions as input for LD score regression analysis as described above.  

 

Analysis of fine-mapped GWAS variants 

We obtained fine-mapped SNPs from multiple sources. First, we downloaded a compendium of 

fine-mapped SNPs for 94 UKBB traits (www.finucanelab.org/data), and used the male pattern 

balding (‘Balding_Type4’), body mass index (‘BMI’) and systolic blood pressure (‘SBP’) traits for 

downstream analyses 19. Second, we downloaded pre-computed PICS fine-mapped SNPs for a 

variety of traits in the GWAS catalog (https://pics2.ucsf.edu/Downloads/PICS2-GWAScat-2021-

06-11.txt.gz)20,21. Details of trait definitions are available from the UK Biobank 

(https://www.ukbiobank.ac.uk/), or from the GWAS catalog (https://www.ebi.ac.uk/gwas/). For 

example, ‘educational attainment’ (GWAS catalog) refers to years of education, ‘hair color’ 
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(GWAS catalog) is a summary category for studies related to hair pigmentation, and ‘tanning’ 

(UK Biobank) is a self-reported measure of ease of skin tanning.   

We calculated enrichment of fine-mapped SNPs with a fine-mapping posterior probability 

of ≥0.01 from selected traits in the previously described cluster specific peak sets using one-

sided Fisher’s exact test with a background SNP set containing all fine-mapped SNPs (also with 

a fine-mapping posterior probability of ≥0.01) across all traits. Enrichment p-values were 

adjusted using Benjamini-Hochberg FDR correction. To compare the differences between using 

open chromatin data verses simply assigning fine-mapped SNPs to their nearest gene in 1-

dimensional genomic space, we repeated this fine-mapped SNP enrichment analysis by linking 

fine-mapped SNPs to their nearest gene and calculating the enrichment of cell type–specific 

genes linked (i.e. nearest) to fine-mapped SNPs (Extended Data Fig. 8C,D,G). We again found 

that the broad pattern of cell type–specificity of this analysis was similar to our more restrictive 

analysis of using direct overlap with cell type specific open chromatin regions. By forcing each 

fine-mapped SNP to be associated with its nearest gene, however, the number of SNP to 

marker gene ‘overlaps’ dramatically increases relative to the direct overlap of SNPs with the 

specific genomic coordinates of a set of marker peak regions (each SNP is associated with at 

least one of ~20,000 possible genes, ~1000 of which will be marker genes for a given cell type). 

The ultimate effect of this difference is that the statistical significance of this ‘nearest-gene’ 

analysis is notably higher than the statistical significance of the original analysis (both using 

one-sided Fisher enrichment tests). We also note, however, that some traits appeared to be 

less cell type–specific using this version of the analysis. For example, the odds ratio (OR) of 

enrichment for fine-mapped AGA SNPs was weaker using nearest gene SNP associations, and 

body height SNPs showed significant enrichment in dermal papilla-associated marker genes– 

an enrichment not observed in the open chromatin version of this analysis. 

To identify genes associated with fine-mapped SNPs, for selected traits we identified 

fine-mapped SNPs that had a fine mapping posterior probability of ≥ 0.01 and overlapped a 
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scATAC-seq peak region. Next, for each gene, we identified all fine-mapped SNPs that fell 

within a peak that was linked to the expression of that gene, and we summed the fine-mapping 

posterior probability for these linked SNPs. Genes linked to a peak containing a fine-mapped 

SNP with a high posterior probability, or genes linked to multiple linked peaks containing fine-

mapped SNPs with appreciable fine-mapping posterior probability, are assumed to more likely 

represent genes whose expression is associated with the trait of interest. We plotted the row-

scaled gene expression for the top 80 genes (by total associated fine-mapping probability) in 

each of our high-resolution scRNA-seq clusters in a heatmap, and plotted the number of linked 

peaks and the cumulative fine-mapping posterior probability to the right of each gene.  

