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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Ye and colleagues introduce SuperAnimal, a series of innovafions, which ulfimately provide two 

pretrained pose models that allow users the generate pose esfimafion tracking without the need to label 

frames. They demonstrate that the models outperform the current state-of-the-art algorithms on out-of-

distribufion videos. Even if manual labeling is required for fine-tuning, SuperAnimal boosts performance 

and saves fime. The developers cleverly envision a system that can be updated and improved by the 

users, as it can handle and combine datasets that are not idenfically labeled across labs. SuperAnimal 

addresses a very important challenge in the field, as it allows to generate richer pose-esfimafion datasets 

that can be compared across labs, while also reducing fime required for labelling frames. SuperAnimal is 

an excifing new step forward and we recommend this manuscript for publicafion.

During the review process, we have validated that the “Top-View-Mouse” model works well on out-of-

frame videos from our lab (parficularly if those videos are similar to those in the training set). After 

tesfing SuperAnimal, we propose minor comments to be considered:

Minor comments

General:

• The fitle should be toned down. The term "plug-and-play" has been overused in markefing and 

adverfising, leading to unrealisfic expectafions and frustrafion for consumers. Despite the user-friendly 

interfaces, DLC is not truly plug-and-play (see also comments below)

• The Github repository (hftps://github.com/AdapfiveMotorControlLab/ modelzoo-figures), where the 

code and data should be available to reproduce the figures does not seem to be up to date. For instance, 

if the reader wants to check how the example images were selected for Figure 1h or 1i (see also 

comment below), there is no code available. Please update the files.

• The authors should comment on whether SuperAnimal can also run on mulfiple animals (e.g. 2 or 

more mice in one arena) or not. I assume it does not (yet), which is not a problem, but should be 

clarified.

• It would be nice to be able to easily select which points the SuperAnimal networks label. This would 

allow specific points to be tracked, perhaps even using the labels the inifially trained networks used? 



This would make it easier to integrate with exisfing post processing pipelines. It might also be nice to 

have a clearer diagram of how to label the points for refinement. It seems several points on the body or 

tail are a kind of spafial division rather than being located on a feature that is easy to define such as the 

nose, eye, tail-base etc.

• The installafion/use of SuperAnimal could sfill be improved, here are some suggesfions:

a. a complete beginners guide to installing Deeplabcut ready to use modelzoo would be helpful, with all 

commands and installs. For instance, to get the supplied conda environment for deeplabcut they suggest 

git cloning it but don’t tell the user to first install git. Small things like this can be big hurdles for labs that 

have liftle experience installing non-commercial software packages (see plug-and-play comment above).

b. highlight the fact that you need to use colab to get access to the superanimal_quadruped and 

superanimal_topviewmouse networks (unless it can be found elsewhere already, if so please clarify, we 

looked but couldn’t find it). Although colab worked nicely, lots of users will want to move it to their local 

machines and not link their google accounts with colab

c. Try to explain the scale_list funcfion in more detail, maybe give an example of e.g. if you have a 

1024x768 video set the funcfion to x? or tell users where they can find out what their image height pixel 

size range and increment are.

The figures would benefit from some adjustments:

• Figure 1b-d: It is hard to figure out which parts belong to which subfigure (parficularly 1c vs 1d). Could 

the authors increase the spacing between them to make it clearer?

• Figure 1h: It was very hard to recognize the keypoints on the mouse on some of the IID pictures, 

especially if someone wants to compare between predicted points and ground truth. It would be nice if 

the authors find a way to improve visibility (e.g. by choosing different colors for the keypoints, or maybe 

simply providing a higher-resolufion/bigger image in supplementary data)

• Figure 1h-i: The authors should state (e.g. in the figure legend) how these example images were 

selected. Are these the ones where SuperAnimal performed “best” (based for instance on visual 

inspecfion by the authors) or were they selected randomly?

• Figure 2e: Could the authors add informafion about the fime window (or frame number) these plots 

were created for, either by adding it to the plot itself or the figure legend?

• Figure 2h: The chosen colors make it hard to disfinguish between the different models.

• Figure 3a: The meaning of the icons on the right is not very clear, please add short labels/text

Typo:

• On page 2: “…the pre-trained encoded…” should be “encoder…”.



Reviewer #2 (Remarks to the Author):

The authors introduce SuperAnimal models, a project aimed at creafing sefting-invariant pose esfimafion 

models for animals, akin to similar models capable of esfimafing human pose in diverse seftings. To 

create these models, they assemble an annotated dataset of pose keypoints from 45 species of 

mammals, consisfing of over 45,000 images (for comparison, the widely used MPII Human Pose dataset 

consists of 25,000 human pose annotafions, while COCO contains more than 250,000 human pose 

annotafions.) They present model performance in zero-shot pose esfimafion and few-shot pose 

esfimafion, showing improvements over previous DLC models. They then evaluate the zero-shot version 

of their TopViewMouse model in two contexts: for tracking of animals in videos, and for detecfion of 

rearing behavior. While the zero-shot performance of the TopViewMouse model seems reasonable, the 

performance of the Quadrupeds model seems so low that I doubt it will be useable for any form of 

behavioral analysis. I also had some concerns with how models are evaluated, with how representafive 

their behavior analysis results are, and with the design of the “video adaptafion” method used to reduce 

keypoint jifter. Overall, these concerns are quite significant, and I feel must be addressed before the 

paper can be considered for publicafion.

My major concerns are as follows:

The authors present both a top-view mouse SuperAnimal model and a quadruped model. While the 

ufility of the mouse model for the study of behavior is examined in Figures 2-3, the quadruped model is 

only briefly explored in Figure 1 and Figure S3. The quadruped pose esfimates in Figure 1 are befter than 

chance, but they are often very incomplete (eg wolf, figer, sheep, raccoon) and I’m skepfical that they 

will be of any pracfical use for behavior analysis. This paper only demonstrates its fitular claim of “plug-

and-play analysis of animal *behavior*” in the case of top-view videos of mice in a laboratory sefting 

(Figures 2-3). To present the SuperAnimal method as facilitafing animal behavior analysis beyond the 

specific case of lab mice is premature and an overstatement of the results that are shown.

Quanfitafively, the quadruped model is reported to have a zero-shot performance of ~1.1 normalized 

units on Horse-10, where 1 = the distance from a horse’s nose to its eye. My guess is that this would 

work out to a bit over a foot; I have trouble visualizing any applicafion where a model with an *average* 

keypoint error of more than 12 inches is going to be useable. The normalized error on iRodent is around 

0.6, where 1 = the square root of the bounding box area. Assuming a roughly square bounding box, this 

equates to 1 being on the order of the body length of the animal; an average keypoint error of ~0.6 body 



lengths is again not likely to be useable. Given these very high error rates, the claim that the 

SuperAnimal-Quadruped model is a zero-shot learner seems to be not supported by the data, and 

should be removed.

Some concerns regarding how choice of metrics for reporfing performance:

a. The “normalized error” plots in Figure 1F are difficult to interpret – error is reported in units of either 

eye-to-nose distance (for horses) or the square root of the bounding box area (for rodents). This 

normalizafion is not used anywhere else in the computer vision, and the bounding box metric in 

parficular is not a good choice, as simple changes like rotafion of the animal will change the area of the 

bounding box substanfially. (To see this, picture an elongated object like a running mouse- when 

oriented horizontally or verfically, its bounding box will be a long rectangle, with length L and width W<L, 

giving it an area of W*L. When oriented diagonally, its bounding box will be a square with diagonal 

length of roughly L (actually slightly longer), giving it an area of 1/2 L*L.)

b. Performance is also difficult to evaluate as the SuperAnimal model is only compared to itself (in 

various configurafions), and to ImageNet (which is a poor comparison as it was not developed for pose 

esfimafion.) Although the mAP of the object-keypoint similarity is reported in Supplemental Figure S3, 

the authors do not explain in the methods what values of s and k were used in this calculafion. Typically, 

s is the rafio of the bounding box to the image size, however k is a body-part specific value that is 

esfimated by compufing the variance of human-generated labels of that part within an image (see 

Ronchi and Perona 2017, which introduced this metric.) While field-consensus values of k exist for 

human body parts, there are no such values for animal body parts. To use the OKS metric, the authors 

would need to either select a k based on values from the human literature, or preferably, obtain an 

esfimate of the variance of manual annotafions of each body part, typically by having mulfiple 

individuals annotate a representafive set of images.

The methods secfion on the test fime spafial-pyramid search is a liftle difficult to follow, and I’m not 

100% sure how the method works. It seems somewhat similar to the hourglass model for pose 

esfimafion, and it would help if the authors could explain the relafionship between the two. This 

methods secfion also seems to confound two problems: 1) difference in the appearance size of the 

animal across datasets, and 2) difference in the image resolufion across datasets. The former is a known 

challenge in computer vision, whereas the lafter (which is emphasized in the methods secfion, 

parficularly in the last paragraph) seems like it could be trivially resolved by simply rescaling the input 

image during inference.

The video adaptafion method uses model-predicted keypoint locafions as a source of training data to the 

model itself. I can see how this improves model predicfion when quanfified in terms of keypoint jifter, 

given that for each new frame T, the model has a labeled frame T-1 in its training set and simply has to 

recapitulate the label placements of that training example. My concern, however, lies in the problem of 

catastrophic forgefting- nothing is constraining the model-predicted keypoint locafions used for training 

to be accurate, and it seems quite possible that there could be drift in their definifions over fime, as 



repeated iterafions of fine-tuning lead to forgefting of the original human-generated training set. If the 

authors want to present this method as a resource for improving accuracy of pose esfimafion, it should 

be evaluated not in terms of keypoint jifter (which would not detect such catastrophic forgefting of 

keypoint definifions), but in terms of metrics like OKS or RMSE, as used in Figure 1.

The paper includes mulfiple model architectures and modificafions (CNNs vs transformers, with and 

without spafial-pyramid search and video adaptafion). It would be very helpful for the authors to include 

a table explaining which model configurafion was used for each result reported in the paper.

The difference in performance in classifying supported rears vs unsupported rears is striking- while 

detecfion of supported rears seems useable, the performance on unsupported rears is quite low. I 

suspect that this is because supported rears can only take place at the walls of the arena, therefore the 

classifier could detect them just by learning to recognize when the mouse is near the walls of the arena, 

without incorporafing any postural informafion. It would be helpful to see evaluafion on a wider range of 

behaviors; I strongly suspect that the performance seen in the unsupported rearing condifion is more 

likely to be typical for detecfing behaviors that are not dependent on posifional informafion.

Other/minor points

It is not clear how the RMSE metric accounts for missed keypoints (points that are incorrectly reported 

as occluded). This should be added to the Methods. Or, if missed keypoints do not contribute to the 

RMSE, then the authors might want to use a different metric that incorporates this form of error.

The citafion for OKS points to the original Microsoft COCO paper, which predates the creafion of the OKS 

metric by a few years. While OKS is now a part of the COCO API, it was only added later and is not 

discussed in the original manuscript. Ronchi and Perona 2017 introduces OKS and explains it in detail.

IID usually means “independent and idenfically distributed”, making its use as an abbreviafion for 

“within-distribufion datasets” a liftle confusing.

Figure 1f should include units for the RMSE on DLC-Openfield (probably pixels?)

“We outperformed DeepLabCut-ResNet-50 … by over 2X with 10X less data” – this is worded as if 

SuperAnimal + 10 frames has 2x the performance of DLC + 100 frames, while in fact DLC + 100 is slightly 



befter than SuperAnimal + 10. You could write “We outperformed DLC by 2X” or “We matched DLC 

performance with 10X less data”, but you can’t claim the combinafion of the two. (A car that gets 60 

mpg can drive twice as far per gallon of gas as a car with 30 mpg, and it takes half as much gas to travel 

the same distance- but it can’t drive twice as far AND burn half as much gas in doing so.)

Some figure text is very small and hard to read.

Figure 2h, bar colors are very similar/the same for mulfiple models, please use a different color for each 

model tested.

Reviewer #3 (Remarks to the Author):

Review of Ye et al.

In this manuscript, Ye and colleagues develop new neural network models they call “SuperAnimal” that 

are pre-trained on a variety of relevant behavioral imaging data (for example, videos of mice in different 

behavioral chambers/seftings), and then can be used “out of the box” with no training or “zero shot” on 

new behavioral data (in different chambers/seftings). While the performance of the model already 

appears to be good, they then develop a framework to improve performance through what they call 

fine-tuning (labeling a small amount of data in the new chamber/sefting and using SuperAnimal pre-

trained weights). The concepts here are very excifing - having a model that can be used without the 

burden of labeling and training on any new behavioral dataset (independent of different lighfing 

condifions, visual appearance of the behavioral chamber and animals, etc.) would be very impacfful for 

both behavioral and neuroscience research, parficularly for mice (what is primarily demonstrated here). 

Despite my excitement for the method itself, the authors do not provide sufficient details for me to 

evaluate the model and its performance. This is surprising since best pracfices are well established for 

such models - I cite several of these below which might serve as examples for the authors. In general, the 

authors highlight an excifing new method, but without providing the details to support whether the 

model performs to match their claims - this could be fixed by the authors following some of the 

suggesfions below.

Methods:

Memory replay is a core method employed here to prevent catastrophic forgefting, but very liftle detail 

is provided on how this is implemented.



What, precisely, is meant by "When we fine-tune a SuperAnimal model, we replace the model predicted 

keypoints with the ground-truth annotafions, resulfing in hybrid learning of old knowledge and new 

knowledge"?

What is the strategy for using pseudo-labels versus new labels?

Are pseudo-labels only used for the training images which have GT labels?

Video adaptafion is another core method employed here where very liftle detail is provided.

To be clear: the proposed video adaptafion method, which the authors claim is a novelty in the abstract, 

is the process of using score-filtered predicfions as pseudo-labels for fine-tuning?

What is the training procedure exactly?

How are inference target samples selected for use as pseudo-labels?

Is every frame in the video used for adaptafion?

In what way does this reduce jifter other than what is shown qualitafively in Fig 2e?

What is meant by "This does not take extensive training fime, and can be run during video analysis. For 

example, if a video (of a given size) can be run at 40 FPS, this would take approx. only 12 FPS to fine-tune 

the model and make new predicfions"?

Does this mean that inference is run at 40 FPS?

If so, how does this relate to the 12 FPS figure if this involves training?

How long was the actual training fime?

On which dataset and under which condifions?

The authors show that test-fime mulfi-scale search is essenfial for robust generalizafion to new datasets 

in the zero-shot sefting, but the main trade-off of reduced inference speed is not reported or discussed.

Evaluafion and Comparisons:

OKS is a befter metric than RMSE due to how visibility and scale are accounted for, though its variance 

scaling constant should be selected judiciously and clearly reported. Here the authors only use OKS as 

part of the summary mAP calculafion. An even more useful metric would be the error at the tail of the 

distribufion, reflecfing how well models perform in the worst case scenarios.

Is there a reason that the performance of this method on AP-10K (arXiv:2108.12617) is not reported 

separately from the pooled Quadruped dataset? AP-10K would be useful for benchmarking this work 

against other compefing approaches.

Is there a reason that comparisons to other methods for zero shot animal pose esfimafion or domain 

adaptafion are not provided? This makes it difficult to assess the novelty and performance of this 

method. It would be parficularly important to at a minimum reference (but preferably compare against) 



approaches like Cao et al 2019 (arXiv:1908.05806), Kulkarni et al 2020 (arXiv:2004.00614), Sanakoyeu et 

al 2020 (arXiv:2003.00080), and Li et al 2023 (arXiv:2303.15023).

