
Supplementary Materials
Supplementary Figures

Figure S1. Constructing SuperAnimal models and keypoint gradient masking. a: Demonstration of how multiple pose datasets are merged into a
single dataset. We created a main keypoint names to cover all keypoints we observe from datasets. Then we built a conversion table to map keypoints
from each dataset to the main keypoint names. We design a corresponding conversion table such that anatomically similar keypoints are mapped
to the same keypoint. Below we add the keypoint naming map for both SuperAnimal-TopViewMouse and SuperAnimal-Quadruped models. The
mouse icons are modified from scidraw.io: https://beta.scidraw.io/drawing/183. Images in panel a labeled “Openfield" and “TriMouse" are adapted
from https://github.com/DeepLabCut/DeepLabCut and are under a CC-BY license: https://creativecommons.org/licenses/by/4.0/; Image
“MausHaus" is adapted from Mathis Laboratory of Adaptive Intelligence (2024) “MausHaus Mathis Lab”. Zenodo. doi:10.5281/zenodo.10593101
and are under a CC-BY license: https://creativecommons.org/licenses/by/4.0/. b: Composition of the SuperAnimal-Quadruped (left) and
SuperAnimal-TopViewMouse (right) datasets. c: Demonstration of keypoint gradient masking algorithm. Keypoints that were not defined in the original
datasets introduce false penalties for the model training. Therefore, during back-propagation, the gradients of those undefined keypoints are artificially
masked. d: With masking, the model is able to learn a pose representation that is the union of training datasets. Without masking, the model has
severe degraded pose representation. Images in panel d are adapted from https://github.com/DeepLabCut/DeepLabCut/blob/main/examples/
openfield-Pranav-2018-10-30/videos/m3v1mp4.mp4 and are under a CC-BY license: https://creativecommons.org/licenses/by/4.0/.
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Figure S2. Keypoint Matching and AnimalTokenPose. a: The affinity matrix represents the semantic similarity between keypoint defined by the
model and keypoint defined by dataset annotations across images. The affinity matrix is obtained by hard voting. The voting per image is obtained via
pairwise euclidean distance between SuperAnimal-Quadruped model’s zero-shot predictions and Horse-30 dataset ground truth. b: Affinity matrix for
Golden Lab Mouse (see Methods) video (bottom at Figure 3), where we deliberately tried to match the keypoint space to model’s zero-shot prediction.
The noise in the affinity matrix suggests annotator bias for hard keypoints (e.g., tail points along the tail where the exact position is not visually concretely
defined, as say opposed to the nose). For this analysis we annotated 20 frames of the Golden Lab Mouse data to illustrate our matching process. c:
AnimalTokenPose architecture with additional MLP head for heatmap estimation. d: Transformer encoder architecture and MLP head architecture.



Figure S3. Top-down HRNet results a: SuperAnimal-TopViewMouse using HRNet-w32 on DLC Openfield benchmark. AnimalTokenPose is added
as a zero-shot baseline. 1-100% of the train data is 10, 50, 101, 506, 1012 frames respectively. Blue shadow represents minimum, maximum
and blue dash is the mean for zero-shot performance across three shuffles. Large, connected dots represent mean results across three shuffles
and smaller dots represent results for individual shuffles. Inset is the qualitative zero-shot performance of SA-TVM. Inset image is adapted from
https://github.com/DeepLabCut/DeepLabCut/blob/main/examples/openfield-Pranav-2018-10-30/videos/m3v1mp4.mp4 and are under a CC-BY
license: https://creativecommons.org/licenses/by/4.0/. b: Qualitative performance. SuperAnimal-TopViewMouse using HRNet on OOD videos
(Top: Golden Lab; Bottom: Mathis MausHaus). Confidence cut off is set to be 0.6. c Qualitative performance. SuperAnimal-TopViewMouse using
HRNet on IID images. Confidence cut off is set to be 0.6.
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Figure S4. a: SA-TVM (DLCRNet) zero-shot performance on DLC Openfield. Comparison between SA-TVM trained with and without gradient masking.
b: SA-TVM (HRNet-w32) fine-tuning performance on DLC Openfield. Comparison between SA-TVM fine-tuned with memory replay and naive fine-
tuning across different training ratios. In box plots, the middle line indicates the median. The bounds of the box indicate the first and third quartiles
and the whiskers extend to the farthest datapoint within 1.5 * IQR from the nearest hinge. c SuperAnimal-TopViewMouse using AnimalTokenPose.
Zero-shot performance on DLC Openfield and TriMouse. d SuperAnimal-TopViewMouse using AnimalTokenPose. Zero-shot performance on iRodent
and Horse-10.

Figure S5. Challenges of animal appearance sizes a: Conceptual diagram to demonstrate that the spatial-pyramid search leverages predic-
tion from multiple resolutions. b: Relative animal size with respect to the image size in common benchmarks. c: Absolute animal size (k pixel
squares) in common benchmarks. d: Bottom-up SuperAnimal-TopViewMouse model (i.e., DLCRNet) was used to infer poses on three OOD videos.
Visual inspection shows zero-shot inference with vs. without the spatial-pyramid search. e: Quantitative results between with and without spatial-
pyramid adaptation on video frames from Smear Lab (n = 144 samples), Golden Lab (n = 4859 samples), and MausHaus (n = 3270 samples).
Images on the far left are adapted from https://edspace.american.edu/openbehavior/project/olfactory-search-video-donated-matt-smear/
and released under a CC BY-NC-SA license: https://creativecommons.org/licenses/by-nc-sa/4.0/. Images in the middle are adapted from
https://edspace.american.edu/openbehavior/project/open-field-social-investigation-videos-donated-sam-golden/ and released under
a CC BY-NC-SA license: https://creativecommons.org/licenses/by-nc-sa/4.0/. Images on the far right are adapted from Mathis Labora-
tory of Adaptive Intelligence (2024) “MausHaus Mathis Lab”. Zenodo. doi:10.5281/zenodo.10593101 and are under a CC-BY license: https:
//creativecommons.org/licenses/by/4.0/.
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Figure S6. a: Visualization of top-down SuperAnimal-TopviewMouse on example MABe video frames, without trained on MABe videos. b Same
as Figure 4g, but smoothed with a 3-Hz zero-lag, low-pass, 2nd order Butterworth filter. c: Top Left: An example of the current WebApp interface
at contrib.deeplabcut.org. Users can add and edit the annotations from images we collect, following an anatomical figure that aids the expected
location of bodyparts. Top Right: Example of current Gradio App on HuggingFace. Bottom Left: our current stand-alone GUI for local computer use
showing a simple ModelZoo with SuperAnimal weights. Bottom Right: example of the Google Colaboratory interface with ModelZoo inference with
SuperAnimal weights.
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Supplementary Tables

Extended Full Results on Animal Benchmarks & Statistical Analysis
Table S1. Type-III Analysis of Variance Table for the mixed model relative to the quantification of memory replay in terms of keypoint dropping.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
method 4096.16 4096.16 1.00 1608.00 2636.32 0.0000
train data_ratio 4839.77 1209.94 4.00 1608.00 778.73 0.0000
method: train data_ratio 5040.49 1260.12 4.00 1608.00 811.02 0.0000

Table S2. Two-sided pairwise contrasts adjusted with Tukey’s method for the mixed model relative to the quantification of memory replay in terms of
keypoint dropping

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
fine-tune - (memory replay) 1.0309 0.1385 1608 7.443 <.0001 0.8270
train data_ratio = 0.05
fine-tune - (memory replay) 0.3025 0.1385 1608 2.184 0.0291 0.2427
train data_ratio = 0.1
fine-tune - (memory replay) 0.4444 0.1385 1608 3.209 0.0014 0.3566
train data_ratio = 0.5
fine-tune - (memory replay) 4.6420 0.1385 1608 33.516 <.0001 3.7240
train data_ratio = 1
fine-tune - (memory replay) 9.4815 0.1385 1608 68.459 <.0001 7.6065
Degrees-of-freedom method: kenward-roger

Table S3. HRNet-w32 TopViewMouse-5k DLC Openfield

method pretrain_model train data_ratio mAP RMSE

fine-tuning SuperAnimal 0.01 98.813 2.518
fine-tuning SuperAnimal 0.05 99.802 1.706
fine-tuning SuperAnimal 0.1 99.892 1.439
fine-tuning SuperAnimal 0.5 99.878 1.261
fine-tuning SuperAnimal 1.0 99.925 1.234

memory replay SuperAnimal 0.01 99.599 2.381
memory replay SuperAnimal 0.05 99.765 1.954
memory replay SuperAnimal 0.1 99.929 1.538
memory replay SuperAnimal 0.5 99.778 1.293
memory replay SuperAnimal 1.0 99.868 1.210
transfer learning ImageNet 0.01 91.458 7.001
transfer learning ImageNet 0.05 98.930 2.162
transfer learning ImageNet 0.1 99.273 1.565
transfer learning ImageNet 0.5 99.179 1.424
transfer learning ImageNet 1.0 100.000 1.131
transfer learning SuperAnimal 0.01 96.612 4.400
transfer learning SuperAnimal 0.05 99.605 1.818
transfer learning SuperAnimal 0.1 99.753 1.468
transfer learning SuperAnimal 0.5 99.252 1.463
transfer learning SuperAnimal 1.0 99.798 1.184

zero-shot SuperAnimal 1.0 95.219 4.881



Table S4. HRNet-w32 TopViewMouse-5k TriMouse

method pretrain_model train data_ratio mAP RMSE

fine-tuning SuperAnimal 0.01 88.516 9.196
fine-tuning SuperAnimal 0.05 92.695 4.314
fine-tuning SuperAnimal 0.1 97.543 2.865
fine-tuning SuperAnimal 0.5 98.650 2.136
fine-tuning SuperAnimal 1.0 99.021 2.020

memory replay SuperAnimal 0.01 90.320 5.850
memory replay SuperAnimal 0.05 93.569 4.188
memory replay SuperAnimal 0.1 97.744 2.864
memory replay SuperAnimal 0.5 98.618 2.184
memory replay SuperAnimal 1.0 98.547 2.103
transfer learning ImageNet 0.01 26.116 31.562
transfer learning ImageNet 0.05 83.369 6.927
transfer learning ImageNet 0.1 92.747 4.206
transfer learning ImageNet 0.5 98.525 2.205
transfer learning ImageNet 1.0 97.730 2.276
transfer learning SuperAnimal 0.01 79.292 8.740
transfer learning SuperAnimal 0.05 89.499 4.868
transfer learning SuperAnimal 0.1 95.266 3.416
transfer learning SuperAnimal 0.5 97.838 2.246
transfer learning SuperAnimal 1.0 98.825 2.052

zero-shot SuperAnimal 1.0 76.139 9.013
Table S5. Type-III Analysis of Variance Table for the top-down SuperAnimal-TopViewMouse TriMouse benchmark mixed model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
method 510.45 127.61 4.00 48.00 23.33 0.0000
data_ratio 927.34 231.83 4.00 48.00 42.39 0.0000
method:data_ratio 1180.53 73.78 16.00 48.00 13.49 0.0000

Table S6. Two-sided pairwise contrasts adjusted with Tukey’s method for the top-down SuperAnimal-TopViewMouse TriMouse benchmark mixed model.

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
(ImageNet transfer learning) - SuperAnimal fine-tune 22.3653 1.9095 48 11.713 <.0001 9.5633
(ImageNet transfer learning) - (SuperAnimal memory replay) 25.7114 1.9095 48 13.465 <.0001 10.9940
(ImageNet transfer learning) - (SuperAnimal transfer learning) 22.8212 1.9095 48 11.951 <.0001 9.7582
(ImageNet transfer learning) - SuperAnimal zero-shot 22.5486 1.9095 48 11.809 <.0001 9.6416
SuperAnimal fine-tune - (SuperAnimal memory replay) 3.3461 1.9095 48 1.752 0.4128 1.4308
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.4558 1.9095 48 0.239 0.9993 0.1949
SuperAnimal fine-tune - SuperAnimal zero-shot 0.1833 1.9095 48 0.096 1.0000 0.0784
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -2.8903 1.9095 48 -1.514 0.5589 -1.2359
(SuperAnimal memory replay) - SuperAnimal zero-shot -3.1628 1.9095 48 -1.656 0.4700 -1.3524
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.2726 1.9095 48 -0.143 0.9999 -0.1165
train data_ratio = 0.05
(ImageNet transfer learning) - SuperAnimal fine-tune 2.6133 1.9095 48 1.369 0.6503 1.1174
(ImageNet transfer learning) - (SuperAnimal memory replay) 2.7392 1.9095 48 1.434 0.6089 1.1712
(ImageNet transfer learning) - (SuperAnimal transfer learning) 2.0592 1.9095 48 1.078 0.8167 0.8805
(ImageNet transfer learning) - SuperAnimal zero-shot -2.0860 1.9095 48 -1.092 0.8095 -0.8920
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.1259 1.9095 48 0.066 1.0000 0.0538
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.5541 1.9095 48 -0.290 0.9984 -0.2369
SuperAnimal fine-tune - SuperAnimal zero-shot -4.6993 1.9095 48 -2.461 0.1169 -2.0094
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -0.6800 1.9095 48 -0.356 0.9964 -0.2908
(SuperAnimal memory replay) - SuperAnimal zero-shot -4.8252 1.9095 48 -2.527 0.1015 -2.0632
(SuperAnimal transfer learning) - SuperAnimal zero-shot -4.1452 1.9095 48 -2.171 0.2083 -1.7725
train data_ratio = 0.1
(ImageNet transfer learning) - SuperAnimal fine-tune 1.3415 1.9095 48 0.703 0.9549 0.5736



