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Supplementary Methods:  16 

Laboratory Diagnosis of the TB Cases 17 

The laboratory diagnostic algorithm for suspected TB cases involves several tests and is composed of 18 

the following steps: (I) Sample Collection: Clinical samples are collected, preserved, and transported to the 19 

designated laboratory for further analysis; (II) RMT-TB or Microscopy: The initial diagnosis is preferably 20 

performed using the Xpert MTB/RIF. If unavailable, smear microscopy can be used as an alternative. (III) MTB 21 

Culture: Samples processed for RMT-TB, with a positive result, or microscopy, regardless of the results, undergo 22 

culture to facilitate the growth of mycobacteria. In addition, culture is also recommended for treatment monitoring 23 

in cases with positive microscopy in the second month, for children, individuals living with HIV, extrapulmonary 24 

TB, retreatment cases regardless of TRM-TB results, and suspected drug resistance, treatment failure, or non-25 

tuberculous mycobacteria (MNT) infection; (IV) Preliminary Species Identification and First-Line DS Test: If the 26 

culture yields positive results, the sample is subjected to preliminary species identification. If it belongs to the 27 

MTB complex, first-line phenotypic DS testing is conducted to determine the appropriate treatment regimen1. 28 

Anomaly detection test:  29 

The tsoutliers package from R version 4·3·1 was used following the procedure proposed by Chen & Liu 30 

et al. (1993) for automatic anomaly detection in a time-series that identifies significant shifts in our time-series 31 

data that could indicate the impact of the intervention2,3. This method is particularly suited for detecting points 32 

where there are significant and sudden changes that cause large fluctuations in the data, classified as anomalies. 33 

We chose this method for its robustness in identifying meaningful changes in time-series data, crucial for 34 

accurately pinpointing intervention impacts. The test specifically looks for three types of anomalies: Level Shift, 35 

Additive Outlier, and Temporary Change. A Level Shift indicates a sudden and permanent change in the series 36 

level, suggesting an intervention or structural break. While Additive Outliers represent sudden spikes or drops in 37 

the series and Temporary Changes denote short-term deviations that revert to the original pattern in later 38 

observations4,5. The package also provided information on the year, estimated coefficient value, and t-statistic for 39 

each detected anomaly, as well as determining the anomaly type. P-values were calculated based on the model's 40 

t-statistic and degrees of freedom, with significance set at p < 0·05. 41 

Intervention time-series analysis  42 

Next, the calendar year classified as the anomaly with highest impact on the model was denoted as the 43 

intervention year, which we used to segment the time series into pre- and post-intervention phases. Afterwards, 44 

different forecasting models were employed to identify patterns and create a forecasting algorithm to predict the 45 

counterfactual values of the time-series under the assumption that the intervention had not occurred. Given the 46 

constraints posed by the limited size of our dataset, we selected two prominent models highlighted by Cruz-Nájera 47 

et al’s study for accurately forecasting short-sized time-series data: ARIMA (AutoRegressive Integrated Moving 48 

Average) and ForecastHybrid and models.  49 

The ARIMA modelling was performed using the ‘auto.arima’ function from the forecast package in R 50 

version 4·3·16,7. This function automates the process of identifying the most suitable ARIMA model for a given 51 

time series. It performs this by conducting a detailed search over possible model specifications and the selecting 52 

the ARIMA formula that minimizes the AICc (Corrected Akaike Information Criterion) value. The AICc is a 53 

measure used to compare the goodness-of-fit of different models while adjusting for sample size. The formula for 54 

the ARIMA model is represented as ARIMA(p,d,q)(P,D,Q)[s], where: where p and P are the orders of the 55 

autoregressive components, d and D are the others of differencing, q and Q are the orders of the moving average 56 

component, and s checks for a possible seasonal period in the time-series6,7. Importantly, when the model identifies 57 
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the absence of a significant trend, seasonality, or sufficient temporal dynamics in the data, the formula can be 58 

represented as ARIMA (0,0,0). This model, indicative of a random walk, projects future values to equal the last 59 

observed value, yielding a flat forecast with prediction intervals widening over time to reflect increasing 60 

uncertainty. By evaluating the AICc value in different combinations of these parameters, the function determines 61 

the most accurate possible model and ensures that the chosen model is well-suited for the data6,7.  62 