 

gkm-SVM machine learning classifier training and testing 

We adapted a previously published strategy for trained gapped k-mer support vector machine 

(gkm-SVM) models using scATAC-seq data22. For each scATAC-seq cluster, we trained a gkm-

SVM classifier to predict whether a given genomic sequence is likely to be accessible or 

inaccessible in that cell type23,24. We trained models for all clusters that had at least 200 cells to 

reduce training biases from spurious binding events from noisier, sparser data. We used training 

sequences of 1001 bp, expanding peaks on each side to reach this length and removing peaks 

that contained any N bases. As positive training data, we first identified the top 7,500 (by FDR) 

marker peaks for each cluster using the ArchR function ‘getMarkers’ with an FDR cutoff of 0.1 

and a Log2FC cutoff of 0.5. These peaks represent the set of peaks that are most specific to a 

given cluster. We next identified which peaks from the union peak set had been originally 

identified in a given cluster by overlapping the union peak set with the MACS2 peak calls from 

that specific cluster. We sorted these by decreasing MACS2 score, and selected the top N 

peaks to combine with the previously identified marker peaks such that each cluster had ≤ 

75,000 total unique peaks for training. For clusters that had fewer than 75,000 peaks, we used 

all peaks originally identified from that cluster as training peaks. Clusters that had fewer than 
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56,250 total peaks were not used for model training. To obtain negative training data, we 

generated 4,000,000 random genomic regions of 1001 bp (after masking assembly gaps 

(AGAPS) and intra-contig ambiguities (AMB)) and calculated the GC content of each of these 

regions. For each cluster, we then generated 20 equal-size bins of GC-content percentile from 

the N (≤ 75,000) positive training sequences. We labeled the random sequences according to 

these cluster-specific GC-content bins and sampled a total of N random regions while matching 

the binned distribution of GC-content from the original data.  

After identifying the ≤ 75,000 positive and ≤ 75,000 negative training sequences for each 

cluster, we used a 10-fold cross-validation strategy to test model performance. We split training 

and testing sets by chromosome. The test sets for the 10 folds are as follows: Fold 1 consisted 

of chr 1; fold 2 consisted of chr 2 and 19; fold 3 consisted of chr 3 and 20; fold 4 consisted of chr 

6, 13, and 22; fold 5 consisted of chr 5 and 16; fold 6 consisted of chr 4, 15 and 21; fold 7 

consisted of chr 7, 14 and 18; fold 8 consisted of chr 11, 17 and X, fold 9 consisted of chr 9 and 

12, fold 10 consisted of chr 8 and 10. We used similarly sized chromosome splits in our fold 

definition to prevent any data overlap between training and testing splits while also preserving 

the overall structure and relationships within the dataset. For each fold, we used sequences 

from all non-testing chromosomes for training. For each of the 10 folds for each of the 29 

clusters, we used the sequences from the positive and GC-matched negative training data as 

input training gkm-SVM models. Specifically, we used the LS-GKM package with the following 

options for the ‘gkmtrain’ function23,25. We used the wgkmrbf kernel (t = 5), a word length of 11 (l 

= 11), 7 informative columns (k = 7), up to 3 mismatches to consider (d = 3), an initial value of 

50 for the exponential decay function (M = 50), a half-life parameter of 50 (H = 50), and a 

precision parameter of 0.001 (e = 0.001). We assessed the performance of trained models from 

cross-validation folds by calculating AUROC and AUPRC using the ‘PRROC’ R package 

(v1.3.1) with negative testing data downsampled to match the number of positive testing data 

sequences. To examine model specificity, we used the fold 0 from each cluster to predict the 
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fold 0 testing data of every other cluster and again calculated the AUROC and AUPRC. 

Following assessment of model performance, we trained a full model for each cluster using all 

available training data which was used for estimating candidate SNP effects as described 

below. 