(ImageNet transfer learning) - (SuperAnimal memory replay) 1.3425 1.9095 48 0.703 0.9548 0.5740
(ImageNet transfer learning) - (SuperAnimal transfer learning) 0.7902 1.9095 48 0.414 0.9936 0.3379
(ImageNet transfer learning) - SuperAnimal zero-shot -4.8068 1.9095 48 -2.517 0.1036 -2.0553
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0010 1.9095 48 0.000 1.0000 0.0004
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.5513 1.9095 48 -0.289 0.9984 -0.2357
SuperAnimal fine-tune - SuperAnimal zero-shot -6.1483 1.9095 48 -3.220 0.0186 -2.6290
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -0.5523 1.9095 48 -0.289 0.9984 -0.2361
(SuperAnimal memory replay) - SuperAnimal zero-shot -6.1492 1.9095 48 -3.220 0.0186 -2.6294
(SuperAnimal transfer learning) - SuperAnimal zero-shot -5.5970 1.9095 48 -2.931 0.0394 -2.3932
train data_ratio = 0.5
(ImageNet transfer learning) - SuperAnimal fine-tune 0.0686 1.9095 48 0.036 1.0000 0.0293
(ImageNet transfer learning) - (SuperAnimal memory replay) 0.0210 1.9095 48 0.011 1.0000 0.0090
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.0409 1.9095 48 -0.021 1.0000 -0.0175
(ImageNet transfer learning) - SuperAnimal zero-shot -6.8083 1.9095 48 -3.565 0.0071 -2.9112
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0477 1.9095 48 -0.025 1.0000 -0.0204
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.1095 1.9095 48 -0.057 1.0000 -0.0468
SuperAnimal fine-tune - SuperAnimal zero-shot -6.8769 1.9095 48 -3.601 0.0064 -2.9405
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -0.0618 1.9095 48 -0.032 1.0000 -0.0264
(SuperAnimal memory replay) - SuperAnimal zero-shot -6.8293 1.9095 48 -3.576 0.0069 -2.9201
(SuperAnimal transfer learning) - SuperAnimal zero-shot -6.7674 1.9095 48 -3.544 0.0076 -2.8937
train data_ratio = 1
(ImageNet transfer learning) - SuperAnimal fine-tune 0.2566 1.9095 48 0.134 0.9999 0.1097
(ImageNet transfer learning) - (SuperAnimal memory replay) 0.1731 1.9095 48 0.091 1.0000 0.0740
(ImageNet transfer learning) - (SuperAnimal transfer learning) 0.2240 1.9095 48 0.117 1.0000 0.0958
(ImageNet transfer learning) - SuperAnimal zero-shot -6.7367 1.9095 48 -3.528 0.0079 -2.8806
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0835 1.9095 48 -0.044 1.0000 -0.0357
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.0327 1.9095 48 -0.017 1.0000 -0.0140
SuperAnimal fine-tune - SuperAnimal zero-shot -6.9933 1.9095 48 -3.662 0.0054 -2.9903
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0509 1.9095 48 0.027 1.0000 0.0217
(SuperAnimal memory replay) - SuperAnimal zero-shot -6.9098 1.9095 48 -3.619 0.0061 -2.9546
(SuperAnimal transfer learning) - SuperAnimal zero-shot -6.9606 1.9095 48 -3.645 0.0057 -2.9763
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 5 estimates

Table S7. Type-III Analysis of Variance Table for bottom-up DLC-Openfield mixed model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
method 845.14 211.29 4.00 48.00 46.06 0.0000
train data_ratio 839.85 209.96 4.00 48.00 45.78 0.0000
method:train data_ratio 407.57 25.47 16.00 48.00 5.55 0.0000



Table S8. Two-sided pairwise contrasts adjusted with Tukey’s method for the bottom-up DLC-Openfield mixed model.

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
ImageNet transfer learning - (SuperAnimal memory replay) 10.4477 1.7487 48 5.975 <.0001 4.8783
ImageNet transfer learning - SuperAnimal fine-tune 6.5661 1.7487 48 3.755 0.0041 3.0659
ImageNet transfer learning - SuperAnimal transfer learning 0.7263 1.7487 48 0.415 0.9936 0.3391
ImageNet transfer learning - (zero-shot) 3.8184 1.7487 48 2.184 0.2034 1.7829
(SuperAnimal memory replay) - SuperAnimal fine-tune -3.8816 1.7487 48 -2.220 0.1900 -1.8124
(SuperAnimal memory replay) - SuperAnimal transfer learning -9.7214 1.7487 48 -5.559 <.0001 -4.5391
(SuperAnimal memory replay) - (zero-shot) -6.6293 1.7487 48 -3.791 0.0037 -3.0954
SuperAnimal fine-tune - SuperAnimal transfer learning -5.8398 1.7487 48 -3.340 0.0135 -2.7267
SuperAnimal fine-tune - (zero-shot) -2.7477 1.7487 48 -1.571 0.5226 -1.2830
SuperAnimal transfer learning - (zero-shot) 3.0921 1.7487 48 1.768 0.4036 1.4438
train data_ratio = 0.05
ImageNet transfer learning - (SuperAnimal memory replay) 6.4436 1.7487 48 3.685 0.0050 3.0087
ImageNet transfer learning - SuperAnimal fine-tune 4.5692 1.7487 48 2.613 0.0839 2.1335
ImageNet transfer learning - SuperAnimal transfer learning -0.0791 1.7487 48 -0.045 1.0000 -0.0370
ImageNet transfer learning - (zero-shot) -2.5675 1.7487 48 -1.468 0.5876 -1.1988
(SuperAnimal memory replay) - SuperAnimal fine-tune -1.8744 1.7487 48 -1.072 0.8199 -0.8752
(SuperAnimal memory replay) - SuperAnimal transfer learning -6.5228 1.7487 48 -3.730 0.0044 -3.0456
(SuperAnimal memory replay) - (zero-shot) -9.0111 1.7487 48 -5.153 <.0001 -4.2075
SuperAnimal fine-tune - SuperAnimal transfer learning -4.6484 1.7487 48 -2.658 0.0757 -2.1704
SuperAnimal fine-tune - (zero-shot) -7.1367 1.7487 48 -4.081 0.0015 -3.3323
SuperAnimal transfer learning - (zero-shot) -2.4883 1.7487 48 -1.423 0.6162 -1.1619
train data_ratio = 0.1
ImageNet transfer learning - (SuperAnimal memory replay) 2.1848 1.7487 48 1.249 0.7227 1.0201
ImageNet transfer learning - SuperAnimal fine-tune 2.8322 1.7487 48 1.620 0.4925 1.3224
ImageNet transfer learning - SuperAnimal transfer learning 1.3784 1.7487 48 0.788 0.9328 0.6436
ImageNet transfer learning - (zero-shot) -8.0313 1.7487 48 -4.593 0.0003 -3.7500
(SuperAnimal memory replay) - SuperAnimal fine-tune 0.6474 1.7487 48 0.370 0.9959 0.3023
(SuperAnimal memory replay) - SuperAnimal transfer learning -0.8064 1.7487 48 -0.461 0.9904 -0.3765
(SuperAnimal memory replay) - (zero-shot) -10.2161 1.7487 48 -5.842 <.0001 -4.7701
SuperAnimal fine-tune - SuperAnimal transfer learning -1.4538 1.7487 48 -0.831 0.9195 -0.6788
SuperAnimal fine-tune - (zero-shot) -10.8635 1.7487 48 -6.212 <.0001 -5.0724
SuperAnimal transfer learning - (zero-shot) -9.4097 1.7487 48 -5.381 <.0001 -4.3936
train data_ratio = 0.5
ImageNet transfer learning - (SuperAnimal memory replay) -0.5671 1.7487 48 -0.324 0.9975 -0.2648
ImageNet transfer learning - SuperAnimal fine-tune -0.3719 1.7487 48 -0.213 0.9995 -0.1736
ImageNet transfer learning - SuperAnimal transfer learning -0.2698 1.7487 48 -0.154 0.9999 -0.1260
ImageNet transfer learning - (zero-shot) -11.6266 1.7487 48 -6.649 <.0001 -5.4287
(SuperAnimal memory replay) - SuperAnimal fine-tune 0.1952 1.7487 48 0.112 1.0000 0.0912
(SuperAnimal memory replay) - SuperAnimal transfer learning 0.2973 1.7487 48 0.170 0.9998 0.1388
(SuperAnimal memory replay) - (zero-shot) -11.0595 1.7487 48 -6.325 <.0001 -5.1639
SuperAnimal fine-tune - SuperAnimal transfer learning 0.1021 1.7487 48 0.058 1.0000 0.0477
SuperAnimal fine-tune - (zero-shot) -11.2548 1.7487 48 -6.436 <.0001 -5.2551
SuperAnimal transfer learning - (zero-shot) -11.3568 1.7487 48 -6.495 <.0001 -5.3028
train data_ratio = 1.0
ImageNet transfer learning - (SuperAnimal memory replay) -0.7258 1.7487 48 -0.415 0.9936 -0.3389
ImageNet transfer learning - SuperAnimal fine-tune -0.6376 1.7487 48 -0.365 0.9961 -0.2977
ImageNet transfer learning - SuperAnimal transfer learning -0.4115 1.7487 48 -0.235 0.9993 -0.1921
ImageNet transfer learning - (zero-shot) -11.9770 1.7487 48 -6.849 <.0001 -5.5923
(SuperAnimal memory replay) - SuperAnimal fine-tune 0.0882 1.7487 48 0.050 1.0000 0.0412
(SuperAnimal memory replay) - SuperAnimal transfer learning 0.3143 1.7487 48 0.180 0.9998 0.1468
(SuperAnimal memory replay) - (zero-shot) -11.2512 1.7487 48 -6.434 <.0001 -5.2535
SuperAnimal fine-tune - SuperAnimal transfer learning 0.2261 1.7487 48 0.129 0.9999 0.1056
SuperAnimal fine-tune - (zero-shot) -11.3395 1.7487 48 -6.485 <.0001 -5.2946
SuperAnimal transfer learning - (zero-shot) -11.5656 1.7487 48 -6.614 <.0001 -5.4002
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 5 estimates



Table S9. Type-III Analysis of Variance Table for the top-down SuperAnimal-TopViewMouse DLC-Openfield benchmark mixed model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
method 109.24 27.31 4.00 48.00 74.19 0.0000
data_ratio 54.02 13.51 4.00 48.00 36.69 0.0000
method:data_ratio 45.72 2.86 16.00 48.00 7.76 0.0000

Table S10. Two-sided pairwise contrasts adjusted with Tukey’s method for the top-down SuperAnimal-TopViewMouse DLC-Openfield benchmark mixed
model.

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
(ImageNet transfer learning) - SuperAnimal fine-tune 4.4830 0.4954 48 9.050 <.0001 7.3890
(ImageNet transfer learning) - (SuperAnimal memory replay) 4.6197 0.4954 48 9.326 <.0001 7.6143
(ImageNet transfer learning) - (SuperAnimal transfer learning) 2.6006 0.4954 48 5.250 <.0001 4.2864
(ImageNet transfer learning) - SuperAnimal zero-shot 2.1198 0.4954 48 4.279 0.0008 3.4940
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.1367 0.4954 48 0.276 0.9987 0.2254
SuperAnimal fine-tune - (SuperAnimal transfer learning) -1.8824 0.4954 48 -3.800 0.0036 -3.1026
SuperAnimal fine-tune - SuperAnimal zero-shot -2.3631 0.4954 48 -4.770 0.0002 -3.8950
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -2.0191 0.4954 48 -4.076 0.0015 -3.3279
(SuperAnimal memory replay) - SuperAnimal zero-shot -2.4998 0.4954 48 -5.046 0.0001 -4.1203
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.4808 0.4954 48 -0.970 0.8670 -0.7924
train data_ratio = 0.05
(ImageNet transfer learning) - SuperAnimal fine-tune 0.4564 0.4954 48 0.921 0.8873 0.7522
(ImageNet transfer learning) - (SuperAnimal memory replay) 0.2083 0.4954 48 0.421 0.9932 0.3434
(ImageNet transfer learning) - (SuperAnimal transfer learning) 0.3444 0.4954 48 0.695 0.9566 0.5677
(ImageNet transfer learning) - SuperAnimal zero-shot -2.7190 0.4954 48 -5.489 <.0001 -4.4816
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.2480 0.4954 48 -0.501 0.9869 -0.4088
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.1120 0.4954 48 -0.226 0.9994 -0.1845
SuperAnimal fine-tune - SuperAnimal zero-shot -3.1754 0.4954 48 -6.410 <.0001 -5.2338
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.1361 0.4954 48 0.275 0.9987 0.2243
(SuperAnimal memory replay) - SuperAnimal zero-shot -2.9273 0.4954 48 -5.909 <.0001 -4.8250
(SuperAnimal transfer learning) - SuperAnimal zero-shot -3.0634 0.4954 48 -6.184 <.0001 -5.0493
train data_ratio = 0.1
(ImageNet transfer learning) - SuperAnimal fine-tune 0.1257 0.4954 48 0.254 0.9991 0.2072
(ImageNet transfer learning) - (SuperAnimal memory replay) 0.0271 0.4954 48 0.055 1.0000 0.0447
(ImageNet transfer learning) - (SuperAnimal transfer learning) 0.0972 0.4954 48 0.196 0.9997 0.1602
(ImageNet transfer learning) - SuperAnimal zero-shot -3.3163 0.4954 48 -6.695 <.0001 -5.4661
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0986 0.4954 48 -0.199 0.9996 -0.1625
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.0285 0.4954 48 -0.058 1.0000 -0.0470
SuperAnimal fine-tune - SuperAnimal zero-shot -3.4421 0.4954 48 -6.948 <.0001 -5.6733
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0701 0.4954 48 0.141 0.9999 0.1155
(SuperAnimal memory replay) - SuperAnimal zero-shot -3.3435 0.4954 48 -6.749 <.0001 -5.5108
(SuperAnimal transfer learning) - SuperAnimal zero-shot -3.4135 0.4954 48 -6.891 <.0001 -5.6263
train data_ratio = 0.5
(ImageNet transfer learning) - SuperAnimal fine-tune 0.1628 0.4954 48 0.329 0.9974 0.2683
(ImageNet transfer learning) - (SuperAnimal memory replay) 0.1308 0.4954 48 0.264 0.9989 0.2155
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.0392 0.4954 48 -0.079 1.0000 -0.0647
(ImageNet transfer learning) - SuperAnimal zero-shot -3.4574 0.4954 48 -6.979 <.0001 -5.6986
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0320 0.4954 48 -0.065 1.0000 -0.0528
SuperAnimal fine-tune - (SuperAnimal transfer learning) -0.2020 0.4954 48 -0.408 0.9940 -0.3330
SuperAnimal fine-tune - SuperAnimal zero-shot -3.6202 0.4954 48 -7.308 <.0001 -5.9669
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -0.1700 0.4954 48 -0.343 0.9969 -0.2802
(SuperAnimal memory replay) - SuperAnimal zero-shot -3.5882 0.4954 48 -7.243 <.0001 -5.9141
(SuperAnimal transfer learning) - SuperAnimal zero-shot -3.4182 0.4954 48 -6.900 <.0001 -5.6339
train data_ratio = 1
(ImageNet transfer learning) - SuperAnimal fine-tune -0.1033 0.4954 48 -0.208 0.9996 -0.1702
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.0790 0.4954 48 -0.159 0.9998 -0.1302
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.0525 0.4954 48 -0.106 1.0000 -0.0865