On the other hand, the ForecastHybrid model combines the strengths of multiple forecasting techniques, 63 

including ARIMA7, Exponential Smoothing State Space Models (ETS)8, TBATS9 and the Theta Model10, to 64 

enhance prediction accuracy. To do this, the forecastHybrid R package11 automatically combines the forecast 65 

results of each model by either assigning an equal weight to each model or determining the weighting based on 66 

in-sample accuracy measures such as Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE) or Root-67 

Mean-Square Error (RMSE). Due to the small-size of our time-series, the feed-forward neural network model 68 

(nnetar) was excluded from the ForecastHybrid modelling.  69 

To ensure a rigorous evaluation of our models, we partitioned our data into two distinct sets. Observations 70 

from the pre-intervention phase served as our in-sample testing data, providing the foundation upon which our 71 

models were trained and fitted. In contrast, data from the post-intervention phase was reserved as a test set, 72 

allowing us to assess the models' predictive capabilities in real-world, out-of-sample scenarios. Therefore, to select 73 

the model with highest accuracy we used the Mean Absolute Percentage Error (MAPE) calculated using the out-74 

sample data. MAPE is a measure that captures the average discrepancy between observed and forecasted values, 75 

expressed as a percentage7. Upon evaluating the models, those with the lowest MAPEs were chosen as our primary 76 

forecasting tools to predict the counterfactual values. The detailed accuracy results for all models, including those 77 

not selected, are reported in Supplementary Table 2. 78 

Of note, for the phenotypic DS testing model, our analysis revealed a Level Shift in 2013, which we 79 

attribute to the launch of the Site-TB platform for special treatment TB case notifications12. Interestingly, while 80 

an additive outlier was detected in 2014, suggesting the initial impact of Xpert, the most significant anomaly was 81 

identified in 2015, aligning with the Xpert implementation. Given these findings, we reasoned that selecting 2015 82 

as the intervention year might not accurately capture the pre-Xpert scenario, as ITSA influence seemingly began 83 

in 2014. Thus, to better represent the scenario without Xpert's influence and to account for the potential early 84 

impact of Xpert in 2014, we designated 2014 as the intervention year for this model. 85 

Todo-Yamamoto Procedure for Granger Causality 86 

To determine if observations from Xpert MTB/RIF testing could be used to improve prediction models 87 

of the future values in our time-series models depicting yearly TB and DR-TB case notification and testing, we 88 

used the concept of Granger Causality. Granger Causality is a statistical hypothesis test that evaluates whether 89 

past values of one time series can provide information that aids in predicting another time series13,14. For example, 90 

if time series X's historical values improve the predictability of time series Y beyond Y's past values alone, X is 91 

deemed to "Granger-cause" Y, which is represented by a p value lower than 0·0514. Furthermore, given the non-92 

stationary nature of our time-series models, as confirmed by the Augmented Dickey–Fuller test, we adopted the 93 

Toda-Yamamoto procedure tailored for bivariate Granger Causality tests on non-stationary data15. To perform 94 

this procedure adhered to the following steps: (1) The maximal order of integration (d) was determined for all 95 

series using Augmented Dickey-Fuller (ADF) unit root tests34. (2) Constructing six vector autoregressive model 96 

(VAR) models, each incorporating the Xpert MTB/RIF testing coverage and one of the time-series data sets. The 97 
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Akaike information criterion (AIC) determined the optimal lag order (k) for these VAR models. (3) To ensure the 98 

robustness of our VAR models, we examined residual serial correlation with the Lagrange multiplier (LM)-test. 99 

(4) A Granger causality test was conducted on a new augmented VAR model, which incorporated the sum of the 100 

maximal order of integration and optimal lag order (k + d)15. 101 

Dynamic Regression Forecast Models 102 

 In order to perform the dynamic regression forecast models, our methodology hinged once again on the 103 

two primary models highlighted by Cruz-Nájera et al 2022: the ARIMA with external regressors (ARIMAX) and 104 

the ForecastHybrid models with external regressors16. In addition to fitting these models with external regressions, 105 

we also create univariate models for each time-series data and compared their out-of-sample accuracy to the 106 

dynamic regression versions. To do this, we segmented the time-series into training data (in-sample: 2011-2020) 107 

and test data (out-of-sample: from 2021-2022). The model boasting the lowest MAPE for each outcome time-108 

series was then chosen for a 6-year forecast. For those time-series where the dynamic regression model with 109 

external regressors emerged superior, we incorporated historical Xpert MTB-RIF testing data from 2019-2022 110 

and forecasted data for 2023-2024. Through this approach, we could validate the results of the Granger Causality 111 

test on whether Xpert MTB/RIF annual testing values can be used to better predict the future values of each 112 

outcome variable, as well as forecasts of a possible scenario on the next 6-years of TB and DR-TB notification in 113 

