Supporting Information

Iron sulfide microspheres supported on cellulose-carbon nanotube conductive flexible film as an electrode material for aqueous-based symmetric supercapacitors with high voltage

Jincy Parayangattil Jyothibasu^a, You-Ching Tien^a, Zi-Ting Chen^a, Hongta Yang^a, Tzu

Hsuan Chiang^b, Ahmed F.M. EL-Mahdy^c, and Rong-Ho Lee^{*a,d}

^a Department of Chemical Engineering, National Chung Hsing University, Taichung, 402, Taiwan

b Department of Energy Engineering, National United University, Miaoli, 360302, Taiwan.

^c Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan

d. Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 320, Taiwan

* To whom all correspondence should be addressed.

Tel.: 886-4-22854308; Fax: 886-4-22854734

E-mail: rhl@nchu.edu.tw

Figure S1. FTIR spectra of RC, CNT, RC/CNT, RC/CNT/0.3FeS₂, and RC/CNT/0.3FeS₂/PPy-60 composite films.

Figure S2. (a) XPS survey spectrum of RC/CNT/0.3FeS₂ composite film. XPS spectra (b) Fe 2p, (c) S 2p, and (d) O 1s binding energies of $RC/CNT/0.3FeS₂$ composite film.

Figure S3. The tauc-plots, AC-2 low energy photoelectron spectra, and energy diagram of the CNT, FeS₂, and PPy materials.

Figure S4. XRD patterns of RC, CNT, RC/CNT, and RC/CNT/0.3FeS₂ composite films.

Figure S5. XRD patterns of RC/CNT/PPy-60, RC/CNT/0.3FeS2/PPy-15, $RC/CNT/0.3FeS_2/PPy-30$, $RC/CNT/0.3FeS_2/PPy-60$, and $RC/CNT/0.3FeS_2/PPy-75$ composites.

Figure S6. SEM images of (a) RC and (b) RC/CNT films.

Figures S7. (a) SEM and ((b),(c)) EDX images of the (b) S, and (c) Fe elements in the RC/CNT/0.3FeS₂ composite.

Figure S8. TGA curves of (a) RC, RC/CNT, FeS_2 , RC/CNT/0.1 FeS_2 , RC/CNT/0.2 FeS_2 , $RC/CNT/0.3FeS₂$, and $RC/CNT/0.5FeS₂$; (b) $RC/CNT/0.3FeS₂/PPy-15$, $RC/CNT/0.3FeS_2/PPy-30$, $RC/CNT/0.3FeS_2/PPy-60$, and $RC/CNT/0.3FeS_2/PPy-75$ composites.

Figure S9. N₂ adsorption-desorption isotherms and pore size distributions of (a) RC/CNT, (b) RC/CNT/0.1FeS₂, (c) RC/CNT/0.2FeS₂, (d) RC/CNT/0.3FeS₂, and (e) RC/CNT/0.5FeS₂ composites films.

Figure S10. Specific capacitances of the RC/CNT/0.1FeS₂, RC/CNT/0.2FeS2, $RC/CNT/0.3FeS₂$, $RC/CNT/0.5FeS₂$, $RC/CNT/0.3FeS₂/PPy-15$, $RC/CNT/0.3FeS_2/PPy-30$, $RC/CNT/0.3FeS_2/PPy-60$, $RC/CNT/0.3FeS_2/PPy-75$, and RC/CNT/PPy-60 composites plotted with respect to the specific current.

Figure S11. The areal capacitance values plotted against the weight of the $RC/CNT/FeS₂$ and $RC/CNT/FeS₂/PPy$ electrodes.

Figure S12. CV plots at different scan rates of (a) $RC/CNT/FeS_2/PPy-15$, (b) $RC/CNT/FeS_2/PPy-30$, and (c) $RC/CNT/FeS_2/PPy-60$.

Figure S13. FTIR spectra of the RC/CNT/0.3FeS₂/PPy-60 electrode before and after the 10,000 cycle test.

Electrode	Electrolyte	C_{A}	C_m	Cycling test	Referenc
		(mF/cm ²)	(F/g)	stability	es
				$(\%)$	
RC/CNT/FeS2/PPy	1 M Na ₂ SO ₄	1280.0	198.29	91.1	This
	aqueous			$(10000$ cycles)	work
$Ni3S2(a)Ni/CC$	6.0 M KOH	2420.0		91.5	$\lceil 51 \rceil$
	aqueous			$(5000$ cycles)	
rGO@Ni ₃ S ₂ /CC	6.0 M KOH		477.37	88.0	$\left[52\right]$
	aqueous			$(5000$ cycles)	
PPy/CuS/BC	2.0 M NaCl		580.00	73.0	$\left[53\right]$
	aqueous			(300 cycles)	
MoS ₂ /PPy/CNFs		734.0		84.0	$\lceil 54 \rceil$
				(after 2000)	
				cycles)	
$PPy/MoS_2/CC$	5 M LiCl	1150.4		87.2%	$\left[55\right]$
	aqueous			$(5000$ Cycles)	

Table S1. The capacitance properties of the transition metal dichalcogenide (TMD)/conducting polymer/nano-carbon composites-based electrodes.