Table S11. HRNet-w32 Quadruped80K Horse-10

method pretrain_model train data_ratio mAP NE_IID NE_OOD RMSE

fine-tuning AP-10K 0.01 66.284 0.286 0.285 5.029
fine-tuning AP-10K 0.05 80.265 0.187 0.187 2.950
fine-tuning AP-10K 0.1 81.987 0.199 0.175 2.661
fine-tuning AP-10K 0.5 91.369 0.070 0.101 1.557
fine-tuning AP-10K 1.0 93.973 0.036 0.083 1.220
fine-tuning SuperAnimal 0.01 71.684 0.219 0.213 3.855
fine-tuning SuperAnimal 0.05 85.444 0.131 0.136 2.162
fine-tuning SuperAnimal 0.1 88.787 0.113 0.121 1.885
fine-tuning SuperAnimal 0.5 93.659 0.057 0.079 1.307
fine-tuning SuperAnimal 1.0 95.433 0.038 0.073 1.133

memory replay SuperAnimal 0.01 73.366 0.209 0.202 3.719
memory replay SuperAnimal 0.05 83.762 0.140 0.146 2.426
memory replay SuperAnimal 0.1 88.711 0.114 0.124 1.902
memory replay SuperAnimal 0.5 93.555 0.060 0.083 1.366
memory replay SuperAnimal 1.0 95.165 0.040 0.073 1.153
transfer learning AP-10K 0.01 1.005 1.640 1.615 33.071
transfer learning AP-10K 0.05 67.744 0.327 0.304 4.744
transfer learning AP-10K 0.1 76.285 0.276 0.242 3.812
transfer learning AP-10K 0.5 91.107 0.073 0.111 1.693
transfer learning AP-10K 1.0 94.026 0.036 0.092 1.347
transfer learning ImageNet 0.01 0.934 2.369 2.360 46.255
transfer learning ImageNet 0.05 22.730 0.861 0.847 14.815
transfer learning ImageNet 0.1 32.144 0.783 0.820 14.637
transfer learning ImageNet 0.5 76.420 0.190 0.285 4.822
transfer learning ImageNet 1.0 90.516 0.036 0.135 1.837
transfer learning SuperAnimal 0.01 1.103 1.521 1.500 31.190
transfer learning SuperAnimal 0.05 74.658 0.243 0.238 3.694
transfer learning SuperAnimal 0.1 85.235 0.156 0.161 2.347
transfer learning SuperAnimal 0.5 93.106 0.062 0.092 1.452
transfer learning SuperAnimal 1.0 94.837 0.036 0.082 1.218

zero-shot AP-10K - 65.729 0.296 0.287 4.929
zero-shot SuperAnimal - 71.205 0.227 0.228 3.958

(ImageNet transfer learning) - SuperAnimal zero-shot -3.7499 0.4954 48 -7.570 <.0001 -6.1807
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0243 0.4954 48 0.049 1.0000 0.0400
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0508 0.4954 48 0.103 1.0000 0.0837
SuperAnimal fine-tune - SuperAnimal zero-shot -3.6466 0.4954 48 -7.361 <.0001 -6.0105
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0265 0.4954 48 0.054 1.0000 0.0437
(SuperAnimal memory replay) - SuperAnimal zero-shot -3.6709 0.4954 48 -7.410 <.0001 -6.0505
(SuperAnimal transfer learning) - SuperAnimal zero-shot -3.6974 0.4954 48 -7.464 <.0001 -6.0942
Degrees-of-freedom method: kenward-roger, P value adjustment: tukey method for comparing a family of 5 estimates



Table S12. HRNet-w32 Quadruped80K iRodent

method pretrain_model train data_ratio mAP RMSE

fine-tuning AP-10K 0.01 43.144 37.704
fine-tuning AP-10K 0.05 49.605 34.235
fine-tuning AP-10K 0.1 50.019 36.970
fine-tuning AP-10K 0.5 57.858 29.547
fine-tuning AP-10K 1.0 61.635 26.758
fine-tuning SuperAnimal 0.01 59.194 32.599
fine-tuning SuperAnimal 0.05 61.255 30.897
fine-tuning SuperAnimal 0.1 61.042 34.594
fine-tuning SuperAnimal 0.5 70.028 26.766
fine-tuning SuperAnimal 1.0 72.247 25.065

memory replay SuperAnimal 0.01 60.853 31.801
memory replay SuperAnimal 0.05 63.275 29.757
memory replay SuperAnimal 0.1 63.716 29.967
memory replay SuperAnimal 0.5 69.263 26.188
memory replay SuperAnimal 1.0 72.971 24.884
transfer learning AP-10K 0.01 12.910 92.649
transfer learning AP-10K 0.05 39.342 46.696
transfer learning AP-10K 0.1 42.477 43.824
transfer learning AP-10K 0.5 64.448 32.006
transfer learning AP-10K 1.0 70.915 28.005
transfer learning ImageNet 0.01 0.785 152.225
transfer learning ImageNet 0.05 23.350 64.799
transfer learning ImageNet 0.1 27.728 62.722
transfer learning ImageNet 0.5 50.509 43.230
transfer learning ImageNet 1.0 58.857 35.651
transfer learning SuperAnimal 0.01 17.626 84.663
transfer learning SuperAnimal 0.05 49.482 40.104
transfer learning SuperAnimal 0.1 54.848 37.426
transfer learning SuperAnimal 0.5 69.819 27.680
transfer learning SuperAnimal 1.0 72.047 25.773

zero-shot AP-10K - 40.389 37.417
zero-shot SuperAnimal - 58.557 33.496

Table S13. HRNetw32 Quadruped80K AnimalPose

method pretrain_model train data_ratio mAP RMSE

fine-tuning AP-10K 1.0 86.794 4.860
fine-tuning SuperAnimal 1.0 86.851 4.706

memory replay SuperAnimal 1.0 87.034 4.636
transfer learning AP-10K 1.0 89.402 5.275
transfer learning ImageNet 1.0 86.864 5.757
transfer learning SuperAnimal 1.0 89.612 5.185

zero-shot AP-10K - 79.447 5.774
zero-shot SuperAnimal - 84.639 4.884

Table S14. HRNet-w32 Quadruped80K AP-10K

method pretrain_model train data_ratio mAP RMSE

fine-tuning SuperAnimal 1.0 79.511 11.021
memory replay SuperAnimal 1.0 80.113 11.296
transfer learning ImageNet 1.0 70.548 11.228
transfer learning SuperAnimal 1.0 74.379 10.748

zero-shot SuperAnimal - 68.038 12.971



Table S15. Type-III Analysis of Variance Table for Horse-10 OOD mixed model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
cond 2.10 0.30 7.00 78.00 183.97 0.0000
data_ratio 2.88 0.72 4.00 78.00 442.97 0.0000
cond:data_ratio 2.73 0.10 28.00 78.00 59.87 0.0000

Table S16. Two-sided pairwise contrasts adjusted with Tukey’s method for the Horse-10 OOD mixed model.

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
AP10k fine-tune - (AP10k transfer learning) 0.6528 0.0329 78 19.819 <.0001 16.1825
AP10k fine-tune - AP10k zero-shot 0.0055 0.0329 78 0.168 1.0000 0.1375
AP10k fine-tune - (ImageNet transfer learning) 0.6535 0.0329 78 19.841 <.0001 16.2000
AP10k fine-tune - SuperAnimal fine-tune -0.0540 0.0329 78 -1.640 0.7249 -1.3388
AP10k fine-tune - (SuperAnimal memory replay) -0.0708 0.0329 78 -2.150 0.3929 -1.7558
AP10k fine-tune - (SuperAnimal transfer learning) 0.6518 0.0329 78 19.790 <.0001 16.1581
AP10k fine-tune - SuperAnimal zero-shot -0.0492 0.0329 78 -1.494 0.8082 -1.2200
(AP10k transfer learning) - AP10k zero-shot -0.6472 0.0329 78 -19.651 <.0001 -16.0450
(AP10k transfer learning) - (ImageNet transfer learning) 0.0007 0.0329 78 0.021 1.0000 0.0175
(AP10k transfer learning) - SuperAnimal fine-tune -0.7068 0.0329 78 -21.459 <.0001 -17.5213
(AP10k transfer learning) - (SuperAnimal memory replay) -0.7236 0.0329 78 -21.970 <.0001 -17.9384
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0010 0.0329 78 -0.030 1.0000 -0.0244
(AP10k transfer learning) - SuperAnimal zero-shot -0.7020 0.0329 78 -21.314 <.0001 -17.4025
AP10k zero-shot - (ImageNet transfer learning) 0.6479 0.0329 78 19.673 <.0001 16.0625
AP10k zero-shot - SuperAnimal fine-tune -0.0596 0.0329 78 -1.808 0.6166 -1.4763
AP10k zero-shot - (SuperAnimal memory replay) -0.0764 0.0329 78 -2.319 0.2969 -1.8933
AP10k zero-shot - (SuperAnimal transfer learning) 0.6463 0.0329 78 19.621 <.0001 16.0206
AP10k zero-shot - SuperAnimal zero-shot -0.0548 0.0329 78 -1.663 0.7108 -1.3575
(ImageNet transfer learning) - SuperAnimal fine-tune -0.7075 0.0329 78 -21.481 <.0001 -17.5388
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.7243 0.0329 78 -21.991 <.0001 -17.9559
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.0017 0.0329 78 -0.051 1.0000 -0.0419
(ImageNet transfer learning) - SuperAnimal zero-shot -0.7027 0.0329 78 -21.335 <.0001 -17.4200
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0168 0.0329 78 -0.511 0.9996 -0.4170
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.7058 0.0329 78 21.429 <.0001 17.4969
SuperAnimal fine-tune - SuperAnimal zero-shot 0.0048 0.0329 78 0.146 1.0000 0.1188
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.7226 0.0329 78 21.940 <.0001 17.9140
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.0216 0.0329 78 0.656 0.9978 0.5359
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.7010 0.0329 78 -21.284 <.0001 -17.3781
train data_ratio = 0.05
AP10k fine-tune - (AP10k transfer learning) 0.1252 0.0329 78 3.801 0.0066 3.1038
AP10k fine-tune - AP10k zero-shot 0.1454 0.0329 78 4.413 0.0008 3.6034
AP10k fine-tune - (ImageNet transfer learning) 0.5753 0.0329 78 17.468 <.0001 14.2628
AP10k fine-tune - SuperAnimal fine-tune -0.0518 0.0329 78 -1.572 0.7650 -1.2839
AP10k fine-tune - (SuperAnimal memory replay) -0.0350 0.0329 78 -1.062 0.9627 -0.8669
AP10k fine-tune - (SuperAnimal transfer learning) 0.0561 0.0329 78 1.702 0.6857 1.3899
AP10k fine-tune - SuperAnimal zero-shot 0.0906 0.0329 78 2.751 0.1232 2.2459
(AP10k transfer learning) - AP10k zero-shot 0.0202 0.0329 78 0.612 0.9986 0.4996
(AP10k transfer learning) - (ImageNet transfer learning) 0.4501 0.0329 78 13.667 <.0001 11.1590
(AP10k transfer learning) - SuperAnimal fine-tune -0.1770 0.0329 78 -5.374 <.0001 -4.3877
(AP10k transfer learning) - (SuperAnimal memory replay) -0.1602 0.0329 78 -4.863 0.0002 -3.9706
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0691 0.0329 78 -2.099 0.4247 -1.7139
(AP10k transfer learning) - SuperAnimal zero-shot -0.0346 0.0329 78 -1.051 0.9648 -0.8579
AP10k zero-shot - (ImageNet transfer learning) 0.4300 0.0329 78 13.055 <.0001 10.6594
AP10k zero-shot - SuperAnimal fine-tune -0.1971 0.0329 78 -5.986 <.0001 -4.8873
AP10k zero-shot - (SuperAnimal memory replay) -0.1803 0.0329 78 -5.475 <.0001 -4.4703
AP10k zero-shot - (SuperAnimal transfer learning) -0.0893 0.0329 78 -2.711 0.1348 -2.2135
AP10k zero-shot - SuperAnimal zero-shot -0.0548 0.0329 78 -1.663 0.7108 -1.3575
(ImageNet transfer learning) - SuperAnimal fine-tune -0.6271 0.0329 78 -19.041 <.0001 -15.5467