Brazil. However, it is critical to acknowledge that to more accurately project the future burden of TB, given its 114 

complex and multifactorial nature, necessitates the consideration of a broad array of determinants. These include 115 

comorbidities, transmission dynamics, socio-epidemiological influences, and preventative measures, each playing 116 

a role in shaping the prevalence of TB. 117 

Moreover, after producing the 6-year forecasts for each time-series data, we also performed a Mann-118 

Kendall (MK) test to perceive statistically significant decreasing or increasing trends on our data. To do this, we 119 

sectioned each time-series into two datasets, one including only data from the historical values and another with 120 

both the historical and forecasted values. In addition, Sen’s slope estimates, including linear rate of change and 121 

95% confidence levels, were calculated to determine the magnitude of the trend in our temporal data, quantifying 122 

the time change. A significant advantage of the Sen’s Slope estimator is its resistance to outliers in the data, thus 123 

fitting well with the nature of our time-series data.  124 

Notification of TB cases 125 

Confirmation of TB cases, whether by laboratory analysis or clinical evaluation, is a prerequisite for notification; 126 

(II) Notification: Healthcare professionals are responsible for notifying SINAN-TB about all TB cases, which 127 

includes the submission of detailed clinical and epidemiological information about the patient, including which 128 

tests were used for diagnosis, as well as their results; (III) Treatment Accessibility: The Unified Health System 129 

(Sistema Único de Saúde - SUS) ensures that TB treatment is accessible nationwide at no cost. The standard 130 

treatment for DS-TB usually consists of a two-month intensive phase with four drugs (Isoniazid, Rifampicin, 131 

Pyrazinamide, and Ethambutol), followed by a continuation phase of at least four months with Isoniazid and 132 

Rifampicin. Treatment for DR-TB varies according to resistance type; (IV) Update Notification: data on the 133 

treatment outcome is mandatorily updated in SINAN-TB9.  134 
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Supplementary Table 1. Packages used for the statistical analyses. 135 

Type of Analysis R package Version Reference 

 

Anomaly Detection Test tsOutliers5 8·21.1 5  

Intervention Time-Series - ARIMA Model Forecast17 8·21.1 17  

Intervention Time-Series - Hybrid Model Forecast17 5·0.19 17  

Plot graphs ggplot18 3·4·4 18  

Cross-Correlation Function stats19 4·3.1 19  

Spearman Correlation pspearman20 0·3.1 20  

Granger Causality Test vars21 1·5-9 21  

Geographical Distribution geobr22 1·8.1 22  

 136 

  137 
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Supplementary Table 2. Anomaly detection test on all time-series included in the analysis. 138 

Time-Series Data 
 

Anomaly 

Type 
 

Anomaly Detection 

Year 
 

Anomaly Estimated 

Coefficient 
 

t-Statistic 
 

p-value 
 

 
Total TB Cases LS 2017 8435·00 5·83 < 0·001  

DR-TB Cases LS 2014 908·33 5·96 < 0·001  

DS-TB Cases LS 2014 15028·33 6·45 < 0·001  

Phenotypic DS Test LS 2015 5887·00 14·64 < 0·001  

MTB Culture Test LS 2015 3190.11 70.18 < 0·001  

Smear Microscopy Test LS 2015 -3732·74 -44.17 < 0·001  

Table note: Data represents results of anomaly detection test on all time-series included in the analysis. The 139 

anomaly Type indicates the type of anomaly detected, the test specifically searched for three types of anomaly: 140 

Level Shifts, Additive Outliers, and Temporary Changes. The "Anomaly Detection Year" column specifies the 141 

year in which the impact initiated. Anomaly Estimated Coefficient represents the estimated coefficient for the 142 

anomaly, indicating ITSA magnitude. The "t-Statistic" column displays the calculated t-statistic value for the 143 

anomaly, which assesses the significance of ITSA effect. P-values lower than 0·05 were considered significant 144 

and are outlined in bold. Notably, all anomalies detected in this analysis demonstrated a significant impact.  145 

