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Supplementary Discussion 

Supplementary Discussion: PRKDCi:NFΚBi combination synergy 

and its monotherapy and combination- specific biomarkers 

We have selected two drug combinations, Olaparib:AZ13535704 (AZD0156, ATMi) and 

AZ13150560:AZ12879988 (PRKDCi:NFKBi), as examples to generate a biomarker hypothesis 

through a signaling-level understanding of how combination benefit emerges behind the observed 

synergy and viability score changes.  

There is not much known in the literature nor in clinical trials about how a PRKDCi:NFKBi drug 

pair would potentiate or antagonize each other’s effectivity on modulating cell viability. Our 

results revealed this combination of mechanisms being highly synergistic and non-synergistic in 

different indications, therefore both synergy- increasing and decreasing biomarkers could be 

identified in an indication- specific manner.  

Monotherapy biomarkers 

We have predicted the sensitizing effect of 34 PRKDCi- specific alterations in 12 cell lines, while 

14 alterations were observed as viability increasing, resistance causing biomarkers for this 

compound.  In 12 cell lines, in total 81 perturbations were observed as sensitivity markers, while 

11 markers were considered to make 8 cell lines resistant to the NFKBi (Supplementary Figure 1).  
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Supplementary Figure 1. Signaling topology of detected alterations for PRKDCi and 

NFKBi can be followed based on the signal propagation in the Simulated Cell network 

Visualization of the relationship between the predicted monotherapy sensitivity biomarkers. It represents 

how they promote and reinforce the cytotoxic effect of both drugs. Loss of the BER or NER damage 

repair pathway raises the DNA damage load, while many of the mitotic pathway errors lead to cell cycle 

arrest. The connection between the biomarkers is indirect and shows signal propagation from the drug 

target to the outcome only. 

 

Inhibition of the NFKB pathway via IKBKB with AZ12879988 will result in the disruption of 

transcription of a variety of genes working towards cell survival. Our screens showed an array of 

sensitivity biomarkers upon NFKB inhibition, mostly via inhibiting regulators of protein synthesis 

and upstream regulators that of, such as RPS6 or its activator kinase RPS6KB1. Parallel to the lack 

of the synthesis of de novo proteins, a dysfunctional proteasome will push the cell into a stressful 

state called Unfolded Protein Response (UPR) resulting in activated apoptosis via the accumulated 

misfolded proteins during accelerated protein synthesis in cancer. We also predicted the 

dependency of the transcription factor AP-1 (JUN) and its binding partner c-FOS (FOS) with the 

consequence of an abrogated cell cycle by lost transcription of its proteins. Our screens also 

showed some of the upstream regulators of JUN and FOS as important biomarkers by epigenetic 

regulation of its presence via BARD1 or KAT7. Epigenetic regulation also played a role via the 

WNT pathway’s control of JUN expression. We showed loss-of-function of Catenin β-1 

(CTNNB), or the overexpression of its negative regulators such as KRIT1 or CDH1 as sensitivity 

biomarkers. The same effect was measured downstream of WNT signaling with loss-of-function 

mutation of TCF7L2 or inhibition of it via the overexpression of its upstream regulator NLK as 

sensitivity biomarkers in various cell lines.  

Abruption of a double-strand break repair pathway such as the non-homologous end joining via 

inhibition of PRKDC could be the breakdown of the last resort for cells harboring SSB repair- 

related mutations. Disruption of the BER pathway via loss-of-function mutation of PARP1 protein 

or inhibiting it via the constant activation of its counteracting protein PARG represent such cases. 

Another case in our screen was the loss-of-function mutation or underexpression of CSB and 

underexpression of XPA inhibiting cells to incise problematic nucleotides inserted during 



6 

 

synthesis, while underexpression of any subunit of POLK complex or losing a member of the XPC 

complex will cause issues during the filling of the incised gaps.  

Our screens also showed that underexpression of CLSPN (claspin) or loss-of-function mutation of 

its regulator CSNK1G1 will inhibit POLK to fulfill its role. Upon inhibition by any of the drugs 

losing anti-apoptotic proteins by downregulation will act in favor of the toxic mechanism of the 

given drug, therefore loss-of-function mutation of BCLXL or gain-of-function mutation of 

upstream negative regulators of BCLXL, such as RXRA, RXRB or HINT1 ended up as sensitivity 

biomarkers in our screens. Similar to the overall sensitivity of the apoptotic pathway proteins, 

activating mutation in the RAS-RAF axis such as the RAS-related protein RALB or its GTPase 

activators RALGAPA1,2 and RALGAPB will end up as resistance markers. Similarity between 

the importance of apoptotic regulation shows the potential of this combination therapy option. 

 

Combination specific biomarkers 

There were no biomarker candidates mentioned in the DREAM challenge being specific for this 

MoA combination. After a systematic prescreen for those protein alterations which are causing a 

combination specific effect (Supplementary Methods 1), we selected 166 alterations consisting of 

118 proteins or protein-complexes for the PRKDCi:NFKBi combination to analyze their effect on 

synergy and cell viability. We have further investigated only those combination-cell line pairs, 

where the dose of the individual combination members at the maximum synergy score was lower 

compared to the IC50 value of the respective monotherapies. Furthermore, we also excluded those 

biomarker-combination-cell line triplets, where a significant cell survival decrease was observed 

but the synergy shifted to a non-synergistic state, as these cases are suspected model artefacts.  

The systematic biomarker prescreen confirmed that several pathways and their members can be 

relevant regarding shifting both cell viability and synergy (e.g. AKT, JAK-STAT, MAPK, p38-

JNK) in the case of this combination. Overexpression of STAT3, JUN, and FOS increased both 

synergy and cell killing relative to non-perturbed cell lines. Although the sensitizing effect strength 

of JUN was statistically significant, its synergy increasing role is considered highly context 

specific, since JUN itself is a transcriptional factor bearing context specific functions. Similarly, 

the under-expression of STAT3 (p=1.78e-8), overexpression of PPP2CA (p=2.34e-8), or 

inactivating mutations in ATM or MID1 (p=1.28e-6 and 2.34e-5) were resistance biomarker, since 
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the cell’s killrate were lowered by them, thus made the cells less vulnerable to cell death. Synergy 

was also decreased when their effects were compared to wild-type cell lines. We also observed 

loss-of-function alterations of members of the mTOR signaling near to the mTOR-apoptosis 

crosstalk (mTORC2 complex and its complex members, PROTOR and RICTOR) with synergy 

decreasing effects (Supplementary Figure 2).  

 

 

Supplementary Figure 2. Effect strength and effect size of combination specific biomarkers 

for the PRKDCi:NFKBi combination. 