(ImageNet transfer learning) - (SuperAnimal memory replay) -0.6103 0.0329 78 -18.530 <.0001 -15.1297
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.5193 0.0329 78 -15.766 <.0001 -12.8729
(ImageNet transfer learning) - SuperAnimal zero-shot -0.4848 0.0329 78 -14.718 <.0001 -12.0169
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0168 0.0329 78 0.511 0.9996 0.4170
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.1079 0.0329 78 3.275 0.0323 2.6738
SuperAnimal fine-tune - SuperAnimal zero-shot 0.1424 0.0329 78 4.323 0.0011 3.5298
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0910 0.0329 78 2.764 0.1195 2.2568
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.1256 0.0329 78 3.812 0.0064 3.1128
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.0345 0.0329 78 1.048 0.9652 0.8560
train data_ratio = 0.1
AP10k fine-tune - (AP10k transfer learning) 0.0570 0.0329 78 1.731 0.6672 1.4135
AP10k fine-tune - AP10k zero-shot 0.1626 0.0329 78 4.936 0.0001 4.0304
AP10k fine-tune - (ImageNet transfer learning) 0.4984 0.0329 78 15.133 <.0001 12.3559
AP10k fine-tune - SuperAnimal fine-tune -0.0680 0.0329 78 -2.064 0.4467 -1.6856
AP10k fine-tune - (SuperAnimal memory replay) -0.0672 0.0329 78 -2.041 0.4616 -1.6667
AP10k fine-tune - (SuperAnimal transfer learning) -0.0325 0.0329 78 -0.986 0.9752 -0.8050
AP10k fine-tune - SuperAnimal zero-shot 0.1078 0.0329 78 3.274 0.0324 2.6729
(AP10k transfer learning) - AP10k zero-shot 0.1056 0.0329 78 3.205 0.0392 2.6169
(AP10k transfer learning) - (ImageNet transfer learning) 0.4414 0.0329 78 13.402 <.0001 10.9424
(AP10k transfer learning) - SuperAnimal fine-tune -0.1250 0.0329 78 -3.796 0.0067 -3.0991
(AP10k transfer learning) - (SuperAnimal memory replay) -0.1243 0.0329 78 -3.772 0.0072 -3.0802
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0895 0.0329 78 -2.717 0.1330 -2.2185
(AP10k transfer learning) - SuperAnimal zero-shot 0.0508 0.0329 78 1.542 0.7820 1.2594
AP10k zero-shot - (ImageNet transfer learning) 0.3358 0.0329 78 10.197 <.0001 8.3255
AP10k zero-shot - SuperAnimal fine-tune -0.2306 0.0329 78 -7.001 <.0001 -5.7160
AP10k zero-shot - (SuperAnimal memory replay) -0.2298 0.0329 78 -6.978 <.0001 -5.6971
AP10k zero-shot - (SuperAnimal transfer learning) -0.1951 0.0329 78 -5.922 <.0001 -4.8354
AP10k zero-shot - SuperAnimal zero-shot -0.0548 0.0329 78 -1.663 0.7108 -1.3575
(ImageNet transfer learning) - SuperAnimal fine-tune -0.5664 0.0329 78 -17.197 <.0001 -14.0415
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.5657 0.0329 78 -17.174 <.0001 -14.0227
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.5309 0.0329 78 -16.119 <.0001 -13.1610
(ImageNet transfer learning) - SuperAnimal zero-shot -0.3906 0.0329 78 -11.859 <.0001 -9.6830
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0008 0.0329 78 0.023 1.0000 0.0188
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0355 0.0329 78 1.078 0.9595 0.8805
SuperAnimal fine-tune - SuperAnimal zero-shot 0.1758 0.0329 78 5.338 <.0001 4.3585
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0348 0.0329 78 1.055 0.9639 0.8617
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.1751 0.0329 78 5.315 <.0001 4.3397
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.1403 0.0329 78 4.260 0.0014 3.4780
train data_ratio = 0.5
AP10k fine-tune - (AP10k transfer learning) 0.0026 0.0329 78 0.079 1.0000 0.0649
AP10k fine-tune - AP10k zero-shot 0.2564 0.0329 78 7.785 <.0001 6.3561
AP10k fine-tune - (ImageNet transfer learning) 0.1495 0.0329 78 4.539 0.0005 3.7058
AP10k fine-tune - SuperAnimal fine-tune -0.0229 0.0329 78 -0.695 0.9969 -0.5677
AP10k fine-tune - (SuperAnimal memory replay) -0.0219 0.0329 78 -0.664 0.9977 -0.5419
AP10k fine-tune - (SuperAnimal transfer learning) -0.0174 0.0329 78 -0.527 0.9995 -0.4307
AP10k fine-tune - SuperAnimal zero-shot 0.2016 0.0329 78 6.122 <.0001 4.9986
(AP10k transfer learning) - AP10k zero-shot 0.2538 0.0329 78 7.705 <.0001 6.2912
(AP10k transfer learning) - (ImageNet transfer learning) 0.1469 0.0329 78 4.459 0.0007 3.6409
(AP10k transfer learning) - SuperAnimal fine-tune -0.0255 0.0329 78 -0.775 0.9940 -0.6326
(AP10k transfer learning) - (SuperAnimal memory replay) -0.0245 0.0329 78 -0.743 0.9953 -0.6067
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0200 0.0329 78 -0.607 0.9987 -0.4956
(AP10k transfer learning) - SuperAnimal zero-shot 0.1990 0.0329 78 6.043 <.0001 4.9337
AP10k zero-shot - (ImageNet transfer learning) -0.1069 0.0329 78 -3.246 0.0350 -2.6503
AP10k zero-shot - SuperAnimal fine-tune -0.2793 0.0329 78 -8.480 <.0001 -6.9238
AP10k zero-shot - (SuperAnimal memory replay) -0.2783 0.0329 78 -8.448 <.0001 -6.8980
AP10k zero-shot - (SuperAnimal transfer learning) -0.2738 0.0329 78 -8.312 <.0001 -6.7868
AP10k zero-shot - SuperAnimal zero-shot -0.0548 0.0329 78 -1.663 0.7108 -1.3575



Table S17. Type-III Analysis of Variance Table for iRodent benchmark mixed model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
cond 1.44 0.21 7.00 78.00 572.88 <.0001
data_ratio 1.08 0.27 4.00 78.00 750.34 <.0001
cond:data_ratio 0.90 0.03 28.00 78.00 89.47 <.0001

(ImageNet transfer learning) - SuperAnimal fine-tune -0.1724 0.0329 78 -5.234 <.0001 -4.2735
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.1713 0.0329 78 -5.202 <.0001 -4.2477
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.1669 0.0329 78 -5.066 0.0001 -4.1365
(ImageNet transfer learning) - SuperAnimal zero-shot 0.0522 0.0329 78 1.583 0.7586 1.2928
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0010 0.0329 78 0.032 1.0000 0.0259
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0055 0.0329 78 0.168 1.0000 0.1370
SuperAnimal fine-tune - SuperAnimal zero-shot 0.2245 0.0329 78 6.817 <.0001 5.5663
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0045 0.0329 78 0.136 1.0000 0.1112
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.2235 0.0329 78 6.786 <.0001 5.5405
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.2190 0.0329 78 6.650 <.0001 5.4293
train data_ratio = 1
AP10k fine-tune - (AP10k transfer learning) -0.0005 0.0329 78 -0.016 1.0000 -0.0133
AP10k fine-tune - AP10k zero-shot 0.2824 0.0329 78 8.575 <.0001 7.0016
AP10k fine-tune - (ImageNet transfer learning) 0.0346 0.0329 78 1.050 0.9649 0.8570
AP10k fine-tune - SuperAnimal fine-tune -0.0146 0.0329 78 -0.443 0.9998 -0.3620
AP10k fine-tune - (SuperAnimal memory replay) -0.0119 0.0329 78 -0.362 1.0000 -0.2956
AP10k fine-tune - (SuperAnimal transfer learning) -0.0086 0.0329 78 -0.262 1.0000 -0.2141
AP10k fine-tune - SuperAnimal zero-shot 0.2277 0.0329 78 6.913 <.0001 5.6441
(AP10k transfer learning) - AP10k zero-shot 0.2830 0.0329 78 8.591 <.0001 7.0149
(AP10k transfer learning) - (ImageNet transfer learning) 0.0351 0.0329 78 1.066 0.9619 0.8703
(AP10k transfer learning) - SuperAnimal fine-tune -0.0141 0.0329 78 -0.427 0.9999 -0.3488
(AP10k transfer learning) - (SuperAnimal memory replay) -0.0114 0.0329 78 -0.346 1.0000 -0.2823
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0081 0.0329 78 -0.246 1.0000 -0.2009
(AP10k transfer learning) - SuperAnimal zero-shot 0.2282 0.0329 78 6.929 <.0001 5.6574
AP10k zero-shot - (ImageNet transfer learning) -0.2479 0.0329 78 -7.526 <.0001 -6.1446
AP10k zero-shot - SuperAnimal fine-tune -0.2970 0.0329 78 -9.019 <.0001 -7.3636
AP10k zero-shot - (SuperAnimal memory replay) -0.2944 0.0329 78 -8.937 <.0001 -7.2972
AP10k zero-shot - (SuperAnimal transfer learning) -0.2911 0.0329 78 -8.837 <.0001 -7.2157
AP10k zero-shot - SuperAnimal zero-shot -0.0548 0.0329 78 -1.663 0.7108 -1.3575
(ImageNet transfer learning) - SuperAnimal fine-tune -0.0492 0.0329 78 -1.493 0.8088 -1.2191
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.0465 0.0329 78 -1.412 0.8492 -1.1526
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.0432 0.0329 78 -1.312 0.8917 -1.0712
(ImageNet transfer learning) - SuperAnimal zero-shot 0.1931 0.0329 78 5.863 <.0001 4.7871
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0027 0.0329 78 0.081 1.0000 0.0665
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0060 0.0329 78 0.181 1.0000 0.1479
SuperAnimal fine-tune - SuperAnimal zero-shot 0.2423 0.0329 78 7.356 <.0001 6.0062
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0033 0.0329 78 0.100 1.0000 0.0814
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.2396 0.0329 78 7.275 <.0001 5.9397
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.2363 0.0329 78 7.175 <.0001 5.8583
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 8 estimates

Table S18. Two-sided pairwise contrasts adjusted with Tukey’s method for the iRodent benchmark mixed model.

contrast estimate SE df t.ratio p.value eff.size
train data_ratio = 0.01
AP10k fine-tune - (AP10k transfer learning) 0.3023 0.0155 78 19.513 <.0001 15.9326
AP10k fine-tune - AP10k zero-shot 0.0275 0.0155 78 1.778 0.6365 1.4517
AP10k fine-tune - (ImageNet transfer learning) 0.4236 0.0155 78 27.339 <.0001 22.3221
AP10k fine-tune - SuperAnimal fine-tune -0.1605 0.0155 78 -10.359 <.0001 -8.4579
AP10k fine-tune - (SuperAnimal memory replay) -0.1771 0.0155 78 -11.429 <.0001 -9.3318