Abbreviations: LS: Level Shift; TB: Tuberculosis, DR-TB: Drug-resistant tuberculosis; DS-TB: Drug-sensitivity 146 

tuberculosis; DS: Drug-sensitivity; MTB: Mycobacterium tuberculosis.  147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 
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Supplementary Table 3. Accuracy Measures of different forecasting models for ITSA analysis  157 

Time-Series Data 
Forecast 

Accuracy Measures 
ARIMA Model 

Hybrid Model - 

Equal Weights 

Hybrid Model - 

MASE Weights 

Hybrid Model - 

 MAE Weights 

Hybrid Model - 

RMSE Weights 

Total TB Cases In-sample - MAPE (%) 0·79% 6·70% 6·60% 6·60% 6·50% 

 
Out-of-sample - MAPE (%) 9·55% 9·99% 10.13% 10.13% 10.19% 

 
Best Model ✓ - - - - 

Total DR-TB Cases In-sample - MAPE (%) 9·22 5·28 1·87 1·87 1·72 

 
Out-of-sample - MAPE (%) 74·25 65·63 62·27 62·27 62.13 

 
Best Model - - - - ✓ 

Total DS-TB Cases In-sample - MAPE (%) 24·80 24·49 24·47 24·47 24·50 
 

Out-of-sample - MAPE 89·86 89·54 89·51 89·51 89·56 
 

Best Model - - - ✓ - 

Phenotypic DS 

Testing In-sample - MAPE (%) 29·32 14·80 11·31 11·31 11·33 

 
Out-of-sample - MAPE (%) 72·43 50·65 44·92 44·92 44·75 

 
Best Model - - - - ✓ 

MTB Culture 

Testing In-sample - MAPE (%) 1·93 1·90 1·89 1·89 1·91 

 
Out-of-sample - MAPE (%) 18·82 17·28 17·48 17·48 17·42 

 
Best Model - ✓ - - - 

Smear Microscopy 

Testing In-sample - MAPE (%) 1·27 1·31 1·31 1·31 1·31 

 
Out-of-sample - MAPE (%) 7·58 6·75 6·77 6·77 6·85 

  Best Model - ✓ - - - 

Table note: Data represents MAPE accuracy values of all tested time-series models, and the best chosen to perform the forecast. The “In-sample - MAPE” row represents the accuracy 158 

measures calculated based on the observed historical used to construct the model, while the " Out-of-sample - MAPE" row presents the accuracy measure estimated on the un-seen data 159 

not included in the model creation process. Accuracy measures for the ARIMA modelling technique, in addition to different variations of the Forecast Hybrid model were included. 160 
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Abbreviations: TB: Tuberculosis, DR-TB: Drug-resistant tuberculosis; DS-TB: Drug-susceptible tuberculosis; MTB: Mycobacterium tuberculosis, ARIMA: Autoregressive Integrated 161 

Moving Average, MASE: Mean Absolute Squared Error, MAE: Mean Absolute Error, RMSE: Root Mean Squared Error, MAPE:  Mean Absolute Percentage Error. 162 
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Supplementary Table 4. Assessment of Forecasting Model Accuracy Using In-Sample and Out-of-Sample MAPE 164 

Time-Series Data 

Best Model 

(Without External 

Regressor) 

In-sample 

MAPE Value 

Out-of-sample 

MAPE Value 

Best Model 

(With External Regressor) 

In-sample 

MAPE Value 

Out-of-sample 

MAPE Value 

Overall Best 

Model 

 

Total TB Cases ARIMA 3·03% 10.19% Hybrid (Equal Weights) 3·09% 4·71% 
With External 