Figure represents the statistically significant (p<0.001) shift of killrate and synergy influencing 

biomarkers in cell lines. Horizontal bars demonstrate the sample size for each biomarkers, while the 

distribution of effect strength components (killrate shift and synergy shift) are represented in boxplots. 

Abbreviation: *** p≤0,001 (rest of the visualized biomarkers statistical significance’s is p≤0,05, 0.0 – 

loss-of-function, 1.0 – gain-of-function, mc5.0 – overexpression, mc0.3- underexpression. “C” prefixes 

represent protein complexes in the network. 
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Discussion of combination specific biomarkers 

We observed that this combination has an indication specific synergy pattern. Unfortunately, as a 

novel combination prediction, there were no experimental synergy scores available for 

comparison, and the literature evidence is also very limited. PRKDC (or DNA-PK) is a DNA-

dependent protein kinase with a key role in repairing double-stranded DNA breaks, caused by 

DNA-damaging agents through non-homologous end joining (NHEJ). PRKDC is constituted of 

catalytic subunits (DNA-PKcs) and Ku70/80 DNA-binding subunits 1, and phosphorylates 

proteins like transcription factors, RNA polymerases, p53, or Ku70/Ku80 (XRCC6/5) 2. 

Studies reported that in inflammatory diseases PRKDC is required for the expression of nuclear 

factor κB (NFKB) target genes that are downstream of TNF-α 3. Since inflammation is an 

important hallmark of especially metastatic cancer progression 4,5, the interplay between PRKDC, 

NFKB, TNF-α, and interleukins could be a relevant approach for cancer cells in modifying their 

external microenvironment to increase the possibility of cell survival 4,6. Therefore, understanding 

molecular alterations affecting synergy could be a viable approach to identifying sensitive cell 

populations to this combination.  

Based on our biomarker screen STAT3 and JUN overexpression are potentially relevant 

biomarkers of combination sensitivity. The role of STAT3 and JUN overactivation in connection 

with the NFKB signaling is controversial in the literature, described either as an oncogenic or as a 

tumor suppressor, leading to a context dependent effect on cell survival 7,8. In the Simulated Cell 

model used in this study, overexpression of STAT3 and JUN significantly increased synergy and 

increased the cell killing effect of this combination in some cells. On the contrary, both the 

inactivation and under-expression of STAT3 caused the opposite effect in the majority of the cell 

lines, leading to decreased synergy and cell killing. Therefore, based on our modeling, STAT3 is 

a strong hypothesis in influencing synergy between these two compounds despite the fact that the 

effect of STAT signaling is controversial. On one hand, it has the ability to stimulate cell 

proliferation by activating CCND1. On the other hand, it can elevate the risk of aneuploidy, which 

can be the trigger point for the cell to start its mechanism of delayed mitosis-linked cell death. 

STAT3 can also activate anti-apoptotic proteins as well, like MCL1, BCL2, and BIRC5. Thus, 

whichever scenario is about to happen it depends on the downstream members of STAT signaling 

and not on STAT3 itself.  
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A similar effect was observed after the inhibitory perturbation of NHEJ cross-talk pathway 

members, such as ATM or PPP2CA and TCF7L2 from the WNT pathway, resulted in weaker 

combination synergy. PPP2CA is an element of the PPP-family phosphatases. They regulate 

proteins by dephosphorylation included in the cell cycle, DDR, and several kinetochore kinases 

9,10. TCF7L2 modification is known to have a negative effect on cell proliferation through the 

regulation of WNT. Disruption of beta-catenin/TCF7L2 assembly’s activity in colorectal 

carcinoma cells induces a rapid G1 arrest and blocks a genetic program that is physiologically 

active in the proliferative compartment of colon crypts, which is consistent with our results, 

showing that TCF7L2 under-expression has cell survival decreasing effect, beside its synergy 

lowering power 11. 
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Supplementary Methods 

Supplementary Methods 1: Cell line and drug properties 

Cell line datasets 

97 cell lines were derived mainly from tumors of the breast (N = 27), lung (N = 27), bladder (N = 

12) skin (N=9), and some other both primary and metastatic sites (N=22). Information about cell 

line characteristics were collected from the following databases: Expasy – Cellosaurus database 

(SIB Swiss Institute of Bioinformatics), ATCC, DSMZ (Leibniz Institute) (Supplementary Data 

1). 

Compound databases  

Screening for synergistic combination identification included 58 compounds covering a broad 

spectrum of mechanism of action groups, from which 12 were acting on DDR as the main drugs. 

Out of the other paired combination drugs, 18 targeted receptor and non-receptor tyrosine kinases 

(TK/RTKs), 14 targeted some elements of the PI3K-AKT-mTOR signaling, and 4 was for 

inhibiting apoptosis and ERK. The remaining drugs targeted pathways, such as JAK-STAT, or 

NFΚB (Supplementary Data 1). 

Benchmarking our in silico predictions requires reliable and commercially accessible sources of 

pharmacokinetic and pharmacodynamic data. Therefore, we collected information on compound 

target profiles using ChEMBL and cellular response for compounds from databases such as  

Cancer Cell Line Encyclopedia, Cancer Therapeutics Response Portal, FIMM, GCSI, Genomics 

of Drug Sensitivity in Cancer, Oncolines, PharmacoDB, and we also used the available DREAM 

in vitro data (Supplementary Data 1).  

Determination of genetic variants 

For the genetic variant annotations, the Ensembl Variant Effect Predictor (VEP) was used with 

the parameters below, where input_file is a VCF format and the output_file is the standard output of 

the tool. 

Vep –af –af_1kg –af_esp –af_gnomad –appris –biotype –canonical –ccds –check_existing –

distance 5000 –domains –hgvs –numbers –plugin dbNSFP, dbNSFP.gz, codon_degeneracy, 



11 

 

MetaSVM_score, MetaSVM_rankscore, MetaSVM_pred, MetaLR_score, MetaLR_rankscore, 

MetaLR_pred, Reliability_index –polyphen b –protein –pubmed –regulatory –sift b –species 

homo_sapiens –symbol –tsl –11niport –cache –input input_file –output output_file  

 

Supplementary Methods 2: Description of in silico simulation types 

All descriptions below are applicable to Model version 4 of the Simulated Cell, released in 2019 

Q3. 