AP10k fine-tune - (SuperAnimal transfer learning) 0.2552 0.0155 78 16.469 <.0001 13.4473
AP10k fine-tune - SuperAnimal zero-shot -0.1541 0.0155 78 -9.947 <.0001 -8.1221
(AP10k transfer learning) - AP10k zero-shot -0.2748 0.0155 78 -17.735 <.0001 -14.4808
(AP10k transfer learning) - (ImageNet transfer learning) 0.1212 0.0155 78 7.826 <.0001 6.3896
(AP10k transfer learning) - SuperAnimal fine-tune -0.4628 0.0155 78 -29.872 <.0001 -24.3905
(AP10k transfer learning) - (SuperAnimal memory replay) -0.4794 0.0155 78 -30.942 <.0001 -25.2644
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0472 0.0155 78 -3.044 0.0602 -2.4853
(AP10k transfer learning) - SuperAnimal zero-shot -0.4565 0.0155 78 -29.461 <.0001 -24.0547
AP10k zero-shot - (ImageNet transfer learning) 0.3960 0.0155 78 25.561 <.0001 20.8704
AP10k zero-shot - SuperAnimal fine-tune -0.1880 0.0155 78 -12.137 <.0001 -9.9097
AP10k zero-shot - (SuperAnimal memory replay) -0.2046 0.0155 78 -13.207 <.0001 -10.7836
AP10k zero-shot - (SuperAnimal transfer learning) 0.2276 0.0155 78 14.691 <.0001 11.9956
AP10k zero-shot - SuperAnimal zero-shot -0.1817 0.0155 78 -11.725 <.0001 -9.5738
(ImageNet transfer learning) - SuperAnimal fine-tune -0.5841 0.0155 78 -37.698 <.0001 -30.7801
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.6007 0.0155 78 -38.768 <.0001 -31.6540
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.1684 0.0155 78 -10.869 <.0001 -8.8748
(ImageNet transfer learning) - SuperAnimal zero-shot -0.5777 0.0155 78 -37.286 <.0001 -30.4442
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0166 0.0155 78 -1.070 0.9611 -0.8739
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.4157 0.0155 78 26.828 <.0001 21.9052
SuperAnimal fine-tune - SuperAnimal zero-shot 0.0064 0.0155 78 0.411 0.9999 0.3359
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.4323 0.0155 78 27.899 <.0001 22.7791
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.0230 0.0155 78 1.482 0.8148 1.2098
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.4093 0.0155 78 -26.417 <.0001 -21.5694
train data_ratio = 0.05
AP10k fine-tune - (AP10k transfer learning) 0.1026 0.0155 78 6.624 <.0001 5.4083
AP10k fine-tune - AP10k zero-shot 0.0922 0.0155 78 5.948 <.0001 4.8563
AP10k fine-tune - (ImageNet transfer learning) 0.2626 0.0155 78 16.945 <.0001 13.8358
AP10k fine-tune - SuperAnimal fine-tune -0.1165 0.0155 78 -7.519 <.0001 -6.1394
AP10k fine-tune - (SuperAnimal memory replay) -0.1367 0.0155 78 -8.823 <.0001 -7.2040
AP10k fine-tune - (SuperAnimal transfer learning) 0.0012 0.0155 78 0.079 1.0000 0.0648
AP10k fine-tune - SuperAnimal zero-shot -0.0895 0.0155 78 -5.778 <.0001 -4.7175
(AP10k transfer learning) - AP10k zero-shot -0.0105 0.0155 78 -0.676 0.9974 -0.5520
(AP10k transfer learning) - (ImageNet transfer learning) 0.1599 0.0155 78 10.322 <.0001 8.4275
(AP10k transfer learning) - SuperAnimal fine-tune -0.2191 0.0155 78 -14.143 <.0001 -11.5477
(AP10k transfer learning) - (SuperAnimal memory replay) -0.2393 0.0155 78 -15.447 <.0001 -12.6123
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.1014 0.0155 78 -6.544 <.0001 -5.3435
(AP10k transfer learning) - SuperAnimal zero-shot -0.1922 0.0155 78 -12.402 <.0001 -10.1258
AP10k zero-shot - (ImageNet transfer learning) 0.1704 0.0155 78 10.998 <.0001 8.9795
AP10k zero-shot - SuperAnimal fine-tune -0.2087 0.0155 78 -13.467 <.0001 -10.9957
AP10k zero-shot - (SuperAnimal memory replay) -0.2289 0.0155 78 -14.771 <.0001 -12.0602
AP10k zero-shot - (SuperAnimal transfer learning) -0.0909 0.0155 78 -5.868 <.0001 -4.7915
AP10k zero-shot - SuperAnimal zero-shot -0.1817 0.0155 78 -11.725 <.0001 -9.5738
(ImageNet transfer learning) - SuperAnimal fine-tune -0.3791 0.0155 78 -24.465 <.0001 -19.9752
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.3993 0.0155 78 -25.768 <.0001 -21.0398
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.2613 0.0155 78 -16.866 <.0001 -13.7710
(ImageNet transfer learning) - SuperAnimal zero-shot -0.3521 0.0155 78 -22.723 <.0001 -18.5533
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0202 0.0155 78 -1.304 0.8948 -1.0645
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.1177 0.0155 78 7.599 <.0001 6.2042
SuperAnimal fine-tune - SuperAnimal zero-shot 0.0270 0.0155 78 1.741 0.6605 1.4219
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.1379 0.0155 78 8.902 <.0001 7.2688
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.0472 0.0155 78 3.045 0.0600 2.4864
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.0908 0.0155 78 -5.857 <.0001 -4.7823
train data_ratio = 0.1
AP10k fine-tune - (AP10k transfer learning) 0.0754 0.0155 78 4.867 0.0002 3.9742
AP10k fine-tune - AP10k zero-shot 0.0963 0.0155 78 6.215 <.0001 5.0745
AP10k fine-tune - (ImageNet transfer learning) 0.2229 0.0155 78 14.387 <.0001 11.7470
AP10k fine-tune - SuperAnimal fine-tune -0.1102 0.0155 78 -7.114 <.0001 -5.8089



AP10k fine-tune - (SuperAnimal memory replay) -0.1370 0.0155 78 -8.840 <.0001 -7.2178
AP10k fine-tune - (SuperAnimal transfer learning) -0.0483 0.0155 78 -3.117 0.0497 -2.5447
AP10k fine-tune - SuperAnimal zero-shot -0.0854 0.0155 78 -5.510 <.0001 -4.4993
(AP10k transfer learning) - AP10k zero-shot 0.0209 0.0155 78 1.348 0.8774 1.1003
(AP10k transfer learning) - (ImageNet transfer learning) 0.1475 0.0155 78 9.520 <.0001 7.7728
(AP10k transfer learning) - SuperAnimal fine-tune -0.1856 0.0155 78 -11.982 <.0001 -9.7832
(AP10k transfer learning) - (SuperAnimal memory replay) -0.2124 0.0155 78 -13.707 <.0001 -11.1921
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.1237 0.0155 78 -7.984 <.0001 -6.5189
(AP10k transfer learning) - SuperAnimal zero-shot -0.1608 0.0155 78 -10.378 <.0001 -8.4735
AP10k zero-shot - (ImageNet transfer learning) 0.1266 0.0155 78 8.172 <.0001 6.6725
AP10k zero-shot - SuperAnimal fine-tune -0.2065 0.0155 78 -13.329 <.0001 -10.8834
AP10k zero-shot - (SuperAnimal memory replay) -0.2333 0.0155 78 -15.055 <.0001 -12.2923
AP10k zero-shot - (SuperAnimal transfer learning) -0.1446 0.0155 78 -9.332 <.0001 -7.6192
AP10k zero-shot - SuperAnimal zero-shot -0.1817 0.0155 78 -11.725 <.0001 -9.5738
(ImageNet transfer learning) - SuperAnimal fine-tune -0.3331 0.0155 78 -21.502 <.0001 -17.5559
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.3599 0.0155 78 -23.227 <.0001 -18.9648
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.2712 0.0155 78 -17.504 <.0001 -14.2917
(ImageNet transfer learning) - SuperAnimal zero-shot -0.3083 0.0155 78 -19.898 <.0001 -16.2463
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0267 0.0155 78 -1.726 0.6708 -1.4089
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0619 0.0155 78 3.998 0.0035 3.2642
SuperAnimal fine-tune - SuperAnimal zero-shot 0.0249 0.0155 78 1.604 0.7465 1.3096
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0887 0.0155 78 5.723 <.0001 4.6731
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.0516 0.0155 78 3.329 0.0277 2.7185
(SuperAnimal transfer learning) - SuperAnimal zero-shot -0.0371 0.0155 78 -2.394 0.2590 -1.9546
train data_ratio = 0.5
AP10k fine-tune - (AP10k transfer learning) -0.0659 0.0155 78 -4.253 0.0014 -3.4728
AP10k fine-tune - AP10k zero-shot 0.1747 0.0155 78 11.275 <.0001 9.2056
AP10k fine-tune - (ImageNet transfer learning) 0.0735 0.0155 78 4.743 0.0002 3.8730
AP10k fine-tune - SuperAnimal fine-tune -0.1217 0.0155 78 -7.855 <.0001 -6.4133
AP10k fine-tune - (SuperAnimal memory replay) -0.1140 0.0155 78 -7.361 <.0001 -6.0101
AP10k fine-tune - (SuperAnimal transfer learning) -0.1196 0.0155 78 -7.720 <.0001 -6.3030
AP10k fine-tune - SuperAnimal zero-shot -0.0070 0.0155 78 -0.451 0.9998 -0.3682
(AP10k transfer learning) - AP10k zero-shot 0.2406 0.0155 78 15.528 <.0001 12.6784
(AP10k transfer learning) - (ImageNet transfer learning) 0.1394 0.0155 78 8.997 <.0001 7.3458
(AP10k transfer learning) - SuperAnimal fine-tune -0.0558 0.0155 78 -3.601 0.0124 -2.9405
(AP10k transfer learning) - (SuperAnimal memory replay) -0.0481 0.0155 78 -3.108 0.0510 -2.5373
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0537 0.0155 78 -3.466 0.0186 -2.8301
(AP10k transfer learning) - SuperAnimal zero-shot 0.0589 0.0155 78 3.802 0.0066 3.1046
AP10k zero-shot - (ImageNet transfer learning) -0.1012 0.0155 78 -6.531 <.0001 -5.3327
AP10k zero-shot - SuperAnimal fine-tune -0.2964 0.0155 78 -19.129 <.0001 -15.6189
AP10k zero-shot - (SuperAnimal memory replay) -0.2887 0.0155 78 -18.635 <.0001 -15.2157
AP10k zero-shot - (SuperAnimal transfer learning) -0.2943 0.0155 78 -18.994 <.0001 -15.5086
AP10k zero-shot - SuperAnimal zero-shot -0.1817 0.0155 78 -11.725 <.0001 -9.5738
(ImageNet transfer learning) - SuperAnimal fine-tune -0.1952 0.0155 78 -12.598 <.0001 -10.2863
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.1875 0.0155 78 -12.104 <.0001 -9.8831
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.1931 0.0155 78 -12.463 <.0001 -10.1759
(ImageNet transfer learning) - SuperAnimal zero-shot -0.0805 0.0155 78 -5.194 <.0001 -4.2411
SuperAnimal fine-tune - (SuperAnimal memory replay) 0.0077 0.0155 78 0.494 0.9997 0.4032
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0021 0.0155 78 0.135 1.0000 0.1104
SuperAnimal fine-tune - SuperAnimal zero-shot 0.1147 0.0155 78 7.404 <.0001 6.0451
(SuperAnimal memory replay) - (SuperAnimal transfer learning) -0.0056 0.0155 78 -0.359 1.0000 -0.2928
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.1071 0.0155 78 6.910 <.0001 5.6419
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.1126 0.0155 78 7.269 <.0001 5.9348
train data_ratio = 1
AP10k fine-tune - (AP10k transfer learning) -0.0928 0.0155 78 -5.990 <.0001 -4.8906
AP10k fine-tune - AP10k zero-shot 0.2125 0.0155 78 13.712 <.0001 11.1957
AP10k fine-tune - (ImageNet transfer learning) 0.0278 0.0155 78 1.793 0.6266 1.4640



AP10k fine-tune - SuperAnimal fine-tune -0.1061 0.0155 78 -6.849 <.0001 -5.5924
AP10k fine-tune - (SuperAnimal memory replay) -0.1134 0.0155 78 -7.317 <.0001 -5.9741
AP10k fine-tune - (SuperAnimal transfer learning) -0.1041 0.0155 78 -6.720 <.0001 -5.4868
AP10k fine-tune - SuperAnimal zero-shot 0.0308 0.0155 78 1.986 0.4975 1.6219
(AP10k transfer learning) - AP10k zero-shot 0.3053 0.0155 78 19.702 <.0001 16.0863
(AP10k transfer learning) - (ImageNet transfer learning) 0.1206 0.0155 78 7.783 <.0001 6.3546
(AP10k transfer learning) - SuperAnimal fine-tune -0.0133 0.0155 78 -0.860 0.9887 -0.7019
(AP10k transfer learning) - (SuperAnimal memory replay) -0.0206 0.0155 78 -1.327 0.8857 -1.0835
(AP10k transfer learning) - (SuperAnimal transfer learning) -0.0113 0.0155 78 -0.730 0.9958 -0.5963
(AP10k transfer learning) - SuperAnimal zero-shot 0.1236 0.0155 78 7.976 <.0001 6.5125
AP10k zero-shot - (ImageNet transfer learning) -0.1847 0.0155 78 -11.919 <.0001 -9.7317
AP10k zero-shot - SuperAnimal fine-tune -0.3186 0.0155 78 -20.561 <.0001 -16.7881
AP10k zero-shot - (SuperAnimal memory replay) -0.3258 0.0155 78 -21.029 <.0001 -17.1698
AP10k zero-shot - (SuperAnimal transfer learning) -0.3166 0.0155 78 -20.432 <.0001 -16.6825
AP10k zero-shot - SuperAnimal zero-shot -0.1817 0.0155 78 -11.725 <.0001 -9.5738
(ImageNet transfer learning) - SuperAnimal fine-tune -0.1339 0.0155 78 -8.642 <.0001 -7.0564
(ImageNet transfer learning) - (SuperAnimal memory replay) -0.1411 0.0155 78 -9.110 <.0001 -7.4381
(ImageNet transfer learning) - (SuperAnimal transfer learning) -0.1319 0.0155 78 -8.513 <.0001 -6.9508
(ImageNet transfer learning) - SuperAnimal zero-shot 0.0030 0.0155 78 0.193 1.0000 0.1579
SuperAnimal fine-tune - (SuperAnimal memory replay) -0.0072 0.0155 78 -0.467 0.9998 -0.3817
SuperAnimal fine-tune - (SuperAnimal transfer learning) 0.0020 0.0155 78 0.129 1.0000 0.1056
SuperAnimal fine-tune - SuperAnimal zero-shot 0.1369 0.0155 78 8.836 <.0001 7.2143
(SuperAnimal memory replay) - (SuperAnimal transfer learning) 0.0092 0.0155 78 0.597 0.9988 0.4873
(SuperAnimal memory replay) - SuperAnimal zero-shot 0.1441 0.0155 78 9.303 <.0001 7.5960
(SuperAnimal transfer learning) - SuperAnimal zero-shot 0.1349 0.0155 78 8.706 <.0001 7.1087
Degrees-of-freedom method: kenward-roger
P value adjustment: tukey method for comparing a family of 8 estimates

Table S19. Spatial Pyramid. Exact two-sample one-sided Kolmogorov-Smirnov test.