Regressor 
 

Total DR-TB 

Cases 
Hybrid (Equal Weights) 16·37% 17.13% Hybrid (RMSE Weights) 18.14% 6.10% 

With External 

Regressor 
 

Total DS-TB 

Cases 
ARIMA 63·38% 3·36% Hybrid (RMSE Weights) 27·48% 2·08% 

With External 

Regressor 
 

Phenotypic DS 

Testing 
Hybrid (Equal Weights) 21·57% 3·51% Hybrid (Equal Weights) 23·57% 6·89% 

No External 

Regressor 
 

MTB Culture 

Testing 
Hybrid (MASE Weights) 4·68% 10·80% ARIMA 3.19% 9·02% 

With External 

Regressor 
 

Smear 

Microscopy 

Testing 

Hybrid (RMSE Weights) 2·95% 10·69% ARIMA 2·88% 6·80% 
With External 

Regressor 
 

Table note: This table showcases the comparative performance of primary models used for the forecast analysis using MAPE accuracy values calculated for both in-165 

sample (2011-2020) and out-of-sample (2021-2022) data sets. Models were evaluated based on their out-of-sample MAPE values, with the lowest MAPE indicating 166 

optimal performance. Dynamic regression model with external regressors incorporated historical Xpert MTB-RIF testing data from 2011-2019 in their construction, while 167 

univariate models did not include external regressors and relied solely on historical data from the outcome series. The models with lowest MAPE values in each 168 

category were compared in table, with the most accurate model being chosen for the 6-year forecasts. 169 

 170 

 171 

 172 

 173 

 174 

 175 
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Supplementary Table 5. Correlation and Causality Analysis Between Xpert MTB-RIF Testing and 176 

Anomaly Time-Series Data (Spearman Correlation) 177 

Time-Series Data Spearman-Correlation 

Target rho p-value 
 

 
Total TB Cases 0·75 0·007  

DR-TB Cases 0·89 < 0·001  

DS-TB Cases 0·82 0·003  

Phenotypic DS Testing 0·95 < 0·001  

MTB Culture Testing 0·89 < 0·001  

Smear Microscopy 

Testing 
-0·63 0·033  

Table note: This table represents results from three analyses: Spearman's rank correlation test, Cross-Correlation Function, 178 

and Toda-Yamamoto Procedure for Granger Causality. For Spearman's rank correlation, we reported both Spearman’s rho 179 

and the associated p-value calculated using exact null distribution. In the Cross-Correlation analysis, we showed the 180 

correlation coefficients and the respective lag of highest correlation. All displayed cross-correlation coefficients were deemed 181 

significant based on ACF plots with a p-value less than 0·05. The Granger Causality analysis employed the Toda-Yamamoto 182 

procedure, presenting both the F-statistic and p-values. P-values lower than 0·05 are considered statistically significant and 183 

are highlighted in bold. 184 

  185 
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Supplementary Table 6. Regional Analysis of TB and DR-TB Testing and Notification Case 186 

Counts in Brazil 187 

Characteristics 
North 

(n = 118,438) 

Northeast 

(n = 281,539) 

Midwest 

(n = 51,523) 

Southeast 

(n = 476,772) 

South 

(n = 133,504) 

Xpert MTB/RIF testing       
No. of Cases 31637 54077 11596 129596 29589 

Pop. Density per 100 cases 34 26 30 36 29 

Total TB Cases (2014-2022) 92905 211804 39122 362595 100329 

Total DR-TB Cases      
No. of Cases 1435 2998 659 7641 2566 

Pop. Density per 100 cases 1·21 1·06 1·28 1·60 1·92 

Total DS-TB Cases      
No. of Cases 24742 42726 9706 130475 27921 

Pop. Density per 100 cases 21 15 19 27 21 

Phenotypic DS testing       
No. of Cases 7475 11470 4799 81036 15589 

Pop. Density per 100 cases 6 4 9 17 12 

MTB Culture testing       
No. of Cases 33580 61727 17792 187354 53701 

Pop. Density per 100 cases 28 22 35 39 40 

Smear microscopy testing       
No. of Cases 90356 196573 35330 342295 97382 

Pop. Density per 100 cases 76 70 69 72 73 

Table Note: Regional analysis of TB and DR-TB testing and notification case counts in Brazil. The table includes the total 188 

TB cases notified for each region, as well as the number of cases and population density per 100 cases for various testing and 189 

notification categories, which indicates the number of notified cases for each testing category per 100 TB cases in each 190 

region. For Xpert MTB/RIF testing, data from 2014-2022 post-implementation is analysed, contrasting with other testing 191 

categories that consider data from 2011-2022 to include pre-implementation trends. The Total TB cases from 2014-2022 row 192 

is highlighted to emphasize its reference value. Abbreviations: MTB: Mycobacterium tuberculosis; TB: Tuberculosis, Pop: 193 