Native simulation 

To generate a cell population, consisting of 100 individuals cells from a single simulated cell, 

minor random perturbations are added to the mutational input layer of the simulation as a 

representation of both genotypic variance and therefore phenotypic heterogeneity inside the cell 

population. Perturbations are affecting the activity and concentration parameters of the nodes. Cell 

line specific phenotypic behavior was measured at the end of the simulation by aggregating the 

corresponding cell fate scores, such as cell cycle and cell death of the 100 attractors in the virtual 

population. We interpret our results as population based values. Thresholds for the combination of 

cell fate scores define the viability verdict of the cell population. If the cell population’s viability 

score is above 0.6, we label it as alive. In the case of dead cell lines, the same score is under 0.4. 

Marginal scores between these two cut- off values representing cells with unknown behavior.   

Monotherapy response screening and calculation of in silico IC50 values 

The setup of cell line’s to match their native behavior is followed by the calibration of their drug 

response to match their in vitro counterparts accurately. Modifying the parameters of a node and 

its input edge weight makes it less or more dependent on the upstream regulator node. 

Monotherapy response measurement is based on the ratio of alive and dead cells contained in the 

virtual cell population, therefore normalized survival and cell death scores are calculated. The 

overall survival (S) of cell lines and killrate of a given dose of drugs are calculated with the 

following equation (1): 

 

𝑆 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 𝑐𝑦𝑐𝑙𝑒 𝑖𝑛𝑑𝑒𝑥

1 − 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑝𝑜𝑝𝑡𝑜𝑠𝑖𝑠 𝑖𝑛𝑑𝑒𝑥
 

𝐾𝑖𝑙𝑙𝑟𝑎𝑡𝑒 = 1 − 𝑆 
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We retrieve the final IC50 value by fitting a three-parameter Hill function on the results. The point 

on the dose axis where the fitted curve reaches a killrate of 0.5 is the in silico IC50 value for the 

tested drug on the tested cell line. 

Combination therapy screen  

In case of resistance or high toxicity for a specific drug, combination therapy is applied with at 

least two, potentially synergizing drugs. To find out which drugs would benefit patients the most 

and how they affect the in silico cells, we created the combination screen where two sets of drugs 

are tested on the same cell line with either a symmetric or asymmetric dose grid. Every cell line - 

combination pair is tested in a full dose grid, and the Bliss synergy score is calculated for all points 

of the grid. 

Processing raw data of combination synergy  

Let Ka and Kb denote the proportions of cancer cells that died following drug treatment a and b, 

respectively, where {Ka, Kb ∈ R | 0 ≤ Ka ,Kb ≤ 1}. The model states that if drug a and b acts 

independently the predicted combination effect of the two drugs �̂�𝑎𝑏 can be calculated as (2): 

 

 �̂�𝑎𝑏 = 𝐾𝑎 + 𝐾𝑏 − 𝐾𝑎 𝐾𝑏 

 

Let 𝐾𝑎𝑏 represent the observed combination effect of drug a and b where {𝐾𝑎𝑏: 0 ≤ 𝐾𝑎𝑏≤ 1}, then 

“excess over Bliss” namely Bliss score 𝐵𝑆 can be written as (3): 

 

 𝐵𝑆 = 𝐾𝑎𝑏 − �̂�𝑎𝑏 , {𝐵𝑆: − 1 ≤ 𝐵𝑆 ≤ 1} 

 

where BS > 0 indicates synergy and BS < 0 indicates antagonism. 

 

Bliss max definition: 

Bliss max is the maximum over all of the Bliss scores in a combinational grid. Let (4) 

 

𝑣 =  {𝑣𝑖  ∈ 𝑅>0 , 𝑖 = 1, … , 𝑛𝑎} 

𝑢 =  {𝑢𝑖  ∈ 𝑅>0 , 𝑖 = 1, … , 𝑛𝑏} 
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denote the sets of doses applied to the cell as combinations from drug a and b, then the Cartesian 

product 𝑣 × 𝑢 is the set of all ordered dose pairs from drug a and b. Let (5) 

 

𝑏𝑚 =  (𝑏𝑚1, . . . , 𝑏𝑚𝑛𝑎𝑥𝑛𝑏
) 

 

denote the vector of Bliss scores where each element 𝑏𝑖 ∈ 𝑏𝑚 is the Bliss score of the 

corresponding dose pair of 𝑣 × 𝑢, then “Bliss max” is the maximal value of vector bm (6): 

 

𝐵𝑙𝑖𝑠𝑠 𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑏𝑚𝑖, 𝑖 = 1, . . . , 𝑛𝑎𝑥𝑛𝑏      

 

Taken the Bliss scores in a subgrid of the combinational grid where the subgrid is determined by 

the monotherapy IC50 values of the two compounds Bliss max ic50 is the maximum Bliss score 

over this subgrid. In a given combinational grid Maxdose determines which dose pair of drug A 

and B have the maximum Bliss score of the IC50 subgrid and Bliss ic50 killrate is the killrate of 

drug combination at Maxdose. 

 

Let 𝐼𝐶50𝑎 and 𝐼𝐶50𝑏 represent the half maximal inhibitory concentration of drug a and drug b 

respectively and A denotes the following subset of 𝑣 × 𝑢 (7): 

 

𝐴 = {(𝑛, 𝑚): (𝑛, 𝑚) ∈ 𝑣 × 𝑢, 𝑛 <  𝐼𝐶50𝑎 , 𝑚 <  𝐼𝐶50𝑏} 

 

Let  𝑏𝑚𝑖𝑐50 denotes the vector of Bliss scores where each element 𝑏𝑚𝑖𝑐50(𝑖) ∈  𝑏𝑚𝑖𝑐50is the Bliss 

score of the corresponding dose pair of A, in this case,  “Bliss max ic50” is defined by (8) 

 

𝐵𝑙𝑖𝑠𝑠 max 𝑖𝑐50 = 𝑚𝑎𝑥 𝑏𝑚𝑖𝑐50(𝑖)  𝑖 = 1, . . . , 𝑛 

 

and Maxdose is the corresponding ordered dose pair of Bliss max ic50 from set A and Bliss ic50 

killrate is the observed killrate of the drug combination at Maxdose.  
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Quality control of raw combination results 

Cell line specific combination grids went through a quality control process in which we checked 

the combinational grids for non-monotone dose response issues focusing on the subgrid area. This 

area is determined by the monotherapy IC50 values of the two compounds. Combination grids 

where the normalized survival values were not decreased according to increasing drug doses were 

judged individually and distinguished into the following categories:  

(i) Where normalized survival values varied by a minimum of 0,2 in the case of both 

compounds specifically on the subgrid area, the combination grid was considered to be 

not reliable and discarded from further analysis.  

(ii) Combinations where the same phenomenon could be observed, but above the subgrid 

area, were labelled as uncertain.  