D p
Smear Lab mouse 1 <.0001
ood_ Mathis MausHaus 0.33 .27
Golden Lab Mouse 0.75 <.0001

Table S20. Type-III Analysis of Variance Table for the mixed model relative to the quantification of video adaptation in terms of keypoint jittering.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
video 807.99 134.67 6.00 2.00 2.94 0.2753
cond 8699.68 8699.68 1.00 23286.00 190.03 <.0001
video:cond 11630.29 1938.38 6.00 23286.00 42.34 <.0001



Table S21. Two-sided pairwise contrasts adjusted with Tukey’s method for the mixed model relative to the quantification of video adaptation in terms of
keypoint jittering.

contrast estimate SE df z.ratio p.value eff.size
video = DLC-Openfield
after_adapt - before_adapt -6.3923 0.3791 Inf -16.860 <.0001 -0.9447
video = Dog
after_adapt - before_adapt -0.1828 0.1983 Inf -0.922 0.3566 -0.0270
video = Elk
after_adapt - before_adapt -1.6065 0.1674 Inf -9.596 <.0001 -0.2374
video = Golden Lab
after_adapt - before_adapt -0.3877 0.7839 Inf -0.495 0.6209 -0.0573
video = Horse
after_adapt - before_adapt -6.6062 0.7974 Inf -8.285 <.0001 -0.9764
video = MausHaus
after_adapt - before_adapt -1.5839 0.5878 Inf -2.695 0.0070 -0.2341
video = Smear Lab
after_adapt - before_adapt -1.8673 0.1373 Inf -13.603 <.0001 -0.2760
Degrees-of-freedom method: asymptotic

Table S22. One-way repeated measures ANOVA table testing for differences in adaptation gain between smoothing methods.

Source ddof1 ddof2 F p-unc p-GG-corr ng2 eps sphericity W-spher p-spher

0 method 2 58 25.078469 0.000000 0.000018 0.363796 0.520776 False 0.079789 0.000000

Table S23. Post-hoc pairwise contrasts for the adaptation gain ANOVA.

A B T dof alternative p-unc cohen

Kalman filter Self-pacing -4.725 29.000 two-sided <.0001 -1.226
Kalman filter Video adaptation -5.319 29.000 two-sided <.0001 -1.358
Self-pacing Video adaptation -3.261 29.000 two-sided 0.003 -0.785

Table S24. Paired t-test testing for differences in robustness gain between self-pacing and video adaptation.

T dof alternative p-val CI95% cohen-d

T-test -15.473 29 two-sided 0.000 [-4.36 -3.34] 3.124

Table S25. Type-III Analysis of Variance Table for OFT linear mixed effect model.

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
method 0.1371 0.0457 3 453 0.9988 0.3932
action 12.1056 12.1056 1 453 264.6151 <0.0001
method:action 0.0202 0.0067 3 453 0.1474 0.9313



Table S26. MABe Results with SA-TVM zero-shot vs. Official MABe pose data. We show that with SuperAnimal keypoints, we get same perfor-
mance (independent t-test; t=-.02, p=.99) in downstream action segmentation as the official pose does in all 13 considered tasks (1), even though our
model is never trained on MABe videos. This demonstrates the effectiveness of our models in downstream action segmentation tasks. To qualitatively
support our results see Supplementary Video 6.

Task No. Official MABe pose SuperAnimal zero-shot
T0 0.095018 0.095018
T1 0.096345 0.096350
T2 0.657165 0.657245
T3 0.020959 0.020963
T4 0.34015 0.34020
T5 0.718520 0.718519
T6 0.565967 0.565954
T7 0.261730 0.261697
T8 0.005427 0.005427
T9 0.025384 0.025381
T10 0.021717 0.021703
T11 0.107985 0.107988
T12 0.610986 0.610956



Supplementary Notes

Model Cards
We provide Model Cards for the two major outputs, SA-TVM and SA-Q. These are also available on HuggingFace with
the model weights, at https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-Quadruped and https:
//huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse

Model Card: SuperAnimal-TopViewMouse (DLCRNet backbone and/or HRNet-w32)

Model Details

• SuperAnimal-TopviewMouse model developed by the Mathis Lab in 2023, and trained to predict mouse 27 key points from a given
top view image.

• DLCRNet (2) or HRNet-w32 was trained on the TopviewMouse-5K dataset.
• Models were trained within the DeepLabCut framework or mmpose (HRNet-w32). You can use this model simply with our

light-weight loading package called DLCLibrary. Here is an example usage:

1 from pathlib import Path
2 from dlclibrary import download_huggingface_model
3 # Creates a folder and downloads the model to it
4 model_dir = Path("./ superanimal -topviewmouse_model_dlcrnet")
5 model_dir.mkdir()
6 download_huggingface_model("superanimal_topviewmouse_dlcrnet", model_dir)

Intended Use

• Intended to be used for pose tracking of lab mice videos filmed from an overhead view. The models can be used as a plug-and-
play solution if extremely high precision is not required (we benchmark the zero-shot performance in the paper). Otherwise, it is
recommended to also be used as the weights for transfer learning and fine-tuning.

• Intended for academic and research professionals working in fields related to animal behavior, neuroscience, biomechanics, and
ecology.

• Not suitable for other species and other camera views. Also not suitable for videos that look dramatically different from those we
show in the paper.

Factors

• Based on the known robustness issues of neural networks, the relevant factors include the lighting, contrast and resolution of the
video frames. The presence of objects might also cause false detections of the mice and keypoints. When two or more animals are
very close, it could cause the top-down detectors to only detect one animal, if used without further fine-tuning.

Metrics

• Mean Average Precision (mAP)
• Root Mean Square Error (RMSE)

Evaluation Data

• The test split of TopViewMouse-5K and in the paper on two benchmarks, DLC Openfield and TriMouse.

Training Data

• 3CSI, BM, EPM, LDB, OFT See full details at (3) and (4).
• BlackMice See full details at (5).
• WhiteMice Courtesy of Prof. Sam Golden and Nastacia Goodwin. See details in SIMBA (6).
• TriMouse See full details at (2).
• DLC-Openfield See full details at (7).
• Kiehn-Lab-Openfield, Swimming, and Treadmill Courtesy of Prof. Ole Kiehn, Dr. Jared Cregg, and Prof. Carmelo Bellardita;

see details at (8).
• MausHaus We collected video data from five single-housed C57BL/6J male and female mice in an extended home cage, car-

ried out in the laboratory of Mackenzie Mathis at Harvard University and also EPFL (temperature of housing was 20-25C,
humidity 20-50%). Data were recorded at 30Hz with 640 × 480 pixels resolution acquired with White Matter, LLC eV cam-
eras. Annotators localized 26 keypoints across 322 frames sampled from within DeepLabCut using the k-means clustering
approach (9). All experimental procedures for mice were in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals and approved by the Harvard Institutional Animal Care and Use Committee (IACUC) (n=1
mouse), and by the Veterinary Office of the Canton of Geneva (Switzerland; license GE01) (n=4 mice). MausHaus data is banked
at https://zenodo.org/records/10593101.

https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-Quadruped
https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse
https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse
https://github.com/DeepLabCut
https://github.com/DeepLabCut/DLClibrary
https://zenodo.org/records/10593101


Ethical Considerations

• Data was collected with IUCAC or other governmental approval. Each individual dataset used in training reports the ethics approval
they obtained.

Caveats and Recommendations

• The model may have reduced accuracy in scenarios with extremely varied lighting conditions or atypical mouse characteristics not
well-represented in the training data. For example, this dataset only has one set of white mice, therefore it may not generalize well
to diverse settings of white lab mice.

• Please note that each training dataset was labeled by separate labs and different individuals, therefore while we map names to a
unified pose vocabulary, there will be annotator bias in keypoint placement (See our Supplementary Note on annotator bias).

• Note the dataset is primarily using C56Blk6/J mice and only some CD1 examples.
• We recommend if performance is not as good as you need it to be, first try our video adaptation, or fine-tune these weights with

your own labeling.

License

• This software may not be used to harm any animal deliberately. Released under a modified MIT license. Please see details at
https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse.

Quantitative Analyses

• See details at in Figure 1.

Model Card: SuperAnimal-Quadruped (HRNetw32)

Model Details

• SuperAnimal-Quadruped model developed by the Mathis Lab in 2023, trained to predict quadruped pose from images.
• The main backbone model is an HRNet-w32 (10) trained on our Quadruped-80K dataset.
• We also release a top-down detector trained on the same data with Faster R-CNN (11).
• You can use this model simply with our light-weight loading package called DLCLibrary. Here is an example usage:

1 from pathlib import Path
2 from dlclibrary import download_huggingface_model
3 # Creates a folder and downloads the model to it
4 model_dir = Path("./ superanimal_quadruped_hrnetw32")
5 model_dir.mkdir()
6 download_huggingface_model("superanimal_hrnetw32", model_dir)
7

Intended Use

• Intended to be used for pose estimation of quadruped images taken from side-view. The model serves a better starting
point than ImageNet weights in downstream datasets such as AP-10K.

• Intended for academic and research professionals working in fields related to animal behavior, such as neuroscience
and ecology.

• Not suitable as a zeros-shot model for applications that require high keypiont precision, but can be fine-tuned with
minimal data to reach human-level accuracy. Also not suitable for videos that look dramatically different from those
we show in the paper.

Factors

• Based on the known robustness issues of neural networks, the relevant factors include the lighting, contrast and
resolution of the video frames. The present of objects might also cause false detections and erroneous keypoints.
When two or more animals are extremely close, it could cause the top-down detectors to only detect only one animal,
if used without further fine-tuning or with a method such as BUCTD (12).

Metrics

• Mean Average Precision (mAP)
• Root Mean Square Error (RMSE)
• Normalized Error (NE)

https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse
https://github.com/DeepLabCut/DLClibrary


Evaluation Data

• In the paper we benchmark on AP-10K, AnimalPose, Horse-10, and iRodent using a leave-one-out strategy. Here,
we provide the model that has been trained on all datasets (see below), therefore it should be considered “fine-tuned"
on all animal training data listed below. This model is meant for production and evaluation in downstream scientific
applications.

Training Data

• AwA-Pose Quadruped dataset, see full details at (13).
• AnimalPose See full details at (14).
• AcinoSet See full details at (15).
• Horse-30 Horse-30 dataset, benchmark task is called Horse-10; See full details at (16).
• StanfordDogs See full details at (17, 18).
• AP-10K See full details at (19).
• APT-36K See full details at (20)
• iRodent We utilized the iNaturalist API functions for scraping observations with the taxon ID of Suborder Myomor-

pha (21). The functions allowed us to filter the large amount of observations down to the ones with photos under the
CC BY-NC creative license. The most common types of rodents from the collected observations are Muskrat (On-
datra zibethicus), Brown Rat (Rattus norvegicus), House Mouse (Mus musculus), Black Rat (Rattus rattus), Hispid
Cotton Rat (Sigmodon hispidus), Meadow Vole (Microtus pennsylvanicus), Bank Vole (Clethrionomys glareolus),
Deer Mouse (Peromyscus maniculatus), White-footed Mouse (Peromyscus leucopus), Striped Field Mouse (Apode-
mus agrarius). We then generated segmentation masks over target animals in the data by processing the media through
an algorithm we designed that uses a Mask Region Based Convolutional Neural Networks(Mask R-CNN) (22) model
with a ResNet-50-FPN backbone (23), pretrained on the COCO datasets (24). The processed 443 images were then
manually labeled with pose annotations, and bounding boxes were generated by running Mega Detector (25) on the
images, which were then manually verified. iRodent data is banked at https://zenodo.org/record/8250392.

An image with the keypoint guide can be found in Supplementary Figure S1.

Ethical Considerations

• No experimental data was collected for this model; all datasets used are cited.

Caveats and Recommendations

• The model may have reduced accuracy in scenarios with extremely varied lighting conditions or atypical animal
characteristics not well-represented in the training data.

• Please note that each dataset was labeled by separate labs and separate individuals, therefore while we map names
to a unified pose vocabulary (found here: https://github.com/AdaptiveMotorControlLab/modelzoo-figures), there will
be annotator bias in keypoint placement (See our Supplementary Note on annotator bias).

• Note the dataset is highly diverse across species, but collectively has more representation of domesticated animals
like dogs, cats, horses, and cattle.