Some discussion is also necessary to posifion this work against fully self-supervised approaches for 

animal pose esfimafion, such as Bala et al 2021 (arXiv:2110.00543) and Sun et al 2021 

(arXiv:2112.05121).

I found it difficult to compare methods in Fig 2h since the figure legend reuses colors.

Fig 3: a comparison to a standard behavior segmentafion benchmark, such as Sun et al 2022 

(arXiv:2207.10553), would provide stronger and more readily comparable evidence for good 

performance on this downstream task.

More Informafion on the SuperAnimal Model:

Since the model reported in this study is intended to be used directly for scienfific applicafions, it is 

important that the authors share sufficient detail about the models, so that use applicafions do not 

suffer from any biases that might be baked into these models. I suggest providing the following (though 

the authors may have addifional details they would like to provide):

Dataset datasheet, as described in Gebru et al 2021 (arXiv:1803.09010)

Crowdsourced annotafion datasheet, as described in Diaz et al 2022 (arXiv:2206.08931)

Model cards, as described in Mitchell et al (arXiv:1810.03993)

The authors do not discuss any potenfial piffalls of employing a foundafion-like model, especially in a 

zero-shot sefting where model biases can introduce structural errors that may impact downstream 

scienfific results.

The authors state in the Reporfing Summary that "In the following we detail references for those 

datasets", but these are not provided.

I believe a major contribufion of this study is a unified SuperAnimal dataset - the authors should provide 

this as part of the resource - the dataset should be made publicly available.

Another major contribufion is a unified vocabulary for animal keypoints, but this is only provided 

through figure illustrafions rather than machine parseable text or code to do the dataset unificafion.

The model checkpoints strictly require the authors' own software or web app in order to be used, rather 

than standalone modules for training and fine tuning. At a minimum, can the authors provide 

reproducible environments (e.g., using Code Ocean, Hugging Face Spaces, or other plafforms).

References to the Golden Lab and Smear Lab datasets should point to valid persistent DOIs or RRIDs 

(currently just "Sam Golden. Open-field Social Invesfigafion Videos, July 2022." and "Maft Smear. 

Olfactory Search Video, July 2022." which do not provide a way to access or find more informafion on 

these data).



Other Comments:

The authors state in the Reporfing Summary that "typical prior datasets were 100-800 frames, but here 

we provide 40K"; to my reading, this seems counter to the authors' own previous work (Lauer et al, 

2022) and that of others (Graving et al, 2019; Bala et al, 2020; arXiv:2108.12617). Can they explain what 

was meant?

Is SuperAnimal trained on all of the described datasets? The authors should make this clearer in the text 

(to make it easier to understand which datasets are out of distribufion).

The authors should quanfify what is different about the OOD datasets (in terms of behavioral chamber 

characterisfics, lighfing, number of animals, appearance of animals, etc.)



Response to Reviewers

May 14, 2024

ORIGINALLY SUBMITTED: August 2nd, 2023
Updated May 2024 to remove images with copy-
rights

Overall response: We greatly thank the reviewers for their overall positive
evaluation of our work. Below we aim to clarify and extend the work as
requested. Our major revisions are to significantly improve performance on
the Quadruped model, its presentation, and demonstrate the model’s utility
on an example behavior. Our comments are in blue throughout.

Reviewer 1

Reviewer 1 (Remarks to the Author):
Ye and colleagues introduce SuperAnimal, a series of innovations, which

ultimately provide two pretrained pose models that allow users the generate
pose estimation tracking without the need to label frames. They demon-
strate that the models outperform the current state-of-the-art algorithms
on out-of-distribution videos. Even if manual labeling is required for fine-
tuning, SuperAnimal boosts performance and saves time. The developers
cleverly envision a system that can be updated and improved by the users,
as it can handle and combine datasets that are not identically labeled across
labs. SuperAnimal addresses a very important challenge in the field, as
it allows to generate richer pose-estimation datasets that can be compared
across labs, while also reducing time required for labelling frames. SuperAn-
imal is an exciting new step forward and we recommend this manuscript for
publication.

During the review process, we have validated that the “Top-View-Mouse”
model works well on out-of-frame videos from our lab (particularly if those
videos are similar to those in the training set). After testing SuperAnimal,
we propose minor comments to be considered:

Firstly, we greatly thank the reviewer for this overall positive assess-
ment and acknowledgement of the innovations in the work and for testing

1



the models and code, it is highly appreciated and know this takes extra ef-
forts.

Minor comments, General:
The title should be toned down. The term “plug-and-play” has been

overused in marketing and advertising, leading to unrealistic expectations
and frustration for consumers. Despite the user-friendly interfaces, DLC is
not truly plug-and-play (see also comments below).

We definitely did not mean to say our deep learning package is plug-and-
play, we simply meant the model is a one-click download and can be used
for zero-shot inference. There is no other animal pose estimation package
that provides pretrained animal pose estimation model weights that are us-
able in this way. But, we completely understand the reviewers point and
amended the title accordingly to drop the term that might cause confusion:
“SuperAnimal pretrained pose estimation models for behavioral analysis.”

The Github repository (https://github.com/AdaptiveMotorControlLab/
modelzoo-figures), where the code and data should be available to repro-
duce the figures does not seem to be up to date. For instance, if the reader
wants to check how the example images were selected for Figure 1h or 1i
(see also comment below), there is no code available. Please update the files.

We apologize for the oversight that we did not push the latest updates.
This has been now resolved.

The authors should comment on whether SuperAnimal can also run on
multiple animals (e.g. 2 or more mice in one arena) or not. I assume it does
not (yet), which is not a problem, but should be clarified.

The models can be used for multiple animal pose estimation in top-down
mode for the quadruped model and in bottom-up mode for the TopView-
Mouse model. We did show qualitative performance on multiple mice in
Figure 1g and quantified this in Figure S3, which was now moved to Figure
1h to help clarify.

It would be nice to be able to easily select which points the SuperAnimal
networks label. This would allow specific points to be tracked, perhaps even
using the labels the initially trained networks used? This would make it
easier to integrate with existing post processing pipelines. It might also be
nice to have a clearer diagram of how to label the points for refinement. It
seems several points on the body or tail are a kind of spatial division rather
than being located on a feature that is easy to define such as the nose, eye,
tail-base etc.
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Right now the user gets all the keypoints from the model in a HDF5
(or csv) pandas-readable file. This means it is easy to index only the body
parts you want to use in any downstream step. Also, for fine-tuning the
user does not need to use “our” model keypoints – they can add new points
that do or do not overlap. We have the label guide in the Suppl. Figure 1
(for TopViewMouse and Quadruped), but this labeling scheme is not strictly
required. We added this here for ease of reviewing:

Figure 1: Keypoint diagrams Cartoon mouse on the right is adapted from
scidraw.io: https://beta.scidraw.io/drawing/183.

The installation/use of SuperAnimal could still be improved, here are some
suggestions:

A. A complete beginners guide to installing Deeplabcut ready to use
modelzoo would be helpful, with all commands and installs. For instance, to
get the supplied conda environment for deeplabcut they suggest git cloning
it but don’t tell the user to first install git. Small things like this can be big
hurdles for labs that have little experience installing non-commercial soft-
ware packages (see plug-and-play comment above).
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We thank the reviewer for this point, but respectfully think this pa-
per is not meant to be a user-guide; we have extensive documentation
(deeplabcut.org), YouTube videos with over 100K views, an active user
forum with over 1500 questions where users can get active help (https:
//forum.image.sc/tag/deeplabcut), and a Nature Protocols paper to as-
sist users with a step by step installation guide (Nath et al. 2019). We also
have a free DLC online course that introduces the basics of Git, Python, etc.
and adding this to a technical paper feels well beyond the scope. The work as
presented here has a dedicated website (modelzoo.deeplabcut.org), user-
guide, and testing options on HuggingFace and our custom web app. We
added images of these interfaces to help guide the reader to its multiple ways
of use in Extended Data Figure 3, and for review we added is figure panel
for you here:

B. highlight the fact that you need to use colab to get access to the
superanimal

Figure 2: [Redacted] Examples of use cases of SuperAnimal model

s in (top left,clockwise): the browser, on HuggingFace, on Google Colab
oratory (GPUsupport), and local use via a graphical user interface. Com
mand line codefor installation is pip install ’deeplabcut[tf,gui,modelzoo]’. 

quadruped and superanimal topviewmouse networks (unless
it can be found elsewhere already, if so please clarify, we looked but couldn’t
find it). Although colab worked nicely, lots of users will want to move it to
their local machines and not link their google accounts with colab.

As noted in the original manuscript it is available within DeepLabCut
already (Colab installs ‘pip install deeplabcut[modelzoo]‘), so by using the
conda file as you note above you have the model weights as well and can
use them locally. You can also download them directly from HuggingFace
(banked since first submission at https://huggingface.co/mwmathis), there-
fore an end user need not only use them within DeepLabCut.

C. Try to explain the scale list function in more detail, maybe give an
example of e.g. if you have a 1024x768 video set the function to x? or tell
users where they can find out what their image height pixel size range and
increment are.

Unfortunately the scale list is not one-to-one related to the image size,
but rather the animal size, hence the need to possibly adapt this and test a
range. Thus, while we can note in the Methods that one should be mindful
of the animal size and attempt to have the animals be roughly 400 by 400
pixels for optimal scale, this is not a hard requirement.
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The figures would benefit from some adjustments:
• Figure 1b-d: It is hard to figure out which parts belong to which subfig-

ure (particularly 1c vs 1d). Could the authors increase the spacing between
them to make it clearer?

Thank you, we adjusted the spacing and added a new Figure 2 dedicated
just to the Quadruped results to aid in clarity.

• Figure 1h: It was very hard to recognize the keypoints on the mouse
on some of the IID pictures, especially if someone wants to compare between
predicted points and ground truth. It would be nice if the authors find a way
to improve visibility (e.g. by choosing different colors for the keypoints, or
maybe simply providing a higher-resolution/bigger image in supplementary
data)

Thank you, we increased the size and also include the link here to
the high resolution images in the code/data repo such that a reader can
inspect more closely: https://github.com/AdaptiveMotorControlLab/

modelzoo-figures/tree/main.

• Figure 1h-i: The authors should state (e.g. in the figure legend) how
these example images were selected. Are these the ones where SuperAnimal
performed “best” (based for instance on visual inspection by the authors)
or were they selected randomly?

They were selected by hand such that we could see the animal and key-
points clearly. They were not automatically ranked and selected on best
performance. Note to address some questions from other reviewers we up-
dated the skeleton plotting, but again did not pick “the best” image by
performance to show (they are the same raw images as prior). We added
this to the figure legends.

• Figure 2e: Could the authors add information about the time window
(or frame number) these plots were created for, either by adding it to the
plot itself or the figure legend?

Horizontal scale bars, that indicate the frame number per area shown,
were added to the plots (note this is now in Figure 3.

• Figure 2h: The chosen colors make it hard to distinguish between the
different models.
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Apologies, this has been revised (and moved to Figure 1).

• Figure 3a: The meaning of the icons on the right is not very clear,
please add short labels/text

We added a clarifying label about the cartoon diagram, thanks for that
suggestion.

Typo: • On page 2: “. . . the pre-trained encoded. . . ” should be “en-
coder. . . ”.

Thank you, fixed!
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1 Reviewer 2

The authors introduce SuperAnimal models, a project aimed at creating
setting-invariant pose estimation models for animals, akin to similar models
capable of estimating human pose in diverse settings. To create these mod-
els, they assemble an annotated dataset of pose keypoints from 45 species of
mammals, consisting of over 45,000 images (for comparison, the widely used
MPII Human Pose dataset consists of 25,000 human pose annotations, while
COCO contains more than 250,000 human pose annotations.) They present
model performance in zero-shot pose estimation and few-shot pose estima-
tion, showing improvements over previous DLC models. They then evaluate
the zero-shot version of their TopViewMouse model in two contexts: for
tracking of animals in videos, and for detection of rearing behavior. While
the zero-shot performance of the TopViewMouse model seems reasonable,
the performance of the Quadrupeds model seems so low that I doubt it will
be useable for any form of behavioral analysis. I also had some concerns with
how models are evaluated, with how representative their behavior analysis
results are, and with the design of the “video adaptation” method used to
reduce keypoint jitter. Overall, these concerns are quite significant, and I
feel must be addressed before the paper can be considered for publication.

We thank the reviewer for their time and efforts. We also thank the re-
viewer for noting our performance for TopViewMouse seems reasonable, and
agree we could have better presented the Quadruped model. We would like
to point out, however, that building larger pose datasets required innovation
in how to build and train models. For example, COCO or MPII pose im-
ages have identical annotations within each dataset (respectively), whereas
animals have different body shapes and non-standardized keypoints across
datasets, which poses significant challenges. We also show not only per-
formance over prior DLC models, but over other established models in the
field like ViT-MAE and ViT-DEiT within mmpose, another leading package.

My major concerns are as follows:
The authors present both a top-view mouse SuperAnimal model and a

quadruped model. While the utility of the mouse model for the study of
behavior is examined in Figures 2-3, the quadruped model is only briefly
explored in Figure 1 and Figure S3. The quadruped pose estimates in Fig-
ure 1 are better than chance, but they are often very incomplete (eg wolf,
tiger, sheep, raccoon) and I’m skeptical that they will be of any practical
use for behavior analysis. This paper only demonstrates its titular claim of
“plug-and-play analysis of animal *behavior*” in the case of top-view videos
of mice in a laboratory setting (Figures 2-3). To present the SuperAnimal
method as facilitating animal behavior analysis beyond the specific case of
lab mice is premature and an overstatement of the results that are shown.
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Firstly we apologize for the poor plotting in Figure 1; we did not fully
connect the skeleton and the images were too small, we have now rectified
this extensively. Secondly, we completely agree we overly focused on the
mouse setting, having neuroscientists in mind who likely use the TopView-
Mouse model most. We have now done several key things: (1) We added a
new Figure on Quadruped performance, and we significantly improved our
model. Concretely, we expanded our work on AnimalTokenPose and also
developed a new model based on HRNet-W32 with top-down inference vs.
bottom-up as we previously only included (top down is better suited for
natural scenes where the animal only occupies a fraction of the space in the
image [1]). Here is the new relevant figures showing qualitative performance
of our new Quadruped model (Fig. 3). Concretely, we now show competitive
performance on Horse-10 (2X improved from our first submission), improved
performance on iRodent by nearly 10X, plus added benchmarking on An-
imalPose and AP-10K. We show our zero-shot AnimalPose performance is
now as good as the model that is fully trained with ImageNet weights on
AnimalPose. Lastly, we updated the title.

Quantitatively, the quadruped model is reported to have a zero-shot
performance of ∼ 1.1 normalized units on Horse-10, where 1 = the distance
from a horse’s nose to its eye. My guess is that this would work out to a bit
over a foot; I have trouble visualizing any application where a model with
an *average* keypoint error of more than 12 inches is going to be useable.

We worked to substantially improve the performance. Our updated per-
formance for zero-shot is now 2× as good, namely around 0.6 — this is a 4×
improvement over ImageNet-based transfer learning with 14 frames, and one
would need to label over 600 images (so ∼ 6-10 hours of work then training
for another 6-10 hours) to get the same performance that our model gives
out-of-the-box. And, with fine-tuning using our newly developed methods
presented in this paper, we achieve a NE of 0.1091, given enough training
data. And, a user can label only 73 frames vs. the 734 frames they would
have needed to label beforehand (so a 10× data efficiency) for the same per-
formance as supervised training with ImageNet-based weights! We thank
the reviewer for pushing us, and hope they now clearly sees the benefit of
this pretrained model class. Here are the new results for ease (Fig. 4), which
of course is updated in the paper.