(iii) In the case of observing an inverse association between increasing drug doses and cell 

viability, the combinations were considered to be reliable.  

We proceeded to further analysis only with combinations tagged as uncertain and reliable. To 

determine cut-off values to distinguish between synergistic and non-synergistic combinations, we 

applied a K-means clustering- based algorithmic method. A similar  approach  has  been  already  

used  in  the  literature  to  discretize  gene  expression data 12 (Supplementary Figure 6). 

 

Biomarker screen 

The monotherapy response screen can be supplemented with extrinsic, artificial modifications of 

node activity and concentration parameters. This simulation type examines the power of the added 

alterations on shifting of monotherapy IC50 values. Inactivating (loss-of-function) mutations 

result in the possible decrease of the maximum activity of a protein to zero. Activating mutations 

(gain-of-function) constitutively activate a protein by increasing the possible minimum activity of 

a given protein to one. Protein abundances in the model are between 0 and 3, with most values 

being in the range of 0-1. An average 0.6 fold-change value reaches the potential maximum when 

multiplied by 5, while the same value goes to 0.2 (which does not completely turn the protein off, 

but already significantly impacts its ability to pass signals downstream) when multiplied by 0.3. 

Therefore, to generate overexpression or underexpression in the network, the actual concentration 

parameter of a given node is multiplied by 5 or 0.3 in every time-step, respectively. A monotherapy 
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specific biomarker is defined as the alteration of a specific protein which results in the IC50 shift 

of a tested drug as monotherapy, whereas a combination specific biomarker is an alteration that 

modifies the synergy of a combination therapy but failed to cause a shift in the monotherapy 

response. 

Systematic prescreen for verdict changing biomarkers 

The systematic prescreen was performed on 13 cell line models for AZ13150560:AZ12879988 

combination and on 6 cell line models for Olaparib:AZ13535704 combination. Both sample sets 

were chosen to represent both synergistic and not synergistic combination-cell line pairs, to make 

the detection of biomarkers possible with synergy increasing and decreasing character. The 

prescreen searched for verdict changer molecular alterations that shifted the treated simulated 

cell’s viability verdict status from alive to dead or vice versa, for sensitivity or resistance 

biomarkers, respectively. The prescreen systematically simulated the effect of loss-of-function, 

gain-of-function, underexpression, and overexpression of each node in the network while adding 

a single compound or compound combination effect to the simulation on doses manually curated 

for all cell lines. The doses were defined to have the in silico cell’s viability clearly in the alive or 

dead verdict and to be in the most synergistic dose-pair if that coupled with decreased viability, 

the general concept during manual dose selection is to define doses that are 3-times higher or lower 

than the in silico cell lines IC50s.  

Combination specific verdict changing alterations were selected if they shifted the viability on the 

specific cell lines only by adding the compound combination and did not shift the viability under 

monotherapy. For the AZ13150560:AZ12879988 combination, we further narrowed down the 

combination specific verdict changing alterations by selecting those for further detailed screening 

that are members of mTOR (TOR signaling), AKT (3-phosphoinositide-dependent protein kinase 

activity), JAK-STAT (receptor signaling pathway via JAK-STAT), PLCG (phospholipase C 

activity), TGFB (transforming growth factor beta receptor signaling pathway), TNF (tumor 

necrosis factor-mediated signaling pathway), p38-JNK (stress-activated MAPK cascade), NHEJ 

(double-strand break repair via nonhomologous end joining), NFκB (I-kappaB kinase/NF-kappaB 

signaling), and apoptosis pathways based on our network annotation. These steps resulted in 41 

alterations (8 sensitivity and 33 resistance biomarker candidates) for Olaparib:AZ13535704, and 

166 alterations for AZ13150560:AZ12879988 (120 sensitivity and 46 resistance biomarker 

candidates) to proceed with for the detailed screening. 
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Screen for combination specific synergy shifting biomarkers 

In order to identify synergy-related biomarkers we compared the combined drug efficacy with and 

without added extrinsic mutations (henceforth nomut and mut, respectively). Two of the main 

metrics were Bliss max ic50 nomut and Bliss max ic50 mut which are the Bliss max ic50 values of 

the unmutated and mutated counterpart of a combination drug experiment. Comparison of these is 

an indicator of the mutation effect on the synergistic behavior of the drug combination. 

Besides the specific synergy metrics, we also examined the killrates of the combination drugs, 

namely Bliss ic50 killrate nomut and Bliss ic50 killrate mut which are the Bliss ic50 killrate of the 

unmutated and mutated counterpart of drug combination.  
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Supplementary Methods 3: Analysis of features governing in silico 

predictivity  

The goal of the analysis was to create a model which that captures the association between the 

characteristics of cell lines and drugs and the predicted synergy by our network. The used model 

should be interpretable hence the aim of this exploration was “inference” focused. The main idea 

was to use features of cell lines/drugs which were used as input data layer for the Simulated Cell 

network. 

Identification of features important to predict synergistic combinations  

 

The used datasets included:  

• Output of the post-processed combination results, which aggregates the dose grids into 

single, relevant metrics (Supplementary Data 2) 

• Binarized Bliss_max_IC50 values were used as a measure of synergy. 

Thresholds: > 0.25 for synergistic, < 0.25 non-synergistic (Supplementary Figure 6) 

• 59947 unique cell line-combination drug pair described with max, average Bliss scores and 

other features (Supplementary Data 4) 

• 97 cell lines, 684 drug combinations (Supplementary Data 1) 

 

Input features 

1. Monotherapy- related features 

a. Modelling feasibility (Supplementary Data 1) 

b. Fold accuracy (considering AZ in vitro results as the gold standard).  

When there was no cell line-drug match with any DREAM results, we replaced the missing 

values with the average IC50 value of the drug in all other cell lines. 

c. Target number in the signaling network and not in the signaling network, with various 

threshold values (100, 1000, 10000 nmols) 

d. Two kinds of mechanism of action (MoA) categories (Supplementary Data 1) 

e. Monotherapy cell line coverage of the different drugs (Supplementary Data 1) 

f. Number of common targets in the signaling network 

g. Number of common targets in total 
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2. Compound target related features  

a. Median binding affinity values of proteins included in the signaling network 

3. Mutation readiness 

a. All unique included proteins with their corresponding encoded value (0: no mutation at 

this gene;, 1: gain-of-function mutation;, 2: loss-of-function mutation). (Described in 

Methods) 

4. Fold change data 

a. Fold change value of the genes in the network (Described in Methods) 

 

 

Target feature 

• Binarized Bliss_max_IC50 values were used as a measure of synergy.  