• We recommend if performance is not as good as you need it to be, first try video adaptation (see Ye et al. 2023), or
fine-tune these weights with your own labeling.

License

• This software may not be used to harm any animal deliberately. Released under a modified MIT license. Please see
details at https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-Quadruped.

Quantitative Analyses

• See details at in Figure 2.

https://zenodo.org/record/8250392
https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-Quadruped


Datasheet: TopViewMouse-5K dataset

Motivation

For what purpose was the dataset created? Was there
a specific task in mind? Was there a specific gap that
needed to be filled? Please provide a description.
We collected publicly available datasets from the community
and additionally contribute MausHaus dataset. The purpose
is to provide the community a unified vocabulary dataset for
training pose models, and to help the community reproduce
our findings. This dataset is used to train models with the Su-
perAnimal method for mouse top-view pose estimation. The
dataset was created intentionally with that task in mind, fo-
cusing on covering diverse lab settings of mice.

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?
The merged dataset was created by Shaokai Ye, Ph.D. stu-
dent at The Mathis Lab of Adaptive Intelligence, EPFL and
checked by all co-authors. The merged dataset includes the
following:

1. 3CSI, BM, EPM, LDB, OFT datasets, from the lab of
Prof. Johannes Bohacek; see details at (3) and (4).

2. BlackMice, from the lab of Prof. Chang; see details
at (5).

3. WhiteMice, courtesy of Prof. Sam Golden and Nasta-
cia Goodwin; see details in SIMBA (6).

4. TriMouse benchmark dataset, see details at (2).

5. DLC-Openfield, see details at (7).

6. Kiehn-Lab-Openfield, Swimming, and Treadmill,
courtesy of Prof. Ole Kiehn, Dr. Jared Cregg, and
Prof. Carmelo Bellardita; see details at (8).

7. MausHaus dataset, collected in the lab of Prof.
Mackenzie Mathis at Harvard University and
EPFL (26).

Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor
and the grant name and number.
Each individual paper denotes the funding for the work,

therefore check the references. For the newly created
MausHaus data, it was funded by start-up funds to Prof.
Mackenzie Mathis at the Rowland Institute of Harvard and
at EPFL.

Any other comments?
None.

Composition

What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)?
Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes
and edges)? Please provide a description.
The instances are images of mice extracted from the top-view
video coupled with the human annotated keypoints. Videos
have different resolutions, number of animals per frame,
number of annotated keypoints as well as frame frequencies.
To our best knowledge, frames were only annotated once per
instance.

How many instances are there in total (of each type, if
appropriate)?
The merged dataset consists of approximately 5,000 frames.
For more information see Supplementary Figure S1.

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from
a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set
(e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because
instances were withheld or unavailable).
The merged dataset contains all possible instances from each
individual source. For MausHaus, the frames were extracted
from multiple different mice and videos using kmeans clus-
tering then labeled within the DeepLabCut software package
(versions 2.0.7-2.2 were used).

What data does each instance consist of? “Raw” data
(e.g., unprocessed text or images) or features? In ei-
ther case, please provide a description.
Each instance in the dataset comprises a top-view image fea-
turing one or more mice. Accompanying these images are
human annotated keypoints for each individual mouse, which
detail specific points of interest or markers on the animal’s
body. These keypoints provide valuable information for pose
estimation and behavioral analysis.

Is there a label or target associated with each in-
stance? If so, please provide a description.
The labels are the 2D coordinates (x, y in pixel space) and

visibility flags (undefined, unlabeled if occluded, labeled) per
each keypoint for each dataset.

Is any information missing from individual instances?
If so, please provide a description, explaining why this in-
formation is missing (e.g., because it was unavailable).
This does not include intentionally removed information,
but might include, e.g., redacted text.
Unknown to the authors of the merged dataset.

Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)? If so, please describe how these relationships are
made explicit.



In the dataset of frames extracted from top-view videos of
mice, the relationships between individual instances (frames)
are not explicitly defined in terms of behavioral interactions
or social links. Instead, the dataset primarily focuses on iso-
lated frames as individual instances. Any temporal or be-
havioral relationships between the frames would be implicit,
derived from the sequence in which they appear in the videos.

Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? If so, please provide a
description of these splits, explaining the rationale behind
them.
The dataset is partitioned into a train-test split with a ratio of
95:5. This distribution is established to rigorously evaluate
the model’s efficacy on a set of data distinct from those used
during its training phase.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a description.
There are two primary sources of errors in our dataset: firstly,
annotation errors from the annotators of individual datasets
may exist - we did not correct any original data source; and
secondly, imperfections in the projection of keypoints from
the original keypoint space to the superset keypoint space
cannot be guaranteed to not have occurred, although the au-
thors did their best efforts to avoid such errors. Please see the
pre-processing Methods section for more details and for the
conversion table that the authors created.

Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets,
other datasets)? If it links to or relies on external re-
sources, a) are there guarantees that they will exist, and
remain constant, over time; b) are there official archival
versions of the complete dataset (i.e., including the ex-
ternal resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses,
fees) associated with any of the external resources that
might apply to a future user? Please provide descriptions
of all external resources and any restrictions associated
with them, as well as links or other access points, as ap-
propriate.
The merged single source dataset is self-contained and does

not rely on external link that might change over time. Indi-
vidual dataset links could be modified.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data that
includes the content of individuals non-public commu-
nications)? If so, please provide a description.
To our best knowledge, no such data is included, and all data
was collected under ethics approval for animal research.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might
otherwise cause anxiety? If so, please describe why.
Unknown to the authors of the datasheet, but the images are

of uninjured animals in freely moving settings in laboratories,

therefore we do not anticipate they cause alarm for humans.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.
No

Any other comments?
None.

Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or indi-
rectly inferred/derived from other data, was the data vali-
dated/verified? If so, please describe how.
Individual datasets before merging were acquired from pub-

lished papers or annotated by authors of the paper.
Datasets are validated and verified by the original dataset cre-
ators and later verified by authors of this paper.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor, man-
ual human curation, software program, software API)?
How were these mechanisms or procedures validated?
For MausHaus dataset we collected video data from five

single-housed C57BL/6J male and female mice in an ex-
tended home cage, carried out in the laboratory of Macken-
zie Mathis at Harvard University and also EPFL. Data were
recorded with White Matter, LLC eV cameras. Anno-
tators localized 27 keypoints across 322 frames sampled
from within DeepLabCut using the k-means clustering ap-
proach (9). All experimental procedures for mice were in
accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and approved by
the Harvard Institutional Animal Care and Use Committee
(IACUC) (n=1 mouse), and by the Veterinary Office of the
Canton of Geneva (Switzerland; license GE01) (n=4 mice).

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilis-
tic with specific sampling probabilities)?
For publicly available data, please see their methods. For

MausHaus, it was sampled via k-means clustering of videos.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdwork-
ers paid)?

We do not have information on the publicly available
datasets. MausHaus was annotated by Prof. Mackenzie
Mathis as part of her employment at either Harvard Univer-
sity or EPFL.

Over what time frame was the data collected? Does
this time frame match the creation time frame of the



data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the time
frame in which the data associated with the instances was
created.
Data was collected from 2019-2023.

Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide a
description of these review processes, including the out-
comes, as well as a link or other access point to any sup-
porting documentation.
Yes, every individual paper we sourced data from included a
relevant ethical approval to collect data from mice.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.
No.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? If
so, please provide a description. If not, you may skip the
remainder of the questions in this section.
Data came from multiple sources and in multiple formats.

To homogenize different annotation formats (COCO-style,
DeepLabCut format, etc.), we implemented a generalized
data converter. We parsed public datasets and reformat-
ted them into a single project (either DeepLabCut format or
COCO). Besides data conversion, the generalized data con-
verter also implements key steps for the panoptic animal pose
estimation task formulation, but no individual keypoints were
changed.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantic-
ipated future uses)? If so, please provide a link or other
access point to the “raw” data.
The raw data was used, and can be extracted from the corre-
sponding original source.

Is the software used to preprocess/clean/label the in-
stances available? If so, please provide a link or other
access point. Yes, the conversion table is avail-
able at https://github.com/AdaptiveMotorControlLab/
modelzoo-figures.

Any other comments?
None.

Uses

Has the dataset been used for any tasks already? If so,
please provide a description.
At the time of publication, only the original paper has used

the dataset.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.

We suggest to check the citations of original paper sources.

What (other) tasks could the dataset be used for?
The dataset could be used for anything related to mouse pose
estimation.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed/-
cleaned/labeled that might impact future uses? For ex-
ample, is there anything that a future user might need to
know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., financial harms,
legal risks) If so, please provide a description. Is there any-
thing a future user could do to mitigate these undesirable
harms?
Keypoint annotations from individual datasets were pro-

jected to a super-set keypoint space which represents this
dataset. The model that is trained on this dataset might have
a bias on keypoints that are more common in the individual
datasets and might have larger errors on keypoints that are
under-represented in the source datasets.

Are there tasks for which the dataset should not be
used? If so, please provide a description.
The dataset cannot be used to harm any animal. The dataset

should not be used to train a model that is expected to be di-
rectly used (i.e., without further fine-tuning) for applications
that require extremely high-precision, as there were annotator
bias from the source datasets.

Any other comments?
None.

Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created? If so,
please provide a description.
Yes, the dataset will be publicly available with a license for

use.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub) Does the dataset have a digital ob-
ject identifier (DOI)?
The dataset is distributed on zenodo (27).

When will the dataset be distributed?
The merged dataset is released with this this paper).

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms
or ToU, as well as any fees associated with these restric-
tions.
The data copyright belongs to the authors of the original

datasets.

https://github.com/AdaptiveMotorControlLab/modelzoo-figures
https://github.com/AdaptiveMotorControlLab/modelzoo-figures


Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?
If so, please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any rel-
evant licensing terms, as well as any fees associated with
these restrictions.
Yes, please check the original sources. We assume no liabil-
ity or guarantees on this model’s use.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? If so,
please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any sup-
porting documentation.
Unknown.

Any other comments?
None.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?
The dataset will be hosted on zenodo.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

The head of The Mathis Lab of Adaptive Intelli-
gence, Mackenzie Mathis, can be contacted at macken-
zie.mathis@epfl.ch.

Is there an erratum? If so, please provide a link or other
access point.
None.

Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)? If so,
please describe how often, by whom, and how updates
will be communicated to users (e.g., mailing list, GitHub)?
Not at this time.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time
and then deleted)? If so, please describe these limits and
explain how they will be enforced.
No.

Will older versions of the dataset continue to be sup-
ported/hosted/maintained? If so, please describe how.
If not, please describe how its obsolescence will be com-
municated to users.
The data is banked on zenodo.

If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do
so? If so, please provide a description. Will these contri-
butions be validated/verified? If so, please describe how.
If not, why not? Is there a process for communicating/dis-
tributing these contributions to other users? If so, please
provide a description.
Others may do so and should contact the original authors

about incorporating fixes/extensions.

Any other comments?
None.

mackenzie.mathis@epfl.ch
mackenzie.mathis@epfl.ch


Datasheet: Quadruped-80K dataset

Motivation

For what purpose was the dataset created? Was there
a specific task in mind? Was there a specific gap that
needed to be filled? Please provide a description.
We collected publicly available datasets from the community
and additionally contribute iRodent dataset. The purpose is
to provide the community with a unified vocabulary dataset
for training pose models, and to help the community repro-
duce our findings. This dataset is used to train models with
the SuperAnimal method for quadruped pose estimation. The
dataset was created intentionally with that task in mind, fo-
cusing on covering animals in the wild.

Who created this dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)?
The merged dataset was created by Shaokai Ye, Ph.D. stu-
dent at The Mathis Lab of Adaptive Intelligence, EPFL and
checked by all co-authors. The merged dataset includes the
following:

1. AwA-Pose Quadruped dataset, see full details at (13).

2. AnimalPose See full details at (14).

3. AcinoSet See full details at (15).

4. Horse-30 Horse-30 dataset, benchmark task is called
Horse-10; See full details at (16).

5. StanfordDogs See full details at (17, 18).

6. AP-10K See full details at (19).

7. APT-36K See full details at (20)

8. iRodent We utilized the iNaturalist API functions for
scraping observations with the taxon ID of Subor-
der Myomorpha (21). The functions allowed us to
filter the large amount of observations down to the
ones with photos under the CC BY-NC creative li-
cense. The most common types of rodents from the
collected observations are Muskrat (Ondatra zibethi-
cus), Brown Rat (Rattus norvegicus), House Mouse
(Mus musculus), Black Rat (Rattus rattus), Hispid
Cotton Rat (Sigmodon hispidus), Meadow Vole (Mi-
crotus pennsylvanicus), Bank Vole (Clethrionomys
glareolus), Deer Mouse (Peromyscus maniculatus),
White-footed Mouse (Peromyscus leucopus), Striped
Field Mouse (Apodemus agrarius). We then gener-
ated segmentation masks over target animals in the
data by processing the media through an algorithm
we designed that uses a Mask Region Based Convo-
lutional Neural Networks(Mask R-CNN) (22) model
with a ResNet-50-FPN backbone (23), pretrained on
the COCO datasets (24). The processed 443 images
were then manually labeled with pose annotations, and

bounding boxes were generated by running Mega De-
tector (25) on the images, which were then manually
verified. iRodent data is banked at https://zenodo.
org/record/8250392.