Population; 'n': the total TB cases notified for each region 194 

 195 

 196 

 197 

 198 
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Supplementary Table 7. Drug-Sensitivity Status of Total TB-Infected Population  208 

Characteristics 
Total TB-Infected Population 

(n = 1061776) 
 

 MTB-Sensitivity Status, n (%):  
 

Known 250869 (23·6%) 
 

Unknown   810907 (76·4%) 
 

Table note: This table depicts the proportion of the total TB population with known and unknown drug-sensitivity results, 209 

with 24% of cases having known drug-sensitivity results. Abbreviations: MTB: Mycobacterium tuberculosis; TB: 210 

Tuberculosis. 211 

 212 

 213 

 214 

 215 

 216 

  217 
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Supplementary Table 8. Drug-Sensitivity Status of Total TB-Infected Population  218 

Characteristics 
Total DR-TB Cases 

(n = 15299) 

Total DS-TB Cases 

(n = 235570) 
 

Resistance Screening Method, n (%):   
 

Phenotypic DST 8422 (55·0%) 40741  (17·3%) 
 

Xpert MTB/RIF 4954 (32·4%) 134621 (57·1%) 
 

Both methods 1923(12·6%) 60208 (25·6%) 
 

Table note: This table provides a detailed breakdown of TB cases with known sensitivity results, further categorized into 219 

Drug-Resistant TB (DR-TB) and Drug-Susceptible TB (DS-TB), with the respective detection methods used, including solely 220 

Phenotypic DS test or Xpert MTB/RIF, and cases detected by both tests. Abbreviations: TB: Tuberculosis; DR-TB: Drug-221 

resistant Tuberculosis; DS-TB: Drug-susceptible Tuberculosis; DST: Drug-Sensitivity Test. 222 

 223 
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 246 

Supplementary Figure 1. Time-series analysis on DR-TB case notification categorized based on the 247 

resistance detection method. Firstly, the impact of Xpert implementation on the notification of DR-TB cases 248 

solely diagnosed via the phenotypic method, and as well as the reporting rate of cases exclusively identified solely 249 

through genotypic (Xpert) method and those diagnosed by both approaches are displayed in Supplementary 250 

Figure 1A. Secondly, the forecasted values are displayed from 2023-2028 in Supplementary Figure 1B.  251 

Abbreviations: TB: Tuberculosis; DR-TB: Drug-resistant Tuberculosis. 252 

 253 
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 273 

Supplementary Figure 2. Time-series analysis on DS-TB case notification categorized based on the 274 

resistance detection method. Firstly, the impact of Xpert implementation on the notification of DS -TB cases 275 

solely diagnosed via the phenotypic method, and as well as the reporting rate of cases exclusively identified solely 276 

through genotypic (Xpert) method and those diagnosed by both approaches are displayed in Supplementary 277 

Figure 2A. Secondly, the forecasted values are displayed from 2023-2028 in Supplementary Figure 2B. 278 

Abbreviations: TB: Tuberculosis; DS -TB: Drug-susceptible Tuberculosis. 279 
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 281 

Supplementary Figure 3. 2-Year Forecast of Xpert MTB/RIF testing coverage on SINAN. This figure 282 

represents a 2-year forecast of annual Xpert testing with an out-of-sample MAPE accuracy measure of 5·04%. 283 

Prediction intervals are presented at two confidence levels: 80% and 95%. These intervals are visually 284 

differentiated by two distinct shades of blue, with the lighter shade representing the broader 95% interval. 285 

 286 
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  288 

Supplementary Figure 4. Bar graphs depicting the TB and DR-TB case notification and diagnostic testing 289 

coverage stratified by state. The figure represents the total number of notified numbers of TB cases, DR-TB and 290 

DS-TB cases and, as well as testing coverage for Xpert MTB/RIF, phenotypic drug-sensitivity, MTB culture and 291 

smear microscopy testing on SINAN between 2011-2022, are depicted in blue.  292 

Abbreviations: TB: Tuberculosis, DR-TB: Drug-resistant tuberculosis; DS-TB: Drug-susceptible tuberculosis, 293 

MTB: Mycobacterium tuberculosis. 294 

 295 

 296 
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