Thresholds: > 0.25 for synergistic, < 0.25 non-synergistic (Supplementary Figure 6) 

Categorical transformation was needed due to the result of comparison with DREAM’s in 

vitro results.  

 

The created dataset included:  

• 20 monotherapy related features 

• 262 compound target features 

• 1681 fold change features 

• 534 mutation readiness features 

 

As we have high-dimensional input data, feature selection methods were used to reduce the 

dimensionality of the dataset, and an embedded method was applied which both executes feature 

selection and model fitting. Logistic regression was used with elastic net-based penalty to shrink 

coefficients of irrelevant features towards zero. In order to evaluate the model properly, we 

implemented several cross-validation schemes described by Preuer et al. 13.  
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Evaluation of new drug combinations, new drugs, or new cell lines which the model hasn’t seen 

before shows a much more realistic measure of the generalization capabilities of the model than 

random splits. In order to properly evaluate the generalization capabilities of the model we used 

the same “leave drug combination out” cross-validation method as Preuer et al. Hyperparameter 

optimization was used to choose the best- performing elastic-net mixing parameter and inverse 

regularization strength parameter (Supplementary Table 1). 

 

 

Supplementary Table 1. 

10-fold ”leave drug combinations out” cross- validation result of different 

hyperparameters. 

The first column contains hyperparameters (l1 ratio=elastic net mixing parameter, C= inverse of 

regularization strength) of the elastic net model, second column shows the average weighted F-1 

scores of the fitted model with the given hyperparameters using the above described evaluation 

method. 

 

 

Parameter set (C, I1 ratio) Average weighted F-1 score 

(0.001, 0.1) 0.7955 

(0.001, 0.5) 0.7342 

(0.001, 1.0) 0.6825 

(0.01, 0.1) 0.8353 

(0.01, 0.5) 0.8368 

(0.01, 1.0) 0.8155 

(0.1, 0.1) 0.8174 

(0.1, 0.5) 0.8206 

(0.1, 1.0) 0.8100 

(1, 0.1) 0.7860 

(1, 0.5) 0.7884 

(1, 1.0) 0.7758 
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Henceforth the best former parameter setting were was used based on the maximum averaged F-1 

score reached:  

• 0.5 as elastic-net mixing parameter 

• 0.01 as inverse regularization strength which means “half-way between lasso and ridge 

penalty” and quite strong regularization 

 

We standardized the features because introducing regularization term make it a scale-variant 

model. According to Supplementary Table 2 the model performs well on unseen drug 

combinations. Using the “leave combinations out” cross- validation scheme we get a more realistic 

picture of the model coefficients. By inspecting the coefficients, we can identify the relevant 

features and their impact. 

 

 

 

Supplementary Table 2. 

Classification result of logistic regression model with elastic net. 

The table shows the evaluation of the best- performing model using the “leave combinations out” 

cross- validation scheme measured by various classification metrics (balanced accuracy, Matthews 

correlation coefficient). 

 

 

 

10 fold “new drug 

combination” 

cross validation 

Train mean Train STD Test mean Test STD 

Balanced accuracy 83,1% 0.4% 77.35% 1.96% 

Matthews correlation 

coefficient 

69.24% 0.6% 59% 3.2% 
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Identification of differences between correctly and wrongly predicted synergies 

based on monotherapeutic features 

 

Input features: 

• Modelling feasibility (Supplementary Data 1)  

• Fold accuracy (considering DREAM in vitro results as the gold standard) 

(Supplementary Data 1) 

• Number of targets included and not included in the signaling network with various 

threshold values (100, 1000, 10000 nmol) 

• Two kinds of in silico mechanism of action (MoA) categories (Supplementary Data 1) 

• Cell line coverage of the different drugs (Supplementary Data 1) 

• Number of common targets included in the signaling network 

• Number of common targets in total 

 

Target feature: 

● Correctness of our prediction (compared to the DREAM in vitro synergy data)  

Correctness was quantified based on thresholded DREAM in vitro synergy scores and our 

Bliss IC50 maxes (IV threshold: 30, IS threshold: 30) (Fig. 4B) 

● Using these thresholds, we got around 66 % balanced accuracy and the below confusion 

matrix (Supplementary Table 3) 

 

 

 

 

Supplementary Table 3. 

Confusion matrix of predictions taking DREAM results as true labels. 

TP – True positive, TN-True negative, FP – False positive, FN – False negative 

Since we cannot observe any input feature correlating with our target feature nor any meaningful 

Labels Predicted Synergistic Predicted Non-

Synergistic 

Actual Synergistic TP = 56 FN = 72 

Actual 

Non-Synergistic 

FP = 138 TN = 711 
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differences between the classes of input features by visual inspection, we fitted linear and non-

linear models to classify our prediction categories. We experimented with all confusion matrix 

elements (TP, TN, FP, FN) and binarized categories as well (Correctly-Not correctly predicted). 

Even with handling class imbalances, these models were not satisfying as TN samples over-

dominated all classifiers. The exclusion of TN samples from the data caused significant 

performance improvement (Supplementary Table 4). These TN samples couldn’t be separated by 

using our independent variables.  

 

 

 

 

 

 

Supplementary Table 4. 

Balanced accuracy including-excluding TN samples. 

Mean and standard deviation of balanced accuracies evaluated using 10-fold cross- validation with 

vs without true negative samples. 

 

To identify only the relevant features, we applied Recursive Feature Elimination to discard 

irrelevant input features. As we can inspect, including other features besides the 4 most relevant 

features doesn’t really increase our performance metrics (Supplementary Figure 11). Therefore, 

we continued modelling by excluding the least important features (feasibility and MoA category 

labels) and used the top 9 features and hyperparameter optimized a Random Forest model 

(Supplementary Table 5). 

 

 

 

 

 

 

10-fold cross validation scores with RF Mean balanced 

accuracy 

Std of balanced 

accuracy 

Inclusion of TN samples 55.37 % 8.3 % 

Exclusion of TN samples 66.09 % 3.53 % 
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Supplementary Table 5. 

Hyperparameter optimization and oversampling results. 

The columns denote the various classification metrics used for evaluation, while the rows are 

models with different conditions. 

 

 

According to the gini index based feature importance values of the optimized Random Forest (RF) 

model, fold accuracies, cell line coverage, and  the number of common targets seems to be 

important as well for the model (Supplementary Figure 9 and Supplementary Table 6).  

 

 

 

 

 

 

 

 

Supplementary Table 6. 

The most relevant features based on RFE. 