Who funded the creation of the dataset? If there is an
associated grant, please provide the name of the grantor
and the grant name and number.
Each individual paper denotes the funding for the work,

therefore check the references. For the newly created iRo-
dent data, it was funded by start-up funds to Prof. Mackenzie
Mathis at EPFL.

Any other comments?
None.

Composition

What do the instances that comprise the dataset rep-
resent (e.g., documents, photos, people, countries)?
Are there multiple types of instances (e.g., movies, users,
and ratings; people and interactions between them; nodes
and edges)? Please provide a description.
The instances are images of animals extracted from the side-
view images coupled with the human annotated keypoints.
Videos/images have different resolutions, number of animals
per frame, number of annotated keypoints as well as frame
frequencies. To our best knowledge, frames were only anno-
tated once per instance.

How many instances are there in total (of each type, if
appropriate)?

The merged dataset consists of approximately 85,000
frames. For more information see Supplementary Figure S1.

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from
a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set
(e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not
representative of the larger set, please describe why not
(e.g., to cover a more diverse range of instances, because
instances were withheld or unavailable).
The merged dataset contains all possible instances from each
individual source.

What data does each instance consist of? “Raw” data
(e.g., unprocessed text or images) or features? In ei-
ther case, please provide a description.
Each instance in the dataset comprises a side-view image

featuring one or more animals. Accompanying these images
are human annotated keypoints for each individual, which
detail specific points of interest or markers on the animal’s
body. These keypoints provide valuable information for pose
estimation and behavioral analysis.

https://zenodo.org/record/8250392
https://zenodo.org/record/8250392


Is there a label or target associated with each in-
stance? If so, please provide a description.
The labels are the 2D coordinates (x, y in pixel space) and

visibility flag (undefined, labeled, and unlabeled if occluded)
per each keypoint for each dataset.

Is any information missing from individual instances?
If so, please provide a description, explaining why this in-
formation is missing (e.g., because it was unavailable).
This does not include intentionally removed information,
but might include, e.g., redacted text.
Unknown to the authors of the merged dataset.

Are relationships between individual instances made
explicit (e.g., users’ movie ratings, social network
links)? If so, please describe how these relationships are
made explicit.
In the dataset of pictures or frames extracted from side-

view videos of animals, the relationships between individ-
ual instances (frames) are not explicitly defined in terms of
behavioral interactions or social links. Instead, the dataset
primarily focuses on isolated frames as individual instances.
Any temporal or behavioral relationships between the frames
would be implicit, derived from the sequence in which they
appear in the videos.

Are there recommended data splits (e.g., training, de-
velopment/validation, testing)? If so, please provide a
description of these splits, explaining the rationale behind
them.
The dataset is partitioned into a train set, where individual

datasets can be dropped to test OOD performance.

Are there any errors, sources of noise, or redundan-
cies in the dataset? If so, please provide a description.
There are two primary sources of error in our dataset: firstly,
annotation errors from the annotators of individual datasets
may exist - we did not correct any original data source; and
secondly, imperfections in the projection of keypoints from
the original keypoint space to the target keypoint space can-
not be guaranteed to not have occurred, although the authors
did their best efforts to avoid such errors. Please see the pre-
processing Methods section for more details and for the con-
version table that the authors created.

Is the dataset self-contained, or does it link to or other-
wise rely on external resources (e.g., websites, tweets,
other datasets)? If it links to or relies on external re-
sources, a) are there guarantees that they will exist, and
remain constant, over time; b) are there official archival
versions of the complete dataset (i.e., including the ex-
ternal resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses,
fees) associated with any of the external resources that
might apply to a future user? Please provide descriptions
of all external resources and any restrictions associated
with them, as well as links or other access points, as ap-
propriate.
The merged dataset is self-contained and does not rely on

external link that might change over time. Individual dataset
links could be modified.

Does the dataset contain data that might be consid-
ered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data that
includes the content of individuals non-public commu-
nications)? If so, please provide a description.
To our best knowledge, no such data is included.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might
otherwise cause anxiety? If so, please describe why.
Some images from iNaturalist contain dead rodents that

could cause anxiety.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.
No

Any other comments?
None.

Collection Process

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., survey
responses), or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based guesses for age
or language)? If data was reported by subjects or indi-
rectly inferred/derived from other data, was the data vali-
dated/verified? If so, please describe how.
Individual datasets before merging were acquired from pub-

lished papers or annotated by authors of the paper.
Datasets are validated and verified by the original dataset cre-
ators and later verified by the authors of this paper.

What mechanisms or procedures were used to col-
lect the data (e.g., hardware apparatus or sensor, man-
ual human curation, software program, software API)?
How were these mechanisms or procedures validated?
No new data was collected for this merged dataset.

If the dataset is a sample from a larger set, what was
the sampling strategy (e.g., deterministic, probabilis-
tic with specific sampling probabilities)?
For publicly available data, please see their methods.

Who was involved in the data collection process (e.g.,
students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdwork-
ers paid)?

We do not have information on the publicly available
datasets. iRodent was annotated by Prof. Mackenzie Mathis
and Tian Qiu at Harvard University and/or EPFL.

Over what time frame was the data collected? Does
this time frame match the creation time frame of the
data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the time
frame in which the data associated with the instances was
created.
Data was collected from 2020-2023.



Were any ethical review processes conducted (e.g., by
an institutional review board)? If so, please provide a
description of these review processes, including the out-
comes, as well as a link or other access point to any sup-
porting documentation.
Unknown.

Does the dataset relate to people? If not, you may skip
the remaining questions in this section.
No.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data
done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? If
so, please provide a description. If not, you may skip the
remainder of the questions in this section.
Data came from multiple sources and in multiple formats.

To homogenize different annotation formats (COCO-style,
DeepLabCut format, etc.), we implemented a generalized
data converter. We parsed public datasets and reformatted
them into a COCO-style project. Besides data conversion,
the generalized data converter also implements key steps for
the panoptic animal pose estimation task formulation, but no
individual keypoints were changed.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unantic-
ipated future uses)? If so, please provide a link or other
access point to the “raw” data.
The raw data was used, and can be extracted from the corre-
sponding original source.

Is the software used to preprocess/clean/label the in-
stances available? If so, please provide a link or other
access point. Yes, the conversion table is avail-
able at https://github.com/AdaptiveMotorControlLab/
modelzoo-figures.

Any other comments?
None.

Uses

Has the dataset been used for any tasks already? If so,
please provide a description.
At the time of publication, only the original paper has used

the dataset.

Is there a repository that links to any or all papers or
systems that use the dataset? If so, please provide a
link or other access point.
We suggest to check the citations of original paper sources.

What (other) tasks could the dataset be used for?
The dataset could be used for anything related to animal pose
estimation.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed/-
cleaned/labeled that might impact future uses? For ex-
ample, is there anything that a future user might need to
know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service
issues) or other undesirable harms (e.g., financial harms,
legal risks) If so, please provide a description. Is there any-
thing a future user could do to mitigate these undesirable
harms?
Keypoint annotations from individual datasets were pro-

jected to a super-set keypoint space which represents this
dataset. The model that is trained over this dataset might
have bias on keypoints that are more common in the indi-
vidual datasets and might have larger errors on keypoints that
are under-represented in the source datasets.

Are there tasks for which the dataset should not be
used? If so, please provide a description.
The dataset cannot be used to harm any animal. The dataset

should not be used to train a model that is expected to be di-
rectly used (i.e., without further fine-tuning) for applications
that require extremely high-precision, as there were annotator
bias from the source datasets.

Any other comments?
None.

Distribution

Will the dataset be distributed to third parties outside
of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created? If so,
please provide a description.
Yes, the dataset will be publicly available with a license for

use.

How will the dataset will be distributed (e.g., tarball on
website, API, GitHub) Does the dataset have a digital ob-
ject identifier (DOI)?
The dataset is distributed on zenodo (27).

When will the dataset be distributed?
The merged dataset is released with this paper).

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under
applicable terms of use (ToU)? If so, please describe this
license and/or ToU, and provide a link or other access point
to, or otherwise reproduce, any relevant licensing terms
or ToU, as well as any fees associated with these restric-
tions.
The data copyright belongs to the authors of the original

datasets. Horse-30 is non-commercial user only.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?
If so, please describe these restrictions, and provide a link
or other access point to, or otherwise reproduce, any rel-
evant licensing terms, as well as any fees associated with
these restrictions.

https://github.com/AdaptiveMotorControlLab/modelzoo-figures
https://github.com/AdaptiveMotorControlLab/modelzoo-figures


Yes, please check the original sources. We assume no liabil-
ity or guarantees on this model’s use.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? If so,
please describe these restrictions, and provide a link or
other access point to, or otherwise reproduce, any sup-
porting documentation.
Unknown.

Any other comments?
None.

Maintenance

Who will be supporting/hosting/maintaining the
dataset?
The dataset will be hosted on zenodo.

How can the owner/curator/manager of the dataset be
contacted (e.g., email address)?

The head of The Mathis Lab of Adaptive Intelli-
gence, Mackenzie Mathis, can be contacted at macken-
zie.mathis@epfl.ch.

Is there an erratum? If so, please provide a link or other
access point.
None.

Will the dataset be updated (e.g., to correct labeling
errors, add new instances, delete instances)? If so,

please describe how often, by whom, and how updates
will be communicated to users (e.g., mailing list, GitHub)?
Not at this time.

If the dataset relates to people, are there applicable
limits on the retention of the data associated with the
instances (e.g., were individuals in question told that
their data would be retained for a fixed period of time
and then deleted)? If so, please describe these limits and
explain how they will be enforced.
No.

Will older versions of the dataset continue to be sup-
ported/hosted/maintained? If so, please describe how.
If not, please describe how its obsolescence will be com-
municated to users.
The data is banked on zenodo.

If others want to extend/augment/build on/contribute
to the dataset, is there a mechanism for them to do
so? If so, please provide a description. Will these contri-
butions be validated/verified? If so, please describe how.
If not, why not? Is there a process for communicating/dis-
tributing these contributions to other users? If so, please
provide a description.
Others may do so and should contact the original authors

about incorporating fixes/extensions.

Any other comments?
None.

mackenzie.mathis@epfl.ch
mackenzie.mathis@epfl.ch


Supplementary Discussion

Considerations on building general datasets for pretraining
To build generalizable pose models, a large-scale pre-training dataset is the key. It has been shown in both computer vision and
natural language processing that pre-trained models significantly improve the generalization of models and data efficiency in
the downstream tasks (28, 29). However, data of lab animals are not ubiquitous on the internet. To get large scale animal pose
data, it is critical to gather the data directly from the research community in a responsible and transparent way. A platform that
actively interacts with the community is thus required to build such a pre-training dataset. As such a vocabulary is built on top
of a wide range of pose datasets, it can be used across different research needs and it is also key to for useful zero-shot inference
(see Methods).
We acknowledge that these SuperAnimal models would not have been be possible without the accumulated data from the
community. In the future, feedback from the community for models’ efficacy and failure modes in different downstream
data will be critical for updated model releases and algorithmic updates. As publicly available data increase, we expect the
performance will improve.

Annotator bias in labeled data. Unlike previous works that require labeling data to create a working model, our models can
be used as they are. For the purpose of evaluation, we could use the ground-truth of the target dataset or label frames of a
novel video. We note that, when it comes to evaluating the performance of zero-shot inference, there will always be systematic
errors between the model and the annotator of the target dataset. We refer to this type of error as annotator bias; i.e., annotators
of different datasets try to place keypoints in slightly different places due to the bias of annotators. Therefore, the supervised
metrics will tend to be an over-estimation of the error.
Conversely, SuperAnimal models can be used to monitor annotator bias as the model’s predictions are consistent across frames
while in many cases human annotators annotate keypoints in an inconsistent way.

Supervised metrics do not capture the richness of SuperAnimal-models
In pose estimation literature, work mostly report supervised metrics (RMSE, Normalized Error, and mAP). Common to them
is that they do not penalize keypoints that are not annotated in the dataset. In contrast to other pose models, our SuperAnimal
models can predict keypoints that are not annotated in the labeled dataset. For instance, if we apply only supervised metrics to
evaluate SuperAnimal models, catastrophic forgetting is not detected as metrics do not penalize keypoint predictions that are
not annotated.

Why we used a top-down approach for quadruped pre-trained pose models
Compared to the COCO keypoint benchmark (24), animal in the wild shows long tail distribution of subject sizes in both relative
and absolute terms (Supplementary Figure S5a,b). As convolutional neural networks are not built to be scale-invariant, this can
make it challenging for the models. Even though spatial-pyramid adaptation we proposed can mitigate it (Figure S5 c,d,e), early
attempts show that bottom-up models give inferior performance compared to top-down models especially for quadruped data.
Therefore, we chose top-down for quadruped as it standardized the animal the pose estimator sees, making the pre-training and
test-time tasks easier.

How to use the DeepLabCut Model Zoo
The DeepLabCut Model Zoo consists of two parts. The first is a web-based platform that accepts pose data contributions,
ranging from a DeepLabCut project, labeled images from our WebApp, and public animal pose datasets (See Figure S2d).
As these data come in different formats, we implement a software-based data layer dubbed “generalized data converter" (see
Methods) that convert data of various forms to DeepLabCut pose format. We call models we provide Super-Animal models
for their generalization powers. After users download these super models from our website or via DeepLabCut APIs, they can
either use the models as a plug-and-play solution or alternatively choose to adapt or fine-tune these models from videos or pose
datasets.
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