The normalized error on iRodent is around 0.6, where 1 = the square
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Figure 3:  [Redacted] Updated qualitative performance of Super
Animal-Quadruped HRNet, IID and OOD dataests. 



Figure 4: Horse-10 performance, updated (dotted blue line is zero-shot
performance with HRNetw32) Seagreen arrows note the change in labeled
data required to hit the same performance with ImageNet-based trans-
fer learning, and pink denotes the change in performance between zero-
shot vs. needing some labels with fine-tuning. Image adapted from “Pre-
training boosts out-of-domain robustness for pose estimation” WACV (Jan
2021) https://www.mackenziemathislab.org/horse10 and released under a
CC-BY-NC license: https://creativecommons.org/licenses/by-nc/4.0/.

root of the bounding box area. Assuming a roughly square bounding box,
this equates to 1 being on the order of the body length of the animal; an
average keypoint error of 0.6 body lengths is again not likely to be use-
able. Given these very high error rates, the claim that the SuperAnimal-
Quadruped model is a zero-shot learner seems to be not supported by the
data, and should be removed.

We improved the performance of the model to a zero-shot performance
on iRodent of approx. 0.07 NE (so around 10× improved). We also changed
the metric to mAP based one your request below and used this in the up-
dated manuscript. We plot both metrics for reference here (Fig. 5). Thus,
we hope that we clarified that this model can be used zero-shot or as a
few-shot learner. Despite the 10× performance improvement we can show
here, iRodent remains a hard challenge, and we want to include it to show
remaining limitations — there is a gap to close that new innovations in fu-
ture work might be able to tackle.

Some concerns regarding how choice of metrics for reporting performance:

a. The “normalized error” plots in Figure 1F are difficult to interpret –
error is reported in units of either eye-to-nose distance (for horses) or the
square root of the bounding box area (for rodents). This normalization is
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Figure 5: iRodent performance, updated. Note we show mAP (higher
the better) based on R3 request, but show NE (lower the better) as in the
original manuscript for R2, both our updated model and what we original
submitted, for comparison.

not used anywhere else in the computer vision, and the bounding box met-
ric in particular is not a good choice, as simple changes like rotation of the
animal will change the area of the bounding box substantially. (To see this,
picture an elongated object like a running mouse- when oriented horizon-
tally or vertically, its bounding box will be a long rectangle, with length
L and width W¡L, giving it an area of W*L. When oriented diagonally, its
bounding box will be a square with diagonal length of roughly L (actually
slightly longer), giving it an area of 1/2 L*L.)

We used normalized error specifically as it is used in the Horse-10 Bench-
mark from WACV 2021. To aid interpretation we added a diagram to the
Figure where we use this metric for the first time. For iRodent, we changed
the metric to mAP, as requested (see new Figure 2).

b. Performance is also difficult to evaluate as the SuperAnimal model is
only compared to itself (in various configurations), and to ImageNet (which
is a poor comparison as it was not developed for pose estimation.) Although
the mAP of the object-keypoint similarity is reported in Supplemental Fig-
ure S3, the authors do not explain in the methods what values of s and k
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were used in this calculation. Typically, s is the ratio of the bounding box
to the image size, however k is a body-part specific value that is estimated
by computing the variance of human-generated labels of that part within an
image (see Ronchi and Perona 2017, which introduced this metric.) While
field-consensus values of k exist for human body parts, there are no such val-
ues for animal body parts. To use the OKS metric, the authors would need
to either select a k based on values from the human literature, or prefer-
ably, obtain an estimate of the variance of manual annotations of each body
part, typically by having multiple individuals annotate a representative set
of images.

We respectfully disagree that ImageNet-based transfer learning is not
a good baseline. This is the standard in the field for SOTA animal pose
estimation, see [2, 3, 4, 5, 6, 7, 1]. Only recently, datasets of sufficient
size became available to make animal pose-aware pretraining relevant (i.e.,
allow to build models suitable for transfer learning without an ImageNet
backbone). Our work here, to the best of our knowledge, is the first to show
that using animal pose-aware base models outperform ImageNet-pretrained
models: this is one major claim of this work.

In terms of metrics, we explain above why we used normalized error to
match prior benchmarks or we used RMSE in pixels on datasets like DLC-
OpenField to specifically allow readers to compare to prior art on each of
these datasets.

In regards to mAP calculation, thank you for pointing out our methods
section can be improved. We now added what s and k is to the Methods (see
Methods Table 1), where we follow the convention in previous works [6, 8, 5]
to use k from the COCO human keypoint benchmark. For those keypoints
that have no correspondence to COCO human keypoints, we use the aver-
aged k in COCO human keypoints. This setting eases the comparison to
previous works. We also now clarify the implementation reference vs. the
OKS ref in the Methods.

Method clarifications:
The methods section on the test time spatial-pyramid search is a little

difficult to follow, and I’m not 100 sure how the method works. It seems
somewhat similar to the hourglass model for pose estimation, and it would
help if the authors could explain the relationship between the two. This
methods section also seems to confound two problems: 1) difference in the
appearance size of the animal across datasets, and 2) difference in the image
resolution across datasets. The former is a known challenge in computer
vision, whereas the latter (which is emphasized in the methods section, par-
ticularly in the last paragraph) seems like it could be trivially resolved by
simply rescaling the input image during inference.
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Relationship to hourglass model: models like HRNet or Hourglass
fuse features from heatmaps of different resolutions, hoping to help pose
models to learn smaller objects in the train dataset by modifying the
architecture. However, our spatial pyramid method is a test-time aug-
mentation that aims to improve domain generalization, meaning that
we want our model to handle both extra large and extra small objects in
unseen test datasets that have very different size distributions.

Appearance size and resolution: The unpredictable animal size in
images is a hard challenge, especially for bottom-up models (which we used
in our first submission for both TopViewMouse and Quadruped). Unlike top-
down approaches, bottom-up models do not standardize animal appearance
size, and models learn the size of bodyparts in a way that is only best for the
size of bodyparts in the training dataset. This is why simply using model
like an hourglass is not sufficient. On the other hand, simply re-scaling the
resolution of the image once is also not sufficient. Imagine we have two
images: one where animal is close to the camera, and another image where
the animal is very far, rescaling the image doesn’t change the animal ratio.
As we clarify in the pseudo-code below, spatial pyramid uses multiple
criterion’s to search for the best scaling factor for every single image. We
also added pseudo-code to the Methods and here for ease of review:

1 def spatial_pyramid_search(images , model , scale_list ,

confidence_threshold , cosine_threshold):

2 # generate rescaled version of original images with multiple

scaling factor

3 rescaled_images = rescale_images(images , scale_list)

4 preds_per_scale = []

5 # gather predictions of the model , assuming the final

pred_keypoints are projected to the original image space by

the forward function

6 for rescaled_image in rescaled_images:

7 pred_keypoints = model(rescaled_image)

8 preds_per_scale.append(pred_keypoints)

9

10 # using median to get a good estimate of expected keypoint

positions

11 median_keypoint = get_median_keypoint(preds_per_scale)

12 # If the rescaled image is not suitable for the model ,

we expect the model have a confidence less than a given

threshold

13 pred_keypoints = filter_by_confidence(pred_keypoints ,

confidence_threshold )

14 # A median filter alone does not remove outliers. After

confidence filtering , we compare the remained predictions

to the median keypoint and drop the low quality predictions

15 pred_keypoints = filter_by_cosine_similarity(

pred_keypoints , median_keypoint , cosine_threshold)

16

17 return get_median_keypoints(pred_keypoints)
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The video adaptation method uses model-predicted keypoint locations
as a source of training data to the model itself. I can see how this improves
model prediction when quantified in terms of keypoint jitter, given that for
each new frame T, the model has a labeled frame T-1 in its training set and
simply has to recapitulate the label placements of that training example. My
concern, however, lies in the problem of catastrophic forgetting- nothing is
constraining the model-predicted keypoint locations used for training to be
accurate, and it seems quite possible that there could be drift in their defini-
tions over time, as repeated iterations of fine-tuning lead to forgetting of the
original human-generated training set. If the authors want to present this
method as a resource for improving accuracy of pose estimation, it should
be evaluated not in terms of keypoint jitter (which would not detect such
catastrophic forgetting of keypoint definitions), but in terms of metrics like
OKS or RMSE, as used in Figure 1.

First, we want to note that jitter isn’t being used as a metric for measur-
ing forgetting or for key point accuracy, it is showing that with our method
the model is actually useful, namely, low jitter in video for the users, and
this is achieved through video adaptation. Secondly, we agree and are aware
of “drifting in the definition”/“mode collapse”, in the typical practice of
pseudo-labeling. Therefore, we used the zero-shot prediction and fixed it
during the whole process of memory replay so there should not be drifting
if the model converges. We hope that clarifies the method more clearly, and
we added this to the Methods.

The paper includes multiple model architectures and modifications (CNNs
vs transformers, with and without spatial-pyramid search and video adapta-
tion). It would be very helpful for the authors to include a table explaining
which model configuration was used for each result reported in the paper.

We now added two Tables in the text that shows the model variants
and results. Concretely, unless noted all experiments were done with a
SuperAnimal-TopViewMouse and/or SuperAnimal-Quadruped model that
held-out all benchmark datasets. Here are the Tables for ease:

The difference in performance in classifying supported rears vs unsup-
ported rears is striking- while detection of supported rears seems useable,
the performance on unsupported rears is quite low. I suspect that this is
because supported rears can only take place at the walls of the arena, there-
fore the classifier could detect them just by learning to recognize when the
mouse is near the walls of the arena, without incorporating any postural
information. It would be helpful to see evaluation on a wider range of be-
haviors; I strongly suspect that the performance seen in the unsupported
rearing condition is more likely to be typical for detecting behaviors that
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Table 1: Main Results on Mouse Benchmarks. The mAP comparison
between CNN baseline (HRNet) and Transformer based models (TokenPose
models and ViTs) on SuperAnimal-TopViewMouse. The performance of
HRNet is comparable to performance shown in Extended Data Fig. 3c), and
transformers most-always outperformed HRNet. Here we used mmpose [8])
as well. Suggesting that users also may consider other architectures when
building SuperAnimal models, especially for zero-shot inference.

Model TriMouse DLC-Openfield

ViT-MAE 32.4 63.6
ViT-DeIT 34.2 62.4
AnimalTokenPose (HRNet) 33.4 91.5
AnimalTokenPose (CNN) 43.5 82.7
HRNet 28.1 72.3

are not dependent on positional information.

A couple things to unpack here. Firstly, we evaluated our model on a
published dataset where its performance is usable to downstream users and
those authors. Our goal is to show that SuperAnimal models can be used
in this highly common behavioral setting by showing we get the same per-
formance as previous methods. Secondly, one cannot detect the rears at the
wall by only proximity of the animal at the wall, they need to actually rear
(mice spend most of their time at the wall, this is a classical test for anxiety).
Therefore we have left in this analysis as we feel it achieves the desired goal
of showing the zero-shot performance use of SuperAnimal-TopViewMouse.

Other/minor points:
It is not clear how the RMSE metric accounts for missed keypoints

(points that are incorrectly reported as occluded). This should be added
to the Methods. Or, if missed keypoints do not contribute to the RMSE,
then the authors might want to use a different metric that incorporates this
form of error.

Keypoints can never be missed in the predictions in our models. They
can have a low confidence, but they are always predicted on every frame,
thus RMSE accounts for “missed” keypoints. We did not drop low confi-
dence points during evaluation.

The citation for OKS points to the original Microsoft COCO paper,
which predates the creation of the OKS metric by a few years. While OKS
is now a part of the COCO API, it was only added later and is not discussed
in the original manuscript. Ronchi and Perona 2017 introduces OKS and
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Table 2: Main Results on Quadruped Benchmarks. Here, the base
SuperAnimal-Quadruped model had none of the heldout datasets, with the
exception of AnimalPose (AP). For the AnimalPose experiments we make
a new variant that dropped AnimalPose data (SA-AP), thereby making it
OOD for this setting as well. Full results can be found in Figure 2 for
fine-tuning with different amounts of data, but the best-case fine-tuning
performance is shown, which matches the top-performance of the SuperAn-
imal (SA) variant as shown in Figure 2. *NOTE: Cao et al.[9] do not report
a unified single mAP, rather per animal, therefore we trained a model us-
ing their dataset to estimate top-line performance if only trained on AP.
**Number as reported in [10] using the data from [6].

Benchmark: AnimalTokenPose HRNet2
(HRNet) (w32)

mAP (↑, higher the better)

iRodent: SA zero-shot 36.2 39.3
iRodent: fine-tuning ImageNet w/1% - 02.8
iRodent: fine-tuning SA w/1% - 40.4
iRodent: fine-tuning ImageNet w/100% - 57.0
iRodent: fine-tuning SA w/100% - 68.0

AP-10K: SA zero-shot 45.3 50.8
AP-10K: AnimalPose weights, zero-shot - 27.0
AP-10K: ** [10]
fine-tuning w/ImageNet - 72.2
AP-10K: fine-tuning w/SA - 78.3

AnimalPose: SA-AP zero-shot 86.0 85.4
AnimalPose: SA+AP-10K zero-shot - 69.4
AnimalPose: Fine-tuning ImageNet* - 88.2
AnimalPose: SA-AP Fine-tuning - 90.4

Normalized Error (↓, lower the better)

Horse10: IID SA zero-shot 0.647 0.673
Horse10: OOD SA zero-shot 0.613 0.640
Horse10: IID SA fine-tuning ImageNet - 0.049
Horse10: OOD SA fine-tuning ImageNet - 0.179
Horse10: IID SA fine-tuning - 0.047
Horse10: OOD SA fine-tuning - 0.109

explains it in detail.
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We apologize, we cited what we used for the implementation, but we
now include the citation to Ronchi and Perona 2017 to the paper.

IID usually means “independent and identically distributed”, making its
use as an abbreviation for “within-distribution datasets” a little confusing.

We apologize for this, we now point to both terms for this (as both are
used in animal pose literature).

Figure 1f should include units for the RMSE on DLC-Openfield (proba-
bly pixels?)

We now clarify this is in pixels.

“We outperformed DeepLabCut-ResNet-50 . . . by over 2X with 10X
less data” – this is worded as if SuperAnimal + 10 frames has 2x the per-
formance of DLC + 100 frames, while in fact DLC + 100 is slightly better
than SuperAnimal + 10. You could write “We outperformed DLC by 2X”
or “We matched DLC performance with 10X less data”, but you can’t claim
the combination of the two. (A car that gets 60 mpg can drive twice as far
per gallon of gas as a car with 30 mpg, and it takes half as much gas to
travel the same distance- but it can’t drive twice as far AND burn half as
much gas in doing so.)

Great catch – we were a bit too fast on the gas pedal. Now updated:
“Therefore, we outperformed DeepLabCut-ResNet-50 (i.e., our ImageNet
pre-training baseline) by over 2X with only 10 frames of labeling, and we
can achieve the same performance with 10X less data.”

Some figure text is very small and hard to read.

We apologize, we revised and made every effort to clarify figures.

Figure 2h, bar colors are very similar/the same for multiple models,
please use a different color for each model tested.

Apologies for this, we updated (and moved to Figure 1).