The table includes the 4 most relevant features in decreasing order based on Recursive Feature 

Elimination with a random forest model evaluated by cross-validation. Other features were 

10-fold cross 

validation 

scores with RF 

Mean balanced 

accuracy 

Std of balanced 

accuracy 

Mean weighted 

F-1 score 

Std of 

weighted F-1 

score 

Without 

hyperparam 

opt 

69.51 % 7.872 % 68.92 % 5.01 % 

With 

hyperparam 

opt 

73.47 % 13.56 % 74.25 % 11.64 % 

With optimized 

hyperparam 

and   

oversampling 

76.68 % 4.8 % 76.46 % 4.55 % 

TOP relevant features in decreasing order 

Drug A fold accuracy 

Drug B fold accuracy 

Cell line coverage 

Drug B MoA label 
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eliminated due to their marginal/non-existent contributions to model performance.  

 

In order to further investigate how these features impact our target feature, the correctness of our 

predictions, the game theory based SHapley Additive exPlanations 14  was used. In order to 

simplify the interpretation of fold accuracy variables we took the absolute value of them. As we 

can inspect (Supplementary Figure 10), a low value of cell_line_coverage increased the 

probability of the wrong prediction category, while a high value of cell_line_coverage decreased 

the probability of the correct prediction category. Similarly, a low value of drug_b_fold_accuracy 

increased the probability of the wrong prediction category, while a low value of 

drug_b_fold_accuracy increased the probability of the correct prediction category 
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Supplementary Methods 4: Machine learning benchmark framework for 

validating the predictive performance of the Simulated Cell  

 

Creating an equitable benchmark framework required training models on cell line – drug – dose 

triplets to predict killrates as monotherapy responses. These models can be directly applied for 

combination synergy prediction, with the publicly available DREAM challenge dataset serving as 

a test set to evaluate prediction capabilities. 

 

Our benchmark procedures are as follows:  

• Leveraging monotherapy responses from the DREAM dataset, we derived dose-response 

curves based on provided summary metrics (IC50, Hill Parameter, maximal response).  

• To delineate drugs' inhibitory effects on their targets, we identified targets from publicly 

available datasets, coupled with target-specific inhibitory constants, and calculated dose-

dependent inhibition rates.  

• Characterizing cell lines, we utilized the CCLE transcriptomics dataset, concatenated with 

drug target data, serving as inputs for the chosen machine learning methods. Essentially, 

this mirrors the dataset fed into the Simulated Cell network’s input layer, allowing fair 

contrast between machine learning methods and our approach. 

We followed the benchmark strategy outlined in the CellBox article*, validating our model’s 

predictive performance against state-of-the-art machine learning algorithms. Thus, employing 

appropriate featurization techniques, we evaluated whether our model-building efforts benefitted 

the drug response prediction. For the algorithmic benchmark, we utilized three machine learning 

models: linear Ridge regression, a fully-connected neural network, and a gradient-boosted model 

(LightGBM), considered broad enough for reliable performance evaluations. 

Given the Simulated Cell was manually calibrated primarily on publicly available monotherapy 

responses and only in limited cases on monotherapy from the DREAM dataset, and was not using 

the combination data from the DREAM dataset, we consider the DREAM dataset as a suitable test 

set for predictions. For the machine learning-based benchmark, we trained models on monotherapy 

dose-response curve data, conducting ten random train-test splits. Three splitting strategies were 

employed for evaluation along the cell line, the drug, and the cell line-drug dimensions together. 
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Performance metrics for the Simulated Cell predictions were obtained by calculating metrics for 

each test set created for machine learning methods. For the dose-response curves were fitted on 

predictions to assess the in silico IC50 scores. Pearson correlation was applied to compare the in 

vitro and in silico IC50 scores. Bliss synergy score was calculated based on Bliss independence 

principle, to evaluate the accuracy of the Simulated Cell and the competing ML method’s 

prediction performance, balanced accuracy was calculated. 

 

The benchmarking method above is applicable to model version 4 of the Simulated Cell, released 

in 2019 Q3. 

 

* Yuan, Bo et al. “CellBox: Interpretable Machine Learning for Perturbation Biology with 

Application to the Design of Cancer Combination Therapy.” Cell systems vol. 12,2 (2021): 128-

140.e4. doi:10.1016/j.cels.2020.11.013) 
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Supplementary Figures 

Supplementary Figure 3: Comparison of in vitro dose responses from different sources across 

the DREAM challenge cell line set 

Setting up the correct drug response within each cell line and drug pair is one of the most challenging but crucial parts to prepare the in 

silico Simulated Cell for applying adequate prediction methods. Since most databases contain one datapoint for each measurement, it is 

hard to draw conclusions from mismatching in silico and in vitro responses. Hence, a tradeoff had to be made between the correct drug 

response prediction based on a single datapoint and accurate underlying biology, especially where protocols, such as treatment times 

differ. The plot demonstrates nicely the differences between in vitro IC50 data from various external sources (showed shown in red 

color) and DREAM in vitro data where it was available (showed shown in turquoise color). Calibration focused on using the other, non-

DREAM sources as primary endpoints due to their abundance. 
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Supplementary Figure 4: ROC curves of monotherapy simulations 

for compounds targeting DDR or non-DDR MoA categories 

Results were aggregated based on the targeted MoA category of compounds, resulting in DDR and 

non-DDR groups. AUC metric is indicated. Monotherapy in silico IC50s are compared to the non-

DREAM, other IC50 in vitro values as primary endpoints during the manual calibration process. 
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Supplementary Figure 5: Examples of different combination grid 

quality categories 

Each dose grid represents normalized survival values in each dose points. A) Unreliable 

combination: possible false positive synergy scores due to non-monotone dose response with both 

compounds under their IC50. 0.17% of all combinations were considered to fit into this category. 

B) Uncertain combination: possible false positive synergy scores due to non-monotone dose 

response with both compounds over their IC50. 5.43 % of all combinations were distinguished as 

uncertain combinations. C) Reliable combination: synergy score is considered reliable based on 

the preliminary quality check of the survival score landscape on the specific cell-drug combination 

dose grids. 65.96% of the combination were labelled as reliable based on the combination grids. 