 

Estimation of candidate SNP effect sizes using gkm-SVM models 

We used our full gkmSVM models from each cell type to predict the change in accessibility for 

fine-mapped SNPs from GWAS for androgenetic alopecia (‘Balding_Type4’ from 

www.finucanelab.org/data and ‘Male-pattern baldness’ from PICS fine mapped), eczema (PICS 

fine mapped), hair color (PICS fine mapped), and randomly selected fine-mapped SNPs from 

any GWAS (PICS or Finucane data). We first selected only fine-mapped SNPs that overlapped 

a peak region, and then further filtered SNPs from all traits to those that had a fine-mapping 

posterior probability of ≥0.01. This resulted in 1,631 androgenetic alopecia SNPs, 612 hair color 

SNPs, 365 eczema SNPs, and a random selection of 2500 random SNPs to use as 

background. For each SNP that met the above criteria, we obtained the 250bp surrounding the 

SNP and created synthetic alternative allele sequences by replacing the reference allele at the 

center of the sequence with the SNP alternative allele. We then used the previously trained full 

models for each cluster to calculate cell type–specific GkmExplain importance scores for each 

base of both the reference and alternative allele sequences for each of the fine-mapped 

SNPs26. GkmExplain estimates the per-base contribution for an input sequence to the 

corresponding output prediction of a gkmSVM model. We used GkmExplain for mutation impact 

scoring instead of DeltaSVM, ISM, or SHAP because it tended to yield more directly 

interpretable importance scores at the motif level, and in aggregate has been previously shown 

to correlate extremely well with these other metrics 22. For each SNP and each cluster model, 

we summed the GkmExplain importance scores for the central 50bp of both the reference and 
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alternative allele sequences, then subtracted the alternative allele score from the reference 

allele score to get the ‘delta score’ for the sequence immediately surrounding the SNP.  

 

Statistical significance and prioritization of candidate SNPs 

We used multiple metrics derived from GkmExplain importance scores to obtain a statistical 

significance for each tested fine-mapped SNP. First, for each SNP, we generated 3 di-

nucleotide shuffled sequences using the ‘fasta-dinucleotide-shuffle.py’ script from the MEME 

suite (v5.4.1) 27. For each of these shuffled sequences, we generated a ‘reference’ and 

‘alternative’ allele sequence corresponding to the original SNP by replacing the central position 

of the shuffled sequence with the SNP’s reference or alternative allele base. We calculated 

GkmExplain importance scores for each of these shuffled sequences across all clusters as 

described above, and calculated the cluster-specific ‘delta score’ using the central 50 bp of each 

null reference and alternative allele pair. The delta scores from these shuffled sequences 

served as a null distribution for each cluster. In agreement with a similar previous analysis, we 

found that the t-distribution was a good fit for these GkmExplain delta score null distributions 22. 

We used the ‘fitdistrplus’ R package (v1.1.6) to fit a t-distribution to each cluster’s delta score 

null distribution and used these distributions to calculate p-values for each fine-mapped SNP in 

each cell cluster. To further prioritize SNPs that are more likely to be affecting predicted 

accessibility by disruption of a transcription factor binding site, we calculated another previously 

described metrics of SNP effect size, the ‘prominence score’22.  To calculate this score, we first 

identified the ‘active’ allele for each SNP by the sign of the delta score, with a positive delta 

score indicating that the reference allele is more likely to be accessible than the alternative 

allele. We then identified the subsequence surrounding the active allele SNP where each 

position’s GkmExplain importance score exceeded the 97.5th percentile of the di-nucleotide 

shuffled background. Subsequence boundaries were determined by the position where two 

consecutive bases had importance scores falling below the threshold. If a SNP sequence did 
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not contain a subsequence of at least 7 bases, we used the central 7 bases surrounding the 

active allele as the subsequence. We used these subsequences to calculate the prominence 

score for each SNP. To calculate the prominence score, we took the sum of non-negative 

GkmExplain importance scores from the active allele subsequence and then divided by the sum 

of the non-negative importance scores for the entire 250bp sequence. This score can be 

thought of as a measure of the signal to noise ratio of the active allele for each SNP. We fit an 

exponential distribution to the prominence null distribution for each cluster and again used these 

distributions to calculate prominence p-values for each fine-mapped SNP in each cell cluster. To 

prioritize SNPs that have significant effects on predicted chromatin accessibility (large absolute 

delta score), likely through disruption of a transcription factor binding site (large prominence 

scores), we used the estimated p-values of these two scores determined from the shuffled 

sequence null distributions. We selected “high-effect” fine-mapped SNPs that had both a delta 

score p-value < 0.05, and had a prominence score p-value < 0.05. To increase interpretability 

and further filter for likely causal SNPs, we further filtered “high-effect” SNPs by requiring that 

they fall in a peak linked to expression of a gene. Using these criteria, we identified 47, 19, and 

19 prioritized SNPs for AGA, eczema, and hair color respectively (Table S29). 