16



Reviewer 3

Review of Ye et al.
In this manuscript, Ye and colleagues develop new neural network mod-

els they call “SuperAnimal” that are pre-trained on a variety of relevant
behavioral imaging data (for example, videos of mice in different behavioral
chambers/settings), and then can be used “out of the box” with no train-
ing or “zero shot” on new behavioral data (in different chambers/settings).
While the performance of the model already appears to be good, they then
develop a framework to improve performance through what they call fine-
tuning (labeling a small amount of data in the new chamber/setting and
using SuperAnimal pre-trained weights). The concepts here are very ex-
citing - having a model that can be used without the burden of labeling
and training on any new behavioral dataset (independent of different light-
ing conditions, visual appearance of the behavioral chamber and animals,
etc.) would be very impactful for both behavioral and neuroscience research,
particularly for mice (what is primarily demonstrated here). Despite my ex-
citement for the method itself, the authors do not provide sufficient details
for me to evaluate the model and its performance. This is surprising since
best practices are well established for such models - I cite several of these
below which might serve as examples for the authors. In general, the au-
thors highlight an exciting new method, but without providing the details
to support whether the model performs to match their claims - this could
be fixed by the authors following some of the suggestions below.

We thank the reviewer for their time and expertise and for noting the po-
tentially exciting concepts. We apologize for a lack of clarity on the Methods
and we have worked hard to clarify and provide pseudo-code in the methods
where appropriate.

Methods:

Memory-replay is a core method employed here to prevent catastrophic
forgetting, but very little detail is provided on how this is implemented.

We clarify in the Methods and provide pseudo-code (also here for ease),
thanks for this excellent suggestion:

1 def is_defined(keypoints):

2 # check whether the original dataset defines each keypoint.

We use a flag ‘-1‘ to denote that a given keypoint is not

defined in the original dataset. Note this is different

from not annotated , which use flag ‘0‘

3 return True if keypoints [2] >= 0 else False

4

5 def load_pseudo_keypoints(image_ids):
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6 # get the pseudo keypoints by image IDs.

7 # note , pseudo keypoints are loaded from disk and fixed

throughout the process , so not drifting as is expected in

typical online pseudo labeling

8 return pseudo_keypoints

9

10 def get_confidence(keypoints):

11 # get the model confidence of the predicted keypoints. Unlike

ground truth data that have 3 discrete flags , predicted

keypoints have confidence that can be used as likelihood

readout for post -inference analysis

12 return keypoints [2]

13

14 def memory_replay(model , superset_gt_data_loader , optimizer ,

threshold):

15

16 # gt data is preprocessed such that annotations are now in

superset keypoint space.

17 # every gt keypoint has 3 flags (-1: not defined , 0: not

labeled , 1: annotated)

18

19 For batch_data in superset_gt_data_loader:

20

21 gt_keypoints = batch_data[’keypoints ’]

22 image_ids = batch_data[’image_ids ’]

23 images = batch_data[’images ’]

24 # model() is a pytorch style forward function

25 preds = model(images)

26 pseudo_keypoints = load_pseudo_keypoints(image_ids)

27 # 3 here is (x, y, flag)

28 batch_size , num_kpts , 3 = gt_keypoints

29 # iterate through batch

30 For b_id in batch_size:

31 # iterate through keypoints

32 For kpt_id in range(num_kpts):

33 # since this specific body part is not defined in the new

dataset , we use saved pseudo labels (zero -shot prediction)

as gt. This prevents catastrophic forgetting and drifting.

We can also use confidence to filter the pseudo keypoints

34 If not is_defined(gt_keypoints[b_id , kpt_id ]) and

get_confidence(pseudo_keypoints[b_id][ kpt_id ]) > threshold:

35 # we assume a single animal scenario for simplicity. For

multiple animals , matching between gt and pseudo keypoints

need to be completed.

36 gt_keypoints[b_id][ kpt_id] = pseudo_keypoints[b_id][

kpt_id]

37

38 loss = criterion(preds , gt_keypoints)

39 optimizer.zero_grad ()

40 loss.backward ()

41 optimizer.step()

What, precisely, is meant by ”When we fine-tune a SuperAnimal model,
we replace the model predicted keypoints with the ground-truth annota-
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tions, resulting in hybrid learning of old knowledge and new knowledge”?

We use the model predictions on new frames AND we use the original
ground truth annotations and images as new inputs for training. When we
perform video adaptation we do not have, nor need, access to GT. We hope
that clarifies the sentence.

What is the strategy for using pseudo-labels versus new labels?

We provide pseudo algorithm code above to clarify the algorithm.

Are pseudo-labels only used for the training images which have GT labels?

GT labels are not needed for video adaptation, as we demonstrated in
Figure 2e where we tested video adaptation on unlabeled OOD datasets.

Video adaptation is another core method employed here where very lit-
tle detail is provided. To be clear: the proposed video adaptation method,
which the authors claim is a novelty in the abstract, is the process of using
score-filtered predictions as pseudo-labels for fine-tuning?

While score-filtered predictions is part of our video adaptation and es-
tablished in the field, our novelty lies on following: 1) application scenario:
while pseudo labeling is commonly used in image-based domain adaptation
or image classification, to our knowledge it is novel that we found it very
useful to improve video frame prediction smoothness. 2) our pseudo labeling
is combined with spatial pyramid, which augments pseudo labeling.

What is the training procedure exactly? How are inference target sam-
ples selected for use as pseudo-labels? Is every frame in the video used for
adaptation?

We take the predictions for all frames in the target video as the training
dataset. In practice, we only train for around 1000 iterations of stochastic
batches. We select keypoints based on confidence but we do not select the
target prediction (i.e. which frame the predictions correspond to) and rely
on the random sampler instead. We clarified this in the Methods, and add
here:

1 def get_pseudo_predictions(frame_id):

2 # return pseudo prediction by frame id

3

4 def video_adaptation(model , video_data_loader , optimizer ,

threshold):

5 for data in video_data_loader:

6 frame_id = data[’frame_id ’]
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7 Image = data[’image’]

8 pseudo_keypoints = get_pseudo_predictions(frame_id)

9 preds = model(image)

10 loss = criterion(preds , pseudo_keypoints , mask_by_threshold

= threshold)

11 optimizer.zero_grad ()

12 loss.backward ()

13 optimizer.step()

In what way does this reduce jitter other than what is shown qualita-
tively in Fig 2e?

We added quantitative measures in Extended Data Figure 4, and shown
here for ease:

Figure 6: Quantification of video statistics. Without (grey) or without
video adaptation (pink), showing some changes in jitter and dropped key-
points.

What is meant by ”This does not take extensive training time, and can
be run during video analysis. For example, if a video (of a given size) can
be run at 40 FPS, this would take approx. only 12 FPS to fine-tune the
model and make new predictions”? Does this mean that inference is run
at 40 FPS? If so, how does this relate to the 12 FPS figure if this involves
training?
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This means that if video inference was running at 40 FPS without any
adaptation, to now do video adaptation only slows this down to 12 FPS,
there is no other training time of the model. A decrease from 40 FPS to 12
FPS means that in practice, it is still useful for downstream users.

How long was the actual training time? On which dataset and under
which conditions?

For video adaptation training, the training time is truly the run-time
of the model on the video, hence its an example as its always relatve to
the length of the video input and the original pixel-size of the frames, etc.
As an aside, to train the whole SuperAnimal-Quadruped model we used for
experiments in this paper it took 17 hours on 2 GPUs (NVIDA titan GPUs
with 24GB memory each), but of course users do not need to do this.

The authors show that test-time multi-scale search is essential for robust
generalization to new datasets in the zero-shot setting, but the main trade-
off of reduced inference speed is not reported or discussed.

We added a note in the results, “Note that in practice this does slow
down inference depending on the search parameter space.”.

Evaluation and Comparisons:

OKS is a better metric than RMSE due to how visibility and scale are
accounted for, though its variance scaling constant should be selected ju-
diciously and clearly reported. Here the authors only use OKS as part of
the summary mAP calculation. An even more useful metric would be the
error at the tail of the distribution, reflecting how well models perform in
the worst case scenarios.

The main reason we use RMSE and Normalized Error for DLC-Openfield
and Horse-10, respectively, is to compare with the original papers and ongo-
ing benchmarks. In the DLC-Openfield dataset the animals do not change
size and images are the same size, thus RMSE we believe is sufficient. As
Sigma is not reported in the original papers, calculating mAP is difficult
(but see response to R2 above), and we provide the mAP values on DLC-
Openfield and the related TriMouse dataset in Figure 1, and we now report
mAP on iRodent, AP-10K, and AnimalPose.

Is there a reason that the performance of this method on AP-10K (arXiv:2108.12617)
is not reported separately from the pooled Quadruped dataset? AP-10K
would be useful for benchmarking this work against other competing ap-
proaches.
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Thanks for the suggestion. We now made a new SuperAnimal-Quadruped
model split that has AP-10K held-out as another OOD test. Here we per-
formed several new experiments (Fig. 7). We tested the performance of Su-
perAnimal on AP-10K zero-shot and for fine-tuning, with our SuperAnimal
weights or ImageNet starting weights. We also used AnimalPose zero-shot
to establish another baseline zero-shot performance. Here we find SuperAn-
imal outperforms AnimalPose zero-shot, and our SuperAnimal fine-tuning
outperforms ImageNet fine-tuning, fully supporting our earlier results on a
new benchmark. To note, our SuperAnimal fine-tuning with our HRNet-w32
backbone shows a performance of 78.3 mAP, while in the AP-10K paper, the
authors used HRNet-w32 to obtain 73.8 mAP with ImageNet pretraining.
We added this to the new Figure 2 and results table.

Figure 7: AP-10K Benchmark. SuperAnimal-Quadruped HRNet-w32
and AnimalTokenPose on AP-10K, zero-shot, and fine-tuning results.

Is there a reason that comparisons to other methods for zero-shot ani-
mal pose estimation or domain adaptation are not provided? This makes it
difficult to assess the novelty and performance of this method. It would be
particularly important to at a minimum reference (but preferably compare
against) approaches like Cao et al 2019 (arXiv:1908.05806), Kulkarni et al
2020 (arXiv:2004.00614), Sanakoyeu et al 2020 (arXiv:2003.00080), and Li
et al 2023 (arXiv:2303.15023).

Cao et al arXiv:1908.05806: we added benchmarking on this task to our
work as well, per your request. We find that our zero-shot performance
is as good as their fully supervised method. We now added this to new
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Figure 2. Kulkarni et al 2020 is tackling surface mapping, not merging pose
estimation datasets and showing innovation in this space, and the same for
Sanakoyeu et al 2020, which is DensePose estimation. Li 2023 came out on
arXiv after we submitted our work to Nature Communications, and per their
policy: “When evaluating your revised manuscript, we will not consider any
similar papers published in the meantime to compromise the novelty of your
study. See https://www.nature.com/articles/s41467-020-17817-xfor
more information.”, therefore we do not benchmark this (also note its goal
is different: “a pseudo label-based approach to generate artificial labels for
the unlabeled images”). We feel that by adding both AnimalPose and AP-
10K we have demonstrated our models performance such that readers can
better judge its utility. Thanks for those suggestions!

Figure 8: AnimalPose Benchmark. SuperAnimal-Quadruped HRNet-
w32 AnimalPose zero-shot matches performance of fully-supervised Animal-
Pose model, and outperforms AP-10K zero-shot.

Some discussion is also necessary to position this work against fully self-
supervised approaches for animal pose estimation, such as Bala et al 2021
(arXiv:2110.00543) and Sun et al 2021 (arXiv:2112.05121).

The Bala preprint just appeared in IJCV June 2023 and we now cite
it and discuss it; we note that Bala et al. is not fully self-supervised, but
requires annotated “primary landmarks”.

In any case, we state in the discussion: “Alternatively, unsupervised
keypoint discovery can be used [11, 12]. While the unsupervised approach
requires no pose annotations, the learned keypoints might lack interpretabil-
ity and it is not clear whether it allows zero-shot inference on OOD data.
Therefore, both our approach that creates predictions based on the super-
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set of annotated keypoints from different studies and unsupervised keypoint
discovery are promising, complementary directions.”

I found it difficult to compare methods in Fig 2h since the figure legend
reuses colors.

We apologize, we fixed this.

Fig 3: a comparison to a standard behavior segmentation benchmark,
such as Sun et al 2022 (arXiv:2207.10553), would provide stronger and more
readily comparable evidence for good performance on this downstream task.

Sturman et al is an established human expert annotated benchmark in
the field of mouse behavior. Sun et al. has programmatically defined be-
haviors, not ground truth annotations. The main goal of our paper was to
show the innovations in building foundational-like models for pose estima-
tion. Beyond Sturman et al. we now include another downstream behavioral
analysis for stride analysis (Figure 4).

Additionally, we note that SuperAnimal weights were used in another
pre-print, showing that SuperAnimal-TopViewMouse predictions with keypoint-
MoSeq [?] outperform other behavioral quantification methods on a separate
benchmark dataset. For ease of the reviewers, we added that relevant figure
panels here (Fig. 9). We cite this work as well. Additionally, we used the
SuperAnimal-TopViewMouse model within AmadeusGPT [13] for several
other mouse topview datasets, and for example, could show on the elevated
plus maze it can match human-annotation performance there as well.

Figure 9: Extended examples of SA-TVM in use in animal bench-
marks adapted from [14].

More Information on the SuperAnimal Model:

Since the model reported in this study is intended to be used directly for
scientific applications, it is important that the authors share sufficient detail
about the models, so that use applications do not suffer from any biases that
might be baked into these models. I suggest providing the following (though
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the authors may have additional details they would like to provide): Dataset
datasheet, as described in Gebru et al 2021 (arXiv:1803.09010) Crowd-
sourced annotation datasheet, as described in Diaz et al 2022 (arXiv:2206.08931)
Model cards, as described in Mitchell et al (arXiv:1810.03993)

We updated the model cards at HuggingFace. TopViewMouse: https:
//huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse.
SuperAnimal-Quadruped DLCRNet: https://huggingface.co/mwmathis/
DeepLabCutModelZoo-SuperAnimal-Quadruped

The authors do not discuss any potential pitfalls of employing a foundation-
like model, especially in a zero-shot setting where model biases can introduce
structural errors that may impact downstream scientific results.

We are aware of the systematic bias and potential impact, and we actu-
ally did mention this in the annotator bias section in the Suppl. To monitor
the model biases, we propose a keypoint domain distance diagram to help
monitor the distance between the expected annotations and models’ predic-
tions. In practice, fine-tuning can reduce such a distance and only keypoints
estimated by fine-tuned and/or validated models should be kept for preci-
sion sensitive scientific applications.

The authors state in the Reporting Summary that ”In the following we
detail references for those datasets”, but these are not provided. I believe
a major contribution of this study is a unified SuperAnimal dataset - the
authors should provide this as part of the resource - the dataset should be
made publicly available. Another major contribution is a unified vocabulary
for animal keypoints, but this is only provided through figure illustrations
rather than machine parseable text or code to do the dataset unification.

The datasets are referenced fully in the Methods and in Suppl. Figure 1.
Please note, not all of the mouse data can be made available due to limita-
tions on institutional guidelines on sharing recorded data. Therefore, while
we used primarily open source data, as we already referenced, those that are
given to us courtesy of other scientists must stay private. The best we can
do, as we do here, is to provide model weights. This is also an important
point for scientists who might be hesitant to release their data. We also now
added the unified keypoint main diagram to the figure repository so users
understand the mapping, and a new panel in Extended Data 1 that has the
mappings.