The remaining 28.43% were considered to be not-synergistic, since one of the combination 

partner’s effects dominated the observed effect, and the other partner did not have the space for 

showing an effect on survival, example not shown. Abbreviations: AZ_AKT: AKT inhibitor, 

AZ_PRKDC_I: PRKDC inhibitor 1, AZ_PRKDC_II: PRKDC inhibitor 2, AZ_PI3K- Protein 

synthesis (PI3K) inhibitor (molecular target profiles were provided by AstraZeneca). 
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Supplementary Figure 6: Discretization of synergy scores with K-

means clustering 

An algorithmic method was applied to discretize the continuous synergy scores. Thresholds for 

different synergistic categories were established using k-means clustering, a widely used 

discretization method in biological data analysis. Our assumption is that the distribution of synergy 

scores is the mixture of different synergy categories category distributions. After the evaluation of 

the clustering results, we draw two thresholds splitting the combination-cell line pairs into three 

distinct categories such as non-synergistic (Cluster 0), moderately synergistic (Cluster 2), and 

strongly synergistic (Cluster 1). For further evaluation, we prioritized the most promising, strongly 

synergistic pairs from Cluster 1.  
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Supplementary Figure 7: Grouped indication specific landscape of  

DDR:DDR combinations on combination modified killrates and 

overall synergy 

 

The radar charts are representing different synergistic and non-synergistic combination pairs. 

Synergy is concluded from the average Bliss score with additional average killrate values. The 

higher the synergy is, the outer radius of the circle is reached at the given indication group. Mean 

synergy and mean killrate were calculated for each MoA groups for all cell lines categorized into 

indication groups.
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Supplementary Figure 8: Performance analysis of combination 

synergy benchmark 

A) Overall performance analysis of combination benchmark consisting of 977 overlapping 

datapoints with the DREAM challenge in vitro synergy scores. For the AUC evaluation in vitro 

(IV) threshold 30 and in silico threshold 20 were used. AUC metric and the amount of synergistic 

simulations (syn) are indicated.  

 

A 
 

 

 

 

 

 

 

 

 

 

B) AUROC scores for the prioritized compounds based on the combination benchmark. The 

number of involved datapoints are indicated in parentheses. The in vitro threshold of 30 and in 

silico threshold of 20 were applied in the performance. 

 

B 
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Supplementary Figure 9: Tree-based feature importance of 

association between monotherapy related features and combination 

prediction accuracy with a Random Forest model 

The examined features were: cell_line_coverage: coverage for the in vitro synergy of the 

combinations, drug_b_fold_acc: abs(log10(in silico IC50/AZ in vitro IC50) for the second 

compound (DDRi or nonDDRi) of the combination, no_of_common_targets_insig: number of 

common targets of drug_a and drug_b in the signaling network, no_of_common_targets: number 

of common targets of drug_a and drug_b, not only in the signaling network, drug_a_fold_acc: 

abs(log10(in silico IC50/AZ in vitro IC50) for the first compound (DDRi) of the combination, 

drug_a_target_num_ratio and drug_b_target_num_ratio: ratio of the modelled targets, 

drug_a_MoA_labels: MoA categories of the DDRi-s. 
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Supplementary Figure 10: Investigation of relevant features 

impacting synergy as a target feature using SHapley Additive 

exPlanations (SHAP)  

SHAP values of A) wrong predictions (FP, FN) and B) correct synergy predictions (TP). Game 

theory- based SHapley Additive exPlanations 14 was used to further investigate the relationship 

between the features and the model. We can plot the SHAP values of every feature for every 

sample. The plot sorts features by the sum of SHAP value magnitudes over all samples, and uses 

SHAP values to show the distribution of the impacts each feature has on the model output. The 

features used here were “fold accuracy” for each drugs that indicates the magnitude of difference 

between in silico and in vitro data, “MoA labels” for each drugs which annotates the mechanism 

of each drugs into Mechanism of Action groups,  the “cell line coverage” which counts the number 

of cell lines for one combination therapy we had data for, “no common targets” and “no common 

targets insig” counts the number of targets shared between the two drugs of a given combination 

all together and with those targets that are present in our network only, respectively, and finally 

the “target num ratio” as the percentage of given drug’s target proteins are present in our network 

in a dose- dependent manner, where off-targets are counted as well. The color indicates the feature 

value with red for higher and blue for lower values. 
 

A 

B 
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Supplementary Figure 11: Determining features of predicting 

combination synergy and their positive and negative coefficients from 

logistic regression model based on 10-fold leave drug combinations 

out cross- validation 

The plots below show the top 20-20 variables with the largest and lowest odds ratios, respectively, 

to indicate the most relevant features and their relationship with the target in the logistic regression 

model. Abbreviations: _comp – given node is targeted by the given combination, 

drug_a_modelling_feasibility – pathway readiness of the pathway in the signaling network 

targeted by Drug A,  drug_b_modelling_feasibility - pathway readiness of the pathway in the 

signaling network targeted by Drug B. 10000_target_non_insig - Number of drug targets not 

included in the signaling network above a binding affinity threshold of 10000 nmol in the 

molecular target data profile. 
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Supplementary Figure 12: Comparison of the monotherapy response 

and combination synergy prediction performance of the Simulated 

Cell and machine learning models in case of different train-test splits 

 

A) In silico-in vitro IC50 correlation of the Simulated Cell and other in silico benchmark 

methods.  

Based on the IC50 mean Pearson correlations, the Simulated Cell was not advantageous in a drug 

exclusive (DEX) setup compared to the Neural Network or the Linear regression model, while in 

cell line exclusive (CEX) and the combined all exclusive (AEX) train-test splits the correlation is 

better than the benchmark ML models. Dashed line of the boxes represents the mean Pearson 

correlation and standard deviation, while the continuous line is for median correlation values per 

model. For easier interpretation a table format is also created containing the exact core values.  

 

B) In vitro-in silico balanced accuracy scores of each in silico method to express synergy the 

predicting performance.   

According to the yielded balanced accuracy scores per model, the Simulated Cell had an advantage 

in predicting correctly whether a drug combination was synergistic or not. The dashed vertical line 

represents the random level of balanced accuracy for easier understanding. 

Details about the benchmark pipeline can be found in Supplementary Methods 4. 

 

 

The benchmarking method above is applicable to model version 4 of the Simulated Cell, released 

in 2019 Q3. 
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Supplementary Data 

Supplementary Data 1: In silico vs in vitro monotherapy 

measurements with respective cell line and compound annotation  

This supplementary file contains the in silico IC50 prediction in nmol as in “IS (nmol)” column 

for each drug – cell line pairs, annotated in “ID”, “Cell line” and “Drug” columns. To have an 

experimental checkpoint for each prediction, we used the DREAM data where it was accessible or 

other open sources of in vitro measurements in nmol, stored in “IV DREAM (nmol)” and “IV 

OTHER (nmol)” columns, respectively. We also listed the one-fold accurate and inaccurate in 

silico predictions compared to their in vitro counterpart for both DREAM only and “Other” 

miscellaneous sources. Other databases are described in Supplementary Methods 3. To avoid cell 

line characterization issues, each cell line used in our screens is annotated with their metastatic 

status as in “Cell line origin”, the source organ as in “Organ of origin”, referred disease, MSI 

status, and the adequate in vitro maintaining setting as in “Growth properties”. For the compound 

annotation, we found it important to clarify the putative target and their respective targeted 

mechanism of action group, the feasibility score based on our internal benchmarking system, and 

the cell line coverage we have data for each drug listed. 