 

 

  



18 

References 

1. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables 

interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017). 

2. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. 

Science 362, (2018). 

3. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic 

variation. Nat. Biotechnol. 36, 89–94 (2018). 

4. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell 

chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021). 

5. Lloyd, C. et al. The basal keratin network of stratified squamous epithelia: defining K15 

function in the absence of K14. J. Cell Biol. 129, 1329–1344 (1995). 

6. Vidal, V. P. I. et al. Sox9 is essential for outer root sheath differentiation and the formation 

of the hair stem cell compartment. Curr. Biol. 15, 1340–1351 (2005). 

7. Philippeos, C. et al. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally 

Distinct Human Dermal Fibroblast Subpopulations. J. Invest. Dermatol. 138, 811–825 

(2018). 

8. Schwartz, L. B., Metcalfe, D. D., Miller, J. S., Earl, H. & Sullivan, T. Tryptase levels as an 

indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med. 

316, 1622–1626 (1987). 

9. Ren, S., Sakai, K. & Schwartz, L. B. Regulation of human mast cell beta-tryptase: 

conversion of inactive monomer to active tetramer at acid pH. J. Immunol. 160, 4561–4569 

(1998). 

10. Stevens, W. W. et al. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated 

respiratory disease. J. Allergy Clin. Immunol. 147, 600–612 (2021). 

11. Neubert, E. et al. Chromatin swelling drives neutrophil extracellular trap release. Nat. 



19 

Commun. 9, 3767 (2018). 

12. Sollberger, G., Tilley, D. O. & Zychlinsky, A. Neutrophil Extracellular Traps: The Biology of 

Chromatin Externalization. Dev. Cell 44, 542–553 (2018). 

13. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with 

Harmony. Nat. Methods 16, 1289–1296 (2019). 

14. Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from 

gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 

(2006). 

15. Qu, J. et al. Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer 

Landscape. Cell Rep. 25, 3490–3503.e4 (2018). 

16. Fortunel, N. O. et al. KLF4 inhibition promotes the expansion of keratinocyte precursors 

from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nat Biomed Eng 

3, 985–997 (2019). 

17. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 

RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 

18. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies 

disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018). 

19. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes 

underlying complex traits and diseases. medRxiv 2020.09.08.20190561 (2020). 

20. Taylor, K. E., Ansel, K. M., Marson, A., Criswell, L. A. & Farh, K. K.-H. PICS2: Next-

generation fine mapping via probabilistic identification of causal SNPs. Bioinformatics 

(2021) doi:10.1093/bioinformatics/btab122. 

21. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease 

variants. Nature 518, 337–343 (2015). 

22. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at 

inherited risk loci for Alzheimer’s and Parkinson's diseases. Nat. Genet. 52, 1158–1168 



20 

(2020). 

23. Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence 

prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014). 

24. Ghandi, M., Mohammad-Noori, M. & Beer, M. A. Robust k-mer frequency estimation using 

gapped k-mers. J. Math. Biol. 69, 469–500 (2014). 

25. Lee, D. LS-GKM: a new gkm-SVM for large-scale datasets. Bioinformatics 32, 2196–2198 

(2016). 

26. Shrikumar, A., Prakash, E. & Kundaje, A. GkmExplain: fast and accurate interpretation of 

nonlinear gapped k-mer SVMs. Bioinformatics 35, i173–i182 (2019). 

27. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids 

Res. 37, W202–8 (2009). 

 