The model checkpoints strictly require the authors’ own software or web
app in order to be used, rather than standalone modules for training and
fine tuning. At a minimum, can the authors provide reproducible environ-
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ments (e.g., using Code Ocean, Hugging Face Spaces, or other platforms).

This is actually not correct; there is no requirement to use the model
only in DeepLabCut software; we banked the TensorFlow model weights at
HuggingFace already, and there is a HuggingFace Gradio space: (https://
huggingface.co/spaces/DeepLabCut/DeepLabCutModelZoo-SuperAnimals).
We also showed in the original submission that we can use the model weights
in mmpose, another pose estimation ecosystem.

References to the Golden Lab and Smear Lab datasets should point to
valid persistent DOIs or RRIDs (currently just ”Sam Golden. Open-field So-
cial Investigation Videos, July 2022.” and ”Matt Smear. Olfactory Search
Video, July 2022.” which do not provide a way to access or find more infor-
mation on these data).

Apologies, the urls were dropped in the PDF display of the references
and are now updated.

Other Comments:
The authors state in the Reporting Summary that ”typical prior datasets

were 100-800 frames, but here we provide 40K”; to my reading, this seems
counter to the authors’ own previous work (Lauer et al, 2022) and that of
others (Graving et al, 2019; Bala et al, 2020; arXiv:2108.12617). Can they
explain what was meant?

Apologies, this was a typographical error. It should have said: “typical
prior datasets were 100-800 frames,” – it is updated. To be clear, for ex-
ample Bala et al. is only macaques in front of green screens (thus while
very large, would massively imbalance the dataset if included), Lauer et al.
contains 8K images of only marmosets, Graving et al 2019 is 800 images of
Locusts, and 900 images of zebras from an aerial viewpoint. Most reports,
as far as we know, don’t have such large datasets, therefore in this reporting
summary block on how we chose the sample size for our paper, we
simply note we are beyond the standard range.

Is SuperAnimal trained on all of the described datasets? The authors
should make this clearer in the text (to make it easier to understand which
datasets are out of distribution).

No, to show the utility of SuperAnimal training, we built one “base
model” that did not have any of the benchmarks datasets in it. Thus, every
benchmark is truly OOD. We clarified this in the beginning of the Results
section as well. The final production models that are released to the public
are trained on all datasets.
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The authors should quantify what is different about the OOD datasets
(in terms of behavioral chamber characteristics, lighting, number of animals,
appearance of animals, etc.)

A full analysis of every dataset is well beyond the scope of this work.
We cite each dataset that is available, and we hope this is sufficient for the
reviewer and users. Thank you again for all your constructive feedback, and
we hope you now support publication of our work.
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have carefully addressed all my concerns, and their responses to the other reviewers and 

the addifional improvements on the model seem thoughfful and thorough (although I cannot assess 

some of the technical details). My lab did not have the fime to test model performance during the re-

review process, as there simply wasn’t enough fime. However, the corresponding author has an excellent 

track-record in producing software solufions (incl. documentafion, updates and outreach acfivifies) that 

lead to widespread uptake by the community, and some of their work has revolufionized the field 

already. It is this process that will also decide about the power and usefulness of SuperAnimal. I am 

strongly in favor or publishing this manuscript in Nature Communicafions and in lefting the scienfific 

community determine the impact of this work over the months and years to come.

Reviewer #2 (Remarks to the Author):

I thank the authors for their detailed response to the first round of comments; the revised manuscript 

makes it much easier to understand what they have done. However, I sfill have concerns that some 

claims in the manuscript are not well supported by the results presented. I also feel the paper is lacking 

comparisons between the methods used in the SuperAnimal model and previous methods that have 

addressed some of the same problems.

Major points:

New model performance on iRodent: I thank the authors for taking my crifique of the Quadruped model 

into considerafion. I’m confused about Figure 5 in their rebuftal lefter, however: they report a 10x 

performance improvement on iRodent, but strangely this 10x improvement is present not just for the 

SuperAnimal models but also for ImageNet—the previous normalized error of ImageNet at 3 fine-tuning 

images was ~2.4, whereas it’s 0.2 in the new version. Shouldn’t the ImageNet performance between the 

two model versions be unchanged, given that it’s the “control”? What happened?

Usability of the Quadruped model: more broadly, I remain skepfical of the ufility of the Quadruped 

model as a zero-shot tool. The zero-shot performance of the model is sfill prefty poor, for example ~0.6 

normalized error on Horse-10 is twice the threshold for a keypoint match in the original benchmark 

(which was 0.3). And a mAP of 0.4 on iRodent is also very low. Training the Quadruped model on labeled 



frames does improve performance with fewer examples than is needed by ImageNet, however there is a 

significant difference between a model that is data-efficient and a zero-shot pose esfimafion model, and 

SuperAnimal-Quadruped is sfill being presented in the text as “an efficient way to achieve strong zero-

shot performance.” This claim is not supported by the results shown.

Informafiveness of metrics used: The authors use two unsupervised methods to deal with domain shifts: 

spafial-pyramid search and video adaptafion. The performance of the spafial-pyramid search is 

evaluated in terms of the RMSE, which is fine (though figure 3C is quite hard to read.) But quanfitafive 

evidence that video adaptafion improves model performance is sfill limited. The convex hull metric 

shows a decrease in the number of “off-body” errors where keypoints are placed far from the animal but 

doesn’t provide enough informafion to know whether a pose esfimate is reasonable. The keypoint 

dropping and jifter metrics in figure S4e show that video adaptafion makes pose esfimates modestly 

smoother (though significance tesfing is needed), but smoother keypoint trajectories are not necessarily 

more accurate. The only way to really know whether this method is producing an improved accuracy of 

pose esfimates would be to evaluate RMSE or mAP on a held-out set of human-annotated frames.

Relafionship to prior work: First confinuing on the subject of video adaptafion, it is not clear from the 

manuscript to what extent the authors’ methods are an improvement on other approaches that have 

been previously proposed. The authors should also at the very least test whether their video adaptafion 

approach is any befter than more classical fime series denoising methods such as Kalman filtering. A 

befter evaluafion would also contrast performance with other algorithms that have used temporal 

smoothness constraints to improve pose esfimafion quality, such as DeepGraphPose (Wu et al., NeurIPS 

2020). Finally, given that the authors are not the first group to try using pseudolabels to boost model 

performance, it would be good to see a comparison to other methods such as Progressive Pseudo-label-

based Opfimizafion (PPLO, Cao, Tang et al., ICCV 2019) which is parficularly relevant here given that this 

method was also introduced in the context of quadruped pose esfimafion.

Consistency between quanfitafive results and what is claimed: the plots of model performance in Figures 

1-2 suggest that different models/methods perform befter on different datasets, however the authors 

don’t always take this into account when reporfing their conclusions. For example, SA + memory replay 

performs best on the DLC-Openfield dataset, leading the authors to conclude in the text that memory 

replay boosts model performance- however in the Horse-10 and iRodent datasets, memory replay does 

worse than naïve fine-tuning. In Horse-10, SA + memory replay in fact does even worse than the SA zero-

shot model at 14 fine-tuning images, suggesfing that training the model on labels from the Horse-10 

dataset somehow worsens its performance. The actual takeaway from all of this may simply be that 

different model seftings work best for different datasets- but this is a hard conclusion for the reader to 

draw when results on different datasets are spread across mulfiple figures and reported using different 

metrics.



Plofting of tracking data: In the behavioral analysis of Horse-30 data, the authors write in the method 

that trajectories were smoothed using a 2nd-order, low-pass, zero-lag Bufterworth filter for subsequent 

stride detecfion. This is fine, however I think given that the filtering is presumably required for the 

performance reported in Figure 4h-i, it would be helpful to see both the raw and the filtered tracking 

data in Figure 4g, to give a sense of how much the filtering cleans up the raw trajectories. (I also wasn’t 

completely sure which version of the data is being shown in 4g.)

Clarity of the method descripfion: I had trouble figuring out from the text and from Figure 1c which parts 

of the network are trained during “task-aware fine-tuning”, and also which parts of the network cartoon 

in 1c were being called the encoder and the decoder. My guess in 1c is that the orange blocks labeled 

“pre-training dataset” are what is called the “encoder” in the text, and the purple blocks labeled 

"downstream dataset” are the “decoder”, is this right? I was debafing between this and interprefing the 

first two (contracfing) layers are the encoder and the last two (expanding) layers as the decoder. Further 

confusing is that the text describes “combined encoder-decoder fine-tuning”, which I would take to 

mean all layers of the network are trained, which is not what the color-coding in the figure is suggesfing.

Metrics and comparison models: I sfill hold that it’s unnecessarily confusing that the way models are 

evaluated, and the models they are compared to, changes across figures/datasets: Fig 1e and 3c (DLC-

Openfield, Smear Lab, Golden Lab, and MausHaus) report RMSE, 1h and 2d-f (DLC-openfield, trimouse, 

iRodent, AP-10K, and AnimalPose) report mAP, and Fig 2c (Horse-10) reports normalized error. Of these, 

RMSE and normalized error are metrics where smaller numbers mean befter performance, while for 

mAP higher numbers mean befter performance. The number of fine-tuning images also differs across 

figures. The paper would be a lot easier to draw conclusions from with addifion of a unified “results” 

table that reports performance for a common set of models and training set sizes, using one or more 

common performance metrics, on each dataset. Similarly, AP-10K is presented as a point of comparison 

in some figures but not others, and some figures report performance of "ImageNet + Randomly 

Inifialized Decoder" while others show "ImageNet Fine-tuning". (I assume the lafter two are different 

given that Figure 2C shows very different performances for SA + R.I.D. vs SA + Fine-tuning.) The thing 

being measured in Figure 1e, 1h, 2c-f, and 3c is always the same, namely pose esfimafion accuracy, 

therefore the metrics and control models being used should also be consistent.

Minor notes

Double-check wording in some parts of the Methods- for example: “A batch size of 8 was used and the 

SuperAnimal-TopViewMouse and were trained for a total of 750k iterafions, respecfively.”

Table 1 and Figure S2 (possibly elsewhere?) change “thai”->”thigh” (eg “front_left_thai”).



Methods secfion HRNet-w32: it’s fine that the ED figures and main text use different train/test splits but 

given that they’re two splits of the same dataset they are not “fully independent replicafion[s]” as 

claimed here. This point isn’t crifical to your claims though so you should be fine just cufting it.

Plofting results: the line graphs in Figure 1 and 2 use what looks like a log scale on the x axis, but the 

spacing of x-axis fick marks isn’t quite consistent with that. For example, 17 is not at the midpoint of 3 

and 35 on a log scale. I suggest making x-coordinates of plofted data precise to make these graphs easier 

to interpret.

Reviewer #3 (Remarks to the Author):

The authors have made significant improvements to the manuscript, with extensive addifional details on 

the methodology, clarificafions on the datasets and models used, and a few new evaluafion results.

That said, issues remain related to the nature of this work as a foundafion model for scienfific 

applicafion. Namely, we feel the authors must meet minimum standards for reporfing and data access. 

Furthermore, without providing the datasets in the form used for evaluafions here, the authors may be 

misconstrued as intenfionally making it more difficult for others to build compefing approaches and 

make fair and direct comparisons – something which they benefit from doing here by using other 

publicly available datasets.

Other concerns about the presentafion and claims about the significance and ufility of the approach are 

outlined below.

Issues:

>> "If the models need fine-tuning, we show SuperAnimal models are 10× more data efficient" (abstract)

This is a very misleading statement. The SuperAnimal models achieve the same performance at 10 fine-

tuning frames as an ImageNet-pretrained model at ~100 fine-tuning frames. This difference disappears 

at ~500 fine-tuning frames, which is also the best performance overall. A more accurate portrayal of the 

work presented here would state that "If the models need fine-tuning, we show SuperAnimal models are 



more data efficient at small training set sizes (10-100 frames) and achieve comparable performance at 

larger training set sizes (>500 frames)."

Importantly, no menfion is made of the results showing that all improvements yielded by this work 

disappear at 500 fine-tuning frames as per Fig. 1e.

> Fig 3: a comparison to a standard behavior segmentafion benchmark, such as Sun et al 2022 

(arXiv:2207.10553), would provide stronger and more readily comparable evidence for good 

performance on this downstream task.

>> Sturman et al is an established human expert annotated benchmark in the field of mouse behavior. 

Sun et al. has programmafically defined behaviors, not ground truth annotafions. The main goal of our 

paper was to show the innovafions in building foundafional-like models for pose esfimafion. Beyond 

Sturman et al. we now include another downstream behavioral analysis for stride analysis (Figure 4).

The MABe22 dataset in Sun et al. (arXiv:2207.10553) is a much larger and much more community-tested 

benchmark dataset for behavioral segmentafion, which includes a broader and more representafive set 

of behavioral classes. These are NOT programmafically defined, but rather expert annotated and have 

served as an excellent and widely adopted reference for tesfing precisely what the authors purport to 

show here.

An alternafive source of evaluafion of downstream performance would include use with the openly 

available SimBA videos and pretrained classifiers (hftps://osf.io/tmu6y/), which come with DLC tracked 

data to begin with and should be straighfforward to evaluate on.

Downstream evaluafions (such as in supervised behavior segmentafion), while not the innovafions the 

authors intend to showcase here, are a crucial and important measure as they provide evidence of the 

real world performance of the approach. Importantly, they afford a fair and orthogonal evaluafion of the 

performance of the tracking models by measuring the funcfional significance of the claimed 

improvements. Given their importance, it is not unreasonable to request a more thorough evaluafion of 

downstream performance on more representafive behavior segmentafion datasets like the two 

menfioned above.

>> Addifionally, we note that SuperAnimal weights were used in another pre-print, showing that 

SuperAnimal-TopViewMouse predicfions with keypointMoSeq [13] outperform other behavioral 

quanfificafion methods on a separate benchmark dataset. For ease of the reviewers, we added that 

relevant figure panels here (Fig. 9). We cite this work as well. Addifionally, we used the SuperAnimal-



TopViewMouse model within AmadeusGPT [14] for several other mouse topview datasets, and for 

example, could show on the elevated plus maze it can match human-annotafion performance there as 

well.

The Keypoint-MoSeq paper does not demonstrate that pose tracking with SuperAnimal-TopViewMouse 

outperforms pose tracking with any alternafive approach – it evaluates the performance of different 

unsupervised behavior segmentafion methods given the same tracking. Considering the amount of 

outlier filtering and other forms of robustness to keypoint noise specific to that method, I do not see this 

as a valid evaluafion of the work in quesfion here – maybe beside the point since none of that data is 

presented in THIS manuscript.

There are a number of issues with the work presented in the AmadeusGPT preprint, all of which are 

outside the scope of this paper's review. If the authors wish to use it as evidence for the performance or 

validity of the current work, I encourage them to do so by including data on downstream behavior 

classificafion performance.

> Since the model reported in this study is intended to be used directly for scienfific applicafions, it is 

important that the authors share sufficient detail about the models, so that use applicafions do not 

suffer from any biases that might be baked into these models. I suggest providing the following (though 

the authors may have addifional details they would like to provide): Dataset datasheet, as described in 

Gebru et al 2021 (arXiv:1803.09010) Crowdsourced annotafion datasheet, as described in Diaz et al 2022 

(arXiv:2206.08931) Model cards, as described in Mitchell et al (arXiv:1810.03993)

>> We updated the model cards at HuggingFace. TopViewMouse: hftps: 

//huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse. SuperAnimal-

Quadruped DLCRNet: hftps://huggingface.co/mwmathis/ DeepLabCutModelZoo-SuperAnimal-

Quadruped

The efforts made to improve the documentafion of the model is appreciated, but insufficient given the 

potenfial for widespread use of the work presented here.

Minimum requirements include:

1. A dataset datasheet should be provided as described in Gebru et al. (arXiv:1803.09010) including 

secfions: Mofivafion, Composifion, Collecfion Process, Preprocessing/Cleaning/Labeling, Uses, 

Distribufion, and Maintenance, as well as associated sub-secfions. Appendix A in (arXiv:1803.09010) has 

a clear example.



2. A model card should be provided as described in Mitchell et al. (arXiv:1810.03993) including secfions: 

Model Details, Intended Use, Factors, Metrics, Training Data, Evaluafion Data, Ethical Considerafions, 

Caveats and Recommendafions. Figs 2 and 3 in (arXiv:1810.03993) have clear examples.

These are the standard for foundafion models which the authors state they consider this work to be. For 

a recent example, see Segment Anything (arXiv:2304.02643) which takes the exact steps described 

above (Appendix F) to ensure responsible and ethical use of their foundafion model. As the intended use 

case for this work is the scienfific domain, it would be appropriate to apply even more stringent 

reporfing requirements, so this is not a parficularly high bar to meet.

> The authors state in the Reporfing Summary that ”In the following we detail references for those 

datasets”, but these are not provided. I believe a major contribufion of this study is a unified 

SuperAnimal dataset - the authors should provide this as part of the resource - the dataset should be 

made publicly available. Another major contribufion is a unified vocabulary for animal keypoints, but this 

is only provided through figure illustrafions rather than machine parseable text or code to do the dataset 

unificafion.

>> The datasets are referenced fully in the Methods and in Suppl. Figure 1. Please note, not all of the 

mouse data can be made available due to limitafions on insfitufional guidelines on sharing recorded 

data. Therefore, while we used primarily open source data, as we already referenced, those that are 

given to us courtesy of other scienfists must stay private. The best we can do, as we do here, is to 

provide model weights. This is also an important point for scienfists who might be hesitant to release 

their data. We also now added the unified keypoint main diagram to the figure repository so users 

understand the mapping, and a new panel in Extended Data 1 that has the mappings.

While references and ED1 are helpful, there is significant addifional processing that the authors have 

done, many steps of which cannot presently be reproduced even with the descripfions provided.

The authors can also:

1. Provide the code for standardizing the pose annotafions for the specific datasets used here.

2. Provide the publicly available datasets in their standardized format (or at a minimum, the pose 

annotafions).

The model weights encode the biases and structural sources of error present in the source annotafions, 

but these are intractable to audit without access to the source data and annotafions.



These datasets that cannot be submifted to scrufiny, but which consfitute the core of the contribufions 

reported here, can simply be excluded from the training set to create an auditable subset. Both versions 

of the weights could be provided, with ample disclaimers that one model was trained on private and 

potenfially problemafic source data.

>> This app allows anyone, within their browser, to a) upload their own image and label, b) annotate 

community images, c) run inference of available community models on their own data, d) share models 

to be hosted.

The app does not appear to allow for uploading user images for annotafion, and other than a Google 

Form, nothing appears to be present in the web app other than the curated images for public datasets. It 

is not clear how any of this, other than the inference funcfionality (also available via HuggingFace 

Spaces) pertains to the work presented here. If we understand correctly, the labels on the curated 

datasets are not used in this work.
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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have carefully addressed all my concerns, and their responses to the other reviewers and 

the additional improvements on the model seem thoughtful and thorough (although I cannot assess some 

of the technical details). My lab did not have the time to test model performance during the re-review 

process, as there simply wasn’t enough time. However, the corresponding author has an excellent track-

record in producing software solutions (incl. documentation, updates and outreach activities) that lead to 

widespread uptake by the community, and some of their work has revolutionized the field already. It is 

this process that will also decide about the power and usefulness of SuperAnimal. I am strongly in favor 

of publishing this manuscript in Nature Communications and in letting the scientific community determine 

the impact of this work over the months and years to come. 

We thank Reviewer 1 for supporting our work. 

Reviewer #2 (Remarks to the Author): 

I thank the authors for their detailed response to the first round of comments; the revised manuscript 

makes it much easier to understand what they have done. However, I still have concerns that some 

claims in the manuscript are not well supported by the results presented. I also feel the paper is lacking 

comparisons between the methods used in the SuperAnimal model and previous methods that have 

addressed some of the same problems. 

Major points: 

New model performance on iRodent: I thank the authors for taking my critique of the Quadruped model 

into consideration. I’m confused about Figure 5 in their rebuttal letter, however: they report a 10x 

performance improvement on iRodent, but strangely this 10x improvement is present not just for the 

SuperAnimal models but also for ImageNet—the previous normalized error of ImageNet at 3 fine-tuning 

images was ~2.4, whereas it’s 0.2 in the new version. Shouldn’t the ImageNet performance between the 

two model versions be unchanged, given that it’s the “control”? What happened? 

Thanks for the feedback. We’d like to take the opportunity to step back. When we originally submitted, our 

goal was to highlight a method to build “super-sets” of animal models (so called SuperAnimal models) 

that could be used for building better base (foundation) models that could replace ImageNet pertain 

weights. Over the last 9 months of us intensely working to build this, we have improved the models, and 

the method. Therefore, what we present in this second revision is now much better models, showing our 

zero-shot SuperAnimal-Quadruped and SuperAnimal-TopViewMouse models are on par with fully 

supervised models. Thus, now our paper is two things: (1) the method to do this, (2) the foundation 

models to use. 

Therefore, we want to highlight our new results, and how we achieved them.  
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● We would like to clarify that in our paper we used ImageNet weights or Quadruped40K or 

MouseTopView5K, respectively, and THEN we added our SuperAnimal method (SA) training 

method on top. Therefore, when we improve the SA (i.e., better augmentation, etc, the “baseline” 

ImageNet changes to. Our goal was to show that SuperAnimal weights are better than ImageNet 

weights, especially for real-world sized data. This nicely follows our prior work on transfer learning 

(WACV 2021) and Kaming He’s work on transfer learning (2019).  

● “Shouldn’t the ImageNet performance between the two model versions be unchanged, given that 

it’s the “control”? What happened?” We documented in our first revision and shown in Figure 3, 

we had switched from bottom-up model to using a top-down model, which boosted performance 

by ~ 30-50 mAP, depending on the benchmark (see Figure 3b-e).   

Moreover, to simplify comparisons, now in v3 we show, again in a unified Table as requested: Zero-shot

performance of our SA-Quadruped on 4 Benchmarks: 

- Note, the best model achieves a 72.971 mAP on iRodent. 

Usability of the Quadruped model: more broadly, I remain skeptical of the utility of the Quadruped model 

as a zero-shot tool. The zero-shot performance of the model is still pretty poor, for example ~0.6 
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normalized error on Horse-10 is twice the threshold for a keypoint match in the original benchmark (which 

was 0.3). And a mAP of 0.4 on iRodent is also very low. Training the Quadruped model on labeled frames 

does improve performance with fewer examples than is needed by ImageNet, however there is a 

significant difference between a model that is data-efficient and a zero-shot pose estimation model, and 

SuperAnimal-Quadruped is still being presented in the text as “an efficient way to achieve strong zero-

shot performance.” This claim is not supported by the results shown. 

We extensively re-did every experiment in the paper now with better models (see above), and we are 

confident this is a usable model. We also now achieve SOTA on Horse-10.  

We are happy to clarify our text, but also feel we now clearly demonstrate the usability of SA-Quadruped; 

revised:  “an efficient way to achieve strong zero-shot and few-shot performance”. And also note now 

our model is as good zero-shot as fully supervised. 

Moreover, we added 3 examples with SA-Quadruped in the last round of revisions for zero-shot: the dog, 

the elk, and the horse, and for the horse quantified that with zero-shot and minimal smoothing of data we 

are on-par with human-level counts of actions. We did this to show usability of the models. 

We would like to add, we agree we did not solve pose estimation in this one paper, but we strongly feel 

we are adding a lot of value to the community by providing a new framework to train better base-models 

that can be broadly used. Whether that is zero-shot (amazing), or few-shot (we also think that's pretty 

great). We also added a comparison with other related works (even ones that came out this fall) on the 

AP-10K benchmark, which shows we use much less pre-training data and much less parameters to 

achieve competitive results. 
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To summarize what improvement we made, which can be found in the Methods and Results: 

A. Scaling the data size 

1) Previously, we had 3 OOD datasets (Horse-10, iRodent, AP-10K) that were never included in 

the base Quadruped datasets; we now follow a leave-one-out strategy for all OOD datasets. For 

example, the experiments for iRodent uses a model that is pretrained on all quadruped datasets 

besides iRodent, thus expanding the images in the pretrained datasets. 

2) Previously, we used 80% images of the pretrain dataset for training, leaving 20% of the  

images for validation. Since our goal is to pretrain the best foundation model we can for you, we 

decided to use 100% images of the pretrain dataset to pretrain the model and test on OOD as 

previously. 

3) More data: we now add AP-10K and APT-36K into our base model pretrain datasets (unless 

held-out for testing, of course), expanding our Quadruped40K to Quadruped80K. Note APT-36K 

is also used by both VitPose++ and UniPose as the pre-training data. 

B. Better train and test augmentation 

We add random horizontal flip augmentation and flip test into the train test pipeline as they are 

common practice in previous papers (AP-10K (Yu et al, 2021) and VitPose (Xu et al. 2022)). 

New Results:  

Performance on Horse-10:  

First, we want to note that 0.3 normalized error (NE) from the original Horse-10 paper is from a fully 

supervised trained model while our 0.6 came from our model’s zero-shot predictions.  However, we do 

believe our zero-shot performance should be able to outperform the 0.3 OOD NE baseline from the 

original paper. 

Therefore, we carefully examined Horse-10 data, and we identified two issues:  

1) We found a difference in the calculation of the NE implementation between ours and the 

original paper. Matching theirs results in a change from 0.6 to 0.4: again, this is zero-shot. 

2) We found two keypoints mismatched in our manual conversion table when we map Quadruped 

data keypoint space to original Horse-10’s keypoints. This mismatch impacts both zero-shot and 

fine-tuning performance. Fixing both issues gives us zero-shot performance of 0.25 OOD NE with 

Quadruped40K and  0.23 OOD NE with Quadruped80K, which is better than the fully supervised 

baseline in the original paper, and our fine-tuning gives 0.07 NE. 

Performance on iRodent: 

iRodent is a hard dataset. To better argue our point, and show you why we made this benchmark, here is 

the distribution of animal sizes in the dataset compared to others; notably, while the COCO human 

benchmark was the dominant benchmark used to evaluate different pose estimation methods, we notice it 

has much less variance in the object (person) sizes within the dataset. Therefore, it’s likely that this is 

commonly overlooked when there is a distribution shift for the size of the object, and adds to the 

challenges of iRodent. We added a new Extended Data Figure on the dataset, added here for ease:
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Therefore, we believe that the best way to judge the model performance is by comparing it to the 

ImageNet+SA method (~58.9 mAP) baseline instead of looking at the absolute number. 

After the improvements we detailed above, the new zero-shot performance in iRodent is 58.6 mAP, 

which is comparable to the fully supervised trained model with HRNet-w32 using ImageNet weights. 

Additionally, fine-tuning our SuperAnimal weights can give us 73.0 mAP, bringing an additional 14.1 mAP 

gain compared to ImageNet baseline. We hope our newest SA-Quadruped models meet your 

expectations for good utility. 

Besides the absolute numbers, we also want to note the limitation of using mAP to evaluate a zero-shot 

pose model. As we noted in Supplementary Materials previously, there is always annotator bias between 

the model’s keypoints and the target domain keypoints, especially on body keypoints that are difficult for 

different annotators to agree on, and we argue it’s causing an annotator bias between our pretrian 

datasets and the target domain dataset. Therefore, while we now have more competitive zero-shot 

performance,  we still expect this is an under-estimation of the true effectiveness of the model. 

Performance on AnimalPose: 

Our zero-shot mAP is 84.6, 5 mAP higher than AP-10K’s 79.4 zero-shot.  Ours is very close to the fully 

supervised ImageNet baseline that has 86.8 mAP.  

Performance on AP-10K:   

We now have 80.1 mAP on the AP-10K, which is now ranked third place in the formal leaderboard. Note 

the Top1 and Top2 have 82.4 mAP and 80.4 mAP. However, their ViTPose+H (632 M parameters)  and 

ViTPose+L (307 M parameters) are 20 times and 10 times bigger than our HRNetw32 (29M parameters) 

model, thus imposing a hard hardware requirement to end users. In the meantime, their ViTPose+B 

model (86 M parameters), which is 2 times bigger than ours, has 74.5 mAP, which is 5.6 mAP lower than 

ours.  We bring a 7 mAP gain in HRNetw32 that uses ImageNet weights. 

Informativeness of metrics used: The authors use two unsupervised methods to deal with domain shifts: 

spatial-pyramid search and video adaptation. The performance of the spatial-pyramid search is evaluated 

in terms of the RMSE, which is fine (though figure 3C is quite hard to read.) But quantitative evidence that 

video adaptation improves model performance is still limited. The convex hull metric shows a decrease in 

the number of “off-body” errors where keypoints are placed far from the animal but doesn’t provide 

enough information to know whether a pose estimate is reasonable. The keypoint dropping and jitter 
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metrics in figure S4e show that video adaptation makes pose estimates modestly smoother (though 

significance testing is needed), but smoother keypoint trajectories are not necessarily more accurate. 

The only way to really know whether this method is producing an improved accuracy of pose 

estimates would be to evaluate RMSE or mAP on a held-out set of human-annotated frames. 

We would push back a little to say that keypoint dropping does give a sense of performance, and we’ve 

added statistics to show that this is statistically significant, with small to large effect sizes. See 

Supplemental Tables for extensive testing (also linked in Results).

But nonetheless, we added a new analysis: since Horse-30 (the full dataset) has dense annotations for 

30 horse videos, we decided to use this dataset to test how video adaptation adds to the zero-shot 

performance in terms of mAP, as you ask. See below, where we add a requested baseline as well. In 

short, it does improve mAP.  

Relationship to prior work: First continuing on the subject of video adaptation, it is not clear from the 

manuscript to what extent the authors’ methods are an improvement on other approaches that have been 

previously proposed. The authors should also at the very least test whether their video adaptation 

approach is any better than more classical time series denoising methods such as Kalman filtering. A 

better evaluation would also contrast performance with other algorithms that have used temporal 

smoothness constraints to improve pose estimation quality, such as DeepGraphPose (Wu et al., NeurIPS 

2020). Finally, given that the authors are not the first group to try using pseudolabels to boost model 

performance, it would be good to see a comparison to other methods such as Progressive Pseudo-label-

based Optimization (PPLO, Cao, Tang et al., ICCV 2019) which is particularly relevant here given that 

this method was also introduced in the context of quadruped pose estimation. 

As requested, we compare video adaptation to two baselines; PPLO, as via progressive pseudo labeling, 

and a Kalman Filter.  

We didn’t claim video adaptation being technically novel, instead we find its a highly practical approach to 

adapt a pose model to videos (which, to our best knowledge, has not been done before). Unlike many 

domain adaptation algorithms (Cao et al. 2019), our video adaptation does not require access to 

source domain data or annotated target domain data. It’s not practical to expect our end-users to 

download our ever-growing source datasets or expect the users to have annotations when they simply 

want to run inference on a video without any annotations. 

For the same reason, we choose not to compare to DeepGraphPose, because it adds a graphical model 

as regularizer on top of the pose predictor, thus requiring access to annotated data in both source and 

target domain. It thus is not a suitable comparison to our unsupervised-based video adaptation which 

does NOT require access to the source dataset at all. 

We also didn’t compare to the full algorithm of progressive pseudo-labeling because the full version 

requires access to annotations of both source domain and target domain. We thus only keep the “pseudo 

labeling with a curriculum” (or they call it, self-pacing pseudo labeling)  part of PPLO to compare to video 

adaptation. 

As far as we know, most pseudo-labeling algorithms — including PPLO — were tested in static image 

datasets where images are diverse. In contrast, to the best knowledge, we are the first to use it to adapt a 

pre-trained pose model to videos where frames are mostly similar. To that end, we observed that it’s 

critical to fix the running stats of batch norms (BNs) during the adaptation training, as the running 
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statistics collected from frames of one single video can be inaccurate and prone to overfitting. This is not 

described in previous pseudo-labeling methods. And we found pseudo-labeling without fixing BN’s 

running stats is harmful and prone to overfitting.  

We use two new evaluation metrics (adding to jittering) called adaptation gain (delta mAP) and 

robustness gain, that help quantify video-based adaptation. This is added to Figure 3. 

-  Adaptation gain: denotes the adapted model’s change in mAP on the adapted video. A negative 

number means a performance degradation after adaptation. 

- Robustness gain: Different from adaptation gain that calculates the mAP on a single video, we 

calculate mAP gain on all videos of Horse-30. This helps to identify whether the model overfits 

one single video it trains on or it performs successful domain adaptation with respect to the whole 

video dataset (30 videos). This is now added to Figure 3. 
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The metrics below are reported as median [first and third quartiles] 

Adaptation gain 

Kalman: -4.03 [-25.53, -2.25] 

self-pacing:  0.13 [-0.73, 0.78] 

video adaptation: 1.16 [0.28, 2.40] 

Robustness gain across videos (thus no Kalman, as it is a per-video method): 

self-pacing:  0.46 [-0.30, 1.11] 

video adaptation: 4.16 [3.58, 4.89] 

We calculated the adaptation gain for both PPLO and video adaptation. We show that video adaptation 

gives an increase of 1.16 mAP in adaptation gain and 4.16 mAP gain in robustness gain. In contrast,  

PPLO gives close to 0.13 mAP increase in adaptation again and 0.46 mAP increase in robustness.  The 

Kalman filter gives -4 mAP in adaptation. This is aligned with R2’s intuition that smoothness does not 

necessarily bring a performance gain. Unlike video adaptation that changes models’ weights,  the Kalman 

filter is a per-video post-processing method and robustness gain is not applicable. 

We believe video adaptation is better than PPLO due to two reasons:  

1) The iterative pseudo labeling of PPLO causes the model to overfit to the video it adapts to.  

2) PPLO does not take into account that the running stats of BN from video frames give inaccurate 

running stats while video adaptation uses the pre-trained model’s running stats in BN. 

Consistency between quantitative results and what is claimed: the plots of model performance in Figures 

1-2 suggest that different models/methods perform better on different datasets, however the authors don’t 

always take this into account when reporting their conclusions. For example, SA + memory replay 

performs best on the DLC-Openfield dataset, leading the authors to conclude in the text that memory 

replay boosts model performance- however in the Horse-10 and iRodent datasets, memory replay does 

worse than naïve fine-tuning. In Horse-10, SA + memory replay in fact does even worse than the SA 

zero-shot model at 14 fine-tuning images, suggesting that training the model on labels from the Horse-10 

dataset somehow worsens its performance. The actual takeaway from all of this may simply be that 

different model settings work best for different datasets- but this is a hard conclusion for the reader to 

draw when results on different datasets are spread across multiple figures and reported using different 

metrics. 

As you asked in Revision 1, we already made a unified Summary Table so all results are easily 

accessible to the reader.  We now also provide a more extensive table with our new updates. 

Regarding which part of the SA method is best to use when, we note that the motivation of memory-

replay is to overcome the catastrophic forgetting for a pre-trained pose model (without accessing the 

source domain data). So it’s expected that there is a trade-off between keeping the previous knowledge 

and the new knowledge. We found increasing the threshold of pseudo-labeling (from the previous 0.3 to 

0.7 for Quadruped80K) improves memory-replay’s performance In the updated results, now we show that 

memory-replay is always better or on par with naive fine-tuning. Additionally, we show in Extended Data 

Figure 4 that memory-replay mitigates catastrophic forgetting that is evaluated by keypoint dropping. 
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 We can tone down the perceived claim that memory-replay is absolutely better in all situations, that was 

not what we meant to imply (and would have just not shown naive fine-tuning!).

Plotting of tracking data: In the behavioral analysis of Horse-30 data, the authors write in the method that 

trajectories were smoothed using a 2nd-order, low-pass, zero-lag Butterworth filter for subsequent stride 

detection. This is fine, however I think given that the filtering is presumably required for the performance 

reported in Figure 4h-i, it would be helpful to see both the raw and the filtered tracking data in Figure 4g, 

to give a sense of how much the filtering cleans up the raw trajectories. (I also wasn’t completely sure 

which version of the data is being shown in 4g.) 

We now replaced the images in Figure 4 with the raw data, and added the filtered variant to the Extended 

Data Figure 7. Also here for ease: (note with the new model it also improved the gait analysis R1 from 

0.89 to 0.91.): 

Raw GT (left) and predictions (right)

Smoothed GT (left) and predictions (right) 

Clarity of the method description: I had trouble figuring out from the text and from Figure 1c which parts of 

the network are trained during “task-aware fine-tuning”, and also which parts of the network cartoon in 1c 

were being called the encoder and the decoder. My guess in 1c is that the orange blocks labeled “pre-

training dataset” are what is called the “encoder” in the text, and the purple blocks labeled "downstream 

dataset” are the “decoder”, is this right? I was debating between this and interpreting the first two 
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(contracting) layers are the encoder and the last two (expanding) layers as the decoder. Further 

confusing is that the text describes “combined encoder-decoder fine-tuning”, which I would take to mean 

all layers of the network are trained, which is not what the color-coding in the figure is suggesting. 

We updated Figure 1 and added a clear label which is encoder and which is decoder now, as this links to 

our RID or Fine-tuning the head aspect of the work. 

Metrics and comparison models: I still hold that it’s unnecessarily confusing that the way models are 

evaluated, and the models they are compared to, changes across figures/datasets: Fig 1e and 3c (DLC-

Openfield, Smear Lab, Golden Lab, and MausHaus) report RMSE, 1h and 2d-f (DLC-openfield, trimouse, 

iRodent, AP-10K, and AnimalPose) report mAP, and Fig 2c (Horse-10) reports normalized error.  

Of these, RMSE and normalized error are metrics where smaller numbers mean better performance, 

while for mAP higher numbers mean better performance.  

The number of fine-tuning images also differs across figures. The paper would be a lot easier to draw 

conclusions from with addition of a unified “results” table that reports performance for a common set of 

models and training set sizes, using one or more common performance metrics, on each dataset.  

Similarly, AP-10K is presented as a point of comparison in some figures but not others,  

and some figures report performance of "ImageNet + Randomly Initialized Decoder" while others show 

"ImageNet Fine-tuning". (I assume the latter two are different given that Figure 2C shows very different 

performances for SA + R.I.D. vs SA + Fine-tuning.)  

The thing being measured in Figure 1e, 1h, 2c-f, and 3c is always the same, namely pose estimation 

accuracy, therefore the metrics and control models being used should also be consistent. 

We still feel strongly it’s best to use the metrics that others have used before to be able to share 

comparable results - and we made the summary table already as you requested in Revision 1 that has all 

metrics such as RMSE, mAP and normalized error for all our results. 

That being said, we agree we can simplify our presentation and tidy up our language, which we did and 

can be summarized in the following:  

- In the fine-tuning  experiments we ran, the # of images differ, but it’s a constant % of the data, as 

was done in prior works where we adopted benchmarks for fine-tuning comparisons. We changed 

the figures to read % of frames used and added the actual # in the figure caption. 

- We changed Figure 1 to be only RMSE for TopViewMouse (which then is consistent with Figure 3 

mouse plots), and all Quadruped data is reported as mAP and RMSE, and Horse-10 NE for 

benchmark reporting. 

- We fixed the inconsistency in the wording of ImageNet randomly initialized decoder (RID) and 

Imagenet Fine-tuning (good catch they are the same, i.e., Figure 3e should say ImageNet-RID), 

But SA+RID and SA+Naive Fine Tuning ARE different; Fine-tuning means we keep the trained 

decoder head and fine-tune it, whereas RID means we initialize an untrained decoder and learn 

it.  
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Minor notes 

Double-check wording in some parts of the Methods- for example: “A batch size of 8 was used and the 

SuperAnimal-TopViewMouse and were trained for a total of 750k iterations, respectively.” 

- Fixed, thanks. 

Table 1 and Figure S2 (possibly elsewhere?) change “thai”->”thigh” (eg “front_left_thai”). 

- We agree this is annoying, but this is because the original source dataset used thai not thigh, so 

that is what is in the original dataset if someone does use it (we do not change the source data). 

Methods section HRNet-w32: it’s fine that the ED figures and main text use different train/test splits but 

given that they’re two splits of the same dataset they are not “fully independent replication[s]” as claimed 

here. This point isn’t critical to your claims though so you should be fine just cutting it. 

- Agree, we cut it. 

Plotting results: the line graphs in Figure 1 and 2 use what looks like a log scale on the x axis, but the 

spacing of x-axis tick marks isn’t quite consistent with that. For example, 17 is not at the midpoint of 3 and 

35 on a log scale. I suggest making x-coordinates of plotted data precise to make these graphs easier to 

interpret. 

We tried a log scale plot previously and it didn’t render well as it tended to squeeze very small training 

data regime. We now report the training ratios, and hope this is an acceptable compromise.

Reviewer #3 (Remarks to the Author): 

The authors have made significant improvements to the manuscript, with extensive additional details on 

the methodology, clarifications on the datasets and models used, and a few new evaluation results. 

That said, issues remain related to the nature of this work as a foundation model for scientific application. 

Namely, we feel the authors must meet minimum standards for reporting and data access. Furthermore, 

without providing the datasets in the form used for evaluations here, the authors may be misconstrued as 

intentionally making it more difficult for others to build competing approaches and make fair and direct 

comparisons – something which they benefit from doing here by using other publicly available datasets. 

I (the lead senior author) strongly push back on the assertion that we are not transparent. Our paper is 

not even published as we have made an absolutely good faith effort to (1) release already the models that 

support our results on HuggingFace, (2) release part of our new private data (on zenodo), (3) additionally 

use only open-source datasets which we did not alter in any way, (4) provide the public with multiple ways 

to use the models (GUI, HuggingFace, and stand-alone web interface).  

To reiterate, the goal of our work was to introduce a method for building unified pre-trained pose-aware 

models. We show that even now –given the data limitations–  we can achieve SOTA zero-shot 

performance against fully supervised models on hard animal pose benchmarks (Horse-10), and match 
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the performance of larger models trained with more data (AP-10K). I think this is a major advance in the 

field.  

To remove any doubt, (1) we already released the models; (2) we fully intend to release all data. We 

include now Model Cards and Datasheets in the revision. Upon acceptance, we will release the final new 

datasets. 

Other concerns about the presentation and claims about the significance and utility of the approach are 

outlined below. 

Issues: 

>> "If the models need fine-tuning, we show SuperAnimal models are 10× more data efficient" (abstract) 

This is a very misleading statement. The SuperAnimal models achieve the same performance at 10 fine-

tuning frames as an ImageNet-pretrained model at ~100 fine-tuning frames. This difference disappears at 

~500 fine-tuning frames, which is also the best performance overall. A more accurate portrayal of the 

work presented here would state that "If the models need fine-tuning, we show SuperAnimal models are 

more data efficient at small training set sizes (10-100 frames) and achieve comparable performance at 

larger training set sizes (>500 frames)." 

Importantly, no mention is made of the results showing that all improvements yielded by this work 

disappear at 500 fine-tuning frames as per Fig. 1e.

As the seminal work that studies transfer learning (Kaiming He et al 2019) suggested and is now common 

knowledge, pre-trained weights are less relevant if the target domain has sufficient data. The number of 

sufficient data depends on the difficulty of the dataset and we agree that for the dlc-openfield dataset, 500 

frames is sufficient to make SuperAnimal pretrained weights less relevant, but users don’t want to label 

500 frames, or even 100 if they can label 10. Being able to have ~2 pixel error gain without more labeling 

even makes nature Methods papers, and a 1 mAP gain can make a CVPR paper  Thus, we are not being 

misleading at all: we state what is true for both SuperAnimal models.  

Here, we also want to warmly remind you that you didn’t consider our SA-Quadruped results where the 

tasks are clearly much harder. The newest results show impressive gains both zero-shot and after fine-

tuning. In particular, we outperform fully trained models with ImageNet weights by 14.1 mAP in iRodent 

and 9.6 mAP in AP-10K. We are 5.6 mAP higher than the SOTA paper when we compare to models (ViT-

Pose+ B) that are 2 times bigger than ours. As you likely know, this is considered a big jump in computer 

vision. 

Those results show that our pretrained weights are very competitive and useful even in harder datasets, 

and in fact, with our new results, we are not just 10X more efficient, we can be up to 100X more.  

> Fig 3: a comparison to a standard behavior segmentation benchmark, such as Sun et al 2022 

(arXiv:2207.10553), would provide stronger and more readily comparable evidence for good performance 

on this downstream task. 

>> Sturman et al is an established human expert annotated benchmark in the field of mouse behavior. 

Sun et al. has programmatically defined behaviors, not ground truth annotations. The main goal of our 
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paper was to show the innovations in building foundational-like models for pose estimation. Beyond 

Sturman et al. we now include another downstream behavioral analysis for stride analysis (Figure 4). 

The MABe22 dataset in Sun et al. (arXiv:2207.10553) is a much larger and much more community-tested 

benchmark dataset for behavioral segmentation, which includes a broader and more representative set of 

behavioral classes. These are NOT programmatically defined, but rather expert annotated and have 

served as an excellent and widely adopted reference for testing precisely what the authors purport to 

show here. 

Firstly, I ( the lead senior author) want to make a critical point: MABe is not a standard behavior 

segmentation benchmark. This is a paper with < 20 citations, that has changing data. The evidence is in 

our favor that when we submitted our paper, there was no human annotated behavior data for Sun et al. 

2022, and the methods section says it was programmatically annotated: I quote from their paper 

(https://arxiv.org/abs/2207.10553v1): 

"The MABe22 Mouse Triplets dataset was collected and analyzed in the laboratory of Vivek Kumar at 

Jackson Labs (JAX), and was assembled by Ann Kennedy at Northwestern University. Mice were bred 

and videos of interacting mice were collected by Tom Sproule at JAX. The video dataset was tracked, 

and behavior annotations algorithmically generated, by Brian Geuther and Keith Sheppard at JAX, 

with pose estimation performed using a modified version of HRnet described in [64]." 

Sun et al was updated to include mention of new human annotations in late June 2023 for their new 

version that was published elsewhere (Fri, 30 Jun 2023 22:45:47 UTC (28,628 

KB):https://arxiv.org/abs/2207.10553v2), but notably while our paper was under revision review! Here 

again is proof of the actual data: https://data.caltech.edu/records/rdsa8-rde65 where the record clearly 

shows June 29th, 2023 as the uploaded and modified date (see bottom of the page). How many papers 

have used this “excellent and widely adopted reference for testing precisely what the authors purport to 

show here” since June 30th? 

And what do we purport to show here that others have done? We purport to show a method to build 

better unified pose estimation models (which is novel), and as a simple proof-of-usability (which I don’t 

see other pose estimation papers doing), we show performance on five OOD videos (with metrics), and 

two benchmark datasets where pose performance would be critical (Sturman et al. and Horse-30, which 

both have human annotated videos). 

Thus, it's completely unreasonable to move the goalposts on us. "When evaluating your revised 

manuscript, we will not consider any similar papers published independently in the meantime to 

compromise the novelty of your study. See here for more information." Surely this must extend to arxiv 

updates and requests for new experiments where data wasn’t even available during revision 1?  

Nonetheless, while we find your statements blatantly untrue and misleading, we ran the MABe 

benchmark videos with SuperAnimal-TopViewMice. See below. 

An alternative source of evaluation of downstream performance would include use with the openly 

available SimBA videos and pretrained classifiers (https://osf.io/tmu6y/), which come with DLC tracked 

data to begin with and should be straightforward to evaluate on. 

https://data.caltech.edu/records/rdsa8-rde65
https://www.nature.com/articles/s41467-020-17817-x
https://osf.io/tmu6y/


14

SimBA is an unpublished method (and we don’t need DLC data, we need raw videos that are out of 

domain such that we can run video inference). 

Downstream evaluations (such as in supervised behavior segmentation), while not the innovations the 

authors intend to showcase here, are a crucial and important measure as they provide evidence of the 

real world performance of the approach. Importantly, they afford a fair and orthogonal evaluation of the 

performance of the tracking models by measuring the functional significance of the claimed 

improvements. Given their importance, it is not unreasonable to request a more thorough evaluation of 

downstream performance on more representative behavior segmentation datasets like the two mentioned 

above. 

We don’t disagree with the sentiment (as we did just that with two other datasets), but we want to point 

out that no other published pose estimation paper we are aware of shows supervised behavioral 

segmentation as a readout of the pose estimation performance. Every benchmark’s (ie., 

https://paperswithcode.com/task/pose-estimation) goal is to show single frame pose performance.  We 

find this request a dangerous precedent to set for the field. The cost and CO2 to just appease this one 

reviewer should be considered. So, although we fundamentally disagree with this reviewer and find it 

unethical to request more work that could not have been done before submission, we benchmark on 

MABe and show our zero-shot keypoints are as good as their fully supervised models (in-so-far-as 

the performance one can get with using either is the same). 

The goal:  

The aim of these experiments are to show that our pose estimation outputs are as usable as the officially 

released pose estimation outputs. Our goal is not to compete on behavioral classification benchmarks, as 

our paper has nothing to do with advances in behavioral classification.  

The data available: 

MABe has 2 rounds. Round 1 provided only pose estimation output data for users to build better 

unsupervised behavioral classifiers. Round 2 released raw videos 

(https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-

triplets-video-data/dataset_files); it has raw RGB video data to build unsupervised representation learning 

models. Pose therefore was not a requirement to use. 

Therefore, we use videos from round 2 as the inputs running inference with our for our SuperAnimal-

TopViewMouse model.  Since our paper is about building better pretrained pose models, we use 

recommended baselines (Sun et al. 2022) from round 1 that build representation based on pose 

trajectories instead of round 2 RGB-based representation learning baselines (as RGB-based 

representation learning is known to be better than pose trajectory-based representation (PointNet)). 

Because videos from MABe round 2 have 3 mice in the videos, we used a top-down version 

SuperAnimal-TopviewMouse. See our Methods for information on the detector. 

The procedure we took is as follows:

We inference our top-down SuperAnimal-TopviewMice model on all 1830 videos from round 2 (with 1800 

frames per video, ie 3.3 Million frames of data total), converted the pose results into the MABe keypoint 

file format,  and ran one of the strong pose-based representation baselines called PointNet.  Finally, we 

use the official evaluation code to compare the performance between using the official MABe poses 

(obtained from fully supervised learning) and poses that are obtained via our models’ zero-shot 

predictions. We added these results to Suppl. Table 28 and an example image in Extended Data Figure 

https://paperswithcode.com/task/pose-estimation
https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets-video-data/dataset_files
https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets-video-data/dataset_files
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7, and Suppl. Video 6. Image on the left is adapted from the MABE challenge: 

https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-

triplets under a Creative Commons Attribution 4.0 International License: 

https://creativecommons.org/licenses/by/4.0/. 

We show that with SuperAnimal keypoints, we get almost the same performance in downstream 

action segmentation as the official pose does in all 13 considered tasks, even though our model is 

never trained on MABe videos. This demonstrates the effectiveness of our models in downstream 

action segmentation tasks.  

>> Additionally, we note that SuperAnimal weights were used in another pre-print, showing that 

SuperAnimal-TopViewMouse predictions with keypointMoSeq [13] outperform other behavioral 

quantification methods on a separate benchmark dataset. For ease of the reviewers, we added that 

relevant figure panels here (Fig. 9). We cite this work as well. Additionally, we used the SuperAnimal-

TopViewMouse model within AmadeusGPT [14] for several other mouse topview datasets, and for 

example, could show on the elevated plus maze it can match human-annotation performance there as 

well. 

The Keypoint-MoSeq paper does not demonstrate that pose tracking with SuperAnimal-TopViewMouse 

outperforms pose tracking with any alternative approach – it evaluates the performance of different 

unsupervised behavior segmentation methods given the same tracking. Considering the amount of outlier 

filtering and other forms of robustness to keypoint noise specific to that method, I do not see this as a 

valid evaluation of the work in question here – maybe beside the point since none of that data is 

presented in THIS manuscript. 

"The Keypoint-MoSeq paper does not demonstrate that pose tracking with SuperAnimal-TopViewMouse 

outperforms pose tracking with any alternative approach" -- this is not what we say at all. We simply note 

they, ZERO-SHOT, are good enough to be used for “behavioral quantification” – if they were terrible 

predictions how could they even be competitive? 

https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets
https://www.aicrowd.com/challenges/multi-agent-behavior-challenge-2022/problems/mabe-2022-mouse-triplets
https://creativecommons.org/licenses/by/4.0/
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There are a number of issues with the work presented in the AmadeusGPT preprint, all of which are 

outside the scope of this paper's review. If the authors wish to use it as evidence for the performance or 

validity of the current work, I encourage them to do so by including data on downstream behavior 

classification performance.

AmadeusGPT (now published at NeurlPS 2023) is an example to show the practical value of 

SuperAnimal models. We also find it wildly inappropriate to come after our other work in your review.

Since the model reported in this study is intended to be used directly for scientific applications, it is 

important that the authors share sufficient detail about the models, so that use applications do not suffer 

from any biases that might be baked into these models. I suggest providing the following (though the 

authors may have additional details they would like to provide): Dataset datasheet, as described in Gebru 

et al 2021 (arXiv:1803.09010) Crowdsourced annotation datasheet, as described in Diaz et al 2022 

(arXiv:2206.08931) Model cards, as described in Mitchell et al (arXiv:1810.03993) 

>> We updated the model cards at HuggingFace. TopViewMouse: 

https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse. SuperAnimal-

Quadruped DLCRNet: https://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-Quadruped 

The efforts made to improve the documentation of the model is appreciated, but insufficient given the 

potential for widespread use of the work presented here. 

The goal of this paper is to introduce a new method for building models with unified pose priors across 

disjoint data. We show in 6 benchmarks that is a really decent way forward for the field. Then, as 

examples of how such models can be used we show now 3 benchmarks/analysis for behavior as a 

downstream task. We release the weights in the realm of being open source and reproducible. 

Aside from two new datasets, all of the data we used is already public and it is on those authors to 

document their datasets. Moreover, your “minimum requirements” again are not a standard in the 

field. Can the reviewer kindly point us to one other animal pose estimation paper that has such a model 

card? Or can they point us to one other pose model that is even as detailed as the ones we build for you 

in Revision 1? 

Minimum requirements include: 

1. A dataset datasheet should be provided as described in Gebru et al. (arXiv:1803.09010) including 

sections: Motivation, Composition, Collection Process, Preprocessing/Cleaning/Labeling, Uses, 

Distribution, and Maintenance, as well as associated sub-sections. Appendix A in (arXiv:1803.09010) has 

a clear example. 

2. A model card should be provided as described in Mitchell et al. (arXiv:1810.03993) including sections: 

Model Details, Intended Use, Factors, Metrics, Training Data, Evaluation Data, Ethical Considerations, 

Caveats and Recommendations. Figs 2 and 3 in (arXiv:1810.03993) have clear examples. 

These are the standard for foundation models which the authors state they consider this work to be. For a 

recent example, see Segment Anything (arXiv:2304.02643) which takes the exact steps described above 

(Appendix F) to ensure responsible and ethical use of their foundation model. As the intended use case 

for this work is the scientific domain, it would be appropriate to apply even more stringent reporting 

requirements, so this is not a particularly high bar to meet. 

http://huggingface.co/mwmathis/DeepLabCutModelZoo-SuperAnimal-TopViewMouse
https://huggingface.co/mwmathis/
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We are not responsible for documenting already publicly available data nor could we even do this. We did 

no preprocessing or edits to these datasets, as you allude to below. Nonetheless, we added Datasheets 

into the Supplemental information following your request. 

> The authors state in the Reporting Summary that ”In the following we detail references for those 

datasets”, but these are not provided. I believe a major contribution of this study is a unified SuperAnimal 

dataset - the authors should provide this as part of the resource - the dataset should be made publicly 

available. Another major contribution is a unified vocabulary for animal keypoints, but this is only provided 

through figure illustrations rather than machine parseable text or code to do the dataset unification. 

We literally reference every dataset we use, and we made iRodent, our new dataset, publicly available 

BEFORE publication to meet your demands. We will make the last of the data available (MausHaus) and 

the merged datasheet (again, no edits …) available upon acceptance. We also have a machine parsable 

file in the paper repo and it was there for you to look at during revision 1.

>> The datasets are referenced fully in the Methods and in Suppl. Figure 1. Please note, not all of the 

mouse data can be made available due to limitations on institutional guidelines on sharing recorded data. 

Therefore, while we used primarily open source data, as we already referenced, those that are given to 

us courtesy of other scientists must stay private. The best we can do, as we do here, is to provide model 

weights. This is also an important point for scientists who might be hesitant to release their data. We also 

now added the unified keypoint main diagram to the figure repository so users understand the mapping, 

and a new panel in Extended Data 1 that has the mappings. 

While references and ED1 are helpful, there is significant additional processing that the authors have 

done, many steps of which cannot presently be reproduced even with the descriptions provided. 

We did absolutely zero preprocessing of the images or annotations. The only set that was held out due to 

ethics approval concerns is now cleared (300 images of ~85K) and will be released upon acceptance. 

Example merging code will also be released with the final paper.

The authors can also: 

1. Provide the code for standardizing the pose annotations for the specific datasets used here. 

2. Provide the publicly available datasets in their standardized format (or at a minimum, the pose 

annotations). 

1 was already provided.  

2 every dataset is provided. Upon acceptance will release the final set, and this is noted in the 

manuscript.  

The model weights encode the biases and structural sources of error present in the source annotations, 

but these are intractable to audit without access to the source data and annotations. 

All datasets and annotations are publicly available to you aside from ~300 images out of 85K, which we 

will package and release upon acceptance. 

These datasets that cannot be submitted to scrutiny, but which constitute the core of the contributions 

reported here, can simply be excluded from the training set to create an auditable subset. Both versions 
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of the weights could be provided, with ample disclaimers that one model was trained on private and 

potentially problematic source data. 

Frankly it's insulting that you think the core of our contribution of years of work is to collect public datasets 

into a common folder. 

>> This app allows anyone, within their browser, to a) upload their own image and label, b) annotate 

community images, c) run inference of available community models on their own data, d) share models to 

be hosted. 

The app does not appear to allow for uploading user images for annotation, and other than a Google 

Form, nothing appears to be present in the web app other than the curated images for public datasets. It 

is not clear how any of this, other than the inference functionality (also available via HuggingFace 

Spaces) pertains to the work presented here. If we understand correctly, the labels on the curated 

datasets are not used in this work. 

That is incorrect. You can upload an image and easily test, and even contribute by fixing mistakes (see 

below). How is this related? You wanted ample evidence these models work, we benchmark behavior 

and provide users a non-install way to test them. Here is an image 

https://stock.adobe.com/fr/search?k=horse, not from our training or test set you can test on, for example: 

[Redacted]

https://stock.adobe.com/fr/search?k=horse


REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author):

The revised benchmarking of model performance is much clearer, and I found this series of results 

secfions (Zero-shot SA-TVM, Fine-tuning SA-TVM, Zero-shot SA-Q, and Fine-tuning SA-Q) helpful for their 

organizafion of the many model architectures, training methods, evaluafion metrics, and datasets used 

in this paper. This is very nice work! The improvements to model performance are also quite substanfial 

compared to the original manuscript, and I commend the authors for the work they’ve put in.

One minor note, the descripfion of the robustness gain metric is clear in the rebuftal, but in the Methods 

of the revised text less detail is provided, and it might be confusing to readers as it stands. I suggest 

tweaking the Methods text to explicitly state that for robustness gain you’re adapfing on one video then 

evaluafing on the remainder, vs in adaptafion gain where you evaluate on the same video on which 

adaptafion was performed.

And one small nitpick on the results secfion fitled “unsupervised behavioral analysis” – what’s being 

shown in this secfion isn’t that SA does unsupervised behavioral analysis, it’s that SA pose esfimates are 

compafible with unsupervised behavioral analysis pipelines like Keypoint-Moseq (as well as supervised 

analyses like Sturman et al’s rearing detecfion task.) “SA compafibility with unsupervised behavioral 

analysis” would be more appropriate.

These are quite minor points that the authors should easily be able to address. Once done, given the 

overall improvement in both the manuscript and the models themselves, I am happy to recommend this 

arficle for publicafion in Nature Communicafions.



Reviewer #2 (Remarks to the Author):

The revised benchmarking of model performance is much clearer, and I found this series of
results sections (Zero-shot SA-TVM, Fine-tuning SA-TVM, Zero-shot SA-Q, and Fine-tuning
SA-Q) helpful for their organization of the many model architectures, training methods,
evaluation metrics, and datasets used in this paper. This is very nice work! The improvements to
model performance are also quite substantial compared to the original manuscript, and I
commend the authors for the work they’ve put in.

Thank you very much for the feedback!

One minor note, the description of the robustness gain metric is clear in the rebuttal, but in the
Methods of the revised text less detail is provided, and it might be confusing to readers as it
stands. I suggest tweaking the Methods text to explicitly state that for robustness gain you’re
adapting on one video then evaluating on the remainder, vs in adaptation gain where you
evaluate on the same video on which adaptation was performed.

Thank you for noting this, we merged this into the main manuscript file.

And one small nitpick on the results section titled “unsupervised behavioral analysis” – what’s
being shown in this section isn’t that SA does unsupervised behavioral analysis, it’s that SA
pose estimates are compatible with unsupervised behavioral analysis pipelines like
Keypoint-Moseq (as well as supervised analyses like Sturman et al’s rearing detection task.)
“SA compatibility with unsupervised behavioral analysis” would be more appropriate.

We updated the header to read: “SuperAnimal models can be used with unsupervised
behavioral analysis”

These are quite minor points that the authors should easily be able to address. Once done,
given the overall improvement in both the manuscript and the models themselves, I am happy to
recommend this article for publication in Nature Communications.
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