Supplementary Data 2: Combination measurement metrics 

This supplementary file contains each drug combination with all cell lines screened, i) the in silico 

IC50 value of each combination drug as monotherapy in given cell line (with values over 10,000 

entered as 10,000), ii) the killrate value when the combination therapy was applied in given cell 

line at maximum Bliss synergy dose, iii) the maximum Bliss synergy score of the combination in 

given cell line and iv) the same with both compounds under the IC50 dose, and v) classification 

determining reliability of the combination's effect in given cell line. 

Supplementary Data 3: Monotherapy biomarkers 

To distinguish those biomarkers, which could modify the effect of the each drug alone from the 

combination specific ones, we screened for monotherapy biomarkers. Supplementary Data 3 

contains every potential biomarker we predicted for each drug individually. Affected cell lines and 

their source of origin are stored as in “Cell line” and “Organ of origin ”. Our predictions are coded 

as the gene and the effect of the mutation on a given protein being loss-of-function (genename:0.0), 

gain-of-function (genename:1.0), underexpression (genename:mc0.3), or overexpression 

(genename:mc5.0) as in “Hypothesis” and “Hypothesis alteration”. To ease the matching to 

different outer sources we listed the UniProt ID’s of affected proteins as in “Hypothesis uniprot” 

and for easier search, we also listed the gene name only from the hypothesis as in “Hypothesis 

genename”.  
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Supplementary Data 4: Combination biomarkers for PARPi:ATMi 

along with PRKDCi:NFKBi  

Contains what we predicted as unique biomarkers for the combination therapy of PARP and ATM 

inhibitors and the combination of PRKDC and NFKB inhibitors for a given cell line. Our 

predictions are coded as the gene and the effect of the mutation on a given protein being loss-of-

function (genename:0.0), gain-of-function (genename:1.0), underexpression (genename:mc0.3), 

or overexpression (genename:mc5.0) as in “Hypothesis” and for easier search we also listed the 

gene name only from the hypothesis as in “Hypothesis genename”. This data file also contains: i) 

the killrate of the Simulated Cell without any treatment and with or without added alteration;, ii) 

the maximum Bliss synergy score of the combination in the given cell line and the same with both 

compounds under the IC50 dose;, iii) the in silico IC50 value of each combination drug as 

monotherapy in given cell line (with values over 10,000 entered as 10,000) and either with or 

without added alteration;, iv) the magnitude of the shift in IC50 for either drug by the hypothesis;, 

v) sum of the Bliss difference matrix, which is the result of element-wise subtraction of non-altered 

cell line’s Bliss matrix from the altered cell line’s Bliss matrix;, vi) sum of the killrate difference 

matrix, which is the result of element-wise subtraction of non-altered cell line’s killrate matrix 

from the altered cell line’s killrate matrix;, and vii) the type of biomarker (sensitivity / resistance 

biomarker) based on overall_killrate_change. 

 

Supplementary Data 5: The estimated patient population size for 

Olaparib:ATMi combination and the prevalence of the significantly 

strong synergy shifter biomarkers specific for the combination 

To provide translatable combination specific biomarkers, we estimated the size of the potential 

patient population who could benefit from the Olaparib:ATMi combination by calculating the 

frequency of patients with damaging BRCA1 or BRCA2 and ATM mutations, since these genetic 

factors are one of the main inclusion criteria for Olaparib and ATMi monotherapy.  

 

S5A: Contains the number and frequency of patients with damaging BRCA1 or BRCA2 and ATM 

mutations in the indicated 30 PanCancer TCGA projects. To estimate the size of the benefiting 

patient population from this combination, we also involved cancer- type prevalence data from the 

NCI Surveillance, Epidemiology, and End Results Program by using the SEER explorer 

application. 109 out of 10141 (1.075%) patients met these conditions involved in 30 PanCancer 

TCGA studies. Our estimation indicates that more than 120,000 patients with various tumor types 

could benefit from Olaparib therapy combined with ATM inhibitors.  

 

S5B1: Contains the number and frequency of patients bearing damaging mutations of the indicated 

genes in patients with the same tumor types, which we examined in in silico screens through cell 
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lines. Mutational combination specific biomarkers were represented with low frequency across all 

indications that we investigated during in silico screens. Functional alterations of TP53BP1 were 

the most frequent in patients with cutaneous melanoma and colorectal cancers (6.,3% and 3.,7%, 

respectively), DDB1 functional alteration was also observed in melanoma and gastric cancer 

samples with ~2% frequency, while alterations of CUL4A were the most occurrent in melanoma 

patients. Mutational frequency distribution was determined by using the TCGA dataset. The 

extended mutational data was obtained from cBioPortal for each prioritized tumor types. The 

damaging status of the mutations was extracted from the PolyPhen feature. The final frequency 

table indicates the number of damaging mutations at combination biomarker and TCGA tumor 

type levels.  

 

S5B2: Contains the number and frequency of patients, who express the given genes differently 

compared to the mean expression of total patients involved in TCGA studies. Like S5B1, we 

analyzed only those studies’ data, which represents tumor types we modelled during in silico 

screenings by cell lines. Using gene expression z-score data from cBioPortal we examined the 

gene expression distributions of the potential expression biomarkers for each prioritized TCGA 

tumor types. For this, the data_RNA_Seq_v2_mRNA_median_all_sample_Zscores data was used 

which profiles the log-transformed mRNA expression z-scores compared to the expression 

distribution of all samples. In each tumor type we kept patients where the z-score absolute value 

was higher than 2 and then quantified these cases in each prioritized tumor types. We detected 

RAD54B/L overexpression significantly decreasing synergy. Interestingly, underexpression of 

these genes were the most prevalent with 51-54% frequency in prostate adenocarcinoma, kidney 

renal clear cell (KIRC), and bladder carcinomas (BLCA). The underexpression of ATRIP was the 

most prevalent in KIRC (54%) and squamous cell lung carcinomas (50.,9%). KAT5 

overexpression was observed in acute lymphoid leukemias (4%) and BLCA (3.,9%).  

 

Column legends can be found in the corresponding data files. Abbreviations for TCGA projects 

for better understanding can be found here: https://gdc.cancer.gov/resources-tcga-users/tcga-code-

tables/tcga-study-abbreviations 

 

